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Abstract: The generalized hydrodynamic (GHD) approach has been extremely successful

in describing the out-of-equilibrium properties of a great variety of integrable many-body

quantum systems. It naturally extracts the large-scale dynamical degrees of freedom of

the system, and is thus a particularly good probe for emergent phenomena. One such

phenomenon is the presence of unstable particles, traditionally seen via special analytic

structures of the scattering matrix. Because of their finite lifetime and energy thresh-

old, these are especially hard to study. In this paper we apply the GHD approach to a

model possessing both unstable excitations and quantum integrability. The largest fam-

ily of relativistic integrable quantum field theories known to have these features are the

homogeneous sine-Gordon models. We consider the simplest non-trivial example of such

theories and investigate the effect of an unstable excitation on various physical quantities,

both at equilibrium and in the non-equilibrium state arising from the partitioning proto-

col. The hydrodynamic approach sheds new light onto the physics of the unstable particle,

going much beyond its definition via the analytic structure of the scattering matrix, and

clarifies its effects both on the equilibrium and out-of-equilibrium properties of the theory.

Crucially, within this dynamical perspective, we identify unstable particles as finitely-lived

bound states of co-propagating stable particles of different types, and observe how stable

populations of unstable particles emerge in large-temperature thermal baths.
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1 Introduction

Over the past decade, the out-of-equilibrium dynamical properties of many-body quantum

systems have been extensively studied [1]. The interface between this rather general prob-

lem and integrable systems has been particularly rich in new results. Since the famous

Quantum Newton’s Cradle experiment [2] it has been known that the role of integrabil-

ity (i.e. the presence of a large number of conservation laws) in one-dimensional systems

has dramatic implications for the dynamics of such models. In particular, it is now well-

understood that the dynamics of one-dimensional integrable models following a quantum
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quench is described by a Generalized Gibbs Ensemble (GGE) [3], that is, a partition func-

tion involving all local and quasi-local conserved charges in the system

Z = Tr
(
e−

∑
i βiQi

)
. (1.1)

Therefore integrable systems do not thermalize in the usual sense but they do relax towards

a GGE. In particular, the role of quasi-local and semi-local conserved quantities in the GGE

has been the subject of a lot of investigation [4–9], paving the way to a comprehensive

understanding for the most paradigmatic integrable spin chain model, the spin- 1
2 XXZ

chain [10]. A good summary of the main results up to 2016 is provided in the special

issue [11].

The same year of 2016 saw the solution of a related problem. This was the full under-

standing of how to compute dynamical quantities in non-equilibrium steady states and non-

stationary settings, by employing a (generalized) hydrodynamic approach (GHD) [12, 13].

The basic idea is that hydrodynamics emerges as a consequence of local entropy maxi-

mization on individual fluid cells containing sufficiently large numbers of quasi-particles.

Technically, this is the assumption that averages of local quantities tend uniformly enough,

at large times, to averages evaluated in GGEs with space-time dependent potentials βi(x, t)

in (1.1). Physically, this is a consequence of separation of scales. It is worth noting that

the development of GHD was made possible in particular by the evaluation of exact ex-

pectation values of currents in GGEs, derived in [12] within QFT and numerically checked

in [13] in quantum chains; this particular aspect has received a lot of attention afterwards,

with increasingly rigorous and general derivations [14–23].

Let us now suppose that we engineer an out-of-equilibrium set up by employing the

partitioning protocol (see e.g. figure 1 in [12]). This means that we consider two sepa-

rate systems, each characterized by a particular steady state and set of generalized inverse

temperatures β = {βi}. In the partitioning protocol the two systems are put into con-

tact at time t = 0. The presence of multiple conserved quantities gives rise to ballistic

transport, meaning that, after a transient period, steady state currents flowing between

the right and left sub-systems emerge; see the reviews [24, 25]. GHD provides a method to

compute such currents by combining the hydrodynamic principle, generalized to infinitely

many conservation laws, with an effective description of quasi-particles readily available

for integrable models. For quantum field theories (QFTs) such a description is known as

the thermodynamic Bethe ansatz (TBA) [26, 27] and it was generalized to GGEs in [28].

The resulting mathematical procedure is based on the solution of a set of coupled nonlinear

integral equations, usually carried out numerically, whose sole inputs are: the one-particle

eigenvalues of all conserved charges involved in the GGEs characterizing the original left

and right systems, the two-particle scattering matrix of the QFT, and the (stable) particle

spectrum of the original theory. Since the original proposals [12, 13] a plethora of gener-

alizations have been developed, such as the inclusion of force terms [29–31], diffusive and

higher corrections [17, 32–34], noise [35], integrability breaking terms [36–38], and much

more. There is now even experimental evidence that GHD provides a better description of

transport in an atom chip than conventional hydrodynamics [39]. A pedagogical overview

is provided in the lecture notes [40].
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A situation that has hitherto escaped attention is the inclusion of unstable excitations

in the theory under consideration. In this paper we partly fill this gap by considering a very

simple example where the effect of unstable excitations on particular steady-state currents

and densities, and on the effective velocities of stable modes, can be well understood. We

focus on a very simple integrable QFT known as the SU(3)2-homogeneous sine-Gordon

(HSG) model [41–44]. This is a theory whose spectrum contains two stable particles of

the same mass. The two-particle scattering matrix has a pole in the unphysical sheet of

non-vanishing real and imaginary parts. This can be interpreted as the creation of an

unstable particle, with a finite decay width and mass that can be computed from the usual

Breit-Wigner formula. The theory also has the additional interesting feature of breaking

parity invariance.

The presence of an unstable particle and the absence of parity invariance have interest-

ing consequences, which are brought to light most clearly using the dynamical description

offered by GHD. For instance, due to parity breaking, even if total currents are vanishing at

equilibrium, the individual contribution to the currents (be it of energy or particles) of each

particle type does not vanish. As we explain via the “flea-gas” picture behind GHD [45],

there are natural right-movers and left-movers. Most interestingly, the nontrivial patterns

of particle densities and effective velocities developing as the temperature changes allow

us to obtain a clear picture behind the formation of unstable particles at energies beyond

their threshold. We observe that fundamental particles separate into various groups: co-

moving pairs of particles of opposite types, interpreted as finitely-lived bound states and

identified with the unstable particle of the spectral theory; and separate freely propagating

fundamental particles, identified as residual free fermions. Crucially, at high temperatures,

the population of unstable particles reaches a stable proportion: while the particles decay,

their population is continuously replenished thanks to the high energy of the state. This

picture explains the structure of all quantities evaluated in the out-of-equilibrium state.

These groups of particles contribute as separate degrees of freedom to the theory, and this

gives a clear interpretation of the total central charge of the large-energy, UV fixed point.

In this way, we show how GHD both sheds new light on equilibrium properties of unstable

particles, and explains their out-of-equilibrium behaviours.

This paper is organized as follows: in section 2 we introduce the model, the ther-

modynamic Bethe ansatz approach and the main principles of the GHD approach in the

context of integrable quantum field theory. In section 3 we present and discuss numerical

results for energy current and density, particle current and density, and effective velocities

at equilibrium. In section 4 we present results for the same quantities out-of-equilibrium,

starting from two thermal baths. In section 5 we discuss the application of our results to

the problem of determining the energy current and density generated when connecting two

conformal field theories of different central charges. We conclude in section 6. Appendix A

discusses results for the position of the discontinuity of the occupation numbers in the out-

of-equilibrium steady state. In appendix B we review the main features of our numerical

algorithm.
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2 Introducing the model and main techniques

2.1 The model

The family of HSG-models provides one of the few examples where integrability and the

presence of unstable excitations are successfully combined. These models were first stud-

ied in a series of papers in the late 90s where their classical and quantum integrability

were established [41, 42], the particle spectrum studied [43], and a diagonal scattering ma-

trix proposed [44]. The scattering matrix was then tested extensively by employing the

TBA [26, 27] and the form factor approach [46, 47]. In particular, in this work we will only

consider the simplest example of this family of theories, known as the SU(3)2-homogeneous

sine-Gordon model. The model may be seen as a massive perturbation of a critical Wess-

Zumino-Novikov-Witten model [48–52] associated to the coset SU(3)2/U(1)2, where the

subindex 2 in the numerator is a parameter of the model called the level. In general, it is

possible to define HSG-models associated to all cosets Gk/U(1)rg where G is some simply-

laced algebra, k is the level (an integer), and rg is the rank of G. The TBA of this and

other models in the same family was studied in detail in [53–55] and the form factors of

local operators constructed in [56, 57]. The effect of the presence of unstable particles in

the RG-flow of several quantities was also explored using form factor techniques in [58, 59].

More recently, the mass-coupling relation for the SU(3)2-homogeneous sine-Gordon model

was studied in [60, 61].

The SU(3)2-homogeneous sine-Gordon model is an integrable QFT with a two-particle

spectrum. We will denote the particles by ±. The scattering matrices are diagonal and

simply given by:

S±±(θ) = −1, S±∓(θ) = ± tanh
1

2

(
θ ± σ − iπ

2

)
, (2.1)

where σ is a free parameter of the theory. An interesting feature of this theory (and

others in the same family) is parity breaking, namely S+−(θ) 6= S−+(−θ). In addition we

have that

lim
|σ|→∞

S±∓(θ) = 1 , (2.2)

which means that in this limit parity symmetry is restored and the theory may be seen as

two independent, mutually commuting free Majorana fermions. An important consequence

of this property is that the behaviour of any quantity we compute at or out of equilibrium

is always identical to that of a pair of free fermions, as long as |σ| is large enough and

we consider temperatures that are sufficiently small relative to the value of |σ|, so as not

to excite states of large rapidities. This feature constitutes a very useful benchmark and

consistency check for our numerics.

For finite σ, the theory is interacting and the scattering amplitudes S±∓(θ) have a pole

outside the physical sheet at θ = ∓σ− iπ
2 , in the strip −π ≤ Im(θ) ≤ 0. As discussed in [58]

from the Breit-Wigner formula it follows that, for this particular S-matrix, assuming the

two particles ± have the same mass m,

M2 = m2(1 + coshσ) and Γ2 = 4m2(−1 + coshσ) , (2.3)
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where M is the mass of the unstable particle and Γ its decay width. Therefore

M ∼ 1√
2
me

|σ|
2 and Γ ∼

√
2me

|σ|
2 for |σ| � 0 . (2.4)

Thus, the larger |σ| is, the more massive and short-lived the unstable excitation becomes.

Intuitively, the excitation is considered an unstable bound state of the otherwise two

free Majorana fermion species. For |σ| large, one would then expect a clear separation

of energy scales. That is, as mentioned, at small temperatures compared to the scale set

by the mass M and decay width Γ, the physics is dominated by the two free fermions as

unstable bound states decay quickly. In contrast, at large temperatures with respect to

this scale, there is enough energy for a finite proportion of particles to be found within

bound states, which re-populate fast enough. At large temperatures, the unstable particle

has nontrivial, large-scale effects. It is one goal of this paper to obtain a clearer, dynamical

picture of these effects, and to identify the unstable particle in a more physically clear

fashion than the use of the Breit-Wigner formula.

In our work we will use a logarithmic scale for temperatures (i.e. we typically plot

against log β
2 where β is some inverse temperature). Thus log β

2 ≈ −
|σ|
2 is the value which

signals the onset of the unstable particle. Without loss of generality, we choose

σ > 0 , (2.5)

for the remainder of this paper.

A common observed feature of these

Figure 1. The TBA scaling function of the

SU(3)2-HSG model for different values of σ.

theories is that many physical quantities,

such as those computed in the TBA (e.g.

scaling functions), develop staircase

patterns, where the position and size of the

steps (or plateaux) are related to the value

of σ. This is in accordance with the sep-

aration of energy scales discussed above.

Indeed, for large σ, at temperatures that

are large with respect to the mass scale m

but small with respect to the separation

scale M , the theory reaches the UV limit

of the two-free-fermion theory, with central

charge c = 1 (as per (2.2)). In contrast,

for temperatures beyond this separation scale, the UV fixed point is determined by the

coset SU(3)2/U(1)2 and corresponds to c = 6
5 = 1.2. The TBA scaling function c(r) with

r = log β
2 for this model was first presented in [53]. In figure 1 we have recalculated it just

to give an indication of the structure that we will find for other quantities later on. The

various curves correspond to different values of σ with the onset of the highest plateau

located around −σ
2 .

Thus, when studying RG-flows of different quantities and intermediate values of σ

we observe that the flows approach these two fixed points in succession, giving rise to the

– 5 –
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staircase pattern that is typical of this model. From the RG viewpoint, this pattern reflects

the presence of a larger amount of degrees of freedom as energy is increased, interaction

is turned on, and the unstable particle is formed. As we will see, staircase patterns also

emerge in our hydrodynamic analysis, in and out of equilibrium. It is worth noting that

staircase patterns in RG flows are also found for other theories, typically the roaming

trajectory model [62–64] and generalizations thereof [65]. However a direct connection to

unstable excitations is missing in those cases. A GHD study of the roaming trajectory

model with particular emphasis on new scaling functions was recently carried out in [66].

2.2 Thermodynamic Bethe Ansatz for generalized Gibbs ensembles

The TBA equations, either at equilibrium in a Gibbs ensemble, or in a GGE, are very

simple. The most intrinsic way of fixing the state is through a function, which we will

denote w(θ;±), which determines the weight of states in the ensemble. It is such that

every state formed of rapidities {θi} and particle types {εi} has weight exp[−
∑

iw(θi; εi)].

For instance, in a thermal state at inverse temperature β, one chooses

w(θ;±) = mβ cosh θ (thermal state) , (2.6)

where we already focus on our particular model, with particle species labelled by ±. One

expects that the space of all GGEs with good locality properties (the maximal-entropy

states) be spanned by an appropriate space of functions w(θ;±). The TBA provides the full

thermodynamics at infinite volumes for such a distribution of states specified by w(θ;±).

In the model of interest here, one defines the pseudoenergies ε(θ,±) by the solution to the

system of nonlinear integral equations

ε(θ;±) = w(θ;±)− ϕ±∓ ? L(θ;∓) , (2.7)

where

ϕ±∓(θ) = −i d
dθ

logS±∓(θ) =
1

cosh(θ ± σ)
and L(θ;±) := ln(1 + e−ε(θ;±)) , (2.8)

and ? represents the convolution of the functions involved,

a ? b(θ) :=
1

2π

∫ ∞
−∞

a(θ − θ′)b(θ′)dθ′ . (2.9)

From these objects, averages of all local operators can in principle be calculated. We

will concentrate on densities qi(x, t) of conserved charges Qi =
∫
dxqi(x, t), and their cur-

rents ji(x, t) satisfying ∂tqi(x, t) +∂xji(x, t) = 0. For these, simple expressions exist. Their

averages are fully fixed by giving the one-particle eigenvalues of the associated conserved

charge, hi(θ,±). The averages are obtained by using the “dressed” quantities hdr
i (θ;±),

which solve the linear integral equations

hdr
i (θ;±) = hi(θ;±) + ϕ±∓ ? (hdr

i (λ;∓)n(λ;∓)) (2.10)

where

n(θ;±) =
1

1 + eε(θ;±)
(2.11)

– 6 –



J
H
E
P
0
9
(
2
0
2
0
)
0
4
5

is the occupation function associated to particle ±. Specifically, the GGE averages of local

charge densities qi = 〈qi〉β and of their associated currents ji = 〈ji〉β are expressed as

qi =
∑
b=±

∫ ∞
−∞

dθ

2π
e(θ; b)hdr

i (θ; b)n(θ; b)

=
∑
b=±

∫ ∞
−∞

dθ

2π
edr(θ; b)hi(θ; b)n(θ; b) , (2.12)

and

ji =
∑
b=±

∫ ∞
−∞

dθ

2π
p(θ; b)hdr

i (θ; b)n(θ; b)

=
∑
b=±

∫ ∞
−∞

dθ

2π
pdr(θ; b)hi(θ; b)n(θ; b) , (2.13)

(recall that β was the set of generalized inverse temperatures in the GGE). Above the energy

and momentum one-particle eigenvalues are e(θ;±) = m cosh θ and p(θ;±) = m sinh θ. We

have also used a symmetry of the equations that allows us to interchange the “dressing”

operation inside the integral and the sum.

There are a number of natural conserved charges available in the model. For instance,

the energy and momentum are local conserved charges which are typically studied in QFT.

Further, since in integrable models the scattering is elastic, the number of particles is

preserved; thus the total number of particles also is a good conserved charge. In relativistic

QFT, this is usually not a local conserved charge, but it is expected to be quasi-local, hence

a good characteristic of the state. For the total number of particle and energy one-particle

eigenvalues, we will use the notation

h0(θ;±) = 1 (particle number)

h1(θ;±) = e(θ;±) = m cosh θ (energy) . (2.14)

Further, as the scattering is diagonal, the number of particles, energy and other charges

carried by each individual particle type are also conserved charges themselves, again ex-

pected to be quasi-local. These have one-particle eigenvalues that are nonzero only for one

sign of the particle type,

hε0(θ;±) = δε,±h0(θ;±) , hε1(θ;±) = δε,±h1(θ;±) . (2.15)

We will use the notation qεi and jεi for the associated average densities and currents, which

therefore take the form

q±i =

∫ ∞
−∞

dθ

2π
edr(θ;±)hi(θ;±)n(θ;±) and j±i =

∫ ∞
−∞

dθ

2π
pdr(θ;±)hi(θ;±)n(θ;±) .

(2.16)

Note how the particle types are not summed over in these expressions.

– 7 –
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Two intermediate functions in these expressions are of particular interest, as they

possess a clear physical meaning: these are the spectral density, and the effective velocities

(which first appeared in [67]),

ρp(θ;±) =
1

2π
edr(θ;±)n(θ;±) and veff(θ;±) =

pdr(θ;±)

edr(θ;±)
, (2.17)

respectively. The spectral density is a conserved quantity, and the spectral density times

the effective velocity, its current, as can be obtained by choosing hi(θ;±) = δ(θ−α)δ±,ε for

any α, ε. Specifically, the quantity ρp(θ;±)dθdx represents the number of particles of type

± in a phase-space element dθdx, while veff(θ;±)ρp(θ;±)dθdx is the associated current.

In this paper, we will study numerically the average particle and energy densities and

currents, as well as the spectral density and the effective velocities.

Before doing so, one can already extract properties of the dynamics of the model from

the structure of the kernels (2.8) in the above TBA description:

• Parity Breaking: the interaction kernels (2.8) have standard properties, such as

a fast decay at large |θ|, characteristic of the local interaction of the model. For

instance, the sinh-Gordon kernel at the self-dual point is 2 sech θ. However, the

kernels (2.8) are exceptional in that they are such that parity acts non-diagonally on

the asymptotic states. That is, TBA quantities are identical under the simultaneous

change of signs of rapidities θ → −θ and particle types ± → ∓. This is a remnant

of the fact that the scattering phases (2.1) themselves, and the underlying action of

the model, break parity.

• Scattering: the kernels are maximal at θ = ∓σ, taking values ϕ±∓(∓σ) = 1,

and rapidly decreasing functions away from their maximum (i.e. sech θ is strongly

peaked around zero). For instance, for σ > 0, this means that ϕ+−(θ) is maximal

for θ = −σ < 0. Recalling that θ = θ1 − θ2 is the difference of the rapidities of

the two incoming particles with types ε1 = + and ε2 = −, we see that, for σ large

and positive, the scattering can be nontrivial only in the region θ1 < θ2. This,

physically, corresponds to a collision where the particle of type − moves towards the

right, and that of type + towards the left, in the rest frame. Analysing ϕ−+(θ), the

same conclusion is reached upon exchanging the roles of ± particles. Thus nontrivial

scattering occurs only in one direction, for σ > 0 being when particle − travels

rightwards towards particle + (and the opposite for σ < 0), and it is this scattering

that is expected to give rise to the unstable particle. For this reason, the functions of

interest have quite different behaviours for θ > 0 and θ < 0 for ± particles, with one

choice giving the free fermion result and the other what we can term an “interaction”

result.

• Separation into right- and left-movers: as we know from comparison with soli-

ton gases and the flea gas model [45], the value of the kernels can be interpreted as

the distances jumped by particles upon collision. Positive kernels give the “natural”

picture, whereby a tagged particle, travelling rightwards (leftwards) and hitting an-

other particle, experiences a jump leftwards (rightwards), by the amount given by

– 8 –
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the scattering kernel. Thus, from the previous point, we expect that, say for σ > 0,

particle + (−) is mostly hit from the left (right) and therefore is mostly displaced

toward the right (left); its effective velocity will receive a positive (negative) correc-

tion, as compared to its group velocity. We may therefore broadly identify particles

of type + with right-movers, and of type − with left-movers. This picture becomes

exact near the UV fixed points. In particular, in the presence of the unstable particle,

we should find a positive (negative) + (−) equilibrium particle current; this will be

confirmed by our numerics.

2.3 Out-of-equilibrium steady states

From the results of the previous subsection, given a GGE we may obtain charge density and

current averages. We simply solve the equations (2.7) for the pseudoenergies ε(θ;±), then

obtain n(θ;±), and employ this solution to solve the dressing equation for the conserved

quantity of interest, and finally evaluate the integrals (2.12) and (2.13). The main examples

we will investigate in this paper are the particle current j0, the energy current j1 and the

energy density q1, both their total values and the relative contributions j±0 , j
±
1 and q±1 .

We will now engineer an out-of-equilibrium set up by employing the partitioning pro-

tocol, starting with two Gibbs ensembles at inverse temperatures βR,L for the right (left)

baths. See the reviews [24, 25] for the general theory and its applications. As shown

in [12, 13] hydrodynamic conservation equations and TBA equations can be combined

to characterize the steady state currents that emerge in the intermediate region between

subsystems at sufficiently large times.

The mathematical procedure goes as follows: equation (2.7) is solved separately for the

right and left sub-systems giving rise to two occupation numbers nR(θ;±) and nL(θ;±).

One of the main results of [12, 13] was showing that the non-equilibrium steady state

occupation functions occurring at large times at the position x = 0 are simply

n(θ;±) = nR(θ;±)Θ(θ − θ±0 ) + nL(θ;±)Θ(θ±0 − θ), (2.18)

where Θ is the Heaviside step function. The discontinuity positions θ±0 are solutions to

the equations pdr(θ±0 ;±) = 0 or, alternatively, they are zeroes of the effective velocities.

This form makes a lot of physical sense, as it proclaims that the occupation functions of

particles with positive (negative) effective velocities take the form of those in the original

ensembles on the left (right) sub-system. Here we assume that the effective velocities are

monotonic functions of rapidities, which is confirmed by our numerics below. Therefore, it

is easy to carry out a numerical evaluation of the non-equilibrium densities and currents.

We give a more detailed description of our algorithm in appendix B.

Finally, it is worth recalling that for conformal field theory (CFT) the values of j1

and q1 are well-known in this quench protocol. They (and their associated fluctuation

spectrum) were investigated in a series of works [68–70] and found to be

j1
CFT
=

c π

12
(T 2

L − T 2
R ) and q1

CFT
=

c π

12
(T 2
L + T 2

R) , (2.19)

where c is the central charge and as usual TR,L = β−1
R,L.

– 9 –
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Figure 2. Left: the total scaled energy current β2j1 (squares, green), the contribution β2j+
1

(triangles, red) and β2j−1 (circles, blue). Right: the total scaled energy density β2q1 (squares,

green), the contribution β2q+
1 (triangles, red) and β2q−1 (circles, blue). In both cases σ = 20 and

m = 1.

3 Equilibrium physics with unstable particles

We start the main part of the paper by analyzing the equilibrium physics of the model.

Although the equilibrium properties of this model have been studied at length using TBA

techniques, we find that the ideas brought by the recently developed hydrodynamic picture

shed new light into the main features of the theory, especially the nature of the unstable

particle. In addition, understanding the equilibrium case in terms of its underlying hy-

drodynamic properties will be extremely helpful when interpreting the out-of-equilibrium

dynamics.

Throughout this section we will take σ = 20 and the mass scale m = 1. It is well

known from standard equilibrium TBA arguments that non-vanishing values of the func-

tions L(θ;±) and n(θ;±) are strongly localized in the range

log
β

2
< θ < log

2

β
, (3.1)

as the functions fall off double-exponentially outside this range. This observation plays

an important role in the design of the numerical algorithm (see appendix B). Let us now

consider several quantities of interest and finally analyse their mutual relationship.

3.1 Energy current and energy density

One of the most effective ways to visualize the effect of the unstable particle is to look

at temperature-dependent quantities, for a wide range of temperatures. Evaluating the

formulae (2.13), (2.12) and (2.16) for the energy (i = 1), and scaling them by a factor β2,

we obtain the results of figure 2. Multiplication by β2 is dictated by the CFT result (2.19),

and is a convenient way to reveal a staircase pattern which reflects the presence of two UV

fixed points (with central charges c = 1 and c = 1.2), reached for (relatively) low and high

temperatures as previously described.

– 10 –
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The main properties observed in figure 2 are the following:

• Parity Breaking: although the total energy current is zero at equilibrium (as ex-

pected), the individual contributions from ± particles are non-vanishing (and op-

posite) for some energy scales. This is allowed due parity breaking in the theory.

More precisely, in TBA, under parity, the signs of the currents and the particle types

are exchanged. Here we observe that this gives rise to a negative (positive) energy

current carried by + (−) particles.

• Onset of the Unstable Particle: the individual particle contributions to the

energy density and current, and also the total energy density, display a staircase

pattern with a step whose onset is located around log β
2 = −σ

2 = −10. This energy

value represents the onset of the unstable particle. For log β
2 > −σ

2 the individual

contributions to the current are vanishing as this is the regime where the theory

behaves as two decoupled free fermions and parity is restored. Energetically speaking,

this is the region where energy is not high enough to allow for the formation of the

unstable excitation.

• CFT Values: the staircase patterns observed for the individual contributions to the

energy density are identical, because parity preserves the sign of the energy. Their

two plateaux can be predicted from CFT. For lower temperatures log β
2 > −σ

2 the

energy densities tend to their massless free fermion value,

β2q±1
FF
= lim

β→0

β2

2π

∫ ∞
−∞

dθ
cosh2 θ

1 + eβ cosh θ
=

1

π

∫ ∞
0

u

1 + eu
du =

π

12
= 0.261799 . (3.2)

This corresponds exactly to the height of the lowest plateau of the lower curve on

the right panel of figure 1. Similarly, the highest plateau is located at the value

β2q±1
CFT
=

πc

12
= 0.314159 , (3.3)

which is the CFT result for c = 1.2.

• Sign of the Energy Currents: an interesting feature of figure 2 is that the energy

current of + (−) particles is negative (positive) for high temperatures. However, the

structure of the kernels discussed in subsection 2.2 suggests that the particle currents

should have the exact opposite signs. The solution to this apparent puzzle is that

although most + particles propagate towards the right (positive particle current),

there are more highly energetic particles that propagate towards the left. The sign

of the energy currents of individual particle types is therefore a consequence of an

interplay between two phenomena. We fully explain this feature below in our analysis

of the spectral densities and effective velocities.

3.2 Effective velocities

Another interesting quantity to consider are the effective velocities of propagation of the

stable particles. Figure 3 shows three “snapshots” of the velocities as functions of the
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Figure 3. Effective velocity profiles at equilibrium for three temperatures: for low temperatures

(left figure) we observe the free fermion result, the group velocity tanh θ; for intermediate temper-

atures (middle figure) we observe the onset of the unstable particle; for high temperatures (right

figure), where a new CFT is reached, effective velocities of + (−) particles are shifted so that

they appear to be mostly right-moving (left-moving). The evolution of the effective velocities as

functions of temperature can be further explored in this video [76].

rapidity variable for three values of the temperature. The main noteworthy features are

the following:

• Free Fermion Regime: for low temperatures the two velocities are well described

by the free fermion result veff(θ;±) = tanh θ. In particular, at large rapidities, we

have non-interacting right- and left-movers propagating at the speed of light.

• Unstable Particle and Parity Breaking: for intermediate temperatures log β
2 <

−σ
2 the onset of the unstable particles triggers a parity breaking effect. Velocity

profiles exhibit the symmetry veff(θ; +) = −veff(−θ;−). The presence of the unstable

particle marks the presence of interaction and this reduces the absolute values of the

velocities, down from their conformal values ±1. The heights of the intermediate

plateaux for both particle types change with temperature until reaching again the

values ±1 at very high temperatures. Some of the features may be explained using

the flea gas picture, as explained below.

• UV Limit: in the deep UV limit (i.e. very high temperature compared to the un-

stable particle’s mass) the velocities reach once more their CFT values ±1 but are

“shifted” in comparison with their free fermion value. In fact they are very well

approximated by the functions (3.7) which are derived below. We have again large

regions of right- and left- movers propagating at the speed of light, and we observe

that the + (−) particle acquires “mostly” right-moving (left-moving) properties. This

is again in agreement with the flea-gas picture, which, as we explained, indicates that

+ (−) particles should be right-movers (left-movers).

• Plateaux and the “Flea Gas” Picture: the flea gas scattering picture described

at the end of subsection 2.2 explains the presence of the intermediate plateaux in the

middle panel of figure 3. For instance, the + particle may only scatter by collisions on

its left, and these collisions generate jumps rightwards. Thus, only for θ < 0, where

the particles are not moving rightwards at the speed of light, can such collisions

– 12 –
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happen; and when they happen, they “slow down” the particle. This only happens

in a small interval of values of θ (for the + particle this is approximately the interval

[−σ/2, 0]) and the precise boundaries of this intermediate plateau, are more subtle

to explain. They are determined by an interplay between spectral densities and

the effective velocity. For instance, a change of the effective velocities at rapidities

|θ| > σ/2 is precluded for low temperatures log β
2 > −σ/2, because no particles

are present at such rapidities. The configuration achieved at large temperatures,

for instance the right-most panel of figure 3, has however a clear meaning. Indeed,

scattering may only happen between + and − particles for rapidity differences near to

σ, but does not happen if particles are co-moving (have the same effective velocity).

Thus, for instance, + particles at rapidities −15 and − particles at rapidities 5 do

not scatter according to the right-panel of figure 3.

• Vanishing Velocities: interestingly, for log β
2 ≈ −10, that is, precisely at the onset

of the unstable particle, the intermediate plateaux both have heights zero. The

physical interpretation is that for such temperatures, + and − particles of rapidities

|θ| < σ/2 are essentially stationary, and this allows them to form the finitely-lived

bound state represented by the unstable particle. We will observe the formation of

the unstable particle more precisely in subsection 3.4.

The behaviour of the effective velocities for very high temperatures as described in the item

on “UV limit” can be analytically derived from the TBA equations under some simple

assumptions. Recall the definition of the effective velocities (2.17) and of the dressing

operation (2.10). We know that the kernels ϕ±∓(θ) are functions that are strongly peaked

around θ = ∓σ and we also know that the functions n(θ;±) develop a plateau in the

region (3.1). For high temperatures this will be a very wide plateau of height n =
√

5−1
2 =

0.618 . . . (this can be derived from the constant TBA equations [53]) so that within the

region where the kernel is non-vanishing the occupation numbers are constant and may be

taken out of the integral. Thus, at high temperatures we can approximately write

hdr
i (θ;±) ≈ hi(θ;±) +

n

2π

∫ ∞
−∞

dλϕ±∓(θ − λ)hdr
i (λ;∓) . (3.4)

An even cruder approximation consists of treating the kernel as a δ-function δ(θ − λ± σ)

and writing

hdr
i (θ;±) ≈ hi(θ;±) + nhdr

i (θ ± σ;∓) . (3.5)

Assuming that hi(θ; +) = hi(θ;−) := hi(θ) the equations above are solved by the following

functions

hdr
i (θ;±) =

hi(θ) + nhi(θ ± σ)

1− n2
. (3.6)

For the effective velocities this means that

veff(θ;±) ≈ sinh θ + n sinh(θ ± σ)

cosh θ + n cosh(θ ± σ)
for log

β

2
� −σ

2
. (3.7)

If n = 1 the functions above are exactly tanh
(
θ ± σ

2

)
. In this case n is not 1 but the

function above still resembles a shifted hyperbolic tangent very much. That is the reason
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Figure 4. Spectral densities for three values of the temperature: β = 2e−3, 2e−11 and 2e−16.

In the two rightmost panels, the vertical axis labels should be multiplied by factors 103 and 105,

respectively, as indicated. In all panels, a dashed horizontal line indicates the height of the free-

fermion peak, 0.04431 . . . /β. For low temperatures (left panel) we observe the free fermion result;

for intermediate temperatures (middle panel) we observe the onset of the unstable particle with

one of the peaks growing beyond the free fermion value; for high temperatures (right panel) the

densities develop one additional local maximum. The evolution of the densities as functions of

temperature can be further explored in this video [77].

why the curves in the rightmost panel in figure 3 look a lot like shifted versions of those in

the leftmost panel.

3.3 Spectral densities

In this section we analyse the main features of the spectral densities ρp(θ;±) defined

in (2.17) by considering three density profiles for low, intermediate and high tempera-

tures. These are presented in figure 4, where, for comparison, the values of the maxima of

the free-fermion densities at large temperatues, ρFF
max = `−1

2πβ with ` = 1.27846 . . . (dashed

black line), are shown. The most important features of the spectral densities at equilibrium

are the following:

• Free Fermion Regime: the spectral densities for sufficiently low energies (figure 4,

left panel) are those of a free fermion and are described by the corresponding formula

ρFF
p (θ;±) =

1

2π

cosh θ

1 + eβ cosh θ
. (3.8)

This function has maxima around θ = ± log β
2 , as seen in the figure; more precisely,

the positions of the maxima scale, for β small, as θ ∼ ± log β
2` + o(1) where ` =

1.27846 . . . solves e−` = `− 1. These maxima are at a height that scales as ∼ `−1
2πβ , as

also seen in the figure.

• Turning on the Interaction: for higher temperatures (figure 4, middle and right

panels) we still have maxima around ± log β
2 , but the heights of some of the maxima

start to change as soon as the unstable particle comes into play. For intermediate

energies we observe that for each given particle type, one of the maxima (the right

(left) one for + (−) particles) coincides with its free fermion value whereas the other

maximum is higher, indicating an “excess” density generated by the onset of the

– 14 –
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interaction. This asymmetry is justified by the structure of the kernels, as discussed

in subsection 2.2. That is the ϕ+−(θ) kernel is maximized at θ = −σ < 0 and is

negligible for θ > 0 thus the effect of interaction only manifests itself for θ < 0 while

the free fermion physics persists for θ > 0.

• Three Local Maxima: for high temperatures (compared to the unstable particle’s

mass) two new local maxima, one for each density, emerge located around ±(log β
2 +σ)

(figure 4, right panel). Thus, at high temperatures, each spectral density exhibits

three local maxima: the free fermion peak expected for that temperature, the “in-

teracting peak” whose maximum is largest, and a smaller, “subsidiary peak”. We

observe two important features for these peaks. First, the position of the maxima is

once more justified by the scattering matrix which dictates that interaction is maxi-

mized for rapidity differences ±σ. In particular, the rapidity difference between the

+ particle (red) interacting peak and the − particle (blue) subsidiary peak is, at

all temperatures, around −σ, the value at which the scattering interaction ϕ+−(θ)

is maximal; and viceversa. Second, for each particle type, the excess area of the

interacting peak compared to the free fermion peak roughly coincides with the area

of the subsidiary peak. By combining with a dynamical analysis, these features are

fully explained in the next subsection.

3.4 Scattering, spectral densities and the unstable particle

We now argue that by simultaneously analysing features of the effective velocities and

spectral densities, we gain a new, insight into the equilibrium scattering theory of the

model.

The conventional understanding of unstable particles is based on the presence of a pole

in the scattering amplitudes and on the notion of how the presence of this particle adds, at

large temperatures, new degrees of freedom to the theory: it drives an RG flow between, in

the IR, a double free fermion theory and, in the UV, a non-trivial coset model. However,

the introduction of physical quantities such as the effective velocities, in combination with

the two observations we have made in the last point of subsection 3.3, brings a new, perhaps

more intuitive perspective into the interpretation of this unstable particle.

We illustrate this with figure 5, which shows the same high temperature physics we

have seen in subsections 3.2 and 3.3 and combines scaled versions of the curves found in the

right panels of figures 3 and 4. Consider the positions of the local maxima of the spectral

densities in figure 5 and the corresponding values of the velocities. For particle + (left panel,

red) the density has maxima around log β
2 ≈ +16 (free fermion peak), ≈ −4 (subsidiary

peak) and ≈ −16 (interacting peak). Comparing with the effective velocity curve, the

particles these represent have velocities very nearly +1, +1 and −1, respectively. For

particle − (right panel, blue), the maxima of the free fermion, interacting and subsidiary

peaks are around log β
2 ≈ −16, ≈ 4 and ≈ +16, respectively, with velocities −1, −1 and 1,

respectively.

Thus, the velocities associated with the interacting peak of each distribution and the

subsidiary peak of the other distribution are always the same. These particles are co-
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Figure 5. The effective velocities versus the normalized spectral densities %p(θ;±) =

2ρp(θ;±)/ρ̃±− 1 where ρ̃± is the height of the largest local maximum. The inverse temperature is

β = 2e−16.

moving, staying parallel to each other for all times, and thus have the opportunity to bond.

Since, as we observed in subsection 3.3, their rapidity separation ±σ are at the maxima

of the scattering kernel ϕ±∓(θ), these particles are indeed subject to a strong interaction,

and can form bound states (even if only finitely-lived). Further, as the “excess” area of

the interacting peaks are roughly the same as the areas of the subsidiary peaks, the excess

density created by the onset of interaction and the subsidiary peak can be interpreted

as pairs of bound (+−) and (−+) particles propagating at the same speed. These are

the unstable particles, gathered within two clouds, one right-moving and one left-moving.

The population of unstable, finitely-lived particles thus formed is rendered stable by the

high energy of the thermal bath and the continuous availability of co-moving, interacting

particles of opposite types.

In summary, varying the temperature and observing the various structures form with

their respective effective velocities, is the most direct way we know of “visualizing” the

formation of the unstable particle. This visualization is particularly striking when observing

the continuous change of the densities as temperature is increased in this video.

Counting the degrees of freedom, over all, we therefore have two free fermions (each

with its right- and left-moving components), and, in addition, one unstable particle (also

with its right- and left-moving components). These degrees of freedom lead to the central

charge c = 1.2 seen in the UV. In order to account for it quantitatively, we need to look at

the energy per unit temperature-square carried by the particles, by multiplying the spectral

density by the factor (12β2/π)e(θ;±). The total area under the curves is then the central

charge — a measure of the total number of degrees of freedom. This can be also seen as

a consequence of the CFT result (2.19). We then observe that the contributions coming

from the excess area of the interacting peaks largely dominate the contributions from the

subsidiary peaks, as the subsidiary peaks are at smaller values (in absolute values) of

rapidities. Therefore, the contribution of each particle to the energy current and densities,

and to the central charge, coming from the clouds of unstable particles is dominated by

– 16 –
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Figure 6. Left panel: particle currents at equilibrium as functions of temperature. Right panel:

the functions ρp(θ;±)veff(θ;±) for β = 2e−16 whose integration gives the particle currents. Here

the vertical axis should be multiplied by a factor 105.

the excess density of the interacting peak. This total excess energy area indeed represents

1/5 of the energy area covered by the free fermion parts, as it should.

Interestingly, for + particles, say, the interacting peak consists of particles propagating

with velocity −1. As this dominates any contribution from the subsidiary peak, this means

that there are more highly energetic + particles propagating with velocity −1 than there

are with velocity +1. Therefore a negative energy current is generated, as observed in

subsection 3.1. Similar arguments can be made for the − particles. This is against the

naive intuition from the flea-gas picture, which suggests that + (−) particles are right- (left-

)moving. Here we see that it is due to the energetics of the additional degree of freedom

that appears in the UV and the associated propagation velocities. The naive intuition is

recovered when looking at the particle currents themselves, instead of the energy currents,

as we do in the next subsection.

3.5 Particle currents

In this section we take a brief look at the particle currents as functions of temperature.

They are presented in figure 6. We note the following main features:

• Free Fermion Regime: as for the energy, the particle currents are zero in the free

fermion regime log β
2 > −

σ
2 .

• Turning on the Interaction: for log β
2 < −σ

2 when interaction is not negligible

anymore, we observe non-zero currents. As predicted by the scattering picture of

subsection 2.2 the current is positive (negative) for particle + (−).

• A Tight Balance: the particle currents are (relative to other quantities) very small.

In contrast the functions whose integration they result from (figure 6, right panel)

take very large values (both positive and negative) but positive and negative values

are almost perfectly balanced so that in the end only a very small current is pro-

duced. This is because, as noticed earlier, the total area of two smaller peaks (free
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fermion and subsidiary) of spectral density is approximately equal to the area of

the larger (interacting) peak. From the velocity profiles this suggests that there are

approximately as many particles of each type moving with velocity ±1.

• An Intricate Structure: in view of the above we may wonder if the intricate

structure observed in figure 6, left panel is a true physical effect or a numerical error.

We have performed several tests, increasing precision substantially and found the

structure is robust. Thus we believe it is an accurate result. However, for the moment

we have no plausible physical interpretation for the structure of these functions.

4 Out-of-equilibrium dynamics with unstable particles

We will now analyse the same quantities as in the previous section in an out-of-equilibrium

situation. As described previously, two thermal baths at inverse temperatures βL, βR are

connected at t = 0. As before our analysis focuses on the case σ = 20 with mass m = 1.

For simplicity we have also chosen the position at the origin, so we look at the “ray”

that is located exactly in the middle of the steady-state region. The physical picture does

not change substantially for other rays. In much of our analysis we will fix the ratio of

temperatures and vary βL only. We will use the new variable:

x =
βR
βL

, (4.1)

(not to be confused with the position variable which is never explicitly used in our formulae).

Hence x > 1 corresponds to a positive temperature gradient TL > TR and x < 1 corresponds

to a negative temperature gradient TL < TR.

4.1 Energy currents and energy densities

In this section we discuss the main features of the out-of-equilibrium energy currents and

energy densities for different temperature ratios, focussing on the main changes with respect

to the equilibrium situation. Our discussion focusses on figure 7. The main important

features are the following:

• Symmetry: a clear feature from the pictures is the following symmetry under the

exchange x→ x−1 (or βL ↔ βR):

j±1 (βL, βR)→ −j∓1 (βR, βL) and j1(βL, βR)→ −j1(βR, βL) , (4.2)

and similarly

q±1 (βL, βR)→ q∓1 (βR, βL) and q1(βL, βR)→ q1(βR, βL) . (4.3)

This is in agreement with the parity symmetry of the TBA equations.

• Conformal Limits: the height of the plateaux is predicted as in the equilibrium

case by the formula (2.19). For instance, for x = 3/2 the scaled total current has

plateaux at

β2
Lj1

CFT
=

πc

12

(
1− 4

9

)
=

5πc

108
, (4.4)
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Figure 7. The total (scaled) energy current β2
i j1 (squares, green), the contribution β2

i j
+
1 (triangles,

red) and β2
i j

−
1 (circles, blue) and similarly for the energy density. We consider the cases x = 3/2

(i = L) and x = 2/3 (i = R). In all cases σ = 20,m = 1.

which gives values 0.174533 and 0.145444, for c = 1.2 and c = 1, respectively. The

same holds for the total spectral density:

β2
Lq1

CFT
=

πc

12

(
1 +

4

9

)
=

13πc

108
, (4.5)

predicting the values 0.453786 and 0.378155 for c = 1.2 and c = 1.

• Unstable Particle Onset: in all figures we also see the location of the start of

the plateau at −σ/2 = −10 with respect to the scales log
βL,R

2 . In fact, quantities

associated with particle + develop a plateau for log βL
2 > −σ

2 whereas for particles of

− type the plateau’s onset occurs at log βR
2 = −σ

2 . This is hardly detectable in these

figures because log 3
2 = 0.405 . . . and therefore there is little difference between the

values log
βL,R

2 ; but we have verified this fact for larger values of x.

• Particles Couple Mainly to one Bath: the previous point suggests that type

+ particles are particularly sensitive to the value of βL whereas particles of type

− couple strongly to the value of βR. This is related to the structure of the kernels

described in subsection 2.2 and also to the structure of the occupation numbers (2.18).
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For particle + this means that it will feel strong interaction with particle − only when

θ < 0 and close to −σ. At the same time, for θ < 0 the occupation number is largely

described by its equilibrium value on the left bath (see figure 13 for more details) and

so particle + mainly interacts at inverse temperature βL. A similar argument can be

made for particle −.

• Equilibrium Currents vs Temperature Gradient: in contrast to the equilib-

rium case, here both particle type contributions to the currents have the same sign,

although they are different from each other. For x > 1 both contributions are posi-

tive, even though the contribution of particle + is always smaller (the opposite is true

for x < 1). This change can be explained as the result of interference (sometimes con-

structive, sometimes destructive) between two phenomena: the equilibrium physics

and that induced by the temperature gradient. If x > 1 we have that TL > TR and

so from the temperature gradient we expect a positive current. However, for particle

+ the equilibrium current would have the opposite sign and so, even if temperature

“wins” in the end, we still have a reduced current. For particle − on the other hand

both the gradient and the equilibrium tendency support a positive current, so its

total contribution is enhanced. The opposite effect is seen for x < 1.

• Out-of-Equilibrium c-Theorems: as we have seen, it is possible to read off the

central charges of the various UV points that are visited by the theory as temper-

atures are increased by, for instance, computing the energy current or the energy

density. Therefore, one may think of the quantities 12|j1|β2

π , 12q1β2

π , where β is the

largest temperature, as new scaling functions. They are qualitatively similar to two

well-known distinct scaling functions: the standard TBA function c(r) depicted in

figure 1 and Zamolodchikov’s c-function [71]. Several examples exhibiting the same

qualitative features as figure 1 are presented in figure 8. This idea is however not

new. Indeed many such scaling functions were proposed in the work [72] and, more

recently, for the roaming trajectory model in [66].

4.2 Effective velocities

In this section we take another look at the effective velocities with a focus on changes with

respect to the equilibrium behaviour. Figure 9 explores this behaviour for low, intermediate

and high temperatures. Our main observations are the following:

• Conformal Regime: both at low and high temperatures the equilibrium behaviours

are recovered. For low temperatures we find the free fermion result. For very high

temperatures we find the conformal equilibrium result. Once temperature is high

enough the UV result is approached even if βL 6= βR.

• Velocity Signs: the velocity of particle + (−) is positive (negative) for most rapidi-

ties. Except for the free fermion regime, it exhibits a zero for a negative (positive)

rapidity value. This is confirmed by figure 13 in the appendix. Despite this fea-

ture and the fact that for very high temperatures the velocities are identical to their
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Figure 8. The scaled energy current as a c-function for several values of σ and temperature ratio

x = 30. The plateaux are located at β2
Lj1

CFT
= π

12 (1− 1
900 ) = 0.261508 and β2

Lj1
CFT
= π

10 (1− 1
900 ) =

0.31381.

Figure 9. Steady state effective velocities for three values of βL and three values of x, including

(for comparison) the equilibrium case x = 1. The velocity profiles retain many of their equilibrium

features. In the bottom right figure x = 3
2 (dashed, green), x = 1 (solid, pink) and x = 2

3 (dotted,

blue). The variation of the velocities with temperature can be further explored in this video [78].
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equilibrium values, the particle currents for x > 1 in this case are both large and

positive, indicating that spectral densities are maximal around values of θ for which

both velocities are positive, see subsection 4.4.

• Particles Couple Mainly to one Bath: for intermediate temperatures, like the

ones considered in the second row of figure 9, we observe that whereas veff(θ; +) is

virtually unchanged as long as βL is fixed, even if βR is changed, veff(θ;−) is very

much dependent on the values of βR. This can be explained by the same arguments

presented in the previous subsection.

• Effective Velocities Zeroes: the height of the intermediate plateau of the velocities

that emerges for intermediate temperatures changes with temperature so that there

exists a choice of temperatures log βR
2 ≈ −10 for which the plateau of the − particle

velocity is at height zero (as on the dashed green line in the bottom right panel of

figure 9) and similarly for particle +. This suggests that the effective velocities at this

particular temperature appear to have a continuous set of zeroes within our numerical

accuracy. Correspondingly, the results for θ±0 shown in figure 13 show a sharp change

for the same temperatures. One may ask whether or not this implies that the values

of physical quantities computed here are not unique. In other words, would the

effective velocities, spectral densities, occupation numbers etc. change significantly

if the values of θ±0 are changed within the interval of zeroes observed here? Our

numerical observation is that there is no measurable change. One way to see this is

to observe that for these temperatures the functions nR,L(θ;±) have plateaux of a

similar height, such that the choice of θ±0 within a certain interval, does not change

the overall shape of the function (2.18).

4.3 Spectral densities

Let us now discuss how the spectral densities change in an out-of-equilibrium situation.

Figure 10 shows three examples for low, intermediate and large temperature which can be

easily compared with figure 4. We notice the following new features:

• Free Fermion Regime: for low temperatures (figure 10, left panel) we recover the

out-of-equilibrium free fermion behaviour

ρp(θ;±) =
1

2π
cosh θ

(
Θ(θ)

1 + eβL cosh θ
+

Θ(−θ)
1 + eβR cosh θ

)
.

The maxima are centered around θ = log βR
2 and θ = − log βL

2 and continue to be so

even at higher temperatures.

• Intermediate Temperatures: as in the equilibrium situation, the heights of the

free fermion peaks start to change after the onset of the unstable particle (figure 10,

middle panel). However still the right peak of particle + density coincides with the

free fermion peak at temperature βL and the left peak of the − spectral density

coincides with the free fermion peak at inverse temperature βR. These are the free
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Figure 10. Spectral Densities for x = e (TL > TR) and three values of the inverse temperatures

(βL = 2e−3, 2e−11 and 2e−16). For the two highest temperatures the vertical axis labels should be

multiplied by 103 and 106, respectively, as indicated. In all panels, dashed (dotted) horizontal lines

indicate the height of the free-fermion peaks, 0.04431 . . . /βL (0.04431 . . . /βR). A more complete

picture of the dynamics can be gained from this video [79].

fermion peaks that we had identified in the equilibrium situation. The opposite

peaks, which have higher heights than they would in a free fermion theory, are the

interacting peaks, as also identified in the equilibrium situation. Importantly, by

contrast here the peaks of + and − particles have different heights.

• Three Local Maxima: for very high temperatures (figure 10, right panel), we

observe once more a structure with three local maxima per density. The additional

(smaller) maxima are located at − log βL
2 − σ (red curve, + spectral density) and

log βR
2 + σ (blue curve, − spectral density). Following the nomenclature used in the

equilibrium situation, these are the subsidiary peaks. Once more, the excess area

of the left-most, interacting peak in the density of + particles (compared to the

free fermion peak at inverse temperature βR) roughly coincides with the area of the

subsidiary peak in the density of − particles. This is made more precise at the end

of this subsection.

• Formation of the Unstable Particle: as for the equilibrium case we can argue

that the excess density of the interacting peak of the + spectral density “couples” to

the subsidiary peak of the − spectral density and viceversa to form a finitely-lived

unstable particle. The only difference with respect to the equilibrium case is that

the areas and heights of all six maxima in the two spectral densities are distinct.

In particular, the smallest maxima of both distributions are now different as one is

governed by the right temperature and the other by the left temperature. This can

be seen more precisely in the additional figure 11. By computing the areas of all the

peaks and comparing them to each other, this out-of-equilibrium analysis confirms

the dynamical explanation of the formation of unstable particles, by allowing for an

unambiguous identification of the coupling between + and − particles. A numerical

evaluation of these areas is presented below.

• Comparison to Equilibrium: considering the densities in figure 11 we observe the

following: for the + particles density we find that the two right-most peaks — the
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Figure 11. Spectral densities at equilibrium for temperatures β = βR = 2e−15 and β = βL = 2e−16

and out of equilibrium for the same temperatures.

free fermion and subsidiary peaks — are perfectly well described by the equilibrium

density at inverse temperature β = βL = 2e−16 whereas the left-most peak — the

interacting peak — is described by the equilibrium density at inverse temperature

β = βR = 2e−15. The same “cut and paste” structure is observed for the − particles

distribution, where the “cut” is now located around θ = 10 (this is the value of

θ−0 as seen from figure 13). This behaviour can be best explained when matching

densities with effective velocities. The velocities associated to the various types of

peaks (free fermion, subsidiary and interacting) are distributed as in the equilibrium

case, but now, these determine the initial bath the particles come from, and thus the

temperature they carry. See the discussion in subsection 4.5.

Before concluding this subsection we would like to make our statements about the areas of

the various maxima of the spectral densities a little bit more precise. For this purpose let

us define the following quantities:

A+ :=

∫ t+min

−R
dθ ( ρp(θ,+)− ρFFp (θ,+)βL ) , A− :=

∫ R

t−min

dθ ( ρp(θ,−)− ρFFp (θ,−)βR ) ,

B+ :=

∫ 5

t+min

dθ ρp(θ,+) , B− :=

∫ t−min

−5
dθ ρp(θ,−) . (4.6)

where R = log 2/βL + 6, t±min is the position of the local minimum of the spectral density

that is located between the interacting and subsidiary peaks (that is approximately ±10 in

figure 11). ρFFp (θ;±)β is the free fermion spectral density given by (3.8) at inverse temper-

ature β. The subsidiary peaks of the ± spectral densities are then located approximately

in the intervals [t+min, 5] and [−5, t−min]. The choice of the integration limits is of course

slightly arbitrary, so the areas below are just an illustration of the general statement that

A+ ≈ B− and A− ≈ B+. In contrast to the equilibrium case it is now clear that A+ 6= B+

and A− 6= B−, therefore our argument based on attributing a certain area of the spectral

density curves to the formation of unstable particles is only plausible if we “couple” the ±
spectral density curves (see table 1).
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log βL/2 t+min t−min A+ B+ B− A−

−15 −9.9099 9.4771 26433.3 68869.5 24477.7 70810.8

−16 −9.9802 9.6275 70689.5 189237. 68793.3 191195.

−17 −9.9802 9.7162 191302. 516162. 189231. 518292.

Table 1. Excess areas of the interaction peaks of the spectral densities A± compared to the areas

of the subsidiary peaks B±. As expected A+ ≈ B− and A− ≈ B+.

Figure 12. Left panels: total particle current j0 (circles, green), particle current associated to

particle + (triangles, red) and to particle − (squares, blue). The vertical axis labels should be

multiplied by a factor 106, as indicated. Right panels: the functions ρp(θ;±)veff(θ;±) whose inte-

gration gives the particle current. The vertical axis labels should be multiplied by factors 106 and

105, as indicated.

4.4 Particle currents

The out-of-equilibrium particle currents differ substantially from their equilibrium values.

They are presented in figure 12. The main features that we observe are the following:

• (Almost) Identical Currents: in contrast to the equilibrium picture, particle

currents out of equilibrium are large, have no intricate structure and seem identical

for both particle types. The reason for this is that the currents were very small at
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equilibrium and as soon as a temperature gradient is created, the current generated

by this gradient is much larger than any previously existing current. Thus, contrary

to the energy currents where the competition between equilibrium physics and out-of-

equilibrium dynamics can be detected, for the particle currents, the out-of-equilibrium

dynamics overwhelms any existing equilibrium current. In fact, we know from our

numerical results that the currents are not exactly identical, their difference being of

the order of the equilibrium particle currents. We can also see that the functions from

whose integration they result (right panels) are not related by any obvious symmetry.

• Sign of the Currents: Currents are positive for x > 1 and negative for x < 1 as

governed by the temperature gradient. In this case the signs of particle and energy

currents coincide. A simple justification for this behaviour can be found again from

the spectral densities and effective velocities. The sign can also be worked out from

the functions on the right panels. Contrary to the equilibrium case, they are no

longer almost odd functions. Instead the areas above and below the horizontal axis

are visibly different.

4.5 Out-of-equilibrium full dynamics

As for the equilibrium case let us once more contrast the behaviour of velocities with that

of densities. The picture is similar to equilibrium (see figure 5). In particular, we can make

the same arguments about the formation of the unstable particle. There are however some

new properties worth mentioning:

• Following the Original Baths: let us compare figure 10, right panel and the

corresponding effective velocities, which would look very much like figure 9, top right

panel. Consider the + spectral density. As for the equilibrium situation we find

that the two right most peaks in the density (centered around rapidities 16,−4)

are associated with velocity +1 whereas the left-most peak (at rapidity −15) has

velocity −1. Thus particles distributed around rapidities 16,−4 are moving from

left to right. This means that they were originally thermalized on the left bath

with inverse temperature βL. This is the reason why their density coincides with

the equilibrium density at inverse temperature βL as shown in figure 11. Similarly,

particles with rapidity around -15 are moving from right to left and therefore were

thermalized on the right bath at inverse temperature βR. The same kind of argument

can be made for the − particle.

• Currents: we have previously observed that, contrary to the equilibrium case, both

the particle and energy currents are now positive for x > 1 and negative for x < 1.

Indeed, we now find that the sum of the areas of the two right-most peaks of the

+ spectral density is larger than the area of the left-most peak. So there is a much

larger density of particles with velocity +1 than there is with velocity −1 and a large

positive particle current is generated as a result. Similarly, there is a larger density of

+ particles around rapidity 16 than there are around rapidity −15 so there are more

highly energetic particles with positive than negative momentum and these produce
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x βL βR a β2 j1 β2 q1

1.× e−7 2.× e−7 2.× e−14 1.1986 −0.3138 0.3139

1.× e4 2.× e−14 2.× e−10 1.1986 0.3137 0.3140

1.× e5 2.× e−14 2.× e−9 1.1986 0.3138 0.3139

1.× e6 2.× e−15 2.× e−9 1.1988 0.3139 0.3139

1.× e7 2.× e−14 2.× e−7 1.1986 0.3138 0.3139

1.× e8 2.× e−15 2.× e−7 1.1988 0.3139 0.3139

1.× e9 2.× e−16 2.× e−7 1.1991 0.3139 0.3139

Table 2. Investigation of the energy current and energy density when connecting two CFTs of

central charges 1 and 1.2. In the last two columns we chose β = min(βL, βR).

a net positive energy current. As usual, a similar argument can be made for the −
particles.

5 Application: connecting cfts with different central charges

Many times in this paper we have highlighted the property that for temperatures well below

the unstable particle mass our model describes a pair of free Majorana fermions whereas

for temperatures well above the unstable particle mass a new critical point is reached with

central charge 1.2. This means that our model provides an ideal opportunity to investigate

the properties of the energy current in the conformal regime when two theories of different

central charges are connected.

In order to carry out this experiment we need βL and βR to differ by many orders

of magnitude for the two halves to be deep into the two conformal regimes. Looking for

instance at figure 7 for the currents and densities or at figure 1 for the c-function, we

see that for σ = 20 we generally need one inverse temperature to be much smaller than

� 2e−10 and the other much larger than the same value, ideally towards the middle of

each plateau.

Table 2 shows various pairs of possible choices together with the estimated values of

the current, the density and a coefficient a which is defined by

|j1| =
aπ

12
T 2, (5.1)

where T is the largest temperature. As we can see in the table, the value of a is in all

cases very close to the highest central charge c = 1.2. As expected, we also see that the

sign of the current is reversed when the choice of temperatures is exchanged (compare the

first and fifth rows in the table). As expected, the dependence on the lower temperature is

negligible compared to the numerical error. From the numerical results we can postulate

that the leading behaviour of the current and density is given by

j1 ≈
aπ

12
T 2
L for TL � TR and j1 = −aπ

12
T 2
R for TR � TL , (5.2)
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and

q1 ≈
aπ

12
T 2
L for TL � TR and q1 =

aπ

12
T 2
R for TR � TL , (5.3)

with a = 6
5 .

The problem of connecting two critical theories with different central charges has been

studied in several previous works. However, none of these works has considered a situation

that is directly comparable to ours and indeed they all predict a different behaviour of the

current. For instance in [73, 74] the connection of two free CFTs of different central charges

was considered, whereas in [75] two different critical models are connected by a defect which

breaks conformal invariance. However, the argument put forward in [74] about a possible

“bottleneck” effect whereby the smallest central charge limits the growth of the currents,

seems rather plausible and yet does not hold here. A potential explanation is that with

an actual, localised impurity in the dynamics, a true bottleneck effect may arise where the

impurity is unable to carry more degrees of freedom through it than those supported by

the theory with the smallest central charge. By contrast, in the present setup, the middle

region where non-equilibrium currents build up may be very extended, and can accumulate

large amounts of energy. We do not have a full understanding at this stage, but it will be

interesting to explore this problem further.

6 Conclusion

In this paper we have applied the GHD framework to the study of an integrable relativistic

quantum field theory known as the SU(3)2-Homogeneous sine-Gordon model. The model

is of interest in the GHD context because it has two novel features: it has two stable

and one unstable particle and its (diagonal) scattering matrix breaks parity, meaning that

S+−(θ) 6= S−+(−θ) where ± are the two stable particle types. The effect of both features

on all dynamical properties of the model, including currents and densities, turns out to be

quite dramatic.

Generically, the presence of the unstable particle means that there are three interesting

temperature regimes: (1) At low temperatures, the unstable particle cannot be formed and

the two stable modes effectively behave as free Majorana fermions, giving the known results

and restoring parity; (2) At sufficiently large temperatures, the unstable particle is present

giving rise to a new plateau in some quantities, such as the temperature-scaled energy

currents, or to a change to the structure of the local maxima of the spectral densities; (3)

At very high temperatures a new fixed point is reached and the conformal behaviour is

recovered for central charge c = 6
5 . These three regions are found both in the equilibrium

and out-of-equilibrium dynamics.

One of the most surprising results is that even at equilibrium it is possible to speak

of a rich and interesting physics. Such dynamics can be explored specially by looking

at the individual contributions of the stable particles to currents and densities and by

studying the properties of their effective velocities and density distributions. Perhaps

the most interesting finding is the identification of the dynamical process by which the
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unstable particle is formed: for high enough temperatures (i.e. commensurate with the

unstable particle’s mass) the density of ± particles is increased for some range of rapidities;

this “excess” spectral density is such that increases for ± particles can be matched and

interpreted as the spectral density of unstable particles. In addition, the excess spectral

densities of ± particles arise for rapidities for which their respective effective velocities are

identical. As a result, the unstable particle can be seen as finitely-lived bound state of

co-propagating particles (+−) or (−+); these bound states are continuously replenished

thanks to the high temperature and the availability of co-moving particles of opposite

types, and thus are found in stable proportion in the thermal bath.

Out of equilibrium, we observe that many equilibrium features are preserved while

others are modified: energy and particle currents are positive for TL > TR and negative

otherwise, indicating that the temperature gradient (rather than the equilibrium physics)

is the leading force in determining the out-of-equilibrium dynamics. A consequence of par-

ity breaking and the unusual features of the phase shifts is that particle + is particularly

sensitive to changes in βL whereas particle − is most sensitive to changes in βR. Analysing

the spectral densities in conjunction with the effective velocities at very high temperatures

we observe that values of θ for which the velocities are +1(−1) can be matched to spectral

densities that reproduce the equilibrium profile on the left (right) reservoir, where the par-

ticles were originally thermalized. Unstable particles are still formed by the combinations

(+−) or (−+) of pairs propagating at the same speed, but in the out-of-equilibrium set-up

the density of each pair-type is distinct.

A by-product of our analysis is the opportunity to address the question: what is the

out-of-equilibrium dynamics following the connection of two thermal CFTs of different

central changes? The special nature of the current model allows us to engineer such a

partitioning protocol by setting the right and left baths at very low and very high temper-

atures, respectively. By doing so we will have on one bath two free Majorana fermions with

total central charge c = 1 and on the other bath an interacting CFT with central charge

c = 6
5 . Our numerical results suggest

|j1| = q1 ≈
aπ

12
T 2 with a =

6

5
, (6.1)

and T is the largest temperature. This is different from any of the formulae found in [73–75]

and likely due to our special set-up. A better understanding of the conditions under which

each behaviour is to be expected is still needed.

It would be interesting to study other theories in this family, where more than one

unstable excitation is present, but we expect that the main physical picture will remain

the same. We would also like to explore other quench protocols where the effect of the

unstable particle may be different. Most interesting perhaps would be to have a lattice

or cold-atom realization of these or similar models, paving the way towards a study of

unstable particles, parity breaking, out-of-equilibrium dynamics and integrability in an

experimental set up.
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Figure 13. Values of θ±0 for various ratios x as functions of log βL

2 , with θ+
0 ≤ 0 and θ−0 ≥ 0.

The signs are as expected from the behaviours of the effective velocities seen in figure 9. The same

symbols are employed for θ±0 and each given x.
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A Temperature dependence of θ±
0

In this section we present some results for the values of θ±0 , that is the discontinuity of the

occupation numbers n(θ;±) in the non-equilibrium steady state. We observe the following

main features:

• Temperature Dependence: as already observed for other quantities, we see how

the value θ+
0 is almost entirely determined by the value of βL whereas θ−0 is very

sensitive to changes in βR.

• Free Fermion Regime: since σ = 20 for log
βL,R

2 > −10 the temperatures are too

low for the unstable particle to be present and we find θ±0 = 0, that is the free fermion

result.

• Unstable Particle Onset: a marked change in behaviour is observed at log
βL,R

2 =

−10 with the onset of a plateau. For log
βL,R

2 < −10 we find θ+
0 = −θ−0 ≈ −10. This

value −10 is again related to the value of σ. Although the resulting functions seem

almost discontinuous (i.e step-functions) we have no reason to think that this is the

case.

• Zeroes of the Effective Velocities: we observed in subsection 4.2 that for some

values of βL, βR the effective velocities develop an intermediate plateau of height zero.
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Thus they appear to have a continuous set of zeroes, corresponding to a continuous

set of values of θ±0 . This is a very unusual phenomenon, as far as we know, not seen

previously. The shape of the functions θ±0 shows us that this occurs precisely when

log βL
2 ≈ −10 for particle + and when log βR

2 ≈ −10 for particle − that is, at the onset

of the unstable particle. As mentioned in the previous point, our understanding is

that the values of θ±0 are always unique but that for some small range of temperatures

our algorithm is not accurate enough to precisely identify these values. In other

words, the intermediate plateau of the effective velocities is never exactly flat, but

for temperatures log
βL,R

2 ≈ −10 its slope is too small to be seen numerically.

B Numerical recipe

In this appendix we discuss briefly some details of the Mathematica programme we have

used to generate all the numerical results presented in this paper. As usual in the TBA

context, the TBA/GHD equations are solved numerically starting with a discretization of

the variable θ within a finite interval. For this we exploit a well-known property of all

relevant TBA functions namely, that they double-exponentially fall off for rapidities larger

than log 2/β or smaller than log β/2 (and similarly in the out-of-equilibrium situation). In

our numerics we have chosen a slightly larger interval [log β/2− σ/4 , log 2/β + σ/4] which

grows with temperature. In the out-of-equilibrium regime we choose β to be the inverse of

the highest temperature.

We have kept the number M of discrete equidistant rapidity values fixed. It is clear

that the larger M is, the better the approximation to the continuum. However, a very

large M increases drastically the running time of the programme. In all our numerical

analysis we have set M = 200. This value has been chosen in such a way as to ensure that

a number of benchmark results are reproduced. For instance, we reproduce the expected

pattern of the c-function at equilibrium (see figure 1) as well as the known free Majorana

fermion results in the relevant temperature range, both at and out of equilibrium.

We have focussed on studying the temperature-dependence of the TBA quantities

described in section 2 exactly in the middle of the light-cone (so, for ray x/t = 0). For

simplicity, we have set the parameters of the theory as m = 1 and σ = 20. We can

summarise the algorithm we have implemented as follows:

(a) For fixed values of βL,R solve (2.7) for the left and right steady states and compute

nR(θ;±) and nL(θ;±) using (2.11).

(b) Solve (2.10) for hi(θ;±) = p(θ;±) recursively. Start by setting θ±0 in (2.18) to some

trial value (say 0). Solve recursively for pdr(θ;±) until convergence is achieved.

(c) Once a solution for pdr(θ;±) has been obtained, find the solution to pdr(θ;±) = 0.

This will give a new value of θ±0 .

(d) Repeat (b) and (c) with this new value of θ±0 and again as many times as necessary

until a stable value of θ±0 is reached.
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(e) Employ the solution (2.18) to evaluate any dressed quantity of interest hdr(θ;±).

(f) Evaluate (2.12) and (2.13).

(g) Repeat for a different right- and left-temperatures.

In (c) and (e) the convergence of the dressing operation is ensured by the condition that

the difference of the outcome given by the last iteration and the preceding one is smaller

than the module of a certain number α. In all of the cases, α has been chosen to be no

larger than 10−4 generally ensuring very high precision. Similar arguments hold for the

convergence of (a) and (d).
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