Constraints on the χ_{c1} versus χ_{c2} Polarizations in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV

A. M. Sirunyan *et al.*^{*} (CMS Collaboration)

(Received 16 December 2019; revised manuscript received 25 January 2020; accepted 26 March 2020; published 24 April 2020)

The polarizations of promptly produced χ_{c1} and χ_{c2} mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at $\sqrt{s} = 8$ TeV. The χ_c states are reconstructed via their radiative decays $\chi_c \rightarrow J/\psi\gamma$, with the photons being measured through conversions to e^+e^- , which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_{c2} to χ_{c1} yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the $J/\psi \rightarrow \mu^+\mu^-$ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.

DOI: 10.1103/PhysRevLett.124.162002

Ouarkonium production is a benchmark for understanding how quarks combine into hadrons. The heaviness of c and b quarks makes it possible to describe the process in nonrelativistic quantum chromodynamics (NRQCD) [1-8], a framework valid when the quark velocities are small. This theory successfully described quarkonium cross sections measured [9] at high transverse momentum, p_T , by complementing the earlier color-singlet model [10,11] with a superposition of several processes where the bound state originates from colored $Q\bar{Q}$ pairs. In contrast to this complex model, the J/ψ , $\psi(2S)$, $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ differential cross sections measured at central rapidity by ATLAS [12,13] and CMS [14-16] have indistinguishable shapes as a function of p_T/M , where M is the meson mass [17,18]. This universal momentum scaling pattern is also followed by the χ_{c1} and χ_{c2} states [19,20]. The corresponding polarization measurements [21,22] show that the five S-wave states are well compatible with being produced unpolarized, in contrast to the significant polarizations seen for the W and Z [23-30], Drell-Yan dileptons [31-36], and low- p_T quarkonia [37,38]. The lack of polarization of high- p_T vector quarkonia was a long-standing challenge for NRQCD [39], until recent global-fit analyses [4,40,41] showed that cross sections and polarizations can be consistently described, unveiling a delicate compensation between terms in the factorization expansion [42]. Among the measurements mentioned above, one piece is clearly missing: the χ_{c1} and χ_{c2} polarizations. Contrary to what happens for the vector states, predicting the χ_{c1} and χ_{c2} polarizations is rather simple within NRQCD, where they are unequivocally determined by a single color-octet parameter, which can be extracted from the χ_{c2} to χ_{c1} cross section ratio. The analysis of the measured ratios [19,20] provides a clear result: the polarizations of the two states should be opposite and almost maximal [43] (a result also reached in a parameter-free singlet-only model [44]). Finding that these *P*-wave states have similar polarizations, as in the cross sections) would be a challenge to NRQCD, where the two (necessarily different) singlet terms play a leading role.

This Letter reports the first measurement of the polarizations of promptly produced χ_{c1} and χ_{c2} mesons, using proton-proton (pp) data collected at the LHC by the CMS experiment at a center-of-mass energy of $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 19.1 fb⁻¹. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A detailed description of the CMS detector, together with a definition of the coordinate system used and relevant kinematic variables, can be found in Ref. [45].

The event sample was collected with a two-level trigger system [46]. At level-1, custom hardware processors select

^{*}Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP³.

events with two muons. The high-level trigger requires an opposite-sign muon pair of invariant mass 2.8-3.35 GeV, a dimuon vertex fit χ^2 probability larger than 0.5%, and a distance of closest approach between the two muons smaller than 0.5 cm. The trigger also requires that the dimuon has $p_T > 7.9$ GeV and rapidity |y| < 1.25. The off-line reconstruction requires two oppositely charged muons matching those that triggered the detector readout. The muon tracks must pass high-purity track quality requirements [47], have $p_T > 3.5$ GeV, $|\eta| < 1.6$, and fulfill the soft muon identification requirements [48], which imply, in particular, more than five hits in the silicon tracker, of which at least one is in the pixel layers. The muons are combined to form J/ψ candidates, which are kept for further processing if |y| < 1.2 and $8 < p_T < 30$ GeV. Promptly produced J/ψ mesons are selected by requiring the distance between the dimuon vertex and the interaction point be smaller than 2.5 times its uncertainty.

The analysis uses $\chi_c \rightarrow J/\psi\gamma$ decays, with the J/ψ decaying to a dimuon. The photons are detected through their conversions to e^+e^- in the beam pipe and in the material of the silicon tracker, starting from two oppositely charged tracks, of which one has at least four tracker hits and the other at least three. The tracks must have a conversion vertex at least 1.5 cm away from the beam axis and a χ^2 probability of the kinematic fit imposing zero mass and a common vertex that exceeds 0.05%. A more detailed account of the reconstruction and selection procedures is given in Refs. [20,49]. The photons must have $p_T > 0.4$ GeV and $|\eta| < 1.5$. If the distance along the beam axis between the dimuon vertex and the extrapolated photon trajectory is smaller than 5 mm, a χ_c candidate is formed through a kinematic fit of the dimuon-photon system, constraining the dimuon mass to the J/ψ mass [50], the dielectron mass to zero, and requiring that the two muons and the photon have a common vertex. Only χ_c candidates with a fit χ^2 probability larger than 1% and invariant mass between 3.2 and 3.75 GeV are kept in the evaluation of the χ_{c1} and χ_{c2} yields. After all selection criteria, around 103 000, 106 000, and 45 000 χ_c candidates are kept in the $J/\psi p_T$ bins 8–12, 12–18, and 18–30 GeV, respectively.

The seemingly natural way to measure the χ_{c1} and χ_{c2} polarizations is to determine the angular distribution of the considered χ_c decay; in the present case, this means the distribution of the photon direction in the χ_c rest frame. However, that distribution depends not only on the χ_c angular momentum composition, but also, and possibly in a very significant way, on the (poorly known) contributions of photons with large orbital angular momentum ($J^{\gamma} > 1$). A cleaner determination of the χ_c polarization is obtained by measuring the dimuon angular decay distribution in the rest frame of the daughter J/ψ [51]. It is crucial to choose as polarization axis for the J/ψ decay not the J/ψ direction in the χ_c rest frame, as usually done in cascade decays, but rather any axis (center-of-mass helicity or Collins-Soper [52], for instance) defined in terms of the beam momenta in the J/ψ rest frame and ignoring its origin, as if it were observed inclusively. With the latter choice, the shape of the dimuon distribution represents an exact "clone" of the photon distribution in the χ_c rest frame, as it would be if it were undressed of its higher-order multipole contributions. This method provides, therefore, a full sensitivity to the angular momentum state of the χ_c , resulting in a (theoretically and experimentally) cleaner polarization measurement. The present analysis is performed in the center-of-mass helicity frame [53] and does not use the measured photon momentum, except to select, through the $J/\psi\gamma$ invariant mass distribution, the J/ψ mesons resulting from χ_{c1} or χ_{c2} decays. The dimuon angular decay distribution is parametrized with the function $1 + \lambda_{\vartheta} \cos^2 \vartheta + \lambda_{\varphi} \sin^2 \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi, \text{ where }$ ϑ and φ are the polar and azimuthal coordinates of the positive muon direction in the J/ψ rest frame, the system of axes being defined with z in the direction of the polarization axis and y perpendicular to the production plane. The χ_c angular momentum composition is encoded in the shape parameters λ_{ϑ} , λ_{φ} , and $\lambda_{\vartheta\varphi}$, whose values depend on the choice of polarization frame but must always be within certain physical domains [51], narrower than the parameter space of inclusive vector-particle production [54,55]. The relation between the shape parameters and the polarization configuration depends on the quarkonium state. For example, $\lambda_{\vartheta} = +1$ indicates $J_z = \pm 1$ for the J/ψ , $J_z = 0$ for the χ_{c1} , and $J_z = +2$ for the χ_{c2} ; conversely, states in the $J_z = 0$ angular momentum configuration lead to $\lambda_{\vartheta} = -1$ for the J/ψ , $\lambda_{\vartheta} = +1$ for the χ_{c1} , and $\lambda_{\vartheta} = -0.6$ for the χ_{c2} .

The measurement of the λ parameters implies knowing the shapes of the χ_{c1} and χ_{c2} differential cross sections as functions of $|\cos \vartheta|$ and φ , which crucially depend on the accuracy of the corrections of the muon and photon detection efficiencies. These efficiencies change by an order of magnitude in the low p_T bin covered by the present analysis and shape variations within their uncertainties lead to very different λ_{ϑ} values. Increasing the muon p_T threshold to avoid the turn-on region of the efficiency function would imply a strong reduction in the number of selected events and a smaller coverage of the $|\cos\vartheta|$ variable, effectively preventing the evaluation of λ_{ϑ} . Instead, the difference between the χ_{c1} and χ_{c2} polarizations, measured from the angular dependence of the χ_{c2}/χ_{c1} yield ratio, is essentially insensitive to the detection efficiencies, given that they cancel to a large extent in that ratio.

The $|\cos \vartheta|$ and φ dependences of the yield ratio are independently determined in three $J/\psi p_T$ bins: 8–12, 12–18, and 18–30 GeV. For the study of possible azimuthal dependences of the χ_{c2}/χ_{c1} yield ratio, the events are split into subsamples corresponding to six equidistant φ bins between 0 and 90°. Folding φ into the first quadrant reduces the effect of the statistical fluctuations without any loss of information, given the fourfold φ symmetry that the angular distributions obey. For each p_T bin, the six $J/\psi\gamma$ invariant mass distributions are simultaneously fitted with an unbinned maximum likelihood fit. In the mass fit model, identical for all φ bins, each of the χ_{c1} and χ_{c2} signal peaks is represented by a double-sided crystal ball (CB) function [56], which complements a Gaussian core distribution with lower and upper power-law tails. The underlying combinatorial background, reflecting uncorrelated $J/\psi\gamma$ associations, is parametrized by an exponential function multiplied by a term that provides a low-mass turn-down, $\{1 + \operatorname{erf}[(m - \mu^{\mathrm{bg}})/\sigma^{\mathrm{bg}}]\}\exp(-m/\lambda^{\mathrm{bg}})$, where *m* is the $J/\psi\gamma$ invariant mass and μ^{bg} , σ^{bg} , and λ^{bg} are shape parameters. Although the results of this analysis are insensitive to the presence of a small peak reflecting the χ_{c0} decays, the fit model includes this background term, represented by a Breit-Wigner convolved with a Gaussian resolution function. To minimize fit instabilities, the χ_{c0} shape and yield parameters are determined from the corresponding parameters of the χ_{c1} term. The simultaneous fit has the advantage of reducing by a factor of 6 the number of free parameters defining the shapes of the signal and background mass models, by requiring that those parameters are independent of φ , an assumption validated by studies of simulated and measured event samples.

To study the polar angle dependence of the χ_{c2}/χ_{c1} yield ratio, 6, 7, or 5 | cos ϑ | bins are considered, depending on the p_T bin. The | cos ϑ | coverage is smaller in the lowest p_T bin (up to 0.45 instead of up to 0.625) because those events are the ones most affected by the single-muon p_T cut. Analogously to the procedure just described for the φ dimension, the χ_{c2}/χ_{c1} yield ratios are obtained as a function of | cos ϑ | through a simultaneous fit of the $J/\psi\gamma$ invariant mass distributions. In this case, however, some of the shape parameters are not required to be independent of | cos ϑ |. More details can be found in Ref. [57].

Figure 1 shows one of the simultaneously fitted $J/\psi\gamma$ invariant mass distributions. The two signal peaks are well resolved, with widths around 6 MeV, consistent with the predictions from simulation. All of the fitted χ_c mass distributions show good fit qualities, as judged from the χ^2 between the binned distributions and the fitted functions, the worst case giving $\chi^2 = 601$ for 569 degrees of freedom (ndf).

For each bin in $J/\psi p_T$ and $|\cos \vartheta|$, or φ , the fitted $J/\psi \gamma$ invariant mass distributions provide functions reflecting the probability that an event of mass *m* is a χ_{c1} or a χ_{c2} . The χ_{c1} and χ_{c2} yields, corrected for acceptance and efficiencies, are then computed as the sums, over all events in that bin of J/ψ p_T and $|\cos \vartheta|$, or φ , of the product between the corresponding probabilities and the weights $1/\mathcal{A}_J(|\cos \vartheta|, \varphi, p_T)$, where $\mathcal{A}_J(|\cos \vartheta|, \varphi, p_T)$ are the acceptance times efficiency three-dimensional maps, independently evaluated

FIG. 1. Example of a fitted $J/\psi\gamma$ invariant mass distribution, for the 0.15 < $|\cos \vartheta|$ < 0.225 bin, in the 12–18 GeV p_T bin. The vertical bars on the points indicate the statistical uncertainties. The lines show the various fit contributions.

for each χ_{cJ} state with large samples of simulated events. By correcting the detector acceptance and efficiency effects on an event-by-event basis, with weights depending on three dimuon observables ($|\cos \vartheta|$, φ , and p_T), this procedure is immune to integration biases affecting certain onedimensional analyses [58]. Simulation studies have shown that, if the three-dimensional correction maps are sufficiently fine-grained, the results do not depend on the polarization scenario nor on the p_T distributions assumed in the simulation, and that all physically allowed differences between the χ_{c1} and χ_{c2} polarizations, in any frame, can be reliably determined from the dependences of the χ_{c2}/χ_{c1} yield ratios on $|\cos \vartheta|$ and φ .

The corrected ratios are reported in Tables I and II of the Supplemental Material [59], and shown in Fig. 2, where it can be seen that the uncorrected and corrected values are almost identical, apart from normalization factors irrelevant for the determination of the polar and azimuthal anisotropies.

Several sources of potential systematic effects have been considered, by redoing the analysis with different inputs and comparing the obtained results with the nominal ones. The results are insensitive to variations of the thresholds used to reject the nonprompt contamination from b hadron decays, estimated to be around 5%, or events with a poor kinematic vertex fit quality in the reconstruction of the χ_c candidates. The fits of the mass distributions were redone using alternative options for the low- and high-mass tails of the double-sided CB functions, and by varying the combinatorial background description, both by changing the floating parameters of the nominal function and by using the alternative function $(x - x_0)^{\lambda} \exp \left[\nu(x - x_0)\right]$, where ν is left free, λ is fitted to a constant, and $x_0 = 3.2$ GeV, a value determined in fits to the background-only mass distributions obtained by excluding the 3.37-3.6 GeV region. The sensitivity of the results to the acceptance and efficiency corrections was evaluated by redoing the analysis with maps computed with alternative single-muon and photon detection efficiencies, as well as with simulated samples

FIG. 2. The χ_{c2}/χ_{c1} yield ratio vs φ (left) and $|\cos \vartheta|$ (right), for the three $J/\psi p_T$ bins. The gray markers (slightly shifted horizontally) show the values before acceptance and efficiency corrections, scaled vertically for an easier shape comparison. The vertical bars represent the statistical uncertainties and the horizontal bars the bin widths. The solid and dashed curves show, respectively, the NRQCD [43] and unpolarized scenarios. The dotted and dash-dotted curves illustrate maximally different natural polarizations in the Collins-Soper frame, leading to large differences in azimuthal anisotropy.

generated with different p_T/M shapes for each of the two χ_c states. All effects lead to similar variations in the yields of the two states and cancel, to a large extent, in the χ_{c2}/χ_{c1} ratio, apart from a normalization shift that has no impact on the angular anisotropies. The total systematic uncertainties are less than 20% of the statistical ones.

The χ_{c2} to χ_{c1} yield ratios as a function of φ , shown in Fig. 2 (left), are compatible with being flat, excluding large differences in azimuthal anisotropy, as exemplified by the two curves compared to the data points in the second p_T bin. These curves represent the simplest conceivable polarization hypotheses leading to large azimuthal effects in the helicity frame: χ_{c1} and χ_{c2} have maximally different polar anisotropies in the Collins-Soper frame, corresponding to specific alignments of their angular momentum vectors along the collision direction $(J_z^{\chi_{c1}} = J_z^{\chi_{c2}} = 0$ and $J_{7}^{\chi_{c1}} = \pm 1, J_{7}^{\chi_{c2}} = \pm 2$, for the dotted and dash-dotted curve, respectively). In fact, the change from the Collins-Soper to the helicity quantization axis is almost a 90° rotation, transforming polarized distributions into azimuthally anisotropic ones. This uniform φ behavior confirms the choice of the helicity axis as the one that should reflect most closely the natural alignment of the angular momentum vector, maximizing the polar anisotropy effects.

In Fig. 2 (right) the measured $|\cos \vartheta|$ dependence of the χ_{c2}/χ_{c1} ratio is compared to the analytic expression $(1 + \lambda_{\vartheta}^{\chi_{c2}} \cos^2 \vartheta)/(1 + \lambda_{\vartheta}^{\chi_{c1}} \cos^2 \vartheta)$. Two scenarios are considered. The unpolarized scenario, $\lambda_{\vartheta}^{\chi_{c1}} = \lambda_{\vartheta}^{\chi_{c2}} = 0$ independently of p_T , represented in Fig. 2 (right) by the dashed flat lines, gives a poor description of the data. A fit with free

FIG. 3. Two-dimensional $\lambda_{\partial}^{\chi_{c^2}}$ vs $\lambda_{\partial}^{\chi_{c1}}$ contours, at 68.3%, 95.5%, and 99.7% confidence levels (C.L.), measured combining the three $J/\psi p_T$ bins. The physically allowed region (red rectangle) and six pure angular momentum configurations (markers) are also shown. The crossing of the two dashed lines represents the unpolarized case.

normalizations leads to $\chi^2/\text{ndf} = 31/15$, corresponding to a χ^2 probability of 0.9%. The NRQCD scenario [43], where $\lambda_{\vartheta}^{\chi_{c1}} = 0.72$, 0.65, and 0.56, and $\lambda_{\vartheta}^{\chi_{c2}} = -0.48$, -0.35, and -0.19, for the average p_T values in each of the three bins, agrees well with the data: $\chi^2/\text{ndf} = 13/15$, corresponding to $P(\chi^2) = 58\%$.

Figure 3 shows the polar anisotropy parameters $\lambda_{g}^{\chi_{c1}}$ and $\lambda_{g}^{\chi_{c2}}$ derived from the measured $|\cos \vartheta|$ dependence of the χ_{c2}/χ_{c1} ratio, combining the three p_T bins. The contours in the $\lambda_{g}^{\chi_{c1}}$ vs $\lambda_{g}^{\chi_{c2}}$ plane are obtained by scanning the two λ_{g} parameters and the three normalizations to evaluate the χ^2 profiles corresponding to the 68.3, 95.5, and 99.7% confidence levels. The unpolarized scenario ($\lambda_{g}^{\chi_{c1}} = \lambda_{g}^{\chi_{c2}} = 0$), as well as more than half of the physically allowed region, including all cases where $\lambda_{g}^{\chi_{c2}} \ge \lambda_{g}^{\chi_{c1}}$, are outside the 99.7% contour. In terms of specific pure angular momentum configurations, it can be seen that, in particular, the cases $J_{z}^{\chi_{c2}} = \pm 2$ and $J_{z}^{\chi_{c1}} = J_{z}^{\chi_{c2}} = \pm 1$ are strongly disfavored.

The correlation between the $\lambda_{g}^{\chi_{c1}}$ and $\lambda_{g}^{\chi_{c2}}$ parameters can be accurately expressed through a simple parametrization: $\lambda_{g}^{\chi_{c2}} = (-0.94 + 0.90\lambda_{g}^{\chi_{c1}}) \pm (0.51 + 0.05\lambda_{g}^{\chi_{c1}}), \quad (-0.76 + 0.80\lambda_{g}^{\chi_{c1}}) \pm (0.26 + 0.05\lambda_{g}^{\chi_{c1}}), \text{ and } (-0.78 + 0.77\lambda_{g}^{\chi_{c1}}) \pm (0.26 + 0.06\lambda_{g}^{\chi_{c1}}), \text{ for the three consecutive } p_{T} \text{ bins.}$ These expressions can be used for direct comparisons to theoretical scenarios.

Figure 4 shows, as a function of p_T/M of the J/ψ (equal on average to the p_T/M of the χ_{c1} and χ_{c2} mothers [17]), the $\lambda_{\vartheta}^{\chi_{c2}}$ values measured when $\lambda_{\vartheta}^{\chi_{c1}}$ is fixed to the predictions of the two scenarios already considered in Fig. 2. Setting $\lambda_{\vartheta}^{\chi_{c1}} = 0$ leads to $\lambda_{\vartheta}^{\chi_{c2}}$ values that are significantly different from zero. The NRQCD prediction is, instead, in good agreement with the measurement.

FIG. 4. The $\lambda_{\vartheta}^{\chi_{c2}}$ values (circles) measured when the $\lambda_{\vartheta}^{\chi_{c1}}$ values (squares) are fixed to the unpolarized (left) or the NRQCD (right) scenarios (green curves), as a function of p_T/M of the J/ψ . The purple band on the right is the NRQCD prediction for $\lambda_{\vartheta}^{\chi_{c2}}$ [43], while in the unpolarized scenario $\lambda_{\vartheta}^{\chi_{c2}} = \lambda_{\vartheta}^{\chi_{c1}} = 0$. The markers are shown at the average p_T/M values in each bin, the vertical bars represent the total uncertainties, and the horizontal bars the bin widths. The dashed lines indicate the physically allowed range of $\lambda_{\vartheta}^{\chi_{c2}}$.

In summary, first experimental constraints on the polarizations of promptly produced χ_{c1} and χ_{c2} mesons have been obtained, using pp collisions at $\sqrt{s} = 8$ TeV. The analysis uses the $J/\psi\gamma$ decay channel in three $J/\psi p_T$ bins between 8 and 30 GeV. The measurement, made in the helicity frame, shows a significant difference between the polar anisotropy parameters $\chi_{g}^{\chi_{c1}}$ and $\chi_{g}^{\chi_{c2}}$, in agreement with the NRQCD prediction. This result is a new step in the experimental studies of quarkonium production and the first significant indication of kinematic differences between the various quarkonia.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

- G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51, 1125 (1995); Erratum, Phys. Rev. D 55, 5853 (1997).
- [2] M. Butenschoen and B. A. Kniehl, J/ψ polarization at Tevatron and LHC: Nonrelativistic-QCD Factorization at the Crossroads, Phys. Rev. Lett. **108**, 172002 (2012).
- [3] M. Butenschoen and B. A. Kniehl, Next-to-leading-order tests of NRQCD factorization with J/ψ yield and polarization, Mod. Phys. Lett. A **28**, 1350027 (2013).
- [4] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang, and Y.-J. Zhang, J/ψ Polarization at Hadron Colliders in Nonrelativistic QCD, Phys. Rev. Lett. 108, 242004 (2012).
- [5] B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, Polarization for Prompt J/ψ and $\psi(2S)$ Production at the Tevatron and LHC, Phys. Rev. Lett. **110**, 042002 (2013).
- [6] H.-S. Shao, Y.-Q. Ma, K. Wang, and K.-T. Chao, Polarizations of χ_{c1} and χ_{c2} in Prompt Production at the LHC, Phys. Rev. Lett. **112**, 182003 (2014).
- [7] H.-S. Shao and K.-T. Chao, Spin correlations in polarizations of P-wave charmonia χ_{cJ} and impact on J/ψ polarization, Phys. Rev. D **90**, 014002 (2014).
- [8] G. T. Bodwin, K.-T. Chao, H. S. Chung, U. Rae Kim, J. Lee, and Y.-Q. Ma, Fragmentation contributions to hadroproduction of prompt J/ψ , χ_{cJ} , and $\psi(2S)$ states, Phys. Rev. D **93**, 034041 (2016).
- [9] F. Abe *et al.* (CDF Collaboration), J/ψ and $\psi(2S)$ Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. Lett. **79**, 572 (1997).
- [10] R. Baier and R. Ruckl, Hadronic production of J/ψ and Υ : Transverse momentum distributions, Phys. Lett. **102B**, 364 (1981).
- [11] J.-P. Lansberg, On the mechanisms of heavy-quarkonium hadroproduction, Eur. Phys. J. C 61, 693 (2009).
- [12] ATLAS Collaboration, Measurement of the production cross-section of $\psi' \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ in *pp* collisions at $\sqrt{s} = 7$ TeV at ATLAS, J. High Energy Phys. 09 (2014) 079.
- [13] ATLAS Collaboration, Measurement of Υ production in 7 TeV *pp* collisions at ATLAS, Phys. Rev. D 87, 052004 (2013).
- [14] CMS Collaboration, Measurement of J/ψ and ψ' Prompt Double-Differential Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV, Phys. Rev. Lett. **114**, 191802 (2015).
- [15] CMS Collaboration, Measurements of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ differential cross sections in *pp* collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. B **749**, 14 (2015).

- [16] CMS Collaboration, Measurement of quarkonium production cross sections in pp collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B **780**, 251 (2018).
- [17] P. Faccioli, C. Lourenço, M. Araújo, V. Knünz, I. Krätschmer, and J. Seixas, Quarkonium production at the LHC: A data-driven analysis of remarkably simple experimental patterns, Phys. Lett. B **773**, 476 (2017).
- [18] P. Faccioli, C. Lourenço, M. Araújo, and J. Seixas, Universal kinematic scaling as a probe of factorized longdistance effects in high-energy quarkonium production, Eur. Phys. J. C 78, 118 (2018).
- [19] ATLAS Collaboration, Measurement of χ_{c1} and χ_{c2} production with $\sqrt{s} = 7$ TeV *pp* collisions at ATLAS, J. High Energy Phys. 07 (2014) 154.
- [20] CMS Collaboration, Measurement of the relative prompt production rate of χ_{c2} and χ_{c1} in *pp* collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C **72**, 2251 (2012).
- [21] CMS Collaboration, Measurement of the prompt J/ψ and ψ' polarizations in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. B **727**, 381 (2013).
- [22] CMS Collaboration, Measurement of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ Polarizations in *pp* Collisions at $\sqrt{s} = 7$ TeV, Phys. Rev. Lett. **110**, 081802 (2013).
- [23] E. Mirkes and J. Ohnemus, W and Z polarization effects in hadronic collisions, Phys. Rev. D 50, 5692 (1994).
- [24] T. Aaltonen *et al.* (CDF Collaboration), First Measurement of the Angular Coefficients of Drell–Yan e^+e^- Pairs in the Z Mass Region from $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. **106**, 241801 (2011).
- [25] CMS Collaboration, Angular coefficients of Z bosons produced in pp collisions at $\sqrt{s} = 8$ TeV and decaying to $\mu^+\mu^-$ as a function of transverse momentum and rapidity, Phys. Lett. B **750**, 154 (2015).
- [26] B. Abbott *et al.* (D0 Collaboration), Measurement of the angular distribution of electrons from $W \rightarrow e\nu$ decays observed in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. D **63**, 072001 (2001).
- [27] D. Acosta *et al.* (CDF Collaboration), Measurement of the polar-angle distribution of leptons from W boson decay as a function of the W transverse momentum in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. D **70**, 032004 (2004).
- [28] D. Acosta *et al.* (CDF Collaboration), Measurement of the azimuthal angle distribution of leptons from W boson decays as a function of the W transverse momentum in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, Phys. Rev. D **73**, 052002 (2006).
- [29] CMS Collaboration, Measurement of the Polarization of W Bosons with Large Transverse Momenta in W + Jets Events at the LHC, Phys. Rev. Lett. **107**, 021802 (2011).
- [30] ATLAS Collaboration, Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment, Eur. Phys. J. C 72, 2001 (2012).
- [31] C. S. Lam and W.-K. Tung, A systematic approach to inclusive lepton pair production in hadronic collisions, Phys. Rev. D 18, 2447 (1978).
- [32] P. Faccioli, C. Lourenço, and J. Seixas, Rotation-Invariant Relations in Vector Meson Decays into Fermion Pairs, Phys. Rev. Lett. **105**, 061601 (2010).

- [33] M. Guanziroli *et al.* (NA10 Collaboration), Angular distributions of muon pairs produced by negative pions on deuterium and tungsten, Z. Phys. C 37, 545 (1988).
- [34] J. S. Conway *et al.*, Experimental study of muon pairs produced by 252 GeV pions on tungsten, Phys. Rev. D 39, 92 (1989).
- [35] L. Y. Zhu *et al.* (NuSea Collaboration), Measurement of Angular Distributions of Drell–Yan Dimuons in p + d Interactions at 800 GeV/c, Phys. Rev. Lett. **99**, 082301 (2007).
- [36] L. Y. Zhu *et al.* (NuSea Collaboration), Measurement of Angular Distributions of Drell–Yan Dimuons in p + p Interactions at 800 GeV/c, Phys. Rev. Lett. **102**, 182001 (2009).
- [37] I. Abt *et al.* (HERA-B Collaboration), Angular distributions of leptons from J/ψ 's produced in 920 GeV fixed-target proton-nucleus collisions, Eur. Phys. J. C **60**, 517 (2009).
- [38] C. N. Brown *et al.* (NuSea Collaboration), Observation of Polarization in Bottomonium Production at $\sqrt{s} = 38.8 \text{ GeV}$, Phys. Rev. Lett. **86**, 2529 (2001).
- [39] N. Brambilla *et al.*, Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C **71**, 1534 (2011).
- [40] P. Faccioli, V. Knünz, C. Lourenço, J. Seixas, and H. Wöhri, Quarkonium production in the LHC era: A polarized perspective, Phys. Lett. B 736, 98 (2014).
- [41] G. T. Bodwin, H. S. Chung, U. Rae Kim, and J. Lee, Fragmentation Contributions to J/ψ Production at the Tevatron and the LHC, Phys. Rev. Lett. **113**, 022001 (2014).
- [42] P. Faccioli and C. Lourenço, NRQCD colour-octet expansion vs. LHC quarkonium production: Signs of a hierarchy puzzle?, Eur. Phys. J. C 79, 457 (2019).
- [43] P. Faccioli, C. Lourenço, M. Araújo, J. Seixas, I. Krätschmer, and V. Knünz, From identical S- and P-wave p_T spectra to maximally distinct polarizations: Probing NRQCD with χ states, Eur. Phys. J. C **78**, 268 (2018).
- [44] S. P. Baranov, Polarization observables in Dalitz decays $\chi_{cJ} \rightarrow J/\psi \mu^+ \mu^-$ at the LHC, Acta Phys. Pol. B Proc. Suppl. **12**, 843 (2019).
- [45] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).
- [46] CMS Collaboration, The CMS trigger system, J. Instrum.12, P01020 (2017).
- [47] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014).
- [48] CMS Collaboration, Performance of CMS muon reconstruction in *pp* collision events at $\sqrt{s} = 7$ TeV, J. Instrum. **7**, P10002 (2012).
- [49] CMS Collaboration, Measurement of the production cross section ratio $\sigma(\chi_{b2}(1P))/\sigma(\chi_{b1}(1P))$ in *pp* collisions at $\sqrt{s} = 8$ TeV, Phys. Lett. B **743**, 383 (2015).
- [50] M. Tanabashi *et al.* (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018).
- [51] P. Faccioli, C. Lourenço, J. Seixas, and H. K. Wöhri, Determination of χ_c and χ_b polarizations from dilepton angular distributions in radiative decays, Phys. Rev. D 83, 096001 (2011).
- [52] J.C. Collins and D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev. D 16, 2219 (1977).
- [53] P. Faccioli, C. Lourenço, J. Seixas, and H. Wöhri, Towards the experimental clarification of quarkonium polarization, Eur. Phys. J. C 69, 657 (2010).

- [54] P. Faccioli, C. Lourenço, and J. Seixas, New approach to quarkonium polarization studies, Phys. Rev. D 81, 111502(R) (2010).
- [55] P. Faccioli, C. Lourenço, J. Seixas, and H. K. Wöhri, Modelindependent constraints on the shape parameters of dilepton angular distributions, Phys. Rev. D 83, 056008 (2011).
- [56] M. J. Oreglia, A study of the reactions $\psi' \rightarrow \gamma \gamma \psi$, Ph.D. Thesis, Stanford University, 1980, http://www.slac.stanford .edu/pubs/slacreports/slac-r-236.html.
- [57] T. Madlener, Measurement of the prompt χ_{c1} and χ_{c2} polarizations at CMS, Ph.D. thesis, Technische Universität Wien, 2020, https://cds.cern.ch/record/2710438.
- [58] P. Faccioli, Questions and prospects in quarkonium polarization measurements from proton-proton to nucleusnucleus collisions, Mod. Phys. Lett. A 27, 1230022 (2012).
- [59] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevLett.124.162002 for the tabulated results.

A. M. Sirunyan,^{1,a} A. Tumasyan,¹ W. Adam,² F. Ambrogi,² T. Bergauer,² M. Dragicevic,² J. Erö,² A. Escalante Del Valle,² M. Flechl,² R. Frühwirth,^{2,b} M. Jeitler,^{2,b} N. Krammer,² I. Krätschmer,² D. Liko,² T. Madlener,² I. Mikulec,² N. Rad,² J. Schieck,^{2,b} R. Schöfbeck,² M. Spanring,² W. Waltenberger,² C.-E. Wulz,^{2,b} M. Zarucki,² V. Drugakov,³ V. Mossolov,³ J. Suarez Gonzalez,³ M. R. Darwish,⁴ E. A. De Wolf,⁴ D. Di Croce,⁴ X. Janssen,⁴ T. Kello,^{4,c} A. Lelek,⁴ M. Pieters,⁴ H. Rejeb Sfar,⁴ H. Van Haevermaet,⁴ P. Van Mechelen,⁴ S. Van Putte,⁴ N. Van Remortel,⁴ F. Blekman,⁵ E. S. Bols,⁵ S. S. Chhibra,⁵ J. D'Hondt,⁵ J. De Clercq,⁵ D. Lontkovskyi,⁵ S. Lowette,⁵ I. Marchesini,⁵ S. Moortgat,⁵ Q. Python,⁵ S. Tavernier,⁵ W. Van Doninck,⁵ P. Van Mulders,⁵ D. Beghin,⁶ B. Bilin,⁶ B. Clerbaux,⁶ G. De Lentdecker,⁶ H. Delannoy,⁶ B. Dorney,⁶ L. Favart,⁶ A. Grebenyuk,⁶ A. K. Kalsi,⁶ L. Moureaux,⁶ A. Popov,⁶ N. Postiau,⁶ E. Starling,⁶ L. Thomas,⁶ C. Vander Velde,⁶ P. Vanlaer,⁶ D. Vannerom,⁶ T. Cornelis,⁷ D. Dobur,⁷ I. Khvastunov,^{7,d} M. Niedziela,⁷ C. Roskas,⁷ K. Skovpen,⁷ M. Tytgat,⁷ W. Verbeke,⁷ B. Vermassen,⁷ M. Vit,⁷ G. Bruno,⁸ C. Caputo,⁸ P. David,⁸ C. Delaere,⁸ M. Delcourt,⁸ A. Giammanco,⁸ V. Lemaitre,⁸ J. Prisciandaro,⁸ A. Saggio,⁸ P. Vischia,⁸ J. Zobec,⁸ G. A. Alves,⁹ G. Correia Silva,⁹ C. Hensel,⁹ A. Moraes,⁹ E. Belchior Batista Das Chagas,¹⁰ W. Carvalho,¹⁰ J. Chinellato,^{10,e} E. Coelho,¹⁰ E. M. Da Costa,¹⁰ G. G. Da Silveira,^{10,f} D. De Jesus Damiao,¹⁰ C. De Oliveira Martins,¹⁰ S. Fonseca De Souza,¹⁰ H. Malbouisson,¹⁰ J. Martins,^{10,g} D. Matos Figueiredo,¹⁰ M. Medina Jaime,^{10,h} M. Melo De Almeida,¹⁰ C. Mora Herrera,¹⁰ L. Mundim,¹⁰ H. Nogima,¹⁰ W. L. Prado Da Silva,¹⁰ P. Rebello Teles,¹⁰ L. J. Sanchez Rosas,¹⁰ A. Santoro,¹⁰ A. Sznajder,¹⁰ M. Thiel,¹⁰ E. J. Tonelli Manganote,^{10,e} F. Torres Da Silva De Araujo,¹⁰ A. Vilela Pereira,¹⁰ C. A. Bernardes,^{11a} L. Calligaris,^{11a} T. R. Fernandez Perez Tomei,^{11a} E. M. Gregores,^{11a,11b} D. S. Lemos,^{11a} P. G. Mercadante,^{11a,11b} S. F. Novaes,^{11a} Sandra S. Padula,^{11a} A. Aleksandrov,¹² G. Antchev,¹² R. Hadjiiska,¹² P. Iaydjiev,¹² M. Misheva,¹² M. Rodozov,¹² M. Shopova,¹² G. Sultanov,¹² M. Bonchev,¹³ A. Dimitrov,¹³ T. Ivanov,¹³ L. Litov,¹³ B. Pavlov,¹³ P. Petkov,¹³ A. Petrov,¹³ W. Fang,^{14,c} X. Gao,^{14,c} L. Yuan,¹⁴ M. Ahmad,¹⁵ Z. Hu,¹⁵ Y. Wang,¹⁵ G. M. Chen,^{16,i} H. S. Chen,^{16,i} M. Chen,¹⁶ C. H. Jiang,¹⁶ D. Leggat,¹⁶ H. Liao,¹⁶ Z. Liu,¹⁶ A. Spiezia,¹⁶ J. Tao,¹⁶ E. Yazgan,¹⁶ H. Zhang,¹⁶ S. Zhang,¹⁶,¹ J. Zhao,¹⁶ A. Agapitos,¹⁷ Y. Ban,¹⁷ G. Chen,¹⁷ A. Levin,¹⁷ J. Li,¹⁷ L. Li,¹⁷ Q. Li,¹⁷ Y. Mao,¹⁷ S. J. Qian,¹⁷ D. Wang,¹⁷ Q. Wang,¹⁷ M. Xiao,¹⁸ C. Avila,¹⁹ A. Cabrera,¹⁹ C. Florez,¹⁹ C. F. González Hernández,¹⁹ M. A. Segura Delgado,¹⁹ J. Mejia Guisao,²⁰ J. D. Ruiz Alvarez,²⁰ C. A. Salazar González,²⁰ N. Vanegas Arbelaez,²⁰ D. Giljanović,²¹ N. Godinovic,²¹ D. Lelas,²¹ I. Puljak,²¹ T. Sculac,²¹ Z. Antunovic,²² M. Kovac,²² V. Brigljevic,²³ D. Ferencek,²³ K. Kadija,²³ D. Majumder,²³ B. Mesic,²³ M. Roguljic,²³ A. Starodumov,^{23,j} T. Susa,²³ M. W. Ather,²⁴ A. Attikis,²⁴ E. Erodotou,²⁴ A. Ioannou,²⁴ M. Kolosova,²⁴ S. Konstantinou,²⁴ G. Mavromanolakis,²⁴ J. Mousa,²⁴ C. Nicolaou,²⁴ F. Ptochos,²⁴ P. A. Razis,²⁴ H. Rykaczewski,²⁴ H. Saka,²⁴ D. Tsiakkouri,²⁴ M. Finger,^{25,k} M. Finger Jr.,^{25,k} A. Kveton,²⁵ J. Tomsa,²⁵ E. Ayala,²⁶ E. Carrera Jarrin,²⁷ Y. Assran,^{28,1,m} E. Salama,^{28,n,1} S. Bhowmik,²⁹ A. Carvalho Antunes De Oliveira,²⁹ R. K. Dewanjee,²⁹ K. Ehataht,²⁹ M. Kadastik,²⁹ M. Raidal,²⁹ C. Veelken,²⁹ P. Eerola,³⁰ L. Forthomme,³⁰ H. Kirschenmann,³⁰ K. Osterberg,³⁰ M. Voutilainen,³⁰ E. Brücken,³¹ F. Garcia,³¹ J. Havukainen,³¹ J. K. Heikkilä,³¹ V. Karimäki,³¹ M. S. Kim,³¹ R. Kinnunen,³¹ T. Lampén,³¹ K. Lassila-Perini,³¹ S. Laurila,³¹ S. Lehti,³¹ T. Lindén,³¹ H. Siikonen,³¹ E. Tuominen,³¹ J. Tuominiemi,³¹ P. Luukka,³² T. Tuuva,³² M. Besancon,³³ F. Couderc,³³ M. Dejardin,³³ D. Denegri,³³ B. Fabbro,³³ J. L. Faure,³³ F. Ferri,³³ S. Ganjour,³³ A. Givernaud,³³ P. Gras,³³ G. Hamel de Monchenault,³³ P. Jarry,³³ C. Leloup,³³ B. Lenzi,³³ E. Locci,³³ J. Malcles,³³ J. Rander,³³ A. Rosowsky,³³ M. Ö. Sahin,³³ A. Savoy-Navarro,^{33,0} M. Titov,³³ G. B. Yu,³³ S. Ahuja,³⁴ C. Amendola,³⁴ F. Beaudette,³⁴ M. Bonanomi,³⁴ P. Busson,³⁴ C. Charlot,³⁴ B. Diab,³⁴ G. Falmagne,³⁴ R. Granier de Cassagnac,³⁴ I. Kucher,³⁴ A. Lobanov,³⁴ C. Martin Perez,³⁴ M. Nguyen,³⁴ C. Ochando,³⁴ P. Paganini,³⁴ J. Rembser,³⁴ R. Salerno,³⁴ J. B. Sauvan,³⁴ Y. Sirois,³⁴ A. Zabi,³⁴ A. Zghiche,³⁴ J.-L. Agram,^{35,p} J. Andrea,³⁵ D. Bloch,³⁵

G. Bourgatte,³⁵ J.-M. Brom,³⁵ E. C. Chabert,³⁵ C. Collard,³⁵ E. Conte,^{35,p} J.-C. Fontaine,^{35,p} D. Gelé,³⁵ U. Goerlach,³⁵ C. Grimault,³⁵ A.-C. Le Bihan,³⁵ N. Tonon,³⁵ P. Van Hove,³⁵ S. Gadrat,³⁶ S. Beauceron,³⁷ C. Bernet,³⁷ G. Boudoul,³⁷ C. Camen,³⁷ A. Carle,³⁷ N. Chanon,³⁷ R. Chierici,³⁷ D. Contardo,³⁷ P. Depasse,³⁷ H. El Mamouni,³⁷ J. Fay,³⁷ S. Gascon,³⁷ M. Gouzevitch,³⁷ B. Ille,³⁷ Sa. Jain,³⁷ I. B. Laktineh,³⁷ H. Lattaud,³⁷ A. Lesauvage,³⁷ M. Lethuillier,³⁷ L. Mirabito,³⁷ S. Perries,³⁷ V. Sordini,³⁷ L. Torterotot,³⁷ G. Touquet,³⁷ M. Vander Donckt,³⁷ S. Viret,³⁷ T. Toriashvili,^{38,q} Z. Tsamalaidze,^{39,k} C. Autermann,⁴⁰ L. Feld,⁴⁰ K. Klein,⁴⁰ M. Lipinski,⁴⁰ D. Meuser,⁴⁰ A. Pauls,⁴⁰ M. Preuten,⁴⁰ M. P. Rauch,⁴⁰ J. Schulz,⁴⁰ M. Teroerde,⁴⁰ M. Erdmann,⁴¹ B. Fischer,⁴¹ S. Ghosh,⁴¹ T. Hebbeker,⁴¹ K. Hoepfner,⁴¹ H. Keller,⁴¹ L. Mastrolorenzo,⁴¹ M. Merschmeyer,⁴¹ A. Meyer,⁴¹ P. Millet,⁴¹ G. Mocellin,⁴¹ S. Mondal,⁴¹ S. Mukherjee,⁴¹ D. Noll,⁴¹ A. Novak,⁴¹ T. Pook,⁴¹ A. Pozdnyakov,⁴¹ T. Quast,⁴¹ M. Radziej,⁴¹ Y. Rath,⁴¹ H. Reithler,⁴¹ J. Roemer,⁴¹ A. Schmidt,⁴¹ S. C. Schuler,⁴¹ A. Sharma,⁴¹ S. Wiedenbeck,⁴¹ S. Zaleski,⁴¹ G. Flügge,⁴² W. Haj Ahmad,^{42,r} O. Hlushchenko,⁴² T. Kress,⁴² T. Müller,⁴² A. Nowack,⁴² C. Pistone,⁴² O. Pooth,⁴² D. Roy,⁴² H. Sert,⁴² A. Stahl,^{42,s} M. Aldaya Martin,⁴³ P. Asmuss,⁴³ I. Babounikau,⁴³ H. Bakhshiansohi,⁴³ K. Beernaert,⁴³ O. Behnke,⁴³ A. Bermúdez Martínez,⁴³ A. A. Bin Anuar,⁴³ K. Borras,^{43,t} V. Botta,⁴³ A. Campbell,⁴³ A. Cardini,⁴³ P. Connor,⁴³ S. Consuegra Rodríguez,⁴³ C. Contreras-Campana,⁴³ V. Danilov,⁴³ A. De Wit,⁴³ M. M. Defranchis,⁴³ C. Diez Pardos,⁴³ D. Domínguez Damiani,⁴³ G. Eckerlin,⁴³ D. Eckstein,⁴³ T. Eichhorn,⁴³ A. Elwood,⁴³ E. Eren,⁴³ L. I. Estevez Banos,⁴³ E. Gallo,^{43,u} A. Geiser,⁴³ A. Grohsjean,⁴³ M. Guthoff,⁴³ M. Haranko,⁴³ A. Harb,⁴³ A. Jafari,⁴³ N. Z. Jomhari,⁴³ H. Jung,⁴³ A. Kasem,^{43,t} M. Kasemann,⁴³ H. Kaveh,⁴³ J. Keaveney,⁴³ C. Kleinwort,⁴³ J. Knolle,⁴³ D. Krücker,⁴³ W. Lange,⁴³ T. Lenz,⁴³ J. Lidrych,⁴³ K. Lipka,⁴³ W. Lohmann,^{43,v} R. Mankel,⁴³ I.-A. Melzer-Pellmann,⁴³ A. B. Meyer,⁴³ M. Meyer,⁴³ M. Missiroli,⁴³ J. Mnich,⁴³ A. Mussgiller,⁴³ V. Myronenko,⁴³ D. Pérez Adán,⁴³ S. K. Pflitsch,⁴³ D. Pitzl,⁴³ A. Raspereza,⁴³ A. Saibel,⁴³ M. Savitskyi,⁴³ V. Scheurer,⁴³ P. Schütze,⁴³ C. Schwanenberger,⁴³ R. Shevchenko,⁴³ A. Singh,⁴³ R. E. Sosa Ricardo,⁴³ H. Tholen,⁴³ O. Turkot,⁴³ A. Vagnerini,⁴³ M. Van De Klundert,⁴³ R. Walsh,⁴³ Y. Wen,⁴³ K. Wichmann,⁴³ C. Wissing,⁴³ O. Zenaiev,⁴³ R. Zlebcik,⁴³ R. Aggleton,⁴⁴ S. Bein,⁴⁴ L. Benato,⁴⁴ A. Benecke,⁴⁴ T. Dreyer,⁴⁴ A. Ebrahimi,⁴⁴ F. Feindt,⁴⁴ A. Fröhlich,⁴⁴ C. Garbers,⁴⁴ E. Garutti,⁴⁴ D. Gonzalez,⁴⁴ P. Gunnellini,⁴⁴ J. Haller,⁴⁴ A. Hinzmann,⁴⁴ A. Karavdina,⁴⁴ G. Kasieczka,⁴⁴ R. Klanner,⁴⁴ R. Kogler,⁴⁴ N. Kovalchuk,⁴⁴ S. Kurz,⁴⁴ V. Kutzner,⁴⁴ J. Lange,⁴⁴ T. Lange,⁴⁴ A. Malara,⁴⁴ J. Multhaup,⁴⁴ C. E. N. Niemeyer,⁴⁴ A. Reimers,⁴⁴ O. Rieger,⁴⁴ P. Schleper,⁴⁴ S. Schumann,⁴⁴ J. Schwandt,⁴⁴ J. Sonneveld,⁴⁴ H. Stadie,⁴⁴ G. Steinbrück,⁴⁴ B. Vormwald,⁴⁴ I. Zoi,⁴⁴ M. Akbiyik,⁴⁵ M. Baselga,⁴⁵ S. Baur,⁴⁵ T. Berger,⁴⁵ E. Butz,⁴⁵ R. Caspart,⁴⁵ T. Chwalek,⁴⁵ W. De Boer,⁴⁵ A. Dierlamm,⁴⁵ K. El Morabit,⁴⁵ N. Faltermann,⁴⁵ M. Giffels,⁴⁵ A. Gottmann,⁴⁵ F. Hartmann,^{45,s} C. Heidecker,⁴⁵ U. Husemann,⁴⁵ M. A. Iqbal,⁴⁵ S. Kudella,⁴⁵ S. Maier,⁴⁵ S. Mitra,⁴⁵ M. U. Mozer,⁴⁵ D. Müller,⁴⁵ Th. Müller,⁴⁵ M. Musich,⁴⁵ A. Nürnberg,⁴⁵ G. Quast,⁴⁵ K. Rabbertz,⁴⁵ D. Savoiu,⁴⁵ D. Schäfer,⁴⁵ M. Schnepf,⁴⁵ M. Schröder,⁴⁵ I. Shvetsov,⁴⁵ H. J. Simonis,⁴⁵ R. Ulrich,⁴⁵ M. Wassmer,⁴⁵ M. Weber,⁴⁵ C. Wöhrmann,⁴⁵ R. Wolf,⁴⁵ S. Wozniewski,⁴⁵ G. Anagnostou,⁴⁶ P. Asenov,⁴⁶ G. Daskalakis,⁴⁶ T. Geralis,⁴⁶ A. Kyriakis,⁴⁶ D. Loukas,⁴⁶ G. Paspalaki,⁴⁶ A. Stakia,⁴⁶ M. Diamantopoulou,⁴⁷ G. Karathanasis,⁴⁷ P. Kontaxakis,⁴⁷ A. Manousakis-katsikakis,⁴⁷ A. Panagiotou,⁴⁷ I. Papavergou,⁴⁷ N. Saoulidou,⁴⁷ K. Theofilatos,⁴⁷ K. Vellidis,⁴⁷ E. Vourliotis,⁴⁷ G. Bakas,⁴⁸ K. Kousouris,⁴⁸ I. Papakrivopoulos,⁴⁸ G. Tsipolitis,⁴⁸ A. Zacharopoulou,⁴⁹ I. Evangelou,⁴⁹ C. Foudas,⁴⁹ P. Gianneios,⁴⁹ P. Katsoulis,⁴⁹ P. Kokkas,⁴⁹ S. Mallios,⁴⁹ K. Manitara,⁴⁹ N. Manthos,⁴⁹ I. Papadopoulos,⁴⁹ J. Strologas,⁴⁹ F. A. Triantis,⁴⁹ D. Tsitsonis,⁴⁹ M. Bartók,^{50,w} R. Chudasama,⁵⁰ M. Csanad,⁵⁰ P. Major,⁵⁰ K. Mandal,⁵⁰ A. Mehta,⁵⁰ G. Pasztor,⁵⁰ O. Surányi,⁵⁰ G. I. Veres,⁵⁰ G. Bencze,⁵¹ C. Hajdu,⁵¹ D. Horvath,^{51,x} F. Sikler,⁵¹ V. Veszpremi,⁵¹ G. Vesztergombi,^{51,a,y} N. Beni,⁵² S. Czellar,⁵² J. Karancsi,^{52,w} J. Molnar,⁵² Z. Szillasi,⁵² P. Raics,⁵³ D. Teyssier,⁵³ Z. L. Trocsanyi,⁵³ B. Ujvari,⁵³ T. Csorgo,⁵⁴ W. J. Metzger,⁵⁴ F. Nemes,⁵⁴ T. Novak,⁵⁴ S. Choudhury,⁵⁵ J. R. Komaragiri,⁵⁵ P.C. Tiwari,⁵⁵ S. Bahinipati,^{56,z} C. Kar,⁵⁶ G. Kole,⁵⁶ P. Mal,⁵⁶ V.K. Muraleedharan Nair Bindhu,⁵⁶ A. Nayak,^{56,aa} D. K. Sahoo,^{56,z} S. K. Swain,⁵⁶ S. Bansal,⁵⁷ S. B. Beri,⁵⁷ V. Bhatnagar,⁵⁷ S. Chauhan,⁵⁷ N. Dhingra,^{57,bb} R. Gupta,⁵⁷ A. Kaur,⁵⁷ M. Kaur,⁵⁷ S. Kaur,⁵⁷ P. Kumari,⁵⁷ M. Lohan,⁵⁷ M. Meena,⁵⁷ K. Sandeep,⁵⁷ S. Sharma,⁵⁷ J. B. Singh,⁵⁷ A. K. Virdi,⁵⁷ G. Walia,⁵⁷ A. Bhardwaj,⁵⁸ B. C. Choudhary,⁵⁸ R. B. Garg,⁵⁸ M. Gola,⁵⁸ S. Keshri,⁵⁸ Ashok Kumar,⁵⁸ M. Naimuddin,⁵⁸ P. Priyanka,⁵⁸ K. Ranjan,⁵⁸ Aashaq Shah,⁵⁸ R. Sharma,⁵⁸ R. Bhardwaj,^{59,cc} M. Bharti,^{59,cc} R. Bhattacharya,⁵⁹ S. Bhattacharya,⁵⁹ U. Bhawandeep,^{59,cc} D. Bhowmik,⁵⁹ S. Dutta,⁵⁹ S. Ghosh,⁵⁹ B. Gomber,^{59,dd} M. Maity,^{59,ee} K. Mondal,⁵⁹ S. Nandan,⁵⁹ A. Purohit,⁵⁹ P. K. Rout,⁵⁹ G. Saha,⁵⁹ S. Sarkar,⁵⁹ M. Sharan,⁵⁹ B. Singh,^{59,cc} S. Thakur,^{59,cc} P. K. Behera,⁶⁰ S. C. Behera,⁶⁰ P. Kalbhor,⁶⁰ A. Muhammad,⁶⁰ R. Pradhan,⁶⁰ P. R. Pujahari,⁶⁰ A. Sharma,⁶⁰ A. K. Sikdar,⁶⁰ D. Dutta,⁶¹ V. Jha,⁶¹ D. K. Mishra,⁶¹ P. K. Netrakanti,⁶¹ L. M. Pant,⁶¹ P. Shukla,⁶¹ T. Aziz,⁶² M. A. Bhat,⁶² S. Dugad,⁶² G. B. Mohanty,⁶² N. Sur,⁶² Ravindra Kumar Verma,⁶² S. Banerjee,⁶³ S. Bhattacharya,⁶³ S. Chatterjee,⁶³ P. Das,⁶³

M. Guchait,⁶³ S. Karmakar,⁶³ S. Kumar,⁶³ G. Majumder,⁶³ K. Mazumdar,⁶³ N. Sahoo,⁶³ S. Sawant,⁶³ S. Dube,⁶⁴ B. Kansal,⁶⁴ A. Kapoor,⁶⁴ K. Kothekar,⁶⁴ S. Pandey,⁶⁴ A. Rane,⁶⁴ A. Rastogi,⁶⁴ S. Sharma,⁶⁴ S. Chenarani,⁶⁵ S. M. Etesami,⁶⁵ A. Kapool, K. Koulekai, S. Falldey, A. Kalle, A. Kastogi, S. Sharma, S. Chenarani, S. M. Etesami, M. Khakzad, ⁶⁵ M. Mohammadi Najafabadi, ⁶⁵ M. Naseri, ⁶⁵ F. Rezaei Hosseinabadi, ⁶⁵ M. Felcini, ⁶⁶ M. Grunewald, ⁶⁶ M. Abbrescia, ^{67a,67b} R. Aly, ^{67a,67b} C. Calabria, ^{67a,67b} A. Colaleo, ^{67a} D. Creanza, ^{67a,67c} L. Cristella, ^{67a,67b} N. De Filippis, ^{67a,67c} M. De Palma, ^{67a,67b} A. Di Florio, ^{67a,67b} W. Elmetenawee, ^{67a,67b} L. Fiore, ^{67a} A. Gelmi, ^{67a,67b} G. Iaselli, ^{67a,67b} M. Ince, ^{67a,67b} S. Lezki, ^{67a,67b} G. Maggi, ^{67a,67c} M. Maggi, ^{67a} J. A. Merlin, ^{67a} G. Miniello, ^{67a,67b} S. My, ^{67a,67b} S. Nuzzo, ^{67a,67b} S. Lezki, ^{67a,67b} G. Maggi, ^{67a,67c} M. Maggi, ^{67a} J. A. Merlin, ^{67a} G. Miniello, ^{67a,67b} S. My, ^{67a,67b} S. Nuzzo, ^{67a,67b}
A. Pompili, ^{67a,67b} G. Pugliese, ^{67a,67c} R. Radogna, ^{67a} A. Ranieri, ^{67a} G. Selvaggi, ^{67a,67b} L. Silvestris, ^{67a} F. M. Simone, ^{67a,67b}
R. Venditti, ^{67a} P. Verwilligen, ^{67a} G. Abbiendi, ^{68a} C. Battilana, ^{68a,68b} D. Bonacorsi, ^{68a,68b} L. Borgonovi, ^{68a,68b}
S. Braibant-Giacomelli, ^{68a,68b} R. Campanini, ^{68a,68b} P. Capiluppi, ^{68a,68b} A. Castro, ^{68a,68b} F. R. Cavallo, ^{68a} C. Ciocca, ^{68a}
G. Codispoti, ^{68a,68b} M. Cuffiani, ^{68a,68b} G. M. Dallavalle, ^{68a} F. Fabbri, ^{68a} A. Fanfani, ^{68a,68b} E. Fontanesi, ^{68a,68b}
P. Giacomelli, ^{68a} C. Grandi, ^{68a} L. Guiducci, ^{68a,68b} F. Iemmi, ^{68a,68b} S. Lo Meo, ^{68a,68b} G. P. Siroli, ^{68a,68b} N. Tosi, ^{68a}
F. L. Navarria, ^{68a,68b} A. Perrotta, ^{68a} F. Primavera, ^{68a,68b} A. M. Rossi, ^{68a,68b} T. Rovelli, ^{68a,68b} G. P. Siroli, ^{68a,68b} N. Tosi, ^{68a}
S. Albergo, ^{69a,69b,hh} S. Costa, ^{69a,69b} A. Di Mattia, ^{69a} R. Potenza, ^{69a,69b} A. Tricomi, ^{69a,69b,hh} C. Tuve, ^{69a,69b} G. Barbagli, ^{70a}
A. Cassese, ^{70a} R. Ceccarelli, ^{70a} V. Ciulli, ^{70a,70b} C. Civinini, ^{70a} R. D'Alessandro, ^{70a,70b} F. Fiori, ^{70a,70b} E. Focardi, ^{70a,70b} G. Latino,^{70a,70b} P. Lenzi,^{70a,70b} M. Lizzo,^{70a} M. Meschini,^{70a} S. Paoletti,^{70a} R. Seidita,^{70a} G. Sguazzoni,^{70a} L. Viliani,^{70a} L. Benussi,⁷¹ S. Bianco,⁷¹ D. Piccolo,⁷¹ M. Bozzo,^{72a,72b} F. Ferro,^{72a} R. Mulargia,^{72a,72b} E. Robutti,^{72a} S. Tosi,^{72a,72b} A. Benaglia, ^{73a} A. Beschi, ^{73a,73b} F. Brivio, ^{73a,73b} V. Ciriolo, ^{73a,73b,s} M. E. Dinardo, ^{73a,73b} P. Dini, ^{73a} S. Gennai, ^{73a} A. Ghezzi, ^{73a,73b} P. Govoni, ^{73a,73b} L. Guzzi, ^{73a,73b} M. Malberti, ^{73a} S. Malvezzi, ^{73a} D. Menasce, ^{73a} F. Monti, ^{73a,73b} L. Moroni, ^{73a} M. Paganoni, ^{73a} D. Pedrini, ^{73a} S. Ragazzi, ^{73a,73b} T. Tabarelli de Fatis, ^{73a,73b} D. Valsecchi, ^{73a,73b,s} D. Zuolo,^{73a,73b} S. Buontempo,^{74a} N. Cavallo,^{74a,74c} A. De Iorio,^{74a,74b} A. Di Crescenzo,^{74a,74b} F. Fabozzi,^{74a,74c} F. Fienga,^{74a} G. Galati,^{74a} A. O. M. Iorio,^{74a,74b} L. Layer,^{74a,74b} L. Lista,^{74a,74b} S. Meola,^{74a,74d,s} P. Paolucci,^{74a,s} B. Rossi,^{74a} C. Sciacca,^{74a,74b} E. Voevodina,^{74a,74b} P. Azzi,^{75a} N. Bacchetta,^{75a} D. Bisello,^{75a,75b} A. Boletti,^{75a,75b} A. Bragagnolo,^{75a,75b} A. Bragagnolo,^{75a,75b} R. Carlin,^{75a,75b} P. Checchia,^{75a} P. De Castro Manzano,^{75a} T. Dorigo,^{75a} U. Dosselli,^{75a} F. Gasparini,^{75a,75b} U. Gasparini,^{75a,75b} A. Gozzelino, ^{75a} S. Y. Hoh, ^{75a,75b} M. Margoni, ^{75a,75b} A. T. Meneguzzo, ^{75a,75b} J. Pazzini, ^{75a,75b} M. Presilla, ^{75a,75b} P. Ronchese, ^{75a,75b} R. Rossin, ^{75a,75b} F. Simonetto, ^{75a,75b} A. Tiko, ^{75a} M. Tosi, ^{75a,75b} M. Zanetti, ^{75a,75b} P. Zotto, ^{75a,75b} A. Zucchetta, ^{75a,75b} G. Zumerle, ^{75a,75b} A. Braghieri, ^{76a} D. Fiorina, ^{76a,76b} P. Montagna, ^{76a,76b} S. P. Ratti, ^{76a,76b} V. Re, ^{76a} M. Ressegotti,^{76a,76b} C. Riccardi,^{76a,76b} P. Salvini,^{76a} I. Vai,^{76a} P. Vitulo,^{76a,76b} M. Biasini,^{77a,77b} G. M. Bilei,^{77a} D. Ciangottini, ^{77a,77b} L. Fanò, ^{77a,77b} P. Lariccia, ^{77a,77b} R. Leonardi, ^{77a,77b} E. Manoni, ^{77a} G. Mantovani, ^{77a,77b} V. Mariani, ^{77a,77b} M. Menichelli, ^{77a} A. Rossi, ^{77a,77b} A. Santocchia, ^{77a,77b} D. Spiga, ^{77a} K. Androsov, ^{78a} P. Azzurri, ^{78a} G. Bagliesi, ^{78a} M. Menichelli, ^{17a} A. Rossi, ^{17a,170} A. Santocchia, ^{17a,170} D. Spiga, ^{17a} K. Androsov, ^{18a} P. Azzurri, ^{18a} G. Bagliesi, ^{18a} V. Bertacchi, ^{78a,78c} L. Bianchini, ^{78a} T. Boccali, ^{78a} R. Castaldi, ^{78a} M. A. Ciocci, ^{78a,78b} R. Dell'Orso, ^{78a} S. Donato, ^{78a} L. Giannini, ^{78a,78c} A. Giassi, ^{78a} M. T. Grippo, ^{78a} F. Ligabue, ^{78a,78c} E. Manca, ^{78a,78c} G. Mandorli, ^{78a,78c} A. Messineo, ^{78a,78b} F. Palla, ^{78a} A. Rizzi, ^{78a,78b} G. Rolandi, ^{78a,78c} S. Roy Chowdhury, ^{78a,78c} A. Scribano, ^{78a} P. Spagnolo, ^{78a} R. Tenchini, ^{78a} G. Tonelli, ^{78a,78b} M. Turini, ^{78a} A. Venturi, ^{78a} P. G. Verdini, ^{78a} F. Cavallari, ^{79a} M. Cipriani, ^{79a,79b} D. Del Re, ^{79a,79b} E. Di Marco, ^{79a} M. Diemoz, ^{79a} E. Longo, ^{79a,79b} P. Meridiani, ^{79a} G. Organtini, ^{79a,79b} F. Pandolfi, ^{79a} R. Paramatti, ^{79a,79b} C. Quaranta, ^{79a,79b} S. Rahatlou, ^{79a,79b} C. Rovelli, ^{79a} F. Santanastasio, ^{79a,79b} L. Soffi, ^{79a,79b} R. Tramontano, ^{79a,79b} N. Amapane, ^{80a,80b} R. Arcidiacono, ^{80a,80c} S. Argiro, ^{80a,80b} M. Arneodo, ^{80a,80c} N. Bartosik, ^{80a} R. Bellan, ^{80a,80b} A. Bellora, ^{80a,80b} C. Biino, ^{80a} A. Cappati, ^{80a,80b} N. Cartiglia, ^{80a} S. Cometti, ^{80a} M. Costa, ^{80a,80b} R. Covarelli, ^{80a,80b} N. Demaria ^{80a} L R. González Fernández ^{80a} B. Kiani ^{80a,80b} F. Lagger ^{80a} C. Mariotti ^{80a} S. Macelli ^{80a} E. Miciliaro ^{80a,80b} A. Bellora, ^{80a,80b} C. Biino, ^{80a} A. Cappati, ^{80a,80b} N. Cartiglia, ^{80a} S. Cometti, ^{80a} M. Costa, ^{80a,80b} R. Covarelli, ^{80a,80b}
N. Demaria, ^{80a} J. R. González Fernández, ^{80a} B. Kiani, ^{80a,80b} F. Legger, ^{80a} C. Mariotti, ^{80a} S. Maselli, ^{80a} E. Migliore, ^{80a,80b}
V. Monaco, ^{80a,80b} E. Monteil, ^{80a,80b} M. Monteno, ^{80a} M. M. Obertino, ^{80a,80b} G. Ortona, ^{80a} L. Pacher, ^{80a,80b} N. Pastrone, ^{80a} M. Pelliccioni, ^{80a} G. L. Pinna Angioni, ^{80a,80b} A. Romero, ^{80a,80b} M. Ruspa, ^{80a,80c} R. Salvatico, ^{80a,80b} V. Sola, ^{80a} A. Solano, ^{80a,80b} D. Soldi, ^{80a,80b} A. Staiano, ^{80a} D. Trocino, ^{80a,80b} S. Belforte, ^{81a} V. Candelise, ^{81a,81b} M. Casarsa, ^{81a}
F. Cossutti, ^{81a} A. Da Rold, ^{81a,81b} G. Della Ricca, ^{81a,81b} F. Vazzoler, ^{81a,81b} A. Zanetti, ^{81a} B. Kim, ⁸² D. H. Kim, ⁸² G. N. Kim, ⁸²
J. Lee, ⁸² S. W. Lee, ⁸² C. S. Moon, ⁸² Y. D. Oh, ⁸² S. I. Pak, ⁸² S. Sekmen, ⁸² D. C. Son, ⁸² Y. C. Yang, ⁸² H. Kim, ⁸³ D. H. Moon, ⁸³
B. Francois, ⁸⁴ T. J. Kim, ⁸⁴ J. Park, ⁸⁴ S. Cho, ⁸⁵ S. Choi, ⁸⁵ Y. Go, ⁸⁵ S. Ha, ⁸⁵ B. Hong, ⁸⁵ K. Lee, ⁸⁵ K. S. Lee, ⁸⁵ J. Lim, ⁸⁵
J. Park, ⁸⁵ S. K. Park, ⁸⁵ J. Yoo, ⁸⁵ J. Goh, ⁸⁶ H. S. Kim, ⁸⁷ J. Almond, ⁸⁸ J. H. Bhyun, ⁸⁸ J. Choi, ⁸⁸ S. Jeon, ⁸⁸ H. D. Yoo, ⁸⁸ J. Lee, ⁸⁹ I. H. Kim, ⁸⁹ I. S. H. Lee, ⁸⁹ I. C. Park, ⁸⁹ I. J. Watson ⁸⁹ Y. Choi, ⁹⁰ C. Hwang ⁹⁰ Y. Jeong ⁹⁰ I. Lee, ⁹⁰ I. Yoon,⁸⁸ D. Jeon,⁸⁹ J. H. Kim,⁸⁹ J. S. H. Lee,⁸⁹ I. C. Park,⁸⁹ I. J. Watson,⁸⁹ Y. Choi,⁹⁰ C. Hwang,⁹⁰ Y. Jeong,⁹⁰ J. Lee,⁹⁰ Y. Lee,⁹⁰ I. Yu,⁹⁰ V. Veckalns,^{91,ii} V. Dudenas,⁹² A. Juodagalvis,⁹² A. Rinkevicius,⁹² G. Tamulaitis,⁹² J. Vaitkus,⁹² F. Mohamad Idris,^{93,ij} W. A. T. Wan Abdullah,⁹³ M. N. Yusli,⁹³ Z. Zolkapli,⁹³ J. F. Benitez,⁹⁴ A. Castaneda Hernandez,⁹⁴

J. A. Murillo Quijada,⁹⁴ L. Valencia Palomo,⁹⁴ H. Castilla-Valdez,⁹⁵ E. De La Cruz-Burelo,⁹⁵ I. Heredia-De La Cruz,^{95,kk} R. Lopez-Fernandez,⁹⁵ A. Sanchez-Hernandez,⁹⁵ S. Carrillo Moreno,⁹⁶ C. Oropeza Barrera,⁹⁶ M. Ramirez-Garcia,⁹⁶ K. Lopez-Fernandez, ¹⁰ A. Sanchez-Hernandez, ¹⁰ S. Carrillo Moreno, ¹⁰ C. Oropeza Barrera, ²⁰ M. Ramirez-Garcia, ³⁰
F. Vazquez Valencia, ⁹⁶ J. Eysermans, ⁹⁷ I. Pedraza, ⁹⁷ H. A. Salazar Ibarguen, ⁹⁷ C. Uribe Estrada, ⁹⁷ A. Morelos Pineda, ⁹⁸
J. Mijuskovic, ^{99,d} N. Raicevic, ⁹⁹ D. Krofcheck, ¹⁰⁰ S. Bheesette, ¹⁰¹ P. H. Butler, ¹⁰¹ P. Lujan, ¹⁰¹ A. Ahmad, ¹⁰² M. Ahmad, ¹⁰²
M. I. M. Awan, ¹⁰² Q. Hassan, ¹⁰² H. R. Hoorani, ¹⁰² W. A. Khan, ¹⁰² M. A. Shah, ¹⁰² M. Shoaib, ¹⁰² M. Waqas, ¹⁰² V. Avati, ¹⁰³
L. Grzanka, ¹⁰³ M. Malawski, ¹⁰³ H. Bialkowska, ¹⁰⁴ M. Bluj, ¹⁰⁴ B. Boimska, ¹⁰⁴ M. Górski, ¹⁰⁴ M. Kazana, ¹⁰⁴ M. Szleper, ¹⁰⁴
P. Zalewski, ¹⁰⁴ K. Bunkowski, ¹⁰⁵ A. Byszuk, ^{105,11} K. Doroba, ¹⁰⁵ A. Kalinowski, ¹⁰⁵ M. Konecki, ¹⁰⁵ J. Krolikowski, ¹⁰⁵
M. Gallinaro, ¹⁰⁶ J. Hollar, ¹⁰⁶ N. Leonardo, ¹⁰⁶ T. Niknejad, ¹⁰⁶ J. Seixas, ¹⁰⁶ K. Shchelina, ¹⁰⁶ G. Strong, ¹⁰⁶
O. Taldaiav ¹⁰⁶ I. Vorela, ¹⁰⁶ S. Afanogiav, ¹⁰⁷ P. Punia, ¹⁰⁷ M. Cavrilacka, ¹⁰⁷ I. Carlutina, ¹⁰⁷ A. Kamarana, ¹⁰⁷ O. Toldaiev,¹⁰⁶ J. Varela,¹⁰⁶ S. Afanasiev,¹⁰⁷ P. Bunin,¹⁰⁷ M. Gavrilenko,¹⁰⁷ I. Golutvin,¹⁰⁷ I. Gorbunov,¹⁰⁷ A. Kamenev,¹⁰⁷ V. Karjavine,¹⁰⁷ A. Lanev,¹⁰⁷ A. Malakhov,¹⁰⁷ V. Matveev,^{107,mm,nn} P. Moisenz,¹⁰⁷ V. Palichik,¹⁰⁷ V. Perelygin,¹⁰⁷ M. Savina,¹⁰⁷ S. Shmatov,¹⁰⁷ S. Shulha,¹⁰⁷ N. Skatchkov,¹⁰⁷ V. Smirnov,¹⁰⁷ N. Voytishin,¹⁰⁷ A. Zarubin,¹⁰⁷ L. Chtchipounov,¹⁰⁸ V. Golovtcov,¹⁰⁸ Y. Ivanov,¹⁰⁸ V. Kim,^{108,00} E. Kuznetsova,^{108,pp} P. Levchenko,¹⁰⁸ V. Murzin,¹⁰⁸ V. Oreshkin,¹⁰⁸ I. Smirnov,¹⁰⁸ D. Sosnov,¹⁰⁸ V. Sulimov,¹⁰⁸ L. Uvarov,¹⁰⁸ A. Vorobyev,¹⁰⁸ Yu. Andreev,¹⁰⁹ A. Dermenev,¹⁰⁹ S. Gninenko,¹⁰⁹ N. Golubev,¹⁰⁹ A. Karneyeu,¹⁰⁹ M. Kirsanov,¹⁰⁹ N. Krasnikov,¹⁰⁹ A. Pashenkov,¹⁰⁹ D. Tlisov,¹⁰⁹ A. Toropin,¹⁰⁹ V. Epshteyn,¹¹⁰ V. Gavrilov,¹¹⁰ N. Lychkovskaya,¹¹⁰ A. Nikitenko,^{110,qq} V. Popov,¹¹⁰ I. Pozdnyakov,¹¹⁰ A. Toropin,¹⁰⁹ V. Epshteyn,¹¹⁰ V. Gavrilov,¹¹⁰ N. Lychkovskaya,¹¹⁰ A. Nikitenko,^{110,qq} V. Popov,¹¹⁰ I. Pozdnyakov,¹¹⁰
G. Safronov,¹¹⁰ A. Spiridonov,¹¹⁰ A. Stepennov,¹¹⁰ M. Toms,¹¹⁰ E. Vlasov,¹¹⁰ A. Zhokin,¹¹⁰ T. Aushev,¹¹¹ O. Bychkova,¹¹² R. Chistov,^{112,rr} M. Danilov,^{112,rr} S. Polikarpov,^{112,rr} E. Tarkovskii,¹¹² V. Andreev,¹¹³ M. Azarkin,¹¹³ I. Dremin,¹¹³
M. Kirakosyan,¹¹³ A. Terkulov,¹¹³ A. Belyaev,¹¹⁴ E. Boos,¹¹⁴ M. Dubinin,^{114,ss} L. Dudko,¹¹⁴ A. Ershov,¹¹⁴ A. Gribushin,¹¹⁴ V. Klyukhin,¹¹⁴ O. Kodolova,¹¹⁴ I. Lokhtin,¹¹⁴ S. Obraztsov,¹¹⁴ S. Petrushanko,¹¹⁴ V. Savrin,¹¹⁴ A. Snigirev,¹¹⁴
A. Barnyakov,^{115,tt} V. Blinov,^{115,tt} T. Dimova,^{115,tt} L. Kardapoltsev,^{115,tt} Y. Skovpen,^{115,tt} I. Azhgirey,¹¹⁶ I. Bayshev,¹¹⁶
S. Bitioukov,¹¹⁶ V. Kachanov,¹¹⁶ D. Konstantinov,¹¹⁶ P. Mandrik,¹¹⁶ V. Petrov,¹¹⁶ R. Ryutin,¹¹⁶ S. Slabospitskii,¹¹⁶
A. Sobol,¹¹⁶ S. Troshin,¹¹⁶ N. Tyurin,¹¹⁶ A. Uzunian,¹¹⁶ A. Volkov,¹¹⁶ A. Babaev,¹¹⁷ A. Iuzhakov,¹¹⁷ V. Okhotnikov,¹¹⁷ V. Borchsh,¹¹⁸ V. Ivanchenko,¹¹⁸ E. Tcherniaev,¹¹⁸ P. Adzic,^{119,uu} P. Cirkovic,¹¹⁹ M. Dordevic,¹¹⁹ P. Milenovic,¹¹⁹ J. Milosevic,¹¹⁹ M. Stojanovic,¹¹⁹ M. Aguilar-Benitez,¹²⁰ J. Alcaraz Maestre,¹²⁰ A. Álvarez Fernández,¹²⁰ I. Bachiller,¹²⁰ M. Cerrada,¹²⁰ N. Colino,¹²⁰ B. De La Cruz,¹²⁰ A. Brochero Cifuentes,¹²⁰ C. A. Carrillo Montoya,¹²⁰ M. Cepeda,¹²⁰ O. Gonzalez Lopez,¹²⁰ S. Goy Lopez,¹²⁰ J. M. Hernandez,¹²⁰ M. I. Josa,¹²⁰ D. Moran,¹²⁰ Á. Navarro Tobar,¹²⁰ A. Pérez-Calero Yzquierdo,¹²⁰ J. Puerta Pelayo,¹²⁰ I. Redondo,¹²⁰ M. L. Josa,¹²⁰ D. Moran,¹²⁰ Á. Navarro Tobar,¹²⁰ A. Triossi,¹²⁰ C. Willmott,¹²⁰ C. Albajar,¹²¹ J. F. de Trocóniz,¹²¹ R. Reyes-Almanza,¹²¹ B. Alvarez Gonzalez,¹²² J. Cuevas,¹²² A. Triossi, ¹²⁰ C. Willmott, ¹²⁰ C. Albajar, ¹²¹ J. F. de Trocóniz, ¹²¹ R. Reyes-Almanza, ¹²¹ B. Alvarez Gonzalez, ¹²² J. Cuevas, ¹²² C. Erice, ¹²² J. Fernandez Menendez, ¹²² S. Folgueras, ¹²² I. Gonzalez Caballero, ¹²² E. Palencia Cortezon, ¹²² C. Ramón Álvarez,¹²² V. Rodríguez Bouza,¹²² S. Sanchez Cruz,¹²² I. J. Cabrillo,¹²³ A. Calderon,¹²³ B. Chazin Quero,¹²³ J. Duarte Campderros,¹²³ M. Fernandez,¹²³ P. J. Fernández Manteca,¹²³ A. García Alonso,¹²³ G. Gomez,¹²³ J. Duarte Campderros,¹²³ M. Fernandez,¹²³ P. J. Fernández Manteca,¹²³ A. García Alonso,¹²³ G. Gomez,¹²³
C. Martinez Rivero,¹²³ P. Martinez Ruiz del Arbol,¹²³ F. Matorras,¹²³ J. Piedra Gomez,¹²³ C. Prieels,¹²³ F. Ricci-Tam,¹²³
T. Rodrigo,¹²³ A. Ruiz-Jimeno,¹²³ L. Russo,^{123,vv} L. Scodellaro,¹²³ I. Vila,¹²³ J. M. Vizan Garcia,¹²³ K. Malagalage,¹²⁴
W. G. D. Dharmaratna,¹²⁵ N. Wickramage,¹²⁵ D. Abbaneo,¹²⁶ B. Akgun,¹²⁶ E. Auffray,¹²⁶ G. Auzinger,¹²⁶ J. Baechler,¹²⁶
P. Baillon,¹²⁶ A. H. Ball,¹²⁶ D. Barney,¹²⁶ J. Bendavid,¹²⁶ M. Bianco,¹²⁶ A. Bocci,¹²⁶ P. Bortignon,¹²⁶ E. Bossini,¹²⁶
E. Brondolin,¹²⁶ T. Camporesi,¹²⁶ A. Caratelli,¹²⁶ G. Cerminara,¹²⁶ E. Chapon,¹²⁶ G. Cucciati,¹²⁶ D. d'Enterria,¹²⁶
A. Dabrowski,¹²⁶ N. Daci,¹²⁶ V. Daponte,¹²⁶ A. David,¹²⁶ O. Davignon,¹²⁶ A. De Roeck,¹²⁶ M. Deile,¹²⁶ R. Di Maria,¹²⁶
M. Dobson,¹²⁶ M. Dünser,¹²⁶ N. Dupont,¹²⁶ A. Elliott-Peisert,¹²⁶ N. Emriskova,¹²⁶ F. Fallavollita,¹²⁶ R. Di Maria,¹²⁶
S. Fiorendi,¹²⁶ G. Franzoni,¹²⁶ J. Fulcher,¹²⁶ W. Funk,¹²⁶ S. Giani,¹²⁶ D. Gigi,¹²⁶ K. Gill,¹²⁶ F. Glege,¹²⁶ L. Gouskos,¹²⁶
M. Gruchala,¹²⁶ M. Guilbaud,¹²⁶ D. Gulhan,¹²⁶ J. Hegeman,¹²⁶ C. Heidegger,¹²⁶ Y. Iiyama,¹²⁶ V. Innocente,¹²⁶ T. James,¹²⁶
P. Janot,¹²⁶ O. Karacheban,¹²⁶ J. Kaspar,¹²⁶ J. Kieseler,¹²⁶ M. Mannelli,¹²⁶ A. Massironi,¹²⁶ F. Meijers,¹²⁶ S. Mersi,¹²⁶
P. Lecoq,¹²⁶ K. Long,¹²⁶ C. Lourenço,¹²⁶ L. Malgeri,¹²⁶ M. Mannelli,¹²⁶ A. Massironi,¹²⁶ F. Meijers,¹²⁶ S. Mersi,¹²⁶
E. Meschi,¹²⁶ F. Moortgat,¹²⁶ M. Mulders,¹²⁶ J. Ngadiuba,¹²⁶ J. Niedziela,¹²⁶ S. Nourbakhsh,¹²⁶ S. Orfanelli,¹²⁶ M. Pierini,¹²⁶
E. Meschi,¹²⁶ F. Doortgat,¹²⁶ M. Peruzzi,¹²⁶ M. Peruzzi,¹²⁶ A. Petrilli,¹²⁶ A. Pfeiffer,¹²⁶ M. Pierini,¹²⁶ E. Meschi, F. Moorgat, M. Milders, J. Ngaduda, J. Neuziera, S. Nourbakhsi, S. Orlahelli, E. Orshi, F. Pantaleo,^{126,s} L. Pape,¹²⁶ E. Perez,¹²⁶ M. Peruzzi,¹²⁶ A. Petrilli,¹²⁶ G. Petrucciani,¹²⁶ A. Pfeiffer,¹²⁶ M. Pierini,¹²⁶ F. M. Pitters,¹²⁶ D. Rabady,¹²⁶ A. Racz,¹²⁶ M. Rieger,¹²⁶ M. Rovere,¹²⁶ H. Sakulin,¹²⁶ J. Salfeld-Nebgen,¹²⁶ S. Scarfi,¹²⁶ C. Schäfer,¹²⁶ C. Schwick,¹²⁶ M. Selvaggi,¹²⁶ A. Sharma,¹²⁶ P. Silva,¹²⁶ W. Snoeys,¹²⁶ P. Sphicas,^{126,xx} J. Steggemann,¹²⁶ S. Summers,¹²⁶ V. R. Tavolaro,¹²⁶ D. Treille,¹²⁶ A. Tsirou,¹²⁶ G. P. Van Onsem,¹²⁶ A. Vartak,¹²⁶ M. Verzetti,¹²⁶

H. K. Wöhri,¹²⁶ K. A. Wozniak,¹²⁶ W. D. Zeuner,¹²⁶ L. Caminada,^{127,yy} K. Deiters,¹²⁷ W. Erdmann,¹²⁷ R. Horisberger,¹²⁷ Q. Ingram,¹²⁷ H. C. Kaestli,¹²⁷ D. Kotlinski,¹²⁷ U. Langenegger,¹²⁷ T. Rohe,¹²⁷ M. Backhaus,¹²⁸ P. Berger,¹²⁸ A. Calandri,¹²⁸ N. Chernyavskaya,¹²⁸ G. Dissertori,¹²⁸ M. Dittmar,¹²⁸ M. Donegà,¹²⁸ C. Dorfer,¹²⁸ T. A. Gómez Espinosa,¹²⁸ C. Grab,¹²⁸ D. Hits,¹²⁸ W. Lustermann,¹²⁸ R. A. Manzoni,¹²⁸ M. T. Meinhard,¹²⁸ F. Micheli,¹²⁸ P. Musella,¹²⁸ F. Nessi-Tedaldi,¹²⁸ F. Pauss,¹²⁸ V. Perovic,¹²⁸ G. Perrin,¹²⁸ L. Perrozzi,¹²⁸ S. Pigazzini,¹²⁸ M. G. Ratti,¹²⁸ M. Reichmann,¹²⁸ C. Reissel,¹²⁸ T. Reitenspiess,¹²⁸ B. Ristic,¹²⁸ D. Ruini,¹²⁸ D. A. Sanz Becerra,¹²⁸ M. Schönenberger,¹²⁸ L. Shchutska,¹²⁸ M. L. Vesterbacka Olsson,¹²⁸ R. Wallny,¹²⁸ D. H. Zhu,¹²⁸ C. Amsler,¹²⁹ Z. Botta,¹²⁹ D. Brzhechko,¹²⁹ M. F. Canelli,¹²⁹ A. De Cosa,¹²⁹ R. Del Burgo,¹²⁹ B. Kilminster,¹²⁹ S. Leontsinis,¹²⁹ V. M. Mikuni,¹²⁹ I. Neutelings,¹²⁹ G. Rauco,¹²⁹ P. Robmann,¹²⁹ K. Schweiger,¹²⁹ Y. Takahashi,¹²⁹ S. Wertz,¹²⁹ C. M. Kuo,¹³⁰ W. Lin,¹³⁰ A. Roy,¹³⁰ T. Sarkar,^{130,ee} S. S. Yu,¹³⁰ P. Chang,¹³¹ Y. Chao,¹³¹ K. F. Chen,¹³¹ P. H. Chen,¹³¹ W.-S. Hou,¹³¹ Y. y. Li,¹³¹ R.-S. Lu,¹³¹ E. Paganis,¹³¹ A. Steen¹³¹ B. Asayapibhon¹³² C. Asawatangtrakuldee¹³² N. Srimanobhas¹³² N. Suwoniandee¹³² S. S. YU, T. P. Chang, T. Y. Chao, T. K. F. Chen, T. P. H. Chen, T. W.-S. Hou, T. Y. y. Li, T. R.-S. Lu, T. E. Paganis, I. A. Psallidas, ¹³¹ A. Steen, ¹³¹ B. Asavapibhop, ¹³² C. Asawatangtrakuldee, ¹³² N. Srimanobhas, ¹³² N. Suwonjandee, ¹³² A. Bat, ¹³³ F. Boran, ¹³³ A. Celik, ^{133,aaa} S. Damarseckin, ^{133,bbb} Z. S. Demiroglu, ¹³³ F. Dolek, ¹³³ C. Dozen, ^{133,ccc}
I. Dumanoglu, ^{133,ddd} G. Gokbulut, ¹³³ Emine Gurpinar Guler, ^{133,eee} Y. Guler, ¹³³ I. Hos, ^{133,fff} C. Isik, ¹³³ E. E. Kangal, ^{133,ggg} O. Kara, ¹³³ A. Kayis Topaksu, ¹³³ U. Kiminsu, ¹³³ G. Onengut, ¹³³ K. Ozdemir, ^{133,hbh} A. E. Simsek, ¹³³ U. G. Tok, ¹³³ S. Turkcapar, ¹³³ I. S. Zorbakir, ¹³³ C. Zorbilmez, ¹³³ B. Isildak, ^{134,iii} G. Karapinar, ^{134,jjj} M. Yalvac, ^{134,kkk} I. O. Atakisi, ¹³⁵ E. Gülmez, ¹³⁵ M. Kaya, ^{135,mnm} Ö. Özçelik, ¹³⁵ S. Tekten, ^{137,coo} A. Cakir, ¹ O. Kalfi, A. Kalys Toplassu, C. Klinisu, O. Onegut, K. Ozoenin, K. J. Sunski, J. Sunski, J. Stark, J. S. K. Corbilmez, J. S. B. Islidak, J. Stark, J. S. B. Kaya, J. S. B. Silak, J. S. S. Ceker, J. Stark, C. S. Kakis, J. S. C. Koruckul, J. S. D. Konurcu, J. S. S. Sen, J. Song, J. O. Kaya, J. S. B. Silak, J. S. S. Ozkorucukul, J. S. D. Sanzar, J. S. S. Cakir, J. S. S. Cakir, J. S. S. Cakir, J. Song, J. C. Kakika, J. S. S. Sen, J. S. Sen, J. S. Sen, J. S. Sen, J. Sen, J. S. Sen, J. S. Sen, J. S. Sen, J. S. Sen, J. Sen, J. S. Sen, J. Sen, J. Sen, J. PHYSICAL REVIEW LETTERS 124, 162002 (2020)
 M. Sun,¹⁵⁵ I. Vorobiev,¹⁵⁵ M. Weinberg,¹⁵⁵ J. P. Cumalat,¹⁵⁶ W. T. Ford,¹⁵⁶ E. MacDonald,¹⁵⁶ T. Mulholland,¹⁵⁶ R. Patel,¹⁵⁶ A. Perloff,¹⁵⁶ K. Stenson,¹⁵⁶ J. A. P. Auterson,¹⁵⁷ J. Chan,¹⁵⁷ J. Chan,¹⁵⁸ J. Leverka,¹⁵⁸ S. Abdullin,¹⁵⁸ M. Albrow,¹⁵⁸ M. Joyan,¹⁵⁸ G. Apollinari,¹⁵⁸ A. Apersyan,¹⁵⁸ A. Apagan,¹⁵⁸ S. Banerjee,¹⁵⁴ J. A. T. Bauericke,¹⁵⁸ J. Leverka,¹⁵⁸ D. Geren,¹⁵⁸ S. Grinendalal,¹³⁰ O. Gutsche,¹³⁸ J. Haulon,¹⁵⁸ M. J. Frennan,¹⁵⁸ J. Geosc,¹⁵⁸ S. Gottschalk,¹⁵⁸ J. Farenan,¹⁵⁸ J. Geosc,¹⁵⁸ S. Gottschalk,¹⁵⁸ J. Haulon,¹⁵⁸ M. Harris,¹⁵⁸ J. Hascawa,¹⁵⁸ M. Heller,¹⁵⁸ J. Hwith,¹⁵⁶ A. Sohn,¹⁵⁸ M. J. Stenson,¹⁵⁸ M. M. Futhe,¹⁵⁸ M. J. Kuterlainen,¹⁵⁸ M. K. Merika,¹⁵⁸ S. Leman,¹⁵⁸ J. Lawie,¹⁵⁸ D. Lincoln,¹⁵⁸ M. J. Shortal,¹⁵⁸ M. Stenson,¹⁵⁸ M. Stenson,¹⁵⁸ M. Stenson,¹⁵⁸ M. Stenson,¹⁵⁸ S. Storne,¹⁵⁸ S. Storne,¹⁵⁹ M. Storne,¹⁵⁹ M. Storne,¹⁵⁹ S. Storne,¹⁵⁹ M. Storne,¹⁵⁹ M. Storne,¹⁵⁹ M. Storne,¹⁵⁹ S. Storne,¹⁶⁸ S. Storne,¹⁵⁹ M. Storne,¹⁵⁹ M. K. Houlow,¹⁵⁰ M. K. Houlow,¹⁵⁰ M. J. Lawie,¹⁵⁰ M. Mana,¹⁵⁰ H. A. Weber,¹⁵⁰ A. Askew,¹⁶⁹ S. Starczyk,¹⁵⁹ M. Y. Tran,¹⁵⁶ L. Uplegger,¹⁵⁰ S. Wang,¹⁵⁹ M. Stand,¹⁵⁹ M. Storne,¹⁵⁹ S. Storne,¹⁵⁰ S. Storne,¹⁵⁰ M. Storne,¹⁵⁹ M. Storne,¹⁵⁰ S. Storne,¹⁵⁰ M. Starczyk,¹⁵⁰ M. Mana,¹⁵⁰ M. K. Johnson,¹⁵⁰ M. Katchen,¹⁵⁰ M. Mana,¹⁵⁰ M. J. Weber,¹⁶⁰ M. Mathana,¹⁶⁰ M. Mathana,¹⁶⁰ M. Mathan J. Pekkanen, ¹⁷⁵ S. Rappoccio, ¹⁷⁷ B. Roozbahani, ¹⁷⁴ G. Alverson, ¹⁷⁵ E. Barberis, ¹⁷⁵ C. Freer, ¹⁷⁵ Y. Haddad, ¹⁷⁵ A. Hortiangtham, ¹⁷⁵ G. Madigan, ¹⁷⁵ B. Marzocchi, ¹⁷⁵ D. M. Morse, ¹⁷⁵ V. Nguyen, ¹⁷⁵ T. Orimoto, ¹⁷⁵ L. Skinnari, ¹⁷⁵ A. Tishelman-Charny, ¹⁷⁵ T. Wamorkar, ¹⁷⁵ B. Wang, ¹⁷⁵ A. Wisecarver, ¹⁷⁵ D. Wood, ¹⁷⁵ S. Bhattacharya, ¹⁷⁶ J. Bueghly, ¹⁷⁶ G. Fedi, ¹⁷⁶ A. Gilbert, ¹⁷⁶ T. Gunter, ¹⁷⁶ K. A. Hahn, ¹⁷⁶ N. Odell, ¹⁷⁶ M. H. Schmitt, ¹⁷⁶ K. Sung, ¹⁷⁶ M. Velasco, ¹⁷⁶ R. Bucci, ¹⁷⁷ N. Dev, ¹⁷⁷ R. Goldouzian, ¹⁷⁷ M. Hildreth, ¹⁷⁷ K. Hurtado Anampa, ¹⁷⁷ C. Jessop, ¹⁷⁷ D. J. Karmgard, ¹⁷⁷ K. Lannon, ¹⁷⁷ W. Li, ¹⁷⁷ N. Loukas, ¹⁷⁷ N. Marinelli, ¹⁷⁷ I. Mcalister, ¹⁷⁷ F. Meng, ¹⁷⁷ Y. Musienko, ^{177,mm} R. Ruchti, ¹⁷⁷ P. Siddireddy, ¹⁷⁷ G. Smith, ¹⁷⁷ S. Taroni, ¹⁷⁸ M. Wayne, ¹⁷⁷ A. Wightman, ¹⁷⁷ M. Wolf, ¹⁷⁸ J. Alimena, ¹⁷⁸ B. Bylsma, ¹⁷⁸ B. Cardwell, ¹⁷⁸ L. S. Durkin, ¹⁷⁸ B. Francis, ¹⁷⁸ C. Hill, ¹⁷⁸ W. Ji, ¹⁷⁸ A. Lefeld, ¹⁷⁸ T. Y. Ling, ¹⁷⁸ B. L. Winer, ¹⁷⁹ D. Lange, ¹⁷⁹ M. T. Lucchini, ¹⁷⁹ J. Hardenbrook, ¹⁷⁹ N. Haubrich, ¹⁷⁹ S. Higginbotham, ¹⁷⁹ A. Kalogeropoulos, ¹⁷⁹ S. Kwan, ¹⁷⁹ D. Lange, ¹⁷⁹ M. T. Lucchini, ¹⁷⁹

J. Luo,¹⁷⁹ D. Marlow,¹⁷⁹ K. Mei,¹⁷⁹ I. Ojalvo,¹⁷⁹ J. Olsen,¹⁷⁹ C. Palmer,¹⁷⁹ P. Piroué,¹⁷⁹ D. Stickland,¹⁷⁹ C. Tully,¹⁷⁹ S. Malik,¹⁸⁰ S. Norberg,¹⁸⁰ A. Barker,¹⁸¹ V. E. Barnes,¹⁸¹ R. Chawla,¹⁸¹ S. Das,¹⁸¹ L. Gutay,¹⁸¹ M. Jones,¹⁸¹ A. W. Jung,¹⁸¹ B. Mahakud,¹⁸¹ D. H. Miller,¹⁸¹ G. Negro,¹⁸¹ N. Neumeister,¹⁸¹ C. C. Peng,¹⁸¹ S. Piperov,¹⁸¹ H. Qiu,¹⁸¹ J. F. Schulte,¹⁸¹ N. Trevisani,¹⁸¹ F. Wang,¹⁸¹ R. Xiao,¹⁸¹ W. Xie,¹⁸¹ T. Cheng,¹⁸² J. Dolen,¹⁸² N. Parashar,¹⁸² A. Baty,¹⁸³ U. Behrens,¹⁸³ S. Dildick,¹⁸³ K. M. Ecklund,¹⁸³ S. Freed,¹⁸³ F. J. M. Geurts,¹⁸³ M. Kilpatrick,¹⁸³ Arun Kumar,¹⁸³ W. Li,¹⁸³ B. P. Padley,¹⁸⁴ R. Redjimi,¹⁸³ J. Roberts,¹⁸³ J. Rorie,¹⁸³ W. Shi,¹⁸³ A. G. Stahl Leiton,¹⁸³ Z. Tu,¹⁸³ A. Zhang,¹⁸³ A. Bodek,¹⁸⁴ P. de Barbaro,¹⁸⁴ R. Demina,¹⁸⁴ J. L. Dulemba,¹⁸⁴ C. Fallon,¹⁸⁴ T. Ferbel,¹⁸⁴ M. Galanti,¹⁸⁴ A. Garcia-Bellido,¹⁸⁴ O. Hindrichs,¹⁸⁴ A. Khukhunaishvili,¹⁸⁴ E. Ranken,¹⁸⁴ R. Taus,¹⁸⁴ B. Chiarito,¹⁸⁵ J. P. Chou,¹⁸⁵ A. Gandrakota,¹⁸⁵ M. Gershtein,¹⁸⁵ E. Halkiadakis,¹⁸⁵ M. Aslaur,¹⁸⁵ M. Beindl,¹⁸⁵ S. Schnetzer,¹⁸⁵ S. Kaplan,¹⁸⁵ I. Laflotte,¹⁸⁵ A. Lath,¹⁸⁵ M. Acharya,¹⁸⁶ A. G. Delannoy,¹⁸⁶ S. Spanier,¹⁸⁶ O. Bouhali,^{187,cece} M. Dalchenko,¹⁸⁷ A. Delgado,¹⁸⁷ R. Huceller,¹⁸⁷ D. Overton,¹⁸⁷ L. Perniè,¹⁸⁷ D. Rathjens,¹⁸⁷ A. Safonov,¹⁸⁷ N. Akchurin,¹⁸⁸ J. Damgov,¹⁸⁸ F. De Guio,¹⁸⁸ V. Hegde,¹⁸⁸ S. Kunori,¹⁸⁸ K. Lamichhane,¹⁸⁸ A. Gurenola,¹⁸⁹ R. Mengle,¹⁸⁹ R. Meloel,¹⁸⁹ H. Ni,¹⁹⁹ B. Cox,¹⁹⁰ G. Cummings,¹⁹⁰ J. Hakala,¹⁹⁰ R. Janjam,¹⁸⁹ M. Verweij,¹⁸⁹ L. Ang,¹⁹⁰ M. W. Arenton,¹⁹⁰ P. Barria,¹⁹⁰ B. Cox,¹⁹⁰ G. Cummings,¹⁹⁰ J. Callon,¹⁹² J. Velkovska,¹⁸⁹ M. Verweij,¹⁸⁹ L. Ang,¹⁹⁰ M. W. Arenton,¹⁹⁰ F. Barria,¹⁹⁰ B. Cox,¹⁹⁰ G. Cummings,¹⁹⁰ J. Lakala,¹⁹⁰ R. Harri,¹⁹¹ P. E. Karchin,¹⁹¹ N. Poudyal,¹⁹¹ J. Sturdy,¹⁹¹ P. Thapa,¹⁹¹ K. Black,¹⁹² J. Bose,¹⁹² J. Buchanan,¹⁹² C. Caillo B. Fahlenwald, T. Wang, E. Wolfe, T. Ala, K. Hall, T. E. Katchini, N. Folddyal, J. Sturdy, F. Hapa,
K. Black,¹⁹² T. Bose,¹⁹² J. Buchanan,¹⁹² C. Caillol,¹⁹² D. Carlsmith,¹⁹² S. Dasu,¹⁹² I. De Bruyn,¹⁹² L. Dodd,¹⁹² C. Galloni,¹⁹² H. He,¹⁹² M. Herndon,¹⁹² A. Hervé,¹⁹² U. Hussain,¹⁹² A. Lanaro,¹⁹² A. Loeliger,¹⁹² R. Loveless,¹⁹²
J. Madhusudanan Sreekala,¹⁹² A. Mallampalli,¹⁹² D. Pinna,¹⁹² T. Ruggles,¹⁹² A. Savin,¹⁹² V. Sharma,¹⁹² W. H. Smith,¹⁹² D. Teague,¹⁹² and S. Trembath-reichert¹⁹²

(CMS Collaboration)

¹Yerevan Physics Institute, Yerevan, Armenia

²Institut für Hochenergiephysik, Wien, Austria ³Institute for Nuclear Problems, Minsk, Belarus

⁴Universiteit Antwerpen, Antwerpen, Belgium

⁵Vrije Universiteit Brussel, Brussel, Belgium

⁶Université Libre de Bruxelles, Bruxelles, Belgium

⁷Ghent University, Ghent, Belgium

⁸Université Catholique de Louvain, Louvain-la-Neuve, Belgium

⁹Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

¹⁰Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

^{11a}Universidade Estadual Paulista, São Paulo, Brazil

^{11b}Universidade Federal do ABC, São Paulo, Brazil

¹²Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

¹³University of Sofia, Sofia, Bulgaria

¹⁴Beihang University, Beijing, China

¹⁵Department of Physics, Tsinghua University, Beijing, China

¹⁶Institute of High Energy Physics, Beijing, China

¹⁷State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

¹⁸Zhejiang University, Hangzhou, China

¹⁹Universidad de Los Andes, Bogota, Colombia

²⁰Universidad de Antioquia, Medellin, Colombia

²¹University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

²²University of Split, Faculty of Science, Split, Croatia

²³Institute Rudjer Boskovic, Zagreb, Croatia

²⁴University of Cyprus, Nicosia, Cyprus

²⁵Charles University, Prague, Czech Republic

²⁶Escuela Politecnica Nacional, Quito, Ecuador

²⁷Universidad San Francisco de Quito, Quito, Ecuador

²⁸Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt ²⁹National Institute of Chemical Physics and Biophysics, Tallinn, Estonia ⁰Department of Physics, University of Helsinki, Helsinki, Finland ³¹Helsinki Institute of Physics, Helsinki, Finland ³²Lappeenranta University of Technology, Lappeenranta, Finland ³³IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France ³⁴Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris ³⁵Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France ³⁶Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France ³⁷Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France ³⁸Georgian Technical University, Tbilisi, Georgia ³⁹Tbilisi State University, Tbilisi, Georgia ⁴⁰*RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany* ⁴¹RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany ⁴²RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany ⁴³Deutsches Elektronen-Synchrotron, Hamburg, Germany ⁴⁴University of Hamburg, Hamburg, Germany ⁴⁵Karlsruher Institut fuer Technologie, Karlsruhe, Germany ⁴⁶Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece ⁴⁷National and Kapodistrian University of Athens, Athens, Greece ⁴⁸National Technical University of Athens, Athens, Greece 49 University of Ioánnina, Ioánnina, Greece ⁵⁰MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary ⁵¹Wigner Research Centre for Physics, Budapest, Hungary ⁵²Institute of Nuclear Research ATOMKI, Debrecen, Hungary ⁵³Institute of Physics, University of Debrecen, Debrecen, Hungary ⁵⁴Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary ⁵⁵Indian Institute of Science (IISc), Bangalore, India ⁵⁶National Institute of Science Education and Research, HBNI, Bhubaneswar, India ⁵⁷Panjab University, Chandigarh, India ⁵⁸University of Delhi, Delhi, India ⁵⁹Saha Institute of Nuclear Physics, HBNI, Kolkata,India ⁶⁰Indian Institute of Technology Madras, Madras, India ⁶¹Bhabha Atomic Research Centre, Mumbai, India ⁶²Tata Institute of Fundamental Research-A, Mumbai, India ⁶³Tata Institute of Fundamental Research-B, Mumbai, India ⁶⁴Indian Institute of Science Education and Research (IISER), Pune, India ⁵⁵Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ⁶⁶University College Dublin, Dublin, Ireland ^{57a}INFN Sezione di Bari ^{67b}Università di Bari ⁶⁷cPolitecnico di Bari ^{68a}INFN Sezione di Bologna, Bologna, Italy ^{68b}Università di Bologna, Bologna, Italy ^{69a}INFN Sezione di Catania, Catania, Italy ^{69b}Università di Catania, Catania, Italy ^{70a}INFN Sezione di Firenze, Firenze, Italy ^{70b}Università di Firenze, Firenze, Italy ⁷¹INFN Laboratori Nazionali di Frascati, Frascati, Italy ^{72a}INFN Sezione di Genova, Genova, Italy ^{72b}Università di Genova, Genova, Italy ^{73a}INFN Sezione di Milano-Bicocca, Milano, Italy ^{73b}Università di Milano-Bicocca, Milano, Italy ^{74a}INFN Sezione di Napoli, Napoli, Italy ^{74b}Università di Napoli 'Federico II', Napoli, Italy ^{74c}Università della Basilicata, Potenza, Italy ^{74d}Università G. Marconi, Roma, Italy ^{75a}INFN Sezione di Padova, Padova, Italy

^{75b}Università di Padova, Padova, Italy

⁷⁵*c*Università di Trento, Trento, Italy ^{76a}INFN Sezione di Pavia, Trento, Italy ^{76b}Università di Pavia ^{77a}INFN Sezione di Perugia, Perugia, Italy ^{77b}Università di Perugia, Perugia, Italy ^{78a}INFN Sezione di Pisa, Pisa, Italy ^{78b}Università di Pisa, Pisa, Italy ^{78c}Scuola Normale Superiore di Pisa, Pisa, Italy ^{79a}INFN Sezione di Roma, Rome, Italy ^{79b}Sapienza Università di Roma, Rome, Italy ^{80a}INFN Sezione di Torino, Torino, Italy ^{80b}Università di Torino, Torino, Italy ^{80c}Università del Piemonte Orientale, Novara, Italy ^{1a}INFN Sezione di Trieste, Trieste, Italy ^{81b}Università di Trieste, Trieste, Italy ⁸²Kyungpook National University, Daegu, Korea ⁸³Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea ⁸⁴Hanyang University, Seoul, Korea ⁸⁵Korea University, Seoul, Korea ⁸⁶Kyung Hee University, Department of Physics Sejong University, Seoul, Korea ⁸⁸Seoul National University, Seoul, Korea ⁹University of Seoul, Seoul, Korea ⁹⁰Sungkyunkwan University, Suwon, Korea ⁹¹Riga Technical University, Riga, Latvia ⁹²Vilnius University, Vilnius, Lithuania ⁹³National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia ⁹⁴Universidad de Sonora (UNISON), Hermosillo, Mexico ⁹⁵Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico ⁹⁶Universidad Iberoamericana, Mexico City, Mexico ⁹⁷Benemerita Universidad Autonoma de Puebla, Puebla, Mexico ⁹⁸Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico University of Montenegro, Podgorica, Montenegro ¹⁰⁰University of Auckland, Auckland, New Zealand ¹⁰¹University of Canterbury, Christchurch, New Zealand ¹⁰²National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan ¹⁰³AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland ¹⁰⁴National Centre for Nuclear Research, Swierk, Poland ¹⁰⁵Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland ¹⁰⁶Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal ¹⁰⁷Joint Institute for Nuclear Research, Dubna, Russia ¹⁰⁸Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia ¹⁰⁹Institute for Nuclear Research, Moscow, Russia ¹¹⁰Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC 'Kurchatov Institute', Moscow, Russia ¹¹¹Moscow Institute of Physics and Technology, Moscow, Russia ¹¹²National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia ¹¹³P.N. Lebedev Physical Institute, Moscow, Russia ¹¹⁴Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ¹⁵Novosibirsk State University (NSU), Novosibirsk, Russia ¹¹⁶Institute for High Energy Physics of National Research Centre 'Kurchatov Institute', Protvino, Russia ¹⁷National Research Tomsk Polytechnic University, Tomsk, Russia ¹¹⁸Tomsk State University, Tomsk, Russia ¹¹⁹University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences ¹²⁰Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain ¹²¹Universidad Autónoma de Madrid, Madrid, Spain ¹²²Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain ¹²³Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain ¹²⁴University of Colombo, Colombo, Sri Lanka ¹²⁵University of Ruhuna, Department of Physics, Matara, Sri Lanka ¹²⁶CERN, European Organization for Nuclear Research, Geneva, Switzerland

¹²⁷Paul Scherrer Institut, Villigen, Switzerland ¹²⁸ETH Zurich—Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland ²⁹Universität Zürich, Zurich, Switzerland ¹³⁰National Central University, Chung-Li, Taiwan ¹³¹National Taiwan University (NTU), Taipei, Taiwan ¹³²Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand ¹³³Cukurova University, Physics Department, Science and Art Faculty, Adana, Turkey ¹³⁴Middle East Technical University, Physics Department, Ankara, Turkey ¹³⁵Bogazici University, Istanbul, Turkey ¹³⁶Istanbul Technical University, Istanbul, Turkey ¹³⁷Istanbul University, Istanbul, Turkey ¹³⁸Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine ¹³⁹National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine ¹⁴⁰University of Bristol, Bristol, United Kingdom ¹⁴¹Rutherford Appleton Laboratory, Didcot, United Kingdom ¹⁴²Imperial College, London, United Kingdom ¹⁴³Brunel University, Uxbridge, United Kingdom ¹⁴⁴Baylor University, Waco, Texas, USA ¹⁴⁵Catholic University of America, Washington, DC, USA ¹⁴⁶The University of Alabama, Tuscaloosa, Alabama, USA ¹⁴⁷Boston University, Boston, Massachusetts, USA ¹⁴⁸Brown University, Providence, Rhode Island, USA ¹⁴⁹University of California, Davis, Davis, California, USA ¹⁵⁰University of California, Los Angeles, California, USA ¹⁵¹University of California, Riverside, Riverside, California, USA ¹⁵²University of California, San Diego, La Jolla, California, USA ¹⁵³University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA ⁵⁴California Institute of Technology, Pasadena, California, USA ¹⁵⁵Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ¹⁵⁶University of Colorado Boulder, Boulder, Colorado, USA ¹⁵⁷Cornell University, Ithaca, New York, USA ¹⁵⁸Fermi National Accelerator Laboratory, Batavia, Illinois, USA ¹⁵⁹University of Florida, Gainesville, Florida, USA ¹⁶⁰Florida International University, Miami, Florida, USA ¹⁶¹Florida State University, Tallahassee, Florida, USA ¹⁶²Florida Institute of Technology, Melbourne, Florida, USA ¹⁶³University of Illinois at Chicago (UIC), Chicago, Illinois, USA ¹⁶⁴The University of Iowa, Iowa City, Iowa, USA ¹⁶⁵Johns Hopkins University, Baltimore, Maryland, USA ¹⁶⁶The University of Kansas, Lawrence, Kansas, USA ¹⁶⁷Kansas State University, Manhattan, Kansas, USA ¹⁶⁸Lawrence Livermore National Laboratory, Livermore, California, USA ¹⁶⁹University of Maryland, College Park, Maryland, USA ¹⁷⁰Massachusetts Institute of Technology, Cambridge, Massachusetts, USA ⁷¹University of Minnesota, Minneapolis, Minnesota, USA ¹⁷²University of Mississippi, Oxford, Mississippi, USA ¹⁷³University of Nebraska-Lincoln, Lincoln, Nebraska, USA ¹⁷⁴State University of New York at Buffalo, Buffalo, New York, USA ¹⁵Northeastern University, Boston, Massachusetts, USA ¹⁷⁶Northwestern University, Evanston, Illinois, USA ¹⁷⁷University of Notre Dame, Notre Dame, Indiana, USA ¹⁷⁸The Ohio State University, Columbus, Ohio, USA ¹⁷⁹Princeton University, Princeton, New Jersey, USA ¹⁸⁰University of Puerto Rico, Mayaguez, Puerto Rico, USA ¹⁸¹Purdue University, West Lafayette, Indiana, USA ¹⁸²Purdue University Northwest, Hammond, Indiana, USA ¹⁸³Rice University, Houston, Texas, USA ¹⁸⁴University of Rochester, Rochester, New York, USA

¹⁸⁵Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA ¹⁸⁶University of Tennessee, Knoxville, Tennessee, USA ¹⁸⁷Texas A&M University, College Station, Texas, USA
 ¹⁸⁸Texas Tech University, Lubbock, Texas, USA
 ¹⁸⁹Vanderbilt University, Nashville, Tennessee, USA
 ¹⁹⁰University of Virginia, Charlottesville, Virginia, USA
 ¹⁹¹Wayne State University, Detroit, Michigan, USA
 ¹⁹²University of Wisconsin—Madison, Madison, Wisconsin, USA

^aDeceased.

- ^bAlso at Vienna University of Technology, Vienna, Austria.
- ^cAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
- ^dAlso at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
- ^eAlso at Universidade Estadual de Campinas, Campinas, Brazil.
- ^fAlso at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
- ^gAlso at UFMS.
- ^hAlso at Universidade Federal de Pelotas, Pelotas, Brazil.
- ⁱAlso at University of Chinese Academy of Sciences.
- ^JAlso at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC 'Kurchatov Institute', Moscow, Russia.
- ^kAlso at Joint Institute for Nuclear Research, Dubna, Russia.
- ¹Also at British University in Egypt, Cairo, Egypt.
- ^mAlso at Suez University, Suez, Egypt.
- ⁿAlso at Ain Shams University, Cairo, Egypt.
- ^oAlso at Purdue University, West Lafayette, Indiana, USA.
- ^pAlso at Université de Haute Alsace, Mulhouse, France.
- ^qAlso at Tbilisi State University, Tbilisi, Georgia.
- ^rAlso at Erzincan Binali Yildirim University, Erzincan, Turkey.
- ^sAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
- ^tAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
- ^uAlso at University of Hamburg, Hamburg, Germany.
- ^vAlso at Brandenburg University of Technology, Cottbus, Germany.
- ^wAlso at Institute of Physics, University of Debrecen, Debrecen, Hungary.
- ^xAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
- ^yAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
- ^zAlso at IIT Bhubaneswar, Bhubaneswar, India.
- ^{aa}Also at Institute of Physics, Bhubaneswar, India.
- ^{bb}Also at G.H.G. Khalsa College, Punjab, India.
- ^{cc}Also at Shoolini University, Solan, India.
- ^{dd}Also at University of Hyderabad, Hyderabad, India.
- ee Also at University of Visva-Bharati, Santiniketan, India.
- ^{ff}Also at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy.
- ^{gg}Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development.
- ^{hh}Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia.
- ⁱⁱAlso at Riga Technical University, Riga, Latvia.
- ^{jj}Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
- ^{kk}Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
- ¹¹Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
- ^{mm}Also at Institute for Nuclear Research, Moscow, Russia.
- ⁿⁿAlso at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia.
- ⁰⁰Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
- ^{pp}Also at University of Florida, Gainesville, Florida, USA.
- ^{qq}Also at Imperial College, London, United Kingdom.
- ^{rr}Also at P.N. Lebedev Physical Institute, Moscow, Russia.
- ^{ss}Also at California Institute of Technology, Pasadena, California, USA.
- ^{tt}Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
- ^{uu}Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
- ^{vv}Also at Università degli Studi di Siena, Siena, Italy.
- ^{ww}Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.
- ^{xx}Also at National and Kapodistrian University of Athens, Athens, Greece.
- ^{yy}Also at Universität Zürich, Zurich, Switzerland.
- ^{zz}Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
- ^{aaa}Also at Burdur Mehmet Akif Ersoy University.

- bbb Also at Şırnak University.
- ^{ccc}Also at Department of Physics, Tsinghua University, Beijing, China.
- ^{ddd}Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey.
- eee Also at Beykent University, Istanbul, Turkey.
- ^{fff}Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies).
- ^{ggg}Also at Mersin University, Mersin, Turkey.
- ^{hhh}Also at Piri Reis University, Istanbul, Turkey.
- ⁱⁱⁱAlso at Ozyegin University, Istanbul, Turkey.
- ⁱⁱⁱAlso at Izmir Institute of Technology, Izmir, Turkey.
- ^{kkk} Also at Bozok Universitetesi Rektörlügü.
- ¹¹¹Also at Marmara University, Istanbul, Turkey.
- mmm Also at Milli Savunma University.
- ⁿⁿⁿAlso at Kafkas University, Kars, Turkey.
- ⁰⁰⁰Also at Istanbul Bilgi University, Istanbul, Turkey.
- pppAlso at Hacettepe University, Ankara, Turkey.
- ^{qqq}Also at Adiyaman University, Adiyaman, Turkey.
- ^{rrr}Also at Vrije Universiteit Brussel, Brussel, Belgium.
- ^{sss}Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
- ^{ttt}Also at IPPP Durham University.
- ^{uuu}Also at Monash University, Faculty of Science, Clayton, Australia.
- ^{vvv}Also at Bethel University, St. Paul, Minneapolis, USA.
- wwwAlso at Karamanoğlu Mehmetbey University, Karaman, Turkey.
- ^{xxx}Also at Bingol University, Bingol, Turkey.
- ^{yyy}Also at Georgian Technical University, Tbilisi, Georgia.
- ^{ZZZ}Also at Sinop University, Sinop, Turkey.
- ^{aaaa}Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
- bbbb Also at Nanjing Normal University Department of Physics.
- cccc Also at Texas A&M University at Qatar, Doha, Qatar.
- dddd Also at Kyungpook National University, Daegu, Korea.