

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Influence of fiber degradability of corn silage in diets with lower and higher fiber content on lactational performance, nutrient digestibility, and ruminal characteristics in lactating Holstein cows

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Miller M.D., Kokko C., Ballard C.S., Dann H.M., Fustini M., Palmonari A., et al. (2021). Influence of fiber degradability of corn silage in diets with lower and higher fiber content on lactational performance, nutrient digestibility, and ruminal characteristics in lactating Holstein cows. JOURNAL OF DAIRY SCIENCE, 104(2), 1728-1743 [10.3168/jds.2020-19088].

Availability:

This version is available at: https://hdl.handle.net/11585/804038 since: 2021-02-23

Published:

DOI: http://doi.org/10.3168/jds.2020-19088

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

1	Influence of fiber <mark>degradability</mark> of corn silage in diets with lower and higher fiber content
2	on lactational performance, nutrient digestibility, and ruminal characteristics in lactating
3	Holstein cows. By Miller et al., page xx. Brown midrib-corn silage has greater fiber
4	degradability and may allow for faster turnover of fiber from the rumen. We compared brown
5	midrib-3 corn silage to conventional corn silage in diets with lower and higher fiber
6	concentrations. In higher fiber diets, corn silage with lower fiber degradability limited dry matter
7	intake and milk yield. In lower fiber diets, the fiber degradability of the corn silage had no effect
8	on intake or milk yield. Lower fiber degradability corn silage fed at higher dietary levels has a
9	rumen-filling effect and limits dry matter intake and milk production.
10	
11	
11	
12	
13	
14	
. –	
15	
16	
17	
18	
19	
20	

RUNNING HEAD: CORN SILAGE AND FIBER CONCENTRATIONS

23	Influence of fiber <mark>degradability</mark> of corn silage in diets with lower and higher fiber content
24	on lactational performance, nutrient digestibility, and ruminal characteristics in lactating
25	Holstein cows
26	
27	M. D. Miller ¹ , C. Kokko ¹ , C. S. Ballard ¹ , H. M. Dann ¹ , M. Fustini ² , A. Palmonari ² , A.
28	Formigoni ² , K. W. Cotanch ¹ , and R. J. Grant ¹ *
29	¹ William H. Miner Agricultural Research Institute, Chazy, NY 12921
30	² Department of Veterinary Medicine, Università di Bologna, 40064 Bologna, Italy
31	¶Current address: Barn Swallow Consulting, LLC, Underhill, VT 05489
32	
33	*Corresponding Author:
34	Richard Grant
35	William H. Miner Agricultural Research Institute
36	1034 Miner Farm Road
37	Chazy, NY 12921
38	Phone: 518-846-7121 x116
39	Fax: 518-846-8445
40	Email: grant@whminer.com
41	

ABSTRACT

43	The effect of neutral detergent fiber (NDF) degradability of corn silage in diets
44	containing lower and higher NDF concentrations on lactational performance, nutrient
45	digestibility, and ruminal characteristics in lactating Holstein cows was measured. Eight
46	ruminally cannulated Holstein cows averaging 91 ± 4 (standard error) days in milk were used in
47	a replicated 4 x 4 Latin square design with 21-d periods (7-d collection periods). Dietary
48	treatments were formulated to contain either conventional (CON; 48.6% 24-h NDF
49	degradability) or brown midrib-3 (BM3 <mark>; 61.1% 24-h NDF degradability)</mark> corn silage and either
50	lower NDF (LNDF) or higher NDF (HNDF) concentration (32.0 and 35.8% of ration dry matter,
51	DM) by adjusting the dietary forage content (52 and 67% forage, DM basis). The dietary
52	treatments were: 1) CON-LNDF, 2) CON-HNDF, 3) BM3-LNDF, and 4) BM3-HNDF. Data
53	were analyzed as a factorial arrangement of diets within a replicated Latin square with the
54	MIXED procedure of SAS with fixed effects of diet, period, and replicate. Cow within square
54 55	MIXED procedure of SAS with fixed effects of diet, period, and replicate. Cow within square was the random effect _[RG1] . Cows fed the BM3 corn silage had higher dry matter intake (DMI) than
55	was the random effect _[RG1] . Cows fed the BM3 corn silage had higher dry matter intake (DMI) than
55 56	was the random effect _[RG1] . Cows fed the BM3 corn silage had higher dry matter intake (DMI) than cows fed the CON corn silage whereas cows fed the HNDF diet consumed less DM than cows
55 56 57	was the random effect _[RGI] . Cows fed the BM3 corn silage had higher dry matter intake (DMI) than cows fed the CON corn silage whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. An interaction between NDF degradability and NDF content resulted in the
55 56 57 58	was the random effect _[RGI] . Cows fed the BM3 corn silage had higher dry matter intake (DMI) than cows fed the CON corn silage whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. An interaction between NDF degradability and NDF content resulted in the HNDF diet decreasing DMI with CON corn silage but not with BM3 silage. Cows fed the BM3
55 56 57 58 59	was the random effect _[RG1] . Cows fed the BM3 corn silage had higher dry matter intake (DMI) than cows fed the CON corn silage whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. An interaction between NDF degradability and NDF content resulted in the HNDF diet decreasing DMI with CON corn silage but not with BM3 silage. Cows fed the BM3 diets had greater energy-corrected milk yield, higher milk true protein content, and lower milk
55 56 57 58 59 60	was the random effect _{RG1} . Cows fed the BM3 corn silage had higher dry matter intake (DMI) than cows fed the CON corn silage whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. An interaction between NDF degradability and NDF content resulted in the HNDF diet decreasing DMI with CON corn silage but not with BM3 silage. Cows fed the BM3 diets had greater energy-corrected milk yield, higher milk true protein content, and lower milk urea nitrogen concentration than cows fed CON diets. Additionally, cows fed the BM3 diets had
55 56 57 58 59 60 61	was the random effect _[RG1] . Cows fed the BM3 corn silage had higher dry matter intake (DMI) than cows fed the CON corn silage whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. An interaction between NDF degradability and NDF content resulted in the HNDF diet decreasing DMI with CON corn silage but not with BM3 silage. Cows fed the BM3 diets had greater energy-corrected milk yield, higher milk true protein content, and lower milk urea nitrogen concentration than cows fed CON diets. Additionally, cows fed the BM3 diets had greater total tract digestibility of organic matter and NDF than cows fed the CON diets.

than CON. In contrast, for lower NDF diets, NDF degradability of corn silage did not affect DMI
which suggests that a threshold level of inclusion of higher NDF degradability corn silage is
necessary to observe enhanced lactational performance. Results suggest that there is a maximum
gut fill of dietary uNDF240 and that higher NDF degradability corn silage can be fed at greater
dietary concentrations.

70 Key words: brown midrib-3 corn silage, fiber content, undigested fiber, dairy cattle

71

INTRODUCTION

72 Forages are the foundation of the dairy cow diet, and specifically corn silage has become the primary forage source for lactating dairy cows in North America (Martin et al., 2017). Forage 73 74 fiber influences ruminal fermentation, nutrient digestibility, and turnover due to its physical and 75 chemical characteristics. The physical and chemical properties of fiber become especially important as dietary forage inclusion increases (Allen and Mertens, 1988). Forage fiber is 76 commonly quantified as NDF, and the degradability of NDF influences the animal response to 77 any given level of dietary NDF (Oba and Allen, 2000a). In vitro or situ fermentation for 24 or 30 78 h is a common, single-point measure of NDF degradability (NDFD) that has been related to DMI 79 80 and milk production in lactating dairy cows (Oba and Allen, 1999b). A meta-analysis by Nousiainen et al. (2009) comprising 92 studies found that forage NDF and NDFD were the two 81 most important dietary factors when predicting OM digestibility in dairy cows. 82 Recently, a laboratory measure of undegradable NDF, termed undegradable NDF at 240 83

h of in vitro fermentation (uNDF240), has been found to be related to NDF degradation and
passage kinetics, gut fill and DMI, and physical effectiveness of fiber (Nousiainen et al., 2003;
Cotanch et al., 2014; Raffrenato et al., 2018). However, due to its novelty, few published studies

have used the measure in relation to dairy cow performance (Fustini et al., 2017; Miller et al., 87 2020). Recently, Miller et al. (2020) showed that corn silage with a lower uNDF240 fraction 88 89 allowed for greater DMI and milk yield. The corn silage used was brown midrib (BMR) which has a gene mutation that results in less lignin in the plant cell wall, lower uNDF240 content, and 90 greater NDF degradability (Oba and Allen, 1999a; Hassanat et al., 2017; Miller et al., 2020). 91 92 Generally, substituting a corn silage hybrid with higher NDFD for a hybrid with lower NDFD, on a DM basis, leads to greater DMI, faster fiber turnover from the rumen, greater total tract 93 94 NDFD, and increased milk production (Oba and Allen, 1999; Hassanat et al., 2017). However, 95 responses have been more variable when corn silage substitution occurs on an NDF basis due in part to variation in NDFD at similar NDF content (Oba and Allen, 2000abc; Hristov et al., 2020). 96 97 Oba and Allen (2000abc) remains the only published study to investigate the effects of conventional or brown midrib-3 corn silage in low or high NDF content diets. Their study was 98 99 comprehensive in relating the brown midrib-3 mutation to animal response although it pre-dated the use of uNDF240 as a measure of undegradable NDF. Consequently, it would be useful to 100 assess cow responses to higher and lower forage diets, containing conventional or brown midrib 101 corn silage, using the newer measures of NDF undegradability in addition to more common 102

103 measures of NDFD.

104 Therefore, the objective of this study was to evaluate the effect of lower or higher NDF 105 degradability of corn silage (i.e., conventional or brown midrib-3), when substituted on an NDF 106 basis, in diets containing lower and higher NDF concentration (i.e., forage percentage) and their 107 interaction on lactational performance, nutrient digestibility, and ruminal fermentation and 108 turnover characteristics in Holstein cows. Our hypothesis was that greater NDFD and lower

109	uNDF240 content of brown midrib-3 corn silage would increase DMI and milk yield, nutrient
110	digestibility, and ruminal fiber turnover similarly in lower and higher NDF diets compared to
111	conventional corn silage with lower NDFD and higher uNDF240.
112	
113	MATERIALS AND METHODS
114	Experimental Design, Diets, and Management of Cows
115	All experimental procedures involving animals were approved by the William H. Miner
116	Agricultural Research Institute Animal Care and Use Committee. Eight ruminally fistulated
117	multiparous Holstein cows averaging 91 ± 4 (standard error) DIM were housed in individual tie
118	stalls at the William H. Miner Agricultural Research Institute (Chazy, NY). Cows were stratified
119	by parity, milk production, and DIM and used in a replicated 4 x 4 Latin square design to
120	evaluate the interaction of lower and higher NDFD of corn silage with lower and higher NDF
121	concentrations. Each square consisted of four 21-d periods with 14 d of adjustment to treatment
122	followed by 7 d of data collection. This design and length of experimental period has been
123	shown previously to allow for measurement of animal response to corn silage NDFD and dietary
124	NDF content (Oba and Allen, 2000a).
125	Dietary Formulation and Feeding Strategy
126	Dietary treatments (Table 1) were formulated to contain either conventional (CON;?) or
127	brown midrib-3 corn silage (BM3?) and either lower or higher NDF concentration (32.0 and
128	35.8% of DM) by adjusting the forage percentage (52 and 67% forage, DM basis). The four
129	dietary treatments were: 1) CON and lower NDF (CON-LNDF), 2) CON and higher NDF

130 (CON-HNDF), 3) BM3 and lower NDF (BM3-LNDF), and 4) BM3 and higher NDF (BM3-

131 HNDF). Diets were formulated using the CPM-Dairy nutritional model (version 3.0; Cornell

132 University, Ithaca, NY; University of Pennsylvania, Philadelphia, PA; and William H. Miner

Agricultural Research Institute, Chazy, NY) to supply the required nutrients for a lactating

Holstein cow weighing 685 kg with a BCS of 2.75, at 88 DIM, consuming 29 kg/d of DM, and

producing 54.5 kg/d milk containing 3.8% fat and 3.2% true protein.

Diets were formulated such that, as corn silage content of the diet was increased, the corn 136 grain inclusion was reduced resulting in lower (52% of DM) and higher (67% of DM) forage-to-137 concentrate ratios. Corn silages were substituted for each other on an NDF basis in an effort to 138 achieve similar dietary NDF content within a level of dietary forage. Within the higher and lower 139 NDF diets, the concentrate mix was adjusted to maintain similar concentrations of starch, other 140 carbohydrate fractions, and protein fractions (Table 2). Diets were delivered as a TMR once 141 142 daily (1500 h; Calan Data Ranger; American Calan Inc., Northwood, NH) allowing for ad 143 libitum access to feed; free access to fresh water was provided.

144 Data Collection, Sampling Procedures, and Analytical Methods

Ingredient and diet sampling and analysis. Individual feed ingredients were collected weekly and dried in a forced-air oven at 105°C for 18 to 24 h (until weight remained unchanged) for DM determination to maintain consistent dietary DM content throughout the study. During the collection period (d 15 to 21), feed ingredients and diets were collected daily and a portion of each sample was dried in a forced-air oven at 105°C for 18 to 24 h for DM determination. The remaining portion of each sample collected was frozen at -20°C until composited by collection period and analyzed for chemical composition using AOAC International (2000; 2006) approved

methods (CPM Plus; Cumberland Valley Analytical Services, Inc., Waynesboro, PA). In vitro 152 **NDFD** of forage composite and dietary composite samples (1-mm grind; Wiley mill; Arthur H. 153 Thomas, Philadelphia, PA) at 24-h was determined using an in vitro fermentation (Daisy^{II} 154 Incubator; Ankom Technology Corp., Fairport, NY) with buffered media containing ruminal 155 fluid (Goering and Van Soest, 1970). The uNDF240 for forages and dietary composite samples 156 157 was assessed using a batch in vitro rumen fermentation system (Raffrenato et al., 2018). Dietary ingredients and composite samples were used to determine particle size 158 159 distributions and a physical effectiveness factor (pef_{1.18}; DM basis) by dry vertical sieving (Ro-160 Tap testing sieve shaker model B; W. S. Tyler Combustion Engineering Inc., Mentor, OH) using a 1.18-mm sieve (Mertens, 1997). The resultant pef value was utilized to calculate peNDF by 161 multiplication of NDF content and pef using the procedure described by Mertens (1997). 162 *Cow lactational response measures.* Individual DMI was determined by recording feed 163 offered and refused daily. Samples of diets and orts were collected daily (d 15 to 21) during each 164

period and a portion of each sample was dried in a forced-air oven at 105°C to constant weightfor DM determination.

Body weight was measured (Allweigh computerized scale; Allweigh Scale System Inc.,
Red Deer, AB, Canada) and BCS assigned in 0.25-unit increments on a 1 to 5 scale (Ferguson et
al., 1994) for each cow 2 d prior to the beginning of the study and on d 18 of each period. Two
trained individuals assigned BCS independently throughout the study.

171 Cows were milked 3 times daily (0430, 1230, and 2030 h). Milk yields were recorded
172 electronically (ProVantage Information Management System; Bou-Matic, Madison, WI) on d 15
173 to 21 of each period. Milk samples from 6 consecutive milkings for each cow were collected on

d 17 and 18 of each test period and were preserved (Bronolab-W II Liquid Preservative; D & F 174 Control Systems, Inc., Dublin, CA). Samples were sent for analyses within two to three days of 175 176 sampling and were analyzed for fat, true protein, lactose, solids nonfat, urea nitrogen, and somatic cells by mid-infrared procedures (Dairy One, Ithaca, NY; Foss 4000; Foss Technology, 177 Eden Prairie, MN). After analysis, samples were composited mathematically by day in 178 179 proportion to milk yield at each sampling within the day. Somatic cell count was transformed and analyzed as SCS according to Shook et al. (1993) using the equation: $SCS = log_2(SCC/100)$ 180 181 + 3 where SCC is in units of 1,000 cells/mL. Energy-corrected milk was calculated using a 182 formula modified to account for use of true protein instead of total protein (Tyrrell and Reid, 1965; Mark Stephenson, University of Wisconsin; 183

https://dairymarkets.org/PubPod/Reference/Library/Energy%20Corrected%20Milk): (0.327 × kg
of milk + 12.95 × kg of fat + 7.65 × kg of true protein).

Rumen VFA and pH. Ruminal pH was measured in 8 ruminally cannulated cows with an
 indwelling ruminal pH/ORP/REDOX measurement system (Penner et al., 2006; LRCpH;

188 Dascor, Escondido, CA) at 30-s intervals over a 72-h period from 1500 h on d 16 to 1500 h on d

189 19. Ruminal pH measurements were averaged over a 10-min period within day and summarized

as mean pH, minimum pH, maximum pH, variation in pH, minutes under pH of 5.5 and 5.8, and

area that the pH curve was below pH of 5.8 (AUC; Beauchemin and Yang, 2005).

Samples of ruminal fluid (approximately 300 mL) were collected from beneath the
ruminal digesta mat at 4-h intervals for 24 h on d 17 (1430) and d 18 (1830, 2230, 0230, 0630,
and 1030) of each period, and strained through 4 layers of cheesecloth; pH was determined
immediately. A portion of each sample of ruminal fluid (approximately 40 mL) was frozen and

stored at -20°C until analysis for VFA concentration (Bulletin 856B; Supelco, Inc., Bellefonte,
PA) by gas chromatography with use of a Varian CP-3800 gas chromatograph (Varian, Inc., Palo
Alto, CA) equipped with a flame-ionization detector and an 80/120 Carbopack B-DA/4%
Carbowax 20M column (Supelco, Inc., Bellefonte, PA). Ten mL of ruminal fluid was added to 1
drop (approximately 100 µL) of concentrated HCl and frozen at -20°C for analysis of ruminal
NH₃-N concentration according to the procedure of Chaney and Marback (1962).

Eating and ruminating responses. Chewing activity (eating and ruminating) was
monitored using a 5-min scanning interval over a 72-h period (from 1500 h on d 17 to 1500 h on
d 20) by direct visual observation. Total time (min) spent on each activity for each day was
quantified by multiplying the total number of observations for that activity by 5 min. Number of
bouts and the length of bout of eating were calculated. A bout was defined as at least two
consecutive observations of eating behavior not interrupted by more than two observations of a
different behavior using the procedure of Black et al. (2016).

Nutrient digestibility. Total tract digestibility of DM, OM, ADF, NDF, and potentially 209 digestible NDF (pdNDF) was determined on d 16 to 20 of each test period. Fecal grab samples 210 211 were collected on d 17 to 20 for each period so that every 3 h in a 24-h period were represented. Fecal samples from each cow were composited by combining approximately 100 g of feces from 212 each time point (n = 8). Samples of diets and orts were collected on d 15 to 21. Samples of diets, 213 214 orts, and feces were frozen at -20°C, dried in a forced air oven at 55°C for 48 h, and ground to pass through a 1-mm screen (Wiley mill; Arthur H. Thomas, Philadelphia, PA). Composite 215 samples of diets (by period), orts (by cow by period), and feces (by cow by period) were 216 217 analyzed for DM, ash, ADF, NDF, and lignin (Cumberland Valley Analytical Services, Inc.,

Waynesboro, PA). Undegraded NDF at 120 h (uNDF120) was used as an internal marker and
was quantified as NDF content of diets, orts, and feces samples following an in vitro
fermentation (Ankom Technology Corp., Fairport, NY) in buffered ruminal media (Goering and
Van Soest, 1970) for 120 h. Total tract digestibility was calculated by the ratio technique using
the concentrations of the nutrients and uNDF120 in the diet and feces (Maynard et al., 1979).
The nutrient content of the diet used in the digestibility calculation was adjusted for each cow
based on the nutrient composition of the diet offered and refused.

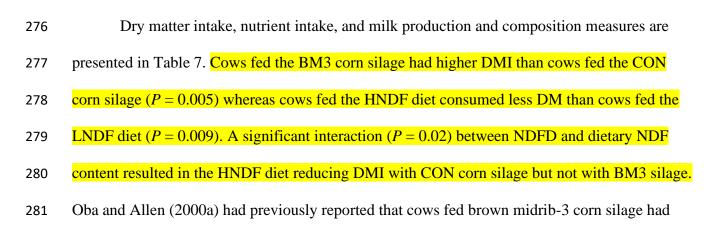
Rumen digesta measures and NDF and OM turnover. Ruminal contents were manually 225 226 evacuated through the ruminal cannula after daily feeding on d 20 and prior to feeding on d 21 for determination of ruminal content mass and volume. To ensure that cows experienced the 227 228 same interval of time between rumen evacuations, cows were divided into two groups of four cows, each based on square assignment. The first group was evacuated 3.5 h after feeding on d 229 20 (1830 h) and 3.5 h prior to feeding on d 21 (1130 h). The second group of cows was 230 231 evacuated 4.5 h after feeding on d 20 (1930 h) and 4.5 h prior to feeding on d 21 (1030 h). During evacuation, approximately 10% of ruminal contents were subsampled and squeezed 232 through a nylon screen (1-mm pore size) to separate solid and liquid phases (Voelker Linton and 233 234 Allen, 2008). Each phase was weighed, and aliquots (300 g) from solid and liquid phases were then stored at -20°C for further analysis. Solid and liquid phase samples were subsequently dried 235 236 at 55°C, ground (solids: 1-mm screen; Wiley mill; Arthur H. Thomas, Philadelphia, PA; liquid: 237 1-mm screen, UDY Cyclone Sample Mill; UDY Corp., Fort Collins, CO), and recombined based on DM proportion of each phase for analysis of ash (modified method 942.05; AOAC, 1990; 4 h 238 at 600°C) and NDF. 239

Ruminal pool size of OM and NDF was calculated as the product of ruminal content
mass and nutrient content of ruminal contents. Ruminal turnover rate (%/h) of OM and NDF was
calculated as [100 × (intake of nutrient/ruminal pool of nutrient)/24] (Voelker Linton and Allen,
2008). Nutrient intake was calculated using DMI from d 20 and 21 and corresponding composite
sample nutrient content. Ruminal turnover time (h) was calculated as 1/(ruminal turnover rate
(%/h)/100).

246 Statistical Analysis [RG2]

Ingredient and diet analyses were analyzed using the MEANS procedure of SAS (version 247 9.1, Statistical Analysis Systems Institute Inc., Cary, NC) and reported as the mean and standard 248 249 error. Repeated measurements on performance, chewing, ruminal digesta characteristics and 250 digestion kinetics, microbial nitrogen, and total tract nutrient digestibility were reduced to period 251 means for each cow before statistical analysis. All data, except for ruminal pH and VFA, were 252 analyzed as a replicated Latin square design with model effects for diet, period within square, 253 and square using MIXED procedure of SAS with cow within replicate as a square effect. 254 Ruminal pH and VFA were analyzed as a replicated Latin square design with repeated measures 255 using the MIXED procedure of SAS. The model included the effects of diet, period within square, and square, time, and the interaction of diet and time with cow within square as a random 256 257 effect. Significance was declared at $P \le 0.05$.

258


RESULTS AND DISCUSSION

259 Dietary and Ingredient Nutrient Composition

Chemical composition, in vitro NDFD, and particle size distribution of the ingredients are presented in Tables 2 and 3. The amylase-modified NDF (OM basis; aNDFom) content averaged 36.1 and 34.8% (DM basis) for CON and BM3 corn silage, respectively. The BM3 corn silage had a 13.5%-unit greater NDFD at 24 h and a 3.4%-unit lower uNDF240om compared to the CON corn silage (62.1 vs. 48.6% of aNDFom; 7.6 vs. 11.0 % of DM, respectively).

265 The chemical composition, in vitro NDFD, and particle size distribution of the treatment diets (based on analysis of individual ingredients collected over the course of the study) are 266 shown in Tables 4, 5, and 6. As expected, the lower NDF diets had a lower NDF and peNDF 267 268 concentration than the higher NDF diets. Likewise, the BM3 diets had greater NDFD at 24 h 269 than the CON diets (61.1 vs. 55.2, % of aNDF). The BM3-LNDF diet had the lowest 270 uNDF240om content (7.1% of DM) compared to the CON-HNDF diet (10.2% of DM) with the BM3-HNDF and CON-LNDF diets being intermediate (8.0 and 8.3% of DM, respectively). As a 271 result of differences in NDF and uNDF240, the BM3 diets had higher pdNDF (i.e., aNDFom -272 273 uNDF240om) compared to the CON diets (77.5 vs. 73.0% of aNDFom). As expected, the starch content of the lower NDF diets was greater than the higher NDF diets (28.0 vs. 22.5% of DM). 274

275 DMI and Lactational Performance

282	greater DMI than cows fed conventional corn silage, whether in low (28.9% of DM) or high
283	(38.0% of DM) NDF diets. Interestingly, in our study, the cows fed the BM3-LNDF diet did not
284	have greater DMI than cows fed the CON-LNDF diet. The similar DMI for the two LNDF diets
285	is most likely related to the relatively low uNDF240om content in the CON-LNDF and the BM3-
286	LNDF diets (8.3 and 7.1% of DM, respectively). Undegradable NDF240om is an in vitro
287	measure of undegradable NDF and has been related to digestion and passage kinetics, gut fill,
288	and physical effectiveness (Nousiainen et al., 2003; Cotanch et al., 2014). In contrast, the BM3
289	corn silage with greater NDFD and lower uNDF240 did allow for greater DMI than CON corn
290	silage at the higher dietary NDF concentration. The CON-HNDF diet contained 10.2% uNDF240
291	(% of DM) and this higher concentration in the diet clearly limited DMI. Similarly, with corn
292	silage-based diets, Smith et al. (2018) observed a reduction in DMI for lactating dairy cows fed a
293	ration containing 11.5 versus 8.9% uNDF240 (% of DM). With alfalfa-based diets, Fustini et al.
294	(2017) observed that lower NDFD forage reduced DMI by 20% compared with a higher NDFD
295	forage in both lower (9.5% of DM) and higher (10.9% of DM) uNDF240 diets. Legumes and
295 296	forage in both lower (9.5% of DM) and higher (10.9% of DM) uNDF240 diets. Legumes and grasses differ markedly in their content of uNDF240 and uNDF240/lignin (Palmonari et al.,
296	grasses differ markedly in their content of uNDF240 and uNDF240/lignin (Palmonari et al.,
296 297	grasses differ markedly in their content of uNDF240 and uNDF240/lignin (Palmonari et al., 2016; Raffrenato et al. (2018), and it would be expected that differences in DMI and other
296 297 298	grasses differ markedly in their content of uNDF240 and uNDF240/lignin (Palmonari et al., 2016; Raffrenato et al. (2018), and it would be expected that differences in DMI and other lactational responses would be observed when cows are fed diets comprised primarily of corn
296 297 298 299	grasses differ markedly in their content of uNDF240 and uNDF240/lignin (Palmonari et al., 2016; Raffrenato et al. (2018), and it would be expected that differences in DMI and other lactational responses would be observed when cows are fed diets comprised primarily of corn silage or alfalfa hay.
296 297 298 299 300	grasses differ markedly in their content of uNDF240 and uNDF240/lignin (Palmonari et al., 2016; Raffrenato et al. (2018), and it would be expected that differences in DMI and other lactational responses would be observed when cows are fed diets comprised primarily of corn silage or alfalfa hay. A new metric that combines dietary particle size (pef) and uNDF240 content has been
296 297 298 299 300 301	grasses differ markedly in their content of uNDF240 and uNDF240/lignin (Palmonari et al., 2016; Raffrenato et al. (2018), and it would be expected that differences in DMI and other lactational responses would be observed when cows are fed diets comprised primarily of corn silage or alfalfa hay. A new metric that combines dietary particle size (pef) and uNDF240 content has been related to DMI for corn-silage based diets fed to lactating dairy cows (Miller et al., 2020). This

305 4.6% of DM; CON-HNDF, 6.5% of DM; BM3-LNDF, 4.2% of DM; and BM3-HNDF, 5.0% of
306 DM.

307	Intake of aNDFom was not affected by source of corn silage ($P = 0.07$), but it was
308	increased as expected for cows fed the higher NDF diets ($P = 0.001$). However, a significant
309	interaction ($P = 0.02$) between NDFD and dietary NDF content was observed whereby cows fed
310	BM3 corn silage consumed more aNDFom on the HNDF versus LNDF diet compared with those
311	cows fed the CON corn silage. The greater aNDFom intake was due most likely to the higher
312	NDFD of the BM3 corn silage that allowed for greater DMI despite the higher ration aNDFom
313	content (Oba and Allen, 2000a). Cows fed the BM3 corn silage consumed less uNDF2400m than
314	cows fed CON corn silage ($P < 0.001$) at both dietary NDF concentrations. Lower dietary NDF
315	concentration resulted in less uNDF2400m intake than the higher dietary NDF content ($P =$
316	0.004). This response in uNDF2400m intake reflected the greater uNDF2400m and lower
317	pdNDF content of the CON diets compared to the BM3 diets. Several recent studies suggest that,
318	when uNDF240om intake exceeds approximately 2.35 kg/d (approximately 10% of ration DM or
319	0.36% of BW), DMI may become restricted due to gut fill in corn silage-based diets fed to high
320	producing Holstein cattle (Smith et al., 2018; Coons et al., 2019; Miller et al., 2020). With high
321	NDFD alfalfa hay-based diets, Fustini et al. (2017) observed greater uNDF240 intake for cows
322	fed higher uNDF240 (0.48% of BW) than lower uNDF240 diets (0.40% of BW). This
323	relationship between uNDF240 and DMI warrants further investigation with a greater variety of
324	diets, forage sources, and stages of lactation.
325	Cows fed the BM3 corn silage had greater milk and ECM production than cows fed the

326 CON corn silage (Table 7; P = 0.005, P = 0.02). For either degradability of corn silage, the

327	HNDF diet decreased milk and ECM production ($P = 0.02$, $P = 0.05$). This pattern of milk yield
328	response generally followed the responses observed in DMI (Table 7). Milk fat percentage was
329	greater for cows fed the HNDF than LNDF diet ($P = 0.008$), although there was no effect ($P =$
330	0.27) of corn silage NDFD. Output of milk fat was unaffected by either the NDFD ($P = 0.08$) of
331	the corn silage or the dietary NDF content ($P = 0.17$). The lower milk fat content for cows fed
332	the LNDF diets was most likely due to more fermentable carbohydrates supplied by both starch
333	and degradable NDF compared with the other HNDF diets. Our results agree with Oba and Allen
334	(2000a) who reported that cows fed brown midrib-3 corn silage in a lower NDF diet produced
335	milk with lower fat content compared with cows fed a conventional corn silage in the same lower
336	NDF diet. In contrast, milk fat content was unaffected by NDFD for high NDF diets (Oba and
337	Allen, 2000a).
338	A significant interaction between NDFD of corn silage and dietary NDF content was
338 339	A significant interaction between NDFD of corn silage and dietary NDF content was observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn
339	observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn
339 340	observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn silage had greater milk protein percentage ($P < 0.001$) and output ($P < 0.001$) than cows fed
339 340 341	observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn silage had greater milk protein percentage ($P < 0.001$) and output ($P < 0.001$) than cows fed CON corn silage, and cows fed the HNDF diets produced less milk protein than cows fed the
339 340 341 342	observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn silage had greater milk protein percentage ($P < 0.001$) and output ($P < 0.001$) than cows fed CON corn silage, and cows fed the HNDF diets produced less milk protein than cows fed the LNDF diets ($P = 0.04$). Our results agree with Coons et al. (2019) who reported that cows fed
339 340 341 342 343	observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn silage had greater milk protein percentage ($P < 0.001$) and output ($P < 0.001$) than cows fed CON corn silage, and cows fed the HNDF diets produced less milk protein than cows fed the LNDF diets ($P = 0.04$). Our results agree with Coons et al. (2019) who reported that cows fed brown midrib-3 corn silage had greater true protein content and yield compared to cows fed
 339 340 341 342 343 344 	observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn silage had greater milk protein percentage ($P < 0.001$) and output ($P < 0.001$) than cows fed CON corn silage, and cows fed the HNDF diets produced less milk protein than cows fed the LNDF diets ($P = 0.04$). Our results agree with Coons et al. (2019) who reported that cows fed brown midrib-3 corn silage had greater true protein content and yield compared to cows fed conventional corn silage. Cows fed the BM3 corn silage had greater milk lactose content ($P =$
 339 340 341 342 343 344 345 	observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn silage had greater milk protein percentage ($P < 0.001$) and output ($P < 0.001$) than cows fed CON corn silage, and cows fed the HNDF diets produced less milk protein than cows fed the LNDF diets ($P = 0.04$). Our results agree with Coons et al. (2019) who reported that cows fed brown midrib-3 corn silage had greater true protein content and yield compared to cows fed conventional corn silage. Cows fed the BM3 corn silage had greater milk lactose content ($P =$ 0.001) and yield ($P < 0.001$) versus cows fed CON corn silage. Likewise, cows fed the LNDF
 339 340 341 342 343 344 345 346 	observed for milk true protein percentage and yield ($P = 0.05$; $P = 0.04$). Cows fed BM3 corn silage had greater milk protein percentage ($P < 0.001$) and output ($P < 0.001$) than cows fed CON corn silage, and cows fed the HNDF diets produced less milk protein than cows fed the LNDF diets ($P = 0.04$). Our results agree with Coons et al. (2019) who reported that cows fed brown midrib-3 corn silage had greater true protein content and yield compared to cows fed conventional corn silage. Cows fed the BM3 corn silage had greater milk lactose content ($P =$ 0.001) and yield ($P < 0.001$) versus cows fed CON corn silage. Likewise, cows fed the LNDF diets had greater lactose yield than cows fed the HNDF diets ($P < 0.001$). A significant

- cows fed brown midrib-3 corn silage had greater lactose content and yield compared to cows fed
- 351 conventional corn silage. A previous study (Miller et al., 2020) with corn silage-based rations
- 352 found no effect of uNDF240 on milk fat, true protein, or lactose yield at similar dietary
- 353 uNDF240 concentrations (7.8 and 10.6% of DM).
- 354 Cows fed BM3 corn silage had lower MUN than cows fed CON corn silage (P = 0.008).
- 355 Similarly, cows fed the LNDF diets had lower MUN than cows fed HNDF diets (P = 0.03). Our
- results agree with Hassanat et al. (2017) who reported that, when cows were fed brown midrib-3
- corn silage, they had lower MUN than cows fed conventional corn silage. The lower MUN and
- 358 greater milk protein yield were thought to be related to an increase in AA supply as a result of
- enhanced rumen OM fermentability (Hassanat et al., 2017). Feed efficiency, whether expressed
- as milk yield per unit of DMI or ECM yield per unit of DMI, was not affected by type of corn
- 361 silage or dietary NDF content (P > 0.10). Similarly, Hassanat et al. (2017) and Coons et al.
- 362 (2019) reported no difference in feed efficiency for cows fed brown midrib-3 or conventional
- 363 corn silage. In contrast, Miller et al. (2020) observed greater milk/DMI when cows were fed corn
- 364 silage-based rations containing 6.9% versus 8.6% uNDF240. As with DMI and milk yield, the
- ³⁶⁵ relationship between uNDF240, NDFD, and feed efficiency requires further research with
- 366 multiple sources of NDF.

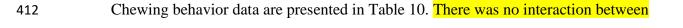
367 Rumen pH and VFA

Rumen pH and VFA data are presented in Table 8. Cows fed the CON-HNDF diet had a greater ($P_{IRG3I} = 0.02$) mean ruminal pH and maximum pH (P = 0.03) compared with cows fed the BM3-LNDF diet, with CON-LNDF and BM3-HNDF being intermediate (6.17 vs. 6.00 vs. 6.08;

371 6.68 vs. 6.52 vs. 6.59, respectively). The lower ruminal pH observed for cows fed the BM3 diets

was likely related to more fermentable corn silage for the BM3 versus CON. Similarly, Oba and 372 Allen (2000a) reported that cows fed brown midrib corn silage had a lower mean ruminal pH 373 than cows fed a conventional corn silage diet even when starch content was similar between the 374 two diets. However, Hassanat et al. (2017) reported no difference in mean ruminal pH and 375 maximum pH for cows fed brown midrib-3 or conventional corn silage although both diets had 376 377 similar starch content. The reason for these differences among the studies is not clear, although it may be due to differences in dietary starch and NDF content. For example, the dietary starch 378 379 content for Oba and Allen (2000a) averaged approximately 37.5% of ration DM whereas the 380 starch content was only approximately 17% for Hassanat et al. (2017). The dietary starch content for our diets was intermediate relative to these two previous studies and ranged between 21.2 and 381 28.0% of DM. Differences among the diets in ruminal pH were manifested primarily in mean 382 and maximum pH since the standard deviation of pH, minimum pH, range, and measures of sub-383 acute rumen acidosis (SARA; AUC < 5.8, pH < 5.5, min/d, pH < 5.8, min/d) were not affected 384 by type of corn silage or dietary NDF content (P > 0.05). 385

Rumen VFA data are presented in Table 9. The interactions of time of rumen fluid collection relative to feeding among treatments were not statistically significant (P > 0.10) for all measures. However, time was significant (P < 0.05) and this response was expected because substrate availability and digestion fluctuate throughout the day and are influenced by meal bouts (Dijkstra et al., 2012[RG4]).


391 Cows fed the BM3 corn silage had greater total VFA concentration than cows fed CON 392 corn silage (P = 0.008). The greater VFA concentration reflected greater DMI and more 393 fermentable corn silage for the cows fed the BM3 diets compared to the cows fed the CON diets

at either dietary NDF content. Likewise, Oba and Allen (2000a) reported that cows fed a higher

- NDF diet (i.e., 37.5% of dietary DM) containing brown midrib-3 corn silage had greater total
- ruminal VFA concentration than cows fed a higher NDF diet with conventional corn silage.
- 397 Acetate, butyrate, valerate, and isovalerate molar percentages were not affected by NDFD
- 398 of corn silage or dietary NDF content (P > 0.05). In contrast to molar percentage of acetate, cows
- 399 fed the BM3 and LNDF diets had greater propionate percentage (P = 0.004, P = 0.001) than
- 400 cows fed the CON corn silage or the LNDF diets. This response was most likely because cows
- 401 fed the BM3 and LNDF diets had greater DMI and these diets contained more starch and
- 402 fermentable OM than the CON or HNDF diets. Our results are in accordance with Oba and Allen

403 (2000a) who reported greater propionate concentration for cows fed a low NDF diet with greater

- starch content compared to cows fed a higher NDF diet with lower starch content. As a result of
- 405 the changes in propionate, cows fed the BM3 corn silage had lower acetate-to-propionate ratios
- 406 than cows fed CON corn silage (P = 0.005). Additionally, cows fed the HNDF diets had greater
- 407 acetate-to-propionate ratios than cows fed the LNDF diets (P < 0.001). The change in acetate-to-
- 408 propionate ratio reflects the increased propionate percentage due to cows consuming more DM
- 409 and fermentable carbohydrates, particularly starch. Oba and Allen (2000a) also reported lower
- 410 acetate-to-propionate ratio for cows fed a lower NDF diet containing more starch.
- 411 Chewing Behavior and Total Tract Nutrient Digestibility

- 413 NDFD of corn silage and dietary NDF content for eating time or eating time per kilogram of DM
- or aNDFom intake (P = 0.73, P = 0.10, P = 0.18). Cows fed the HNDF diet spent more time
- 415 eating than cows fed the LNDF diet and cows fed the BM3 corn silage spent less time eating

416	than cows fed the CON corn silage. The increased eating time reflected the greater aNDFom,
417	uNDF240om, and peNDF content for the HNDF diets versus the LNDF diets and the CON
418	versus the BM3 corn silages. In fact, it took cows fed the CON-HNDF diet approximately 50
419	min more per day to consume 2.5 kg/d less DM than cows fed the BM3-LNDF diet. Within a
420	level of dietary NDF, cows fed BM3 versus CON corn silage spent approximately 20 to 30 min/d
421	less time eating. Overall, it seems clear that dietary NDF content, and specifically the relative
422	proportion of uNDF240 and degradable NDF, influences eating time for corn silage-based diets.
423	Oba and Allen (2000b) reported that high NDF diets elicited longer eating times compared with
424	low NDF diets, and the source of corn silage did not have an effect. Grant and Ferraretto (2018)
425	published a review that concluded that diets with greater NDF, uNDF240, and peNDF can all
426	result in cows spending more time to consume feed versus diets with lower and more degradable
427	peNDF.
127	F
428	Similar to eating time, there was no interaction between NDFD of corn silage and dietary
	·
428	Similar to eating time, there was no interaction between NDFD of corn silage and dietary
428 429	Similar to eating time, there was no interaction between NDFD of corn silage and dietary NDF content on rumination time or rumination time per kilogram of DM or aNDFom intake ($P =$
428 429 430	Similar to eating time, there was no interaction between NDFD of corn silage and dietary NDF content on rumination time or rumination time per kilogram of DM or aNDFom intake ($P = 0.17$, $P = 0.89$, $P = 0.66$). Cows fed the HNDF diets ruminated more than cows fed LNDF diets,
428 429 430 431	Similar to eating time, there was no interaction between NDFD of corn silage and dietary NDF content on rumination time or rumination time per kilogram of DM or aNDFom intake ($P = 0.17$, $P = 0.89$, $P = 0.66$). Cows fed the HNDF diets ruminated more than cows fed LNDF diets, although NDFD of corn silage did not have a significant effect on rumination time ($P = 0.08$).
428 429 430 431 432	Similar to eating time, there was no interaction between NDFD of corn silage and dietary NDF content on rumination time or rumination time per kilogram of DM or aNDFom intake ($P = 0.17, P = 0.89, P = 0.66$). Cows fed the HNDF diets ruminated more than cows fed LNDF diets, although NDFD of corn silage did not have a significant effect on rumination time ($P = 0.08$). Similarly, Oba and Allen (2000b) reported that cows fed high NDF diets spent more time
428 429 430 431 432 433	Similar to eating time, there was no interaction between NDFD of corn silage and dietary NDF content on rumination time or rumination time per kilogram of DM or aNDFom intake ($P = 0.17$, $P = 0.89$, $P = 0.66$). Cows fed the HNDF diets ruminated more than cows fed LNDF diets, although NDFD of corn silage did not have a significant effect on rumination time ($P = 0.08$). Similarly, Oba and Allen (2000b) reported that cows fed high NDF diets spent more time ruminating than cows fed low NDF diets. Cows fed the HNDF diets had greater ($P < 0.001$)
428 429 430 431 432 433 434	Similar to eating time, there was no interaction between NDFD of corn silage and dietary NDF content on rumination time or rumination time per kilogram of DM or aNDFom intake ($P = 0.17, P = 0.89, P = 0.66$). Cows fed the HNDF diets ruminated more than cows fed LNDF diets, although NDFD of corn silage did not have a significant effect on rumination time ($P = 0.08$). Similarly, Oba and Allen (2000b) reported that cows fed high NDF diets spent more time ruminating than cows fed low NDF diets. Cows fed the HNDF diets had greater ($P < 0.001$) rumination time, expressed as minutes per kilogram of DM, compared to cows fed the LNDF
428 429 430 431 432 433 434 435	Similar to eating time, there was no interaction between NDFD of corn silage and dietary NDF content on rumination time or rumination time per kilogram of DM or aNDFom intake ($P = 0.17$, $P = 0.89$, $P = 0.66$). Cows fed the HNDF diets ruminated more than cows fed LNDF diets, although NDFD of corn silage did not have a significant effect on rumination time ($P = 0.08$). Similarly, Oba and Allen (2000b) reported that cows fed high NDF diets spent more time ruminating than cows fed low NDF diets. Cows fed the HNDF diets had greater ($P < 0.001$) rumination time, expressed as minutes per kilogram of DM, compared to cows fed the LNDF diets. The greater rumination time was due to greater forage NDF in the high-NDF compared to

439	Total-tract digestibility of DM, OM, ADF, aNDFom, and pdNDF is presented in Table
440	11. There was a significant interaction ($P = 0.02$, $P = 0.03$) between NDFD of corn silage and
441	dietary NDF content for DM and OM total-tract digestibility. The reduction in total-tract DM
442	and OM digestibility when HNDF diets were fed was greater for cows fed the CON corn silage
443	than BM3 corn silage. This digestibility response may be attributed to the uNDF240om content
444	of the diets because the CON-HNDF diet had 2.4%-unit greater uNDF240om content than the
445	BM3 and CON-LNDF diets. Our results agree with Miller et al. (2020) who reported that cows
446	fed diets containing brown midrib-3 corn silage had greater total tract degradability of DM and
447	OM compared to cows fed diets containing conventional corn silage. They also reported a 1.7%-
448	unit difference in uNDF240om between brown midrib-3 and conventional corn silage diets
449	(Miller et al., 2020).
450	A significant interaction between two of some siless and distant NDE content was
	A significant interaction between type of corn silage and dietary NDF content was
451	observed for ADF and aNDFom total-tract degradability ($P = 0.03$, $P = 0.02$). The reduction in
451 452	
	observed for ADF and aNDFom total-tract degradability ($P = 0.03$, $P = 0.02$). The reduction in
452	observed for ADF and aNDFom total-tract degradability ($P = 0.03$, $P = 0.02$). The reduction in total-tract degradability of ADF and aNDFom for cows fed HNDF diets was greater for CON
452 453	observed for ADF and aNDFom total-tract degradability ($P = 0.03$, $P = 0.02$). The reduction in total-tract degradability of ADF and aNDFom for cows fed HNDF diets was greater for CON than for BM3 corn silage. The increased total tract degradability of ADF and aNDFom was
452 453 454	observed for ADF and aNDFom total-tract degradability ($P = 0.03$, $P = 0.02$). The reduction in total-tract degradability of ADF and aNDFom for cows fed HNDF diets was greater for CON than for BM3 corn silage. The increased total tract degradability of ADF and aNDFom was likely due to greater fiber degradability and lower uNDF240om content of the BM3 corn silage
452 453 454 455	observed for ADF and aNDFom total-tract degradability ($P = 0.03$, $P = 0.02$). The reduction in total-tract degradability of ADF and aNDFom for cows fed HNDF diets was greater for CON than for BM3 corn silage. The increased total tract degradability of ADF and aNDFom was likely due to greater fiber degradability and lower uNDF240om content of the BM3 corn silage in high NDF diets. Similarly, Ebling and Kung (2004) reported that cows fed brown midrib-3

460 between Oba and Allen (2000c) and our study could be due to differences in ruminal pH as our

459

degradability of NDF compared to cows fed low NDF concentration diets. The discrepancy

- 461 lower NDF diets supported a mean ruminal pH of 6.05 and only 6.6 h/d with pH less than 5.8,
- 462 whereas their low NDF diets elicited a mean ruminal pH of 5.70 and 13.6 h/d with pH less than
- 463 **5.8**[RG5]. Grant and Mertens (1992) and Krajcarski-Hunt et al. (2002) reported that low ruminal pH
- 464 increased the time for fiber degradation to initiate, slowed the rate of fiber degradation, and
- 465 decreased the extent of fiber degradation. Total tract degradability of pdNDF was not affected (*P*
- 266 > 0.05) by NDFD of corn silage or dietary NDF content and averaged approximately 73%. In
- 467 contrast to our study with corn silage-based diets, Fustini et al. (2017) observed a reduction in
- 468 pdNDF degradability for cows fed high versus low uNDF240 diets based on alfalfa hay. It is
- 469 possible that the difference in total-tract pdNDF degradability is related to the intrinsic
- 470 differences between corn silage and alfalfa in uNDF240 and uNDF240/lignin content (Palmonari
- 471 et al., 2016; Raffrenato et al., 2018).
- 472 Ruminal Digesta Pools and Turnover
- 473 Ruminal digesta characteristics, pools, and turnover are presented in Table 12. There was
- 474 no interaction (P > 0.05) of NDFD of corn silage with dietary NDF content for any measure of
- 475 rumen digesta characteristics, pool size, or turnover. Cows fed BM3 diets had lower ruminal
- 476 digesta volume (P = 0.003) and mass (P = 0.009) than cows fed CON corn silage. Cows fed the
- 477 HNDF diet had greater ruminal digesta mass than cows fed the LNDF diets (P = 0.04). The cows
- 478 fed the BM3 and LNDF diets were able to obtain the required nutrient supply from a smaller
- 479 ruminal mass and this response was supported by greater total-tract digestibility of DM, OM, and
- 480 NDF compared to cows fed the CON diet. Despite differences in digesta mass and volume,
- 481 ruminal particulate digesta density was not different among treatments (P > 0.05).

482	The rumen OM pool was not different among treatments ($P > 0.05$). However, cows fed
483	the higher NDFD corn silage had greater aNDFom pool size than cows fed lower NDFD corn
484	silage ($P = 0.05$). Additionally, HNDF diets resulted in greater pool size of aNDFom than LNDF
485	diet ($P = 0.03$). Cows fed the BM3 diets had faster turnover rate ($P = 0.002$) and shorter (P
486	=0.003) turnover time of OM than cows fed the CON diets. The faster turnover rate observed for
487	the BM3 diets was likely due to increased NDFD compared to CON corn silage. Likewise, Oba
488	and Allen (2000b) reported that cows fed brown midrib-3 corn silage diets had faster OM
489	turnover rate compared to cows fed conventional corn silage diets.
490	The cows fed the CON diet had a greater ($P < 0.001$) ruminal aNDFom pool than cows
491	fed the BM3 diet. Similarly, cows fed the BM3 diet had faster turnover rate ($P < 0.001$) and
492	shorter ($P = 0.004$) turnover time of aNDFom than the cows fed the CON diets. Interestingly, the
493	ruminal aNDFom pool size was similar between CON and BM3 corn silage in the high NDF
494	diets, but the turnover rate and time were different. The BM3 corn silage in the higher NDF diet
495	allowed for greater DMI, faster NDF turnover rate, and shorter turnover time relative to the CON
496	corn silage in the other high NDF diet. Greater fiber degradability and lower undegradable fiber
497	in the BM3 corn silage likely drove these results. Similarly, Oba and Allen (2000b) reported that
498	cows fed brown midrib-3 corn silage diet had faster NDF turnover rate compared to cows fed a
499	conventional corn silage diet. Despite having lower total tract digestibility of OM and NDF,
500	cows fed the CON-HNDF diet had slower ruminal turnover rate and longer retention times.
501	CONCLUSIONS

The objective of the study was to determine the effects of NDFD of corn silage fed at
lower or higher dietary inclusion. Higher forage diets (i.e., >60% of DM) require higher NDFD

504	(>60% of NDF) and lower uNDF240 (<10% of ration DM) to avoid reductions in DMI and milk
505	yield. Higher NDF diet with lower NDFD resulted in depressed DMI and milk yield associated
506	with greater levels of ruminal fill, longer ruminal OM and NDF retention time, and nearly an
507	hour more eating time than a higher forage diet with greater NDFD. Higher forage NDFD and
508	lower uNDF240 allowed for greater NDF intake. Because ECM yield was reduced with the
509	higher NDF diets, but much less so for the BM3 corn silage, we concluded that forage NDF in
510	higher forage diets may support similar milk production when forage NDFD is high (i.e., >60%
511	of NDF). Gut fill limitations may occur for corn silage-based diets when dietary uNDF240
512	content exceeds approximately 10% of ration DM.
513	
514	ACKNOWLEDGMENTS
515	We want to thank the farm and research staff at the William H. Miner Agricultural
515 516	We want to thank the farm and research staff at the William H. Miner Agricultural Research Institute for the care of the cows during this study.
516	Research Institute for the care of the cows during this study.
516	Research Institute for the care of the cows during this study.
516 517	Research Institute for the care of the cows during this study. REFERENCES
516 517 518	Research Institute for the care of the cows during this study. REFERENCES Allen, M. S., and D. R. Mertens. 1988. Evaluating constraints on fiber digestion by rumen
516 517 518 519	Research Institute for the care of the cows during this study. REFERENCES Allen, M. S., and D. R. Mertens. 1988. Evaluating constraints on fiber digestion by rumen microbes. J. Nutr. 118:261-270.
516 517 518 519 520	 Research Institute for the care of the cows during this study. REFERENCES Allen, M. S., and D. R. Mertens. 1988. Evaluating constraints on fiber digestion by rumen microbes. J. Nutr. 118:261-270. AOAC International. 1990. Official Methods of Analysis. 15th ed. AOAC International, Arlington, VA.
516 517 518 519 520	Research Institute for the care of the cows during this study. REFERENCES Allen, M. S., and D. R. Mertens. 1988. Evaluating constraints on fiber digestion by rumen microbes. J. Nutr. 118:261-270. AOAC International. 1990. Official Methods of Analysis. 15th ed. AOAC International,

- AOAC International. 2006. Official Methods of Analysis. 18th ed. AOAC International,
 Arlington, VA.
- 526 Beauchemin, K. A., and W. Z. Yang. 2005. Effects of physically effective fiber on intake,
- 527 chewing activity, and ruminal acidosis for dairy cows fed diets based on corn silage. J.
 528 Dairy Sci. 88:2117-2129.
- Black, R. A., R. J. Grant, and P. D. Krawczel. 2016. Short communication: Short-term changes
 in stocking density did not alter meal characteristics of lactating Holstein dairy cattle. J.
 Dairy Sci. 99:6572-6577.
- 532 Chaney, A. L., and E. P. Marbach. 1962. Modified reagents for determination of urea and533 ammonia. Clin. Chem. 8:130-132.
- 534 Coons, E. M., S. M. Fredin, K. W. Cotanch, H. M. Dann, C. S. Ballard, J. P. Brouillette, and R.
- J. Grant. 2019. Influence of a novel bm3 corn silage hybrid with floury kernel genetics on
 lactational performance and feed efficiency of Holstein cows. J. Dairy Sci. 102:98149826.
- Cotanch, K. W., R. J. Grant, M. E. Van Amburgh, A. Zontini, M. Fustini, A. Palmonari, and A.
 Formigoni. 2014. Applications of uNDF in ration modeling and formulation. Pages 114131 in Proc. 2014 Cornell Nutr. Conf. for Feed Manufacturers. October 21-23. Syracuse,
 NY.
- 542 Dijkstra, J., J. L. Ellis, E. Kebreab, A. B. Strathe, S. Lopez, J. France, and A. Bannink. 2012.
 543 Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci.
 544 Technol. 172:22-33.

545	Ebling, T. L., and L. Kung Jr. 2004. A comparison of processed conventional corn silage to
546	unprocessed and processed brown midrib corn silage on intake, digestion, and milk
547	production by dairy cows. J. Dairy Sci. 87:2519-2527.
548	Ferguson, J. D., D. T. Galligan, and N. Thomsen. 1994. Principal descriptors of body condition
549	score in Holstein cows. J. Dairy Sci. 77:2695-2703.
550	Fustini, M., A. Palmonari, G. Canestrari, E. Bonfante, L. Mammi, M. T. Pacchioli, C. J. Sniffen,
551	R. J. Grant, K. W. Cotanch, and A. Formigoni. 2017. Effect of undigested neutral
552	detergent fiber content of alfalfa hay on lactating dairy cows: Feeding behavior, fiber
553	digestibility, and lactation performance. J. Dairy Sci. 100:4475-4483.
554	Goering, H. K., and P. J. Van Soest. 1970. Forage Fiber Analysis: Apparatus, Reagents,
555	Procedures, and Some Applications. Agric. Handbook No. 379. Agricultural Research
556	Service, USDA, Washington. DC.
557	Grant, R. J., and L. F. Ferraretto. 2018. Silage feeding management: Silage characteristics and
558	dairy cow feeding behavior. J. Dairy Sci. 101:4111-4121.
559	Grant, R. J., and D. R. Mertens. 1992. Influence of buffer pH and raw corn starch addition on in
560	vitro fiber digestion kinetics. J. Dairy Sci. 75:2762-2768.
561	Hassanat, F., R. Gervais, and C. Benchaar. 2017. Methane production, ruminal fermentation
562	characteristics, nutrient digestibility, nitrogen excretion, and milk production of dairy
563	cows fed conventional or brown midrib corn silage. J. Dairy Sci. 100:2625-2636.
564	Hristov, A. N., M. T. Harper, G. Roth, C. Canale, P. Huhtanen, T. L. Richard, and K. DiMarco.
565	2020. Effects of ensiling time on corn silage neutral detergent fiber degradability and

- relationship between laboratory fiber analyses and in vivo digestibility. J. Dairy Sci.
 103:2333-2346.
- 568 Krajcarski-Hunt, H., J. C. Plaizier, J. P. Walton, R. Spratt, and B. W. McBride. 2002. Short
- communication: effect of subacute ruminal acidosis on in situ fiber digestion in lactating
 dairy cows. J. Dairy Sci. 85:570-573.
- Martin, N. P., M. P. Russelle, J. M. Powell, C. J. Sniffen, S. I. Smith, J. M. Tricario, and R. J.
 Grant. 2017. Invited review: Sustainable forage and grain crop production for the US
- 573 dairy industry. J. Dairy Sci. 100:9479-9494.
- Maynard, L. A., J. K. Loosli, H. F. Hintz, and R. G. Warner. 1979. Digestive processes in different
 species. Pages 21-46 in Animal Nutrition. McGraw-Hill, Inc, New York, NY.
- 576 Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy
 577 Sci. 80:1463-1481.
- Miller, M. D., J. S. Lanier, S. K. Kvidera, H. M. Dann, C. S. Ballard, and R. J. Grant. 2020.
 Evaluation of source of corn silage and trace minerals on lactational performance and total
 tract nutrient digestibility of Holstein cows. J. Dairy. Sci. 103:3147-3160.
- Miller, M. D., W. A. Smith, and R. J. Grant. 2020. Relationship of undigested and physically
 effective neutral detergent fiber with dry matter intake and energy-corrected milk yield of
 Holstein cows. J. Dairy Sci. 103 (Suppl. 1):279(Abstr.)
- Nousiainen, J., M. Rinne, and P. Huhtanen. 2009. A meta-analysis of feed digestion in dairy
- cows. 1. The effects of forage and concentrate factors on total diet digestibility. J. Dairy
 Sci. 92:5019-5030.

587	Nousiainen, J., M. Rinne, M. Hellamaki, and P. Huhtanen. 2003. Prediction of the digestibility of
588	the primary growth of grass silages harvested at different stages of maturity from
589	chemical composition and pepsin-cellulase solubility. Anim. Feed Sci. Technol. 103:97-
590	111.
591	Oba, M., and M. S. Allen. 1999a. Effects of brown midrib 3 mutation in corn silage on dry
592	matter intake and productivity of high yielding dairy cows. J. Dairy Sci. 82:135-142.
593	Oba, M., and M. S. Allen. 1999b. Evaluation of the importance of NDF digestibility: effects on
594	dry matter intake and milk yield of dairy cows. J. Dairy Sci. 82:589–596.
595	Oba, M., and M. S. Allen. 2000a. Effects of brown midrib 3 mutation in corn silage on
596	productivity of dairy cows fed two concentration of dietary neutral detergent fiber: 1.
597	feeding behavior and nutrient utilization. J. Dairy Sci. 83:1333-1341.
598	Oba, M., and M. S. Allen. 2000b. Effects of brown midrib 3 mutation in corn silage on
599	productivity of dairy cows fed two concentration of dietary neutral detergent fiber: 2.
600	chewing activities. J. Dairy Sci. 83:1342-1349.
601	Oba, M., and M. S. Allen. 2000c. Effects of brown midrib 3 mutation in corn silage on
602	productivity of dairy cows fed two concentration of dietary neutral detergent fiber: 3.
603	digestibility and microbial efficiency. J. Dairy Sci. 83:1350-1358.
604	Palmonari, A., A. Gallo, M. Fustini, G. Canestrari, F. Masoero, C. J. Sniffen, and A.
605	Formigoni.2016. Estimation of the indigestible fiber in different forage types. J. Anim.
606	<mark>Sci. 94:248-254.</mark>

607	Penner, G. B., K. A. Beauchemin, and T. Mutsvangwa. 2006. An evaluation of the accuracy and
608	precision of a stand-alone submersible continuous ruminal pH measurement system. J.
609	Dairy Sci. 89:2132-2140.
610	Raffrenato, E., D. A. Ross, and M. E. Van Amburgh. 2018. Development of an in vitro method to
611	determine rumen undigested aNDFom for use in feed evaluation. J. Dairy Sci. 101:9888-
612	9900.
613	Shook, G. E. 1993. Genetic improvement of mastitis through selection on somatic cell count.
614	Vet. Clin. North Am. Food Anim. Pract. 3:563-581.
615	Smith, W. A., K. Ishida, J. W. Darrah, H. M. Dann, C. S. Ballard, M. D. Miller, and R. J. Grant.
616	2018. Effects of dietary undigested and physically effective neutral detergent fiber on dry
617	matter intake, milk yield and composition, and chewing behavior of lactating dairy cows.
618	J. Dairy Sci. 101(Suppl. 2):350(Abstr.).
619	Tyrrell, H. F., and J. T. Reid. 1965. Prediction of the energy value of cow's milk. J. Dairy Sci.
620	48:1215-1223.
621	Voelker Linton, J. A., and M. S. Allen. 2008. Nutrient demand interacts with forage family to
622	affect intake and digestion responses in dairy cows. J. Dairy Sci. 91:2694-2701.
623	
624	
625	
626	
627	
	29

- 629
 630
 631
 632
 633
 634
 635
- **Table 1.** Ingredient composition of diets (% of DM) containing either conventional corn silage
- 638 (CON) or brown midrib corn silage (BM3) with lower or higher NDF concentration fed to
- 639 lactating Holstein cows

	C	ON	B	M3
Item	Low NDF	High NDF	Low NDF	High NDF
Conventional corn silage (CON)	39.25	54.95	-	-
Brown midrib corn silage (BM3)	-	-	36.11	50.24
Haycrop silage	13.35	13.35	13.34	13.34
Corn meal	17.27	1.57	20.41	6.28
Grain mix	30.13	30.13	30.14	30.14
Canola meal	6.21	6.21	6.32	6.32
Soybean meal	5.43	5.43	4.09	4.09
Soybean hulls	3.31	3.31	5.07	5.07
Corn germ meal	3.31	3.31	3.17	3.17
Distillers dried grains with solubles	1.55	1.55	0.00	0.00
Wheat red dog	0.00	0.00	1.43	1.43
Wheat middlings	0.83	0.83	0.63	0.63
Dextrose	1.15	1.15	0.99	0.99
Cane molasses	1.00	1.00	0.63	0.63
AminoPlus ¹	1.66	1.66	1.59	1.59
Blood meal	0.83	0.83	0.79	0.79

Urea	0.23	0.23	0.40	0.40
Optigen ²	0.23	0.23	0.24	0.24
Smartamine M ³	0.05	0.05	0.05	0.05
Rumen inert fat ⁴	0.83	0.83	1.26	1.26
Fat mixer ⁴	0.41	0.41	0.40	0.40
Calcium carbonate	1.27	1.27	1.21	1.21
Sodium sesquicarbonate	0.75	0.75	0.72	0.72
Sodium chloride	0.39	0.39	0.37	0.37
Magnesium oxide	0.18	0.18	0.14	0.14
Potassium CH50 ⁴	0.17	0.17	0.34	0.34
Dicalcium phosphate	0.14	0.14	0.15	0.15
Potassium bicarbonate	0.04	0.04	0.00	0.00
Trace minerals ⁵	0.03	0.03	0.03	0.03
Organic trace minerals ⁶	0.03	0.03	0.03	0.03
Organic selenium ⁷	0.02	0.02	0.02	0.02
Vitamins A, D, and E^8	0.03	0.03	0.03	0.03
Vitamin E ⁹	< 0.01	< 0.01	< 0.01	< 0.01
Biotin, 1%	0.01	0.01	0.01	0.01
Rumensin ¹⁰	< 0.01	< 0.01	< 0.01	< 0.01
1				

 $640 \quad {}^{1}\text{Ag Processing Inc., Omaha, NE.}$

641 ²Alltech, Nicholasville, KY.

³Addisseo USA, Inc., Alpharetta, GA.

⁴Cargill, Inc., Minneapolis, MN. Rumen inert fat is a blend of C16:0 and C18:0 fatty acids;

644 mixer fat is tallow-based and used to aid grain mixing process.

⁵Contained 0.02% Ca, 18.82% S, 153,737 mg Zn/kg, 30,303 mg Cu/kg, 136,364 mg Mn/kg,

646 3,384 mg Co/kg, and 3,030 mg I/kg.

⁶Contained 51,633 mg Zn/kg, 17,959 mg Cu/kg, 28,571 mg Mn/kg, and 3,673 mg Co/kg.

 $648 \qquad ^{7} Contained 2,041 mg Se/kg.$

⁸Contained 30,492 kIU vitamin A/kg, 5,867 kIU vitamin D/kg, and 93,980 IU vitamin E/kg.

- ⁹Contained 44,639 IU vitamin E/kg.
- 651 ¹⁰Elanco, Greenfield, IN.

Table 2. Data (mean ± standard error [RG6]) characterizing the analyzed chemical composition of ingredients used in diets containing 653

either conventional corn silage (CON) or brown midrib corn silage (BM3) with lower or higher NDF concentration fed to lactating 654 Holstein cows

	CON corn	BM3 corn			CON grain	BM3 grain
Item	silage	silage	Haycrop silage	Corn meal	mix^1	mix ²
Composite samples, n	4	4	4	4	4	4
DM, %	37.1 ± 0.4	36.4 ± 1.0	36.5 ± 1.2	90.9 ± 0.7	91.6 ± 0.4	92.6 ± 1.0
CP, % of DM	7.2 ± 0.1	7.9 ± 0.2	18.2 ± 0.7	8.4 ± 0.1	36.4 ± 0.8	34.1 ± 0.7
Soluble protein, % of CP	59.9 ± 1.0	59.4 ± 0.9	65.0 ± 1.8	17.0 ± 1.6	24.6 ± 2.2	29.1 ± 1.9
Ammonia, % of CP	16.9 ± 0.5	17.7 ± 0.3	15.8 ± 0.7	-	-	-
ADF, % of DM	23.5 ± 1.1	24.4 ± 0.3	33.8 ± 0.5	4.2 ± 0.4	12.8 ± 0.4	14.6 ± 0.3
aNDFom ³ , % of DM	36.1 ± 1.2	34.8 ± 1.6	46.2 ± 0.6	-	-	-
24-h aNDFom <mark>degradability,</mark>						
% of aNDFom	48.6 ± 0.8	62.1 ± 1.0	57.7 ± 0.8	-	-	-
Undegradable NDFom at						
240 h, % of DM	11.0 ± 0.3	7.6 ± 0.2	14.0 ± 0.5	-	-	-
Potentially degradable NDF,						
% of aNDFom	69.5 ± 0.9	78.1 ± 0.6	69.7 ± 1.1	-	-	-
ADL, % of DM	$3.0 \pm < 0.1$	2.4 ± 0.2	5.1 ± 0.3	$1.3 \pm < 0.1$	3.4 ± 0.4	3.6 ± 0.3
Starch, % of DM	36.0 ± 0.8	34.5 ± 1.0	1.3 ± 0.2	72.7 ± 0.5	8.1 ± 0.4	10.1 ± 0.7
Sugar (ESC ⁴), % of DM	1.0 ± 0.1	1.0 ± 0.1	2.2 ± 0.5	$3.0 \pm < 0.1$	11.4 ± 0.2	9.7 ± 0.5
Crude fat, % of DM	3.1 ± 0.1	3.3 ± 0.2	3.8 ± 0.2	3.3 ± 0.2	6.1 ± 0.3	6.7 ± 0.4
Ash, % of DM	4.4 ± 0.1	5.0 ± 0.1	10.1 ± 0.3	1.4 ± 0.1	14.5 ± 0.4	13.9 ± 0.6
Ca, % of DM	0.25 ± 0.02	0.29 ± 0.01	1.07 ± 0.04	0.03 ± 0.00	2.53 ± 0.11	2.46 ± 0.22
P, % of DM	0.21 ± 0.00	0.24 ± 0.00	0.36 ± 0.03	0.30 ± 0.02	0.76 ± 0.02	0.71 ± 0.01
Mg, % of DM	0.22 ± 0.00	0.17 ± 0.00	0.29 ± 0.01	0.12 ± 0.00	0.82 ± 0.03	0.81 ± 0.04
K, % of DM	0.74 ± 0.03	1.02 ± 0.05	2.92 ± 0.23	0.35 ± 0.01	1.67 ± 0.04	1.62 ± 0.05
S, % of DM	0.11 ± 0.01	0.15 ± 0.02	0.26 ± 0.02	0.10 ± 0.01	0.62 ± 0.02	0.76 ± 0.08
Na, % of DM	0.01 ± 0.00	0.01 ± 0.00	0.05 ± 0.01	0.02 ± 0.00	1.45 ± 0.05	1.37 ± 0.07
Cl ion, % of DM	0.23 ± 0.00	0.2 ± 0.01	0.6 ± 0.09	0.06 ± 0.00	1.06 ± 0.03	0.91 ± 0.01
Fe, mg/kg	256 ± 10	492 ± 45	195 ± 9	29 ± 2	493 ± 13	460 ± 5
Cu, mg/kg	8 ± 1	12 ± 1	12 ± 1	3 ± 1	50 ± 5	62 ± 4

Mn, mg/kg	43 ± 1	28 ± 1	41 ± 2	9 ± 1	162 ± 10	222 ± 10
Zn, mg/kg	34 ± 1	29 ± 3	31 ± 2	26 ± 3	241 ± 18	243 ± 17
Lactic acid, % of DM	4.10 ± 0.32	6.03 ± 0.23	9.00 ± 1.30	-	-	-
Acetic acid, % of DM	3.20 ± 0.29	3.37 ± 0.12	2.90 ± 0.10	-	-	-
Propionic acid, % of DM	0.16 ± 0.04	0.28 ± 0.01	0.20 ± 0.00	-	-	-
Butyric acid, % of DM	-	-	0.3 ± 0.0	-	-	-
Total VFA, % of DM	7.5 ± 0.1	9.7 ± 0.2	12.3 ± 1.3	-	-	-
pH	$3.9 \pm < 0.1$	$3.8 \pm < 0.1$	4.4 ± 0.1	-	-	-

 $\overline{1}$ Grain mix utilized in diets containing conventional corn silage (CON).

²Grain mix utilized in diets containing BM3 corn silage (BM3).

⁶⁵⁸ ³Amylase-modified NDF on an OM basis.

⁴Ethanol-soluble carbohydrates.

Table 3. Particle size distribution, physical effectiveness factor (pef), and physically effective NDF (peNDF) of ingredients (mean \pm standard deviation) used in diets containing either conventional corn silage (CON) or brown midrib corn silage (BM3) with lower or

			-
683	higher NDF concer	tration fed to lactating	g Holstein cows

	CON corn	BM3 corn	Haycrop		CON grain	BM3 grain
Item	silage	silage	silage	Corn meal	mix^1	mix ²
Composite samples, n	4	4	4	4	4	4
Particle size distribution, %	o of DM					
>19.00 mm	0.3 ± 0.2	0.0 ± 0.0	0.7 ± 0.1	-	-	-
13.20 to 19.00 mm	1.1 ± 0.2	0.8 ± 0.1	1.4 ± 0.5	-	-	-
9.50 to 13.20 mm	4.6 ± 0.4	3.9 ± 0.5	2.1 ± 0.7	-	-	-
6.70 to 9.50 mm	17.6 ± 0.2	14.1 ± 1.3	4.7 ± 0.5	$0.1 \pm < 0.1$	-	$0.1 \pm < 0.1$
4.75 to 6.70 mm	22.1 ± 0.7	22.3 ± 0.3	5.9 ± 0.5	$0.1 \pm < 0.1$	0.1 ± 0.1	0.1 ± 0.1
3.35 to 4.75 mm	22.4 ± 0.6	23.0 ± 0.6	9.9 ± 0.7	$0.1 \pm < 0.1$	$0.2 \pm < 0.1$	0.2 ± 0.1
2.36 to 3.35 mm	13.0 ± 0.5	13.9 ± 1.0	15.7 ± 0.9	0.7 ± 0.4	0.8 ± 0.1	0.9 ± 0.2
1.18 to 2.36 mm	10.6 ± 0.3	12.7 ± 0.6	38.3 ± 3.2	15.1 ± 6.3	15.6 ± 0.6	15.1 ± 1.6
0.60 to 1.18 mm	4.8 ± 0.2	$5.4 \pm < 0.1$	15.3 ± 0.6	31.2 ± 1.4	34.2 ± 0.2	32.1 ± 0.3
0.30 to 0.60 mm	2.3 ± 0.1	$2.6 \pm < 0.1$	4.2 ± 0.3	31.7 ± 2.9	33.2 ± 0.2	32.3 ± 0.9
<0.30 mm	1.5 ± 0.2	1.4 ± 0.1	1.8 ± 0.1	20.9 ± 3.9	16.0 ± 0.6	19.1 ± 1.6
pef ³	$0.92 \pm < 0.01$	$0.91 \pm < 0.01$	0.79 ± 0.01	0.16 ± 0.07	$0.17 \pm < 0.01$	0.16 ± 0.02
peNDF ⁴ , % of DM	35.8 ± 0.8	36.4 ± 0.4	36.6 ± 0.1	1.8 ± 0.8	3.8 ± 0.0	3.9 ± 0.4

¹Grain mix utilized in diets containing conventional corn silage (CON).

²Grain mix utilized in diets containing BM3 corn silage (BM3).

³physical effectiveness factor, % of DM retained on ≥ 1.18 mm with dry sieving; based on methods and assumptions in Mertens

687 (1997).

688 ⁴pef x NDF (Mertens, 1997).

689

- 691
- 692 693
- 694
- 695

Table 4. Calculated composition (mean \pm standard deviation) based on chemical analysis of

697	individual ingredients of diets containing either conventional corn silage (CON) or brown midrib
698	corn silage (BM3) with lower or higher NDF concentration fed to lactating Holstein cows

098	com snage (BMS) with lower o	<u> </u>	CON	6	M3
	Item	Low NDF	High NDF	Low NDF	High NDF
	Composite samples, n	4	4	4	4
	DM, %	52.2 ± 0.8	45.8 ± 0.5	52.8 ± 1.3	47.0 ± 0.8
	CP, % of DM	17.0 ± 0.1	17.0 ± 0.1	16.7 ± 0.3	16.7 ± 0.1
	Soluble protein, % of CP	34.5 ± 1.0	37.6 ± 1.8	37.6 ± 2.1	40.0 ± 1.1
	ADF, % of DM	19.4 ± 0.4	23.0 ± 0.6	19.3 ± 0.8	22.0 ± 0.6
	aNDFom ¹ , % of DM	32.4 ± 1.2	35.9 ± 0.6	31.5 ± 0.5	35.6 ± 0.3
	ADL, % of DM	3.1 ± 0.1	3.6 ± 0.2	2.7 ± 0.1	2.9 ± 0.1
	Starch, % of DM	28.0 ± 0.9	21.2 ± 0.5	27.8 ± 0.9	23.8 ± 0.7
	Sugar (ESC ²), % of DM	4.4 ± 0.2	3.9 ± 0.3	4.3 ± 0.2	4.3 ± 0.4
	Crude fat, % of DM	4.0 ± 0.1	3.9 ± 0.1	4.4 ± 0.2	4.5 ± 0.2
	Ash, % of DM	7.2 ± 0.1	7.6 ± 0.1	8.2 ± 0.5	7.8 ± 0.1
	Ca, % of DM	1.02 ± 0.05	1.04 ± 0.04	1.03 ± 0.04	1.05 ± 0.04
	P, % of DM	0.41 ± 0.01	0.40 ± 0.01	0.41 ± 0.02	0.40 ± 0.01
	Mg, % of DM	0.39 ± 0.01	0.42 ± 0.01	0.36 ± 0.01	0.37 ± 0.01
	K, % of DM	1.31 ± 0.07	1.43 ± 0.08	1.41 ± 0.07	1.49 ± 0.09
	S, % of DM	0.31 ± 0.04	0.28 ± 0.01	0.33 ± 0.02	0.31 ± 0.01
	Na, % of DM	0.48 ± 0.01	0.48 ± 0.01	0.43 ± 0.03	0.44 ± 0.01
	Cl ion, % of DM	0.53 ± 0.02	0.56 ± 0.03	0.45 ± 0.02	0.48 ± 0.02
	Fe, mg/kg	331 ± 25	324 ± 8	476 ± 34	396 ± 17
	Cu, mg/kg	22 ± 2	24 ± 2	28 ± 3	28 ± 1
	Mn, mg/kg	82 ± 4	90 ± 3	91 ± 5	92 ± 4
	Zn, mg/kg	91 ± 5	96 ± 4	99 ± 8	103 ± 6
699	¹ Amylase-modified NDF on an	OM basis.			
700	² Ethanol-soluble carbohydrates				
701					
702					
703					
704					
705					
705					
706					
707					
708					
708 709					
710					

Table 5. Data (mean \pm standard deviation) characterizing the fiber fractions of diets containing

either conventional corn silage (CON) or brown midrib corn silage (BM3) with lower or higher

713	NDF concentration	fed to lactating	Holstein cows
-----	-------------------	------------------	---------------

	CO	ON	В	M3
Item	Low NDF	High NDF	Low NDF	High NDF
Composite samples, n	4	4	4	4
aNDFom ¹ , % of DM	32.4 ± 1.2	35.9 ± 0.6	31.5 ± 0.5	35.6 ± 0.3
24-h aNDF degradability, %				
of aNDF	56.3 ± 1.5	54.0 ± 1.4	62.0 ± 1.8	60.3 ± 1.4
Undegradable NDFom at				
240 h, % of DM	8.3 ± 0.4	10.2 ± 0.2	7.1 ± 0.4	8.0 ± 0.0
Potentially degradable NDF,				
% of aNDFom	74.4 ± 0.7	71.6 ± 0.3	77.5 ± 0.2	77.5 ± 0.9

Table 6. Particle size distribution, physical effectiveness factor (pef), and physically effective NDF (peNDF) of diets (mean \pm

standard deviation) containing either conventional corn silage (CON) or brown midrib corn silage (BM3) with lower or higher NDF
 concentration fed to lactating Holstein cows

	C	ON	B	M3
Item	Low NDF	High NDF	Low NDF	High NDF
Composite samples, n	4	4	4	4
Particle size distribution, % of DM				
>19.00 mm	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.4 ± 0.2
13.20 to 19.00 mm	0.6 ± 0.1	0.7 ± 0.1	0.3 ± 0.1	0.2 ± 0.1
9.50 to 13.20 mm	1.5 ± 0.1	2.4 ± 0.9	1.5 ± 0.5	1.9 ± 0.2
6.70 to 9.50 mm	6.6 ± 0.7	8.4 ± 1.5	6.9 ± 1.1	7.3 ± 1.0
4.75 to 6.70 mm	8.9 ± 0.6	11.1 ± 1.6	10.3 ± 1.7	11.7 ± 1.1
3.35 to 4.75 mm	10.3 ± 0.5	12.5 ± 1.3	11.8 ± 1.5	12.9 ± 0.0
2.36 to 3.35 mm	9.1 ± 0.3	10.2 ± 0.4	9.4 ± 0.7	10.3 ± 0.2
1.18 to 2.36 mm	18.7 ± 1.4	18.0 ± 0.5	19.1 ± 1.8	18.5 ± 0.9
0.60 to 1.18 mm	20.7 ± 0.5	18.8 ± 1.5	19.8 ± 1.7	19.5 ± 0.1
0.30 to 0.60 mm	15.5 ± 1.1	12.4 ± 2.2	13.8 ± 1.8	12.4 ± 0.8
<0.30 mm	7.9 ± 0.7	5.3 ± 1.6	6.9 ± 1.4	4.9 ± 0.6
pef ¹	0.56 ± 0.02	0.64 ± 0.05	0.59 ± 0.05	0.63 ± 0.01
peNDF ² , % of DM	17.3 ± 0.8	23.1 ± 2.0	18.5 ± 2.0	21.5 ± 1.2

¹physical effectiveness factor, % of DM retained on \geq 1.18 mm with dry sieving; based on methods and assumptions in Mertens

730 (1997).

²pef x NDF (Mertens, 1997).

732

733

734

Table 7. Least squares means of intake, BW, BCS, and lactational performance for lactating Holstein cows fed a diet containing either
 conventional corn silage (CON) or brown midrib corn silage (BM3) with lower or higher NDF concentration fed to lactating Holstein
 cows

	CO	N	BM	3			P-value	
Item		High		High				NDFD 2
	Low NDF	NDF	Low NDF	NDF	SE	NDFD ¹	NDF ²	NDF ³
DMI, kg/d	29.0	26.5	29.3	29.2	0.7	0.005	0.009	0.02
DMI, % of BW/d	4.31	3.96	4.37	4.36	0.12	0.001	0.005	0.008
aNDFom ⁴ intake, kg/d aNDFom intake, % of	8.80	8.95	8.69	9.54	0.20	0.07	0.001	0.02
BW/d uNDF240om ⁵ intake,	1.31	1.33	1.30	1.43	0.04	0.03	< 0.001	0.009
kg/d uNDF240om intake, %	2.33	2.53	1.93	2.14	0.07	< 0.001	0.004	0.95
of BW/d	0.35	0.38	0.29	0.32	0.01	< 0.001	0.003	0.97
BW, kg	676	673	673	673	19	0.61	0.53	0.70
BCS	2.92	2.88	2.89	2.89	0.13	0.83	0.67	0.75
Milk, kg/d	47.0	43.1	48.6	47.2	1.6	0.005	0.007	0.15
ECM, kg/d	49.5	45.9	50.8	50.1	1.2	0.02	0.05	0.16
Fat, %	3.82	4.02	3.76	3.94	0.14	0.27	0.008	0.84
Fat, kg/d	1.83	1.71	1.87	1.85	0.05	0.08	0.17	0.28
True protein, %	3.06	2.92	3.10	3.02	0.05	< 0.001	< 0.001	0.05
True protein, kg/d	1.48	1.25	1.55	1.43	0.04	< 0.001	0.04	0.04
Lactose, %	4.73	4.65	4.75	4.73	0.05	0.001	0.002	0.04
Lactose, kg/d	2.28	2.00	2.38	2.25	0.09	< 0.001	< 0.001	0.05
SNF, %	8.67	8.47	8.73	8.62	0.07	< 0.001	< 0.001	0.09
SNF, kg/d	4.18	3.63	4.36	4.09	0.13	< 0.001	< 0.001	0.05
Urea nitrogen, mg/dL	14.3	15.5	13.7	14.1	0.6	0.008	0.03	0.25
SCS	0.52	0.75	0.53	0.57	0.34	0.43	0.19	0.37
Milk/DMI	1.62	1.62	1.66	1.61	0.04	0.49	0.33	0.29
ECM/DMI	1.71	1.73	1.73	1.72	0.03	0.87	0.84	0.25

739 ¹NDFD: Effect of NDF degradability of corn silage.

- 740 ²NDF: Effect of dietary NDF content.
- ³NDFD x NDF: Interaction of NDF degradability of corn silage and dietary NDF content.
- ⁴Amylase-modified NDF on an OM basis.

	CO	DN	B	M3		P-value				
					_				Time	Treati nt Intera
Item	Low NDF	High NDF	Low NDF	High NDF	SE	NDFD ¹	NDF ²	<mark>NDFD</mark> x NDF ³		ons with Tim
24-h mean pH	<mark>6.09</mark>	<mark>6.17</mark>	<mark>6.00</mark>	<mark>6.07</mark>	<mark>0.08</mark>					
24-h standard deviation	0.26	0.24	0.25	0.25	0.02	0.99	0.45	0.71	-	-
24-h minimum pH	5.51	5.63	5.42	5.50	0.11	0.13	0.17	0.78	-	-
24-h maximum pH	6.62	6.68	6.52	6.56	0.06	0.008	0.16	0.78	-	-
24-h range (max pH –	1.11	1.05	1.10	1.07	0.07	0.95	0.40	0.82	-	-
AUC < 5.8, pH units x	1.07	0.71	1.96	1.13	0.44	0.11	0.15	0.56	-	-
pH < 5.5, min/d	81	52	168	93	43	0.12	0.20	0.57	-	-
pH < 5.8, min/d	312	205	475	319	89	0.08	0.10	0.74	_	-

Table 8. Least squares means of ruminal pH data for lactating Holstein cows fed a diet containing either conventional corn silage (CON) or brown midrib corn silage (BM3) with lower or higher NDF concentration fed to lactating Holstein cows

¹NDFD: Effect of NDF degradability of corn silage.

²NDF: Effect of dietary NDF content.

³NDFD x NDF: Interaction of NDF degradability of corn silage and dietary NDF content.

	C	ON	BI	M3		<i>P</i> -value				
					-				Time	Treat ent Intera
Item	Low NDF	High NDF	Low NDF	High NDF	SE	NDFD ¹	NDF ²	<mark>NDFD</mark> x NDF ³		ions with Tim
Total VFA, m <i>M</i> VFA, molar %	105	102	110	111	8	0.008	0.59	0.40	< 0.001	-
Acetate (A)	65.2	64.8	65.3	67.0	5.3	0.45	0.67	0.49	<0.001 <0.001	- NDFa mtxtii
Propionate (P)	26.2	21.5	29.0	25.7	2.3	0.004	0.001	0.50		e = 0.04
Butyrate (B)	13.0	12.2	13.4	13.1	1.2	0.32	0.37	0.64	< 0.001	-
Isobutyrate	0.77	0.83	0.72	0.68	0.05	< 0.001	0.86	0.03	0.004	-
Valerate	2.45	2.45	2.67	2.28	0.28	0.92	0.45	0.45	0.04	-
Isovalerate	1.24	1.49	1.16	1.03	0.17	0.03	0.61	0.10	<0.001 <0.001	NDFa mt x time = 0.09
A:P	2.56	3.08	2.31	2.69	0.15	0.005	<0.001	0.49	<0.001	NDFa mt x time =
(A+B):P	3.08	3.64	2.79	3.22	0.19	0.01	0.001	0.60		0.04

Table 9. Least squares means of VFA profiles for lactating Holstein cows fed a diet containing either conventional corn silage (CON) or brown midrib corn silage (BM3) with lower or higher NDF concentration fed to lactating Holstein cows

										< 0.001	NDFa mt x
	Ammonia-N, mg/dL	10.49	11.60	9.88	10.42	0.79	0.24	0.27	0.70		time =
		10.19	11.00	7.00	10.12	0.77	0.21	0.27	0.70		0.09
759	¹ NDFD: Effect of 2	NDF degradab	oility of corn s	silage.							
760	² NDF: Effect of di	etary NDF cor	ntent.								
761	³ NDFD x NDF: In	teraction of N	DF degradabi	lity of corn si	lage and diet	ary NDF	content.				
762											

	(CON]	BM3		<i>P</i> -value		
Item	Low	High	Low	High	SE	NDFD ¹	NDF ²	NDFD :
	NDF	NDF	NDF	NDF				NDF ³
Eating time, min/d	273	301	250	273	14	0.003	0.003	0.73
Eating time per kg of DMI, min/kg DM	9.4	11.3	8.7	9.6	0.6	< 0.001	< 0.001	0.10
Eating time per kg of aNDFom ⁴ <mark>intake,</mark> min/kg aNDFom	31.2	33.6	29.2	29.2	1.8	0.002	0.20	0.18
Rumination time, min/d Rumination time per kg of DMI, min/kg	514	543	463	536	17	0.08	0.004	0.17
DM	17.8	20.4	16.1	18.8	0.8	0.004	< 0.001	0.89
Rumination time per kg of aNDFom <mark>intake</mark> , min/kg aNDFom	58.9	60.4	54.2	57.4	2.6	0.05	0.22	0.66
Meal length, min/meal	29.2	31.3	27.5	28.4	2.5	0.11	0.28	0.64
Meal bout, bouts/d	11.8	12.1	11.5	11.9	0.7	0.45	0.33	0.95

Table 10. Least squares means of chewing data for lactating Holstein cows fed a diet containing either conventional corn silage
 (CON) or brown midrib corn silage (BM3) with lower or higher NDF concentration fed to lactating Holstein cows

766 ¹NDFD: Effect of NDF degradability of corn silage.

767 ²NDF: Effect of dietary NDF content.

⁷⁶⁸ ³NDFD x NDF: Interaction of NDF degradability of corn silage and dietary NDF content.

 4 Amylase-modified NDF on an OM basis.

778	Table 11. Least squares means of total-tract digestibility data for lactating Holstein cows fed a diet containing either conventional
779	corn silage (CON) or brown midrib corn silage (BM3) with lower or higher NDF concentration fed to lactating Holstein cows

	CO	CON		13		<i>P</i> -value		
Item ¹	Low NDF	High NDF	Low NDF	High NDF	SE	NDFD2	NDF3	<mark>NDFD x</mark> <mark>NDF4</mark>
DM, %	73.5	68.0	73.4	72.3	0.9	0.03	0.001	0.02
OM, %	75.0	70.0	75.3	74.3	0.9	0.01	0.002	0.03
ADF, %	52.6	44.3	53.4	52.0	1.6	0.009	0.004	0.03
aNDFom ⁵ , %	55.7	48.9	57.8	56.8	1.5	< 0.001	0.004	0.02
pdNDF ⁶ , %	74.1	70.9	72.2	72.8	1.6	0.94	0.26	0.11

780 1 All values are ash-corrected.

781 ²NDFD: Effect of NDF degradability of corn silage.

782 ³NDF: Effect of dietary NDF content.

⁴NDFD x NDF: Interaction of NDF degradability of corn silage and dietary NDF content.

⁵Amylase-modified NDF on an OM basis.

⁶Potentially degradable NDF.

786

Table 12. Least squares means of rumen digesta characteristics, pool sizes, and turnover for lactating Holstein cows fed a diet containing either conventional corn silage (CON) or brown midrib corn silage (BM3) with lower or higher NDF concentration fed to

790 lactating Holstein cows

	CON	1	BM3	3		<i>P</i> -value			
		High		High				NDFD >	
Item	Low NDF	NDF	Low NDF	NDF	SE	NDFD ¹	NDF ²	NDF ³	
Rumen digesta volume, L	123	128	113	119	3	0.003	0.06	0.73	
Rumen digesta mass, kg	106	112	98	105	3	0.009	0.04	0.93	
Rumen density, kg/L	0.86	0.87	0.88	0.88	0.01	0.19	0.32	0.52	
Rumen pool, kg									
OM	13.0	12.5	12.1	12.6	0.6	0.32	0.99	0.17	
aNDFom ¹	8.32	8.45	7.64	8.36	0.41	0.05	0.03	0.12	
Rumen turnover rate, %/h									
OM	8.95	8.31	9.44	9.57	0.51	0.002	0.29	0.12	
aNDFom ⁴	4.84	4.76	5.12	5.52	0.30	< 0.001	0.23	0.07	
Rumen turnover time, h									
OM	11.4	12.2	11.0	10.9	0.5	0.003	0.13	0.09	
aNDFom	21.1	21.4	20.3	19.0	1.1	0.004	0.28	0.10	

791 ¹NDFD: Effect of NDF degradability of corn silage.

792 ²NDF: Effect of dietary NDF content.

⁷⁹³ ³NDFD x NDF: Interaction of NDF degradability of corn silage and dietary NDF content.

⁴Amylase-modified NDF on an OM basis.