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Abstract

Motivated by a real-world application, we consider an optimization problem that
involves production, distribution and warehouse logistics. We present a mathematical
formulation of the problem based on a Mixed Integer Linear Programming (MILP)
model, and a metaheuristic algorithm which we use to compute approximate solutions.
We test the proposed algorithms on two real-world test-cases and on a large set of
realistic problems. The results show that, in all cases, the algorithm is very fast and
produces solutions whose quality is very close to those that can be obtained by running
a state-of-the-art commercial solver on the mathematical model for a very long time.

Key words: production planning, Mixed Integer Linear Programming, heuristic algo-
rithms, lot-sizing, multiple plants, computational experiments.

1. Introduction

Production and distribution are two critical activities in supply chain management. They
consist on the coordinate set of actions allowing the match between industries and their mar-
kets, vendors and buyers, suppliers and purchasers. In the last years, optimisation modelling
of integrated production and distribution plans has raised significant interest among both
researchers and practitioners, see e.g., Fahimnia et al. [1]. With the increase of competition
and globalization, their role shifted from operative to tactical and from a separate local
vision to an integrated management of these functions. Nowadays, competition is among
collaborative interconnected and optimized supply chain networks and the integration of
location decisions with other decisions, such as the structure of the supply chain network,
the sustainability, the reverse logistics, delivery time and operating costs, is relevant to the
design of a supply chain network (see Melo et al. [2], and Bortolini et al. [3]). Each of them
links, organically, companies to their markets and strategic suppliers.

Following this trend, production and distribution planning rises as an integrated deci-
sional science to provide strategies and quantitative methods to fulfill the market demand,
answering the research and industrial question “What to produce and deliver, when and
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how?”. Behind such question, the following multiple dimensions of production and distribu-
tion planning emerge:

• dynamic dimension, i.e., time drives the decisions of producing and distributing ac-
cording to the market due dates and order delivery time;

• system dimension, i.e., the supply chain configuration (layers, entities, routes, etc.)
constraints and guides the decisions;

• goal dimension, i.e., the goals to pursue as efficiency, cost, service level, green and
social aspects, etc;

• stakeholder dimension, i.e., the decision-making process is tailored on the interests of
the supply chain actors.

The convergence of the introduced multiple dimensions is hard, making production and
distribution planning a wide, complex and dynamic problem to solve. The scientific literature
agrees to adopt an integrated and stepwise approach following the impact of decisions and
the horizon of the plan. Strategic, tactical and operative clusters of decisions are thus
introduced (see Maravelias and Sung[4]). The strategic level focuses on long-term decisions
over a multiple-year time horizon. At this level, the key elements of the supply chain system
are fixed, e.g., overall structure, plant capacity, shipping modes, etc. Generally, the temporal
dimension is neglected, and a single large time window is used. The inclusion of the temporal
aspect of supply chains is the focus of the tactical level, where a shorter planning time horizon,
e.g., one or two semesters, is typically considered. At this level, decisions on capacity and
production allocation among plants, network flows, shipping and storage modes are taken
from an integrated perspective minimizing costs and optimizing the supply chain service level.
Finally, daily scheduling and routing activities are among the most important decisions of
the operative level.

This paper, driven by an industrial application, aims at contributing to the tactical cluster
of decisions. The goal is to provide an analytical model and a solution approach to support
planners for an integrated production and transportation system within a multi-product,
multi-plant and multi-period context. An aggregated cost function includes relevant drivers
affecting the product total cost of ownership, while production and distribution constraints
link the model to the industrial practice. We present a solution approach based on heuristic
and metaheuristic optimization algorithms. To assess its effectivity and capability to guar-
antee the expected level of performance (in terms of computing time), we computationally
test the approach to full-scale real-world instances from industry and to a large benchmark
of realistic instances.

The paper is organized as follows. In Section 2 we review the relevant literature on pro-
duction and distribution planning, both in terms of supply chain management and for what
concerns optimization algorithms. Section 3 gives a formal definition of the problem at hand
and introduces a mathematical formulation based on a Mixed Integer Linear Programming
(MILP) model. In Section 4 we present a fast heuristic algorithm based on a greedy ap-
proach. In Section 5 we propose a metaheuristic approach based on the ruin-and-recreate
paradigm. Finally, in Section 6 we give the outcome of computational experiments for the
proposed algorithms on two real-world test-cases and on a large set of realistic instances that
are derived from the real ones. Conclusions are drawn in Section 7.
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2. Literature review

According to the multiple dimensions of production and distribution planning, the recent
literature presents a major set of contributions on models, approaches and applications. In
this section we first review a large body of literature in order to identify the relevant patterns
in problem statement. Then, we move to solution approaches and we focus on a more specific
class of problems, whose underlying structure generalizes the classical lot-sizing problem.

Concerning the problem statement, relevant patterns to tailor production and distri-
bution planning problem deal with (i) the physical entities included in the problem, (ii)
the drivers of cost computing the planning performances and (iii) the operative constraints
making the problem relevant and linked to the industrial practice.

For what concerns the first point (entity dimensions), most papers focus on the following
aspects:

• the mix to produce and distribute, i.e., single- vs. multi-product;

• the problem temporal resolution, i.e., single- vs. multi-period;

• the supply chain depth in terms of number of levels and stages, i.e., from the two level
producer-customer direct distribution to long indirect delivery channels with one or
two intermediates;

• the feasible shipping modes to distribute products.

The second pattern (cost drivers) explores the costs rising during production and distri-
bution activities. Though large differences exist among applications and industrial sectors,
the most common drivers are:

• the direct production cost for manufacturing, assembling, inspection, packing and in-
bound handling;

• the shipping & handling cost for outbound logistics and delivery of products along the
supply chain;

• the inventory and storage cost for stocking products, even using 3PL service providers;

• the opportunity cost, i.e. missing revenues, due to lost orders and unmet demand;

• the setup cost to reconfigure the production plants before each new batch.

Finally, about the third pattern (constraints), elements considered by the literature and
making the problem consistent and realistic deal with:

• the inclusion of plant production capacity, up- and down-times and resource capacity
constraints;

• the inclusion of local storage capacity at each level of the network;

• the possibility of 3P storage to manage peaks and seasonality effects;

• the inclusion of the effects of stock-outs and unmet demand;

• the inclusion of minimum lot sizes and batch policy management.
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2007 [5] M 3 S X X X X X

2008 [6] M 4 M X X X X X X

2012 [7] M 3 S X X X X

2012 [8] M 4 M X X X X X X

2016 [9] S 2 M X X X X X X

2016 [10] M 3 M X

2017 [11] M 3 S X X X X X X

2017 [12] S 2 S X X

2017 [13] S 3 M X X X X X X X X

2017 [14] M 2 S X X X X X X X X

2018 [15] M 4 M X X X X X

2018 [3] M 4 M X X X X X

2018 [16] M 4 M X X X X

2018 [17] S 3 S X X X X

2018 [18] S 4 S X X X X X X X

2018 [19] S 4 S X X X X X X

2019 [20] M 3 S X X X

2019 [21] M 4 S X X X X X

2019 [22] M 2 S X X X X X

2019 [23] S 3 S X X X X X X

2019 [24] M 4 S X X X

Table 1: Literature and classification of relevant recent contributions about production and
distribution planning problems.
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Table 1 revises the literature and classifies a major set of recent contributions according
to the introduced patterns and relevant elements. The first two columns of the table report
the year and reference of each contribution, respectively. The remaining columns refer to
the characteristic elements of each contribution, classified according to the three above men-
tioned patterns, while each row gives the specific characteristics of the problem addressed in
each contribution. To focus the analysis and for the sake of conciseness, only multi-period
problems are considered. The table shows that a range of SC levels between two and four
to distribute one or multiple products with one or more shipping modes. Concerning costs,
despite some drivers are not negligible, e.g. production and distribution costs, others are
considered rarely, e.g. opportunity and setup costs. Finally, the effects of stock-outs and
batch policies are in a minor set of contributions. Though all aspects that are present in our
problem have been addressed in the literature, to the best of our knowledge, there is no con-
tribution from the literature in which all elements of patterns (ii) and (iii) in a multi-product,
multi-mode and multi-level environment have been addressed.

Concerning solution strategies and algorithmic contributions, we identified the lot-sizing
problem as the core problem of our topic. Given the amount of an independent demand, the
lot-sizing is the problem of deciding which equipment must be used and in which period the
production must be performed in order to satisfy the demand, while minimizing the total
required cost. It has been addressed for the first time in 1913 in a seminal paper by Harris
[25], who introduced the definition of Economic Order Quantity (EOQ). The vastness of
the possible applications of this problem results evident from its definition; consequently,
the number of possible variants is also huge. For these reasons, understanding which is the
specific version of the lot-sizing problem that one is dealing with is a crucial task that is, at
the same time, not straightforward. The tertiary study proposed by Glock et al. [26] results
very useful for a first orientation. According to the definitions of this tertiary study, our case
can be defined as an extension of the multi-item Capacitated Lot Sizing Problem (CLSP).
This problem considers a discretized planning horizon and aims to determine the amount
and production level in each period. Typically, a finite capacity bounds the production
level in each period, and the problem involves production costs, set up costs, and holding
costs. Production costs and holding costs are linear functions of the production level and of
the number of product that are stored, respectively; on the contrary, set up costs are fixed
cost that occur only when a machine starts or switches the production in some period. In
particular, the problem we consider corresponds to a dynamic (demand is not constant) and
deterministic (demand is known) variant of the basic probelm. The work of Karimi et al.
[27] is indicated as one of the main reviews about this topic. The single-item version of the
problem has been shown to be NP-hard by Florian et al. [28], even for the special case in
which the demand is constant in every period and there are no holding costs; indeed, in
this case the problem can be reduced to a feasibility checking for a 0-1 equality constrained
knapsack problem. Furthermore, the multi-items version of the problem is known to be
strongly NP-hard, as shown by Chen and Thizy [29]; in this case, the problem is reduced in
pseudo-polynomial time, to the well-known Three Partition Problem.

Due to the complexity of the problem, there are few attempts in the literature that try
to make use of an exact algorithm: for example, Armentano et val. [30] used a branch-and-
bound procedure to solve the multi-item, single-level CLSP with setup times reformulated
as a minimum cost network flow problem. On the other hand, there are many contributions
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based on heuristic approaches. According to [27], these approaches can classified in two
different categories: common-sense heuristics and mathematical programming-based heuris-
tics. The optimization algorithm that will be introduced in the next sections belongs to the
former class. Using the terminology of [27], it includes both a period-by-period constructive
heuristic (see Section 4), that builds a feasible solution by considering one demand at a time
starting from the first period, and an improvement heuristic (see Section 5), that improves a
given feasible solution. As for the works that also adopt this kind of procedures, in addition
to the papers cited in [27], we also indicate the more recent studies of Li et al. [31] and
of Toscano et al. [32]. As to mathematical programming-based heuristics, we mention the
algorithm introduced by Tempelmeier [33]; this approach is based on a heuristic column
generation procedure combined with a heuristic procedure, and is used to solve a dynamic
multi-item capacitated lot-sizing problem under uncertain demands. As already mentioned,
our problem can be defined as an extension of the CLSP. Compared with the basic version of
the problem, several additional aspects appear in our application, namely: distribution costs
(both from the company plants to the customers and from the company plants to external
warehouses), setup times, stockout costs, availability of different capacity configurations,
and minimum lot size. Most of these aspects appear separately in many papers proposing
solution approaches but, to the best of our knowledge, there are no previous studies on prob-
lems that simultaneously involve all these aspects. The distribution costs were considered
by Chandra and Fisher [34], who showed that considering the production and the distribu-
tion problems in an integrated system leads to better results than solving the two problems
separately. Haq et al. [35] presented a case study where they formulated an integrated
production-inventory-distribution model; similar integrated models were also proposed by
Bhutta et al. [36] and by Jolayemi and Olorunniwo [37]. In all these cases the authors only
provide a mathematical model to describe the problem at hand, without introducing any so-
lution approach. Rao [38] introduced the capacity constraint for a single-item environment
and solved the resulting problem using a dynamic programming algorithm. Rajagopalan
and Swaminathan [39] considered the capacity constraint in a multiple item setting; for this
problem, a Lagrangian relaxation procedure and two heuristic algorithms were proposed.
Setup times were addressed by Jans and Degraeve [40] who proposed a branch-and-price
algorithm, and by Hindi et al. [41], who proposed a smoothing heuristic procedure based
on the Lagrangian relaxation of the problem. We also mention the dynamic multi-level ca-
pacitated lot sizing problem addressed by Chen [42], where the setup state of a resource
may be used in consecutive time periods (setup carryover). The problem is solved using a
variant of the fix-and-optimize approach introduced by Helber and Sahling [43], dividing the
problem in a number of smaller subproblems that are iteratively solved in a heuristic way.
Aksen et al. [44] addressed the lot-sizing problem with stockouts but where a single product
is present. The authors analyzed several structural properties of optimal solutions of the
model and, on the basis of these properties, derived a forward recursive dynamic program-
ming algorithm. Finally, different problems including the minimum lot size constraint were
addressed using optimization algorithms. Constantino [45] studied the problem from the
polyhedral viewpoint, while Mercé and Fontan [46] solved the problem using a MILP-based
heuristic.
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3. Problem Statement

We consider the problem of a company that faces a multiperiod demand for the assortment
of different products. The demand of each period originates from a set of customers with a
geographic distribution, and the products can be obtained from different plants, from which
they are shipped to the customers. Plants are equipped with production lines, each one with
the capability to produce, in each period, a subset of the products after a suited setup; for
each product, there is a minimum production quantity that can be considered. Production
consumes resources that can be available at company, plant or line level. Production lines
work according to shift configurations, that define the number of production hours during
a period and that can be changed only at the beginning of some periods. Each plant is
associated with an internal warehouse, where the production of a period can be stored before
it is shipped to a customer at a later period. Each plant can also rent additional space from
external warehouses, if needed. The company wants to decide, for each period, the shift
configuration of each line and the production level of each product, in order to minimize the
total cost, determined by configuration and setup costs for the lines, production, storage and
shipment costs for the demands that are satisfied, and penalty costs for the demands that
are not satisfied. A formal definition of the problem and a mathematical model are given in
what follows.

3.1 Sets and variables

In our formulation we consider the following sets

• K = {1, . . . , K}: set of products;

• J = {1, . . . , J}: set of customers;

• I = {1, . . . , I}: set of plant;

• M = {1, . . . ,M}: set of lines. Each line m is associated with a specific plant i(m) ∈ I,
that is, for each plant i ∈ I we define the set of associated lines as M(i). Compatibility
between products and lines is expressed defining, for each product k ∈ K, a set C(k)
of lines that can produce k;

• H(m): set of configurations for each line m ∈M. Each shift configuration for a line has
associated a cost and determines the capacity of the line. Without loss of generality,
we assume that a larger cost corresponds to a larger capacity, and that configurations
are sorted by increasing cost;

• F = {1, . . . , f}: set of product families; each product k belongs to one family fk ∈ F ;

• T = {1, . . . , T}: set of time intervals. Set T is partitioned into π subsets T1, T2, . . . , Tπ,
that are called multiperiods. Each multiperiod includes all the time intervals between
two consecutive periods in which line configurations can be changed;

• RP i = {1, . . . , RPi}: set of resources for plant i;
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and decision variables specified as follows

• xkmt = number of products k obtained on line m during period t (k ∈ K,m ∈ C(k), t ∈
T ). These integer variables encode the main decision for the company, that is defining
about production over time periods and lines;

• zkjt = unsatisfied demand for product k at period t for customer j (k ∈ K, j ∈ J , t ∈
T ). These integer variables define the amount of customers demand that the company
does not satisfy;

• fkjit = amount of product k shipped from plant i to customer j at period t (k ∈ K, j ∈
J , i ∈ I, t ∈ T ). These integer variables define the way in which customers demand is
satisfied by the company;

• ymhv =

{
1 if line m operates in configuration h during multiperiod v
0 otherwise

(m ∈M, h ∈ H(m), v = 1, . . . , π).
These binary variables define the shift configuration (working hours) of a line during
each multiperiod v.

• wkit = amount of product k stored in the internal warehouse associated with plant i
during period t (k ∈ K, i ∈ I, t ∈ T );

• skit = amount of product k stored in the external warehouse associated with plant i
during period t; (k ∈ K, i ∈ I, t ∈ T );

• φkit = amount of product k shipped from plant i to the associated external warehouse
during period t (k ∈ K, i ∈ I, t ∈ T );

• αmft =

{
1 if line m processes at least one product belonging to family f during period t
0 otherwise

(m ∈M, f ∈ F , t ∈ T ).
These binary variables are used to denote the product families that are processed on
a line during a specific period, and to allocate the associated setup costs.

3.2 Cost function

The total cost to be minimized takes into account different components: the costs for op-
erating the lines, the production and operational costs for the satisfied demands, and the
opportunity costs (penalties) for the demands that are not satisfied. In particular, the overall
cost is defined as the sum of the following terms

CPR is the direct production cost, defined as CPR =
∑

k∈K
∑

m∈M
∑

t∈T c
PR
kmxkmt, where

cPRkm is the cost for producing a unit of product k on line m;

CNS is the opportunity cost for the unsatisfied demand, defined as CNS =
∑

k∈K
∑

j∈J
∑

t∈T c
NS
kt zkjt,

where cNSkt is the opportunity cost for the unsatisfied demand of a unit of product k at
period t;
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CTC is the shipping cost to the customers, defined as CTC =
∑

k∈K
∑

j∈J
∑

i∈I
∑

t∈T c
TC
kji fkjit

where cTCkji is the shipping cost for a unit of product k to customer j from plant i or
from an internal/external warehouse associated with the plant;

CDC is the configuration cost for the product lines, defined as
CDC =

∑
m∈M

∑
h∈H(m)

∑π
v=1 |Tv| cDCmh ymhv, where cDCmh is the shift cost for line m in

configuration h;

CSI is the storage cost in the internal warehouses, defined as CSI =
∑

k∈K
∑

i∈I
∑

t∈T c
SI
ki wkit,

where cSIki is the storage cost for a unit of product k in the internal warehouses at plant
i;

CSE is the storage cost in the external warehouses, defined as CSE =
∑

k∈K
∑

i∈I
∑

t∈T c
SE
ki wkit,

where cSEki is the storage cost for a unit of product k in the external warehouses at plant
i;

CSU is the setup cost, defined as CSU =
∑

m∈M
∑

f∈F
∑

t∈T c
SU
m αmft, where cSUm is the cost

for a setup on line m.

CTE is the shipping cost to the external warehouses, defined as CTE =
∑

k∈K
∑

i∈I
∑

t∈T c
TE
ki φkit,

where cTEki is the shipping cost for a unit of product k to the external warehouses at
plant i.

3.3 Constraints

The production schedule is subject to a number of different constraints, that we present
grouped according to their meaning and structure.

Demand ∑
i∈I

fkjit + zkjt = dkjt k ∈ K, j ∈ J , t ∈ T (1)

These constraints impose that the demand is either satisfied by shipping the required
amount of products from some plant, or it is canceled and computed as missed demand. The
demand is expressed in terms of an order dkjt for a product k to be delivered at customer
j at time period t. Observe that we allow solutions where a customer is served by shipping
products from different plants.

Lot-sizing balancing constraints∑
m∈M(i)

xkmt + ski,t−1 + wki,t−1 =
∑
j∈J

fkjit + skit + wkit k ∈ K, i ∈ I, t ∈ T (2)

∑
k∈K

wkit ≤ Wi i ∈ I, t ∈ T (3)

These constraints generalize the classical lot-sizing formulation to the case of multiple prod-
ucts, plants and warehouses. Constraints (2) impose, for each product, plant, and period,

9



a balance between the availability of the product, given by the production and the stocked
quantities, and the stocked quantities at the end of the period plus the quantity that is
shipped to customers. Constraints (3) define, for each plant and period, the available ca-
pacity Wi of the internal warehouse associated with the plant. Note that there is no similar
constraint for external warehouses, as we assume they have unbounded capacities.

Resources∑
k∈K

τkm xkmt +
∑
f∈F

tSUm αmft ≤
∑

h∈H(m)

Qmh ymhv m ∈M, v = 1, . . . , π, t ∈ Tv (4)

∑
h∈H(m)

ymhv = 1 m ∈M, v = 1, . . . , π (5)

∑
k∈K

∑
m∈M(i)

bPkmr xkmt ≤ BP
irt i ∈ I, r ∈ RP i, t ∈ T (6)

These constraints limit the use of available lines and resources according to their avail-
abilities.

Constraints (4) impose an upper bound on the maximum working time for each line m
in each period t. Indeed, the working time of the line is determined by the production times
τkm for each product k obtained on the line plus the total setup time, which is equal to
tSUm for each different family that is produced. The right-hand-side gives the availability of
the line, where each coefficients Qmh represents the available working time for line m and
shift configuration h. These constraints are paired with constraints (5) that impose to select
exactly one shift configuration for each line and multiperiod. Finally, constraints (6) describe
the consumption of resources available at plant level and impose, for each plant, resource and
period, that the amount of resource used cannot exceed the availability. In these constraints,
each bPkmr is the amount of resource r used by line m to produce one product of type k, while
BP
irt denotes the availability of resource r at plant i during time period t. In a similar way,

it is possible to express the constraints (if any) that regulate the consumptions of resources
that are available at line or company level.

Setup, minimum production∑
k∈K:fk=f

xkmt ≤ BIGM αmft m ∈M, t ∈ T , f ∈ F (7)

(xkmt = 0) ∨ (xkmt ≥ ρkmt) k ∈ K,m ∈M, t ∈ T (8)

Constraints (7) model the setup that are incurred for each additional line, period and
product family. In these constraints, BIGM is a large enough constant that is used to model
the logical implication forcing an α variable to take value 1 in case some products belonging
to a certain family are produced. Observe that we consider a planning problem, thus we do
not model the specific setup time and cost as a function of the production sequence, and
adopt instead average values for setup times and costs. Logical constraints (8) impose that,
for each product, line, and period, either there is at least a minimum production level ρkmt
of the product, or there is no production at all for that product.
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Shipment to external warehouses

φkit ≥ skit − ski,t−1 k ∈ K, i ∈ I, t ∈ T (9)

Finally, constraints (9) model the flow of products to the external warehouses, for each
product, plant and period. In particular, a positive value for a φ variable corresponds to
some increase in the amount of products that stocked in an external warehouse.

Mathematical formulation Finally the overall Mixed Integer Formulation reads

min CPR + CNS + CDC + CSI + CSE + CTE + CTC + CSU (10)

(1)− (9)

fkjit ≥ 0 k ∈ K, j ∈ J , i ∈ I, t ∈ T (11)

zkjt ≥ 0 k ∈ K, j ∈ J , t ∈ T (12)

xkmt ≥ 0 k ∈ K,m ∈ C(k), t ∈ T (13)

wkit ≥ 0 k ∈ K, i ∈ I, t ∈ T (14)

skit ≥ 0 k ∈ K, i ∈ I, t ∈ T (15)

ymhv ∈ {0, 1} m ∈M,h ∈ H(i), v = 1, . . . , π(16)

αmft ∈ {0, 1} m ∈M, f ∈ F , t ∈ T (17)

φkit ≥ 0 k ∈ K, i ∈ I, t ∈ T (18)

where the objective function (10) is the sum of the costs, all variables associated with physical
quantities are defined as continuous nonnegative, and activation variables associated with
line configurations and setups are binary.

The model has a polynomial number of variables and constraints. Note that constraints
(8) are not linear, in that they model a disjunctive argument. However, it is well known
that they can be rewritten in an equivalent form that is linear with respect to the decision
variables. This requires the addition to the model of binary variables and BIGM coefficients,
possibly leading to formulations that have a weak linear programming relaxation.

4. A constructive algorithm

In this section we present an iterative constructive heuristic that is used to produce a feasible
solution for the problem; possibly, this solution may be used as a starting point for the
metaheuristic algorithm that we describe in the next section.

Our algorithm has a primal nature, in that it starts with a feasible solution and maintains
feasibility at each iteration. Initially, no production takes place and each line operates in each
multiperiod according with the configuration having minimum cost. Then, the algorithm
considers one demand at a time, and determines the best policy for the current demand,
according to a greedy strategy. For the current demand, the algorithm determines the
“best” line and time period in which production must take place, the amount of products
to be produced, and updates the production schedule accordingly. In case some change of
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configuration is required, the new configuration is maintained for all time periods of the
multiperiod.

Remind that each demand has associated a product, a customer, and a time period.
Demands are initially sorted by increasing time period, breaking ties according to the type
of product and by the customer. Let k, j and t denote the product, the customer and
the period, respectively, associated with the current demand. Then, we consider all lines
m ∈ C(k) that are compatible with products of type k and all time periods τ ≤ t. For each
pair (m, τ) we determine the associated production level, i.e., the maximum amount e(kmτ)
of product k that can be produced for satisfying the current order. The total cost for pair
(m, τ) is determined by

• the direct production cost;

• the shipping cost to the customer;

• possibly, the setup cost;

• possibly, the cost for changing configuration;

• possibly, the storage cost and the shipping cost to external warehouses.

The first two costs are related with production and shipping of the products, respectively.
The setup cost is incurred only in case no product belonging to familty fk is scheduled on line
m in time period τ . As to the configuration cost, we take into account only the incremental
cost that is incurred when the configuration for line m has to be increased to the next step
thus allowing additional capacity. In the score computation, only a fraction of this additional
cost is taken into account, the value of the fraction being a parameter that will be denoted
by Λ and will be described later. Finally, storage costs are considered in case τ < t, and
may be associated with costs for shipping products to an external warehouse in case not all
products can be stored in the internal warehouse in all the time interval [τ, t].

Due to the imposed constraints, e.g., capacity of the line or minimum amount of produc-
tion on the line, the production level varies for each pair (m, τ). Thus, to have a meaningful
comparison, we score each pair (m, τ) according to the cost per unit of product, i.e., we
divide the total cost by the production level e(kmτ), and select the pair (m, t) with mini-
mum score. If no line can produce product k in any time period τ ≤ t, or the cost per unit
of product is larger than the cost cost related to the out-of-stock of product k, the current
demand is refused.

In case e(kmt) < dkjt we define a new (dummy) order with demand d′kjt = dkjt − e(kmt)
and iterate the process. Note that the requirement on the minimum production (constraints
(8)) may impose a production that is strictly larger than dkjt. In this case, some units of
product have to be stored in the warehouse, and used in some subsequent time period (the
associated storage costs being not taken into account in this phase).

The pseudo-code of the algorithm is given below:

12



Algorithm Greedy:

sort the demands by nondecreasing time interval, breaking ties by product and by customer;

for each demand do

determine the “best” line m, period t and production level e(kmt);

produce e(kmt) units of product k on line m in period t;

possibly update the configuration of line m in the multiperiod containing t;

if e(kmt) < dkjt then iterate with a new demand d′kjt = dkjt − e(kmt);
if e(kmt) > dkjt then store e(kmt)− dkjt units of product k in the warehouse associated

with the plant i(m);

end for

5. A metaheuristic approach

Preliminary computational experiments showed that the constructive heuristic of Section
4 is very fast but may produce solutions in which the use of some lines is not fully opti-
mized. Thus, we developed a metaheuristic approach that is based on the ruin-and-recreate
paradigm (see, Schrimpf et al. [47]). The idea of a ruin-and-recreate algorithm is to de-
termine feasible solutions by (i) destroying a considerable part of a feasible solution (ruin
phase), and (ii) applying a rebuilding procedure (recreate phase) to complete the solution.

In our algorithm, the initial solution is produced by the constructive heuristic, and three
different procedures are used to destroy the solution:

1. remove all production associated with a given line in a given multiperiod;

2. remove all production associated with a given product in all time periods;

3. remove all production associated with a given line in all time periods.

The first ruin procedure is used to repair situations in which the configuration of the line
is not optimized in the first periods of a multiperiod. Typically this happens when a change
of configuration is incurred at some intermediate period of the multiperiod, preventing all
previous time intervals to take advantage of the increased capacity of the line. The procedure
considers one pair (line m, multiperiod v) at a time, removes all the production of line m in
multiperiod v, and repairs the solution through multiple runs of the constructive procedure of
Section 4. In particular, at each run we guess the configuration for the line m in multiperiod
v, and try to reschedule all the demands that are unsatisfied (either unscheduled in the initial
solution or removed by the ruin phase) without changing configuration of the lines. The best
solution found is used to replace the incumbent, in case it produces some improvement.

The second ruin procedure considers one product k at a time, removes the production of
product k from all lines and periods, and reschedules unsatisfied demands by applying again
the constructive heuristic (without changing the configuration of the lines).

Similarly, the third ruin procedure considers each line m at a time, removes all the
production on the current line, and reschedules unsatisfied demands using the constructive
heuristic (without changing the configuration of the lines).
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It should be noted that, in all cases, the repair phase is obtained running the constructive
procedure of Section 4 to a restricted problem in which the configuration of all lines in all
the multiperiods is fixed. For this reason, configuration costs are not taken into account in
this phase.

The pseudo-code of the metaheuristic algorithm is as follows:

Algorithm Ruin-and-Recreate:

determine an initial feasible solution using Algorithm Greedy;

repeat

for each line m and multiperiod v do

remove all production on line m during multiperiod v;

for each configuration h ∈ H(m):

set configuration h for line m in multiperiod v;

schedule unsatisfied demands without changing the configuration of the lines;

possibly update the incumbent;

end for

end for

for each product k do

remove all production of type k;

schedule unsatisfied demands without changing the configuration of the lines;

possibly update the store the incumbent;

end for

for each line m do

remove all production on line m;

schedule unsatisfied demands without changing the configuration of the lines;

possibly update the store the incumbent;

end for

until (stopping conditions)

In our implementation, the algorithm is halted after a maximum number IterNum of
iterations or when an iteration with no improvement is encountered.

6. Computational experiments

In this section we evaluate the computational performance of our approach on a set of
real and realistic instances derived from two industrial problems in the food and beverage
industry. The objective of our experiments is threefold:

• first, we want to tune the algorithm parameters and assess the performance of the two
steps of our approach, in terms of solution quality and computing time;
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• second, we want to compare the overall performance of our approach with the direct
solution of mathematical model (10)–(18) through a state-of-the-art MILP solver;

• and finally, we are interested in analyzing the structure of the obtained solutions for
the industrial problems in both the original case and under some realistic business
scenarios.

Real-world test-cases. We considered two real case studies, denoted as A and B in
the following, that describe real-world situations arising from the food industry. In these
instances the demand to be satisfied is specified in terms of orders, where an order is given
by an a request for an amount dkjt of product k by customer j at period t.

The first case study comes from a Food&Beverage company, operating mainly on the
Italian market. Demand is highly seasonal and influenced by climatic conditions during
hot summer seasons. The production process is based on high-productivity lines, possibly
requiring production stability because product changes heavily influence efficiency and scraps
(to bring the line to speed). In this application, shipping costs have a relevant economical
impact, mainly on the “less profitable” products, that are manufactured in 6 plants, located
in Italy and focused on the national market. Foreign markets are served only from the
main plant, where also the most profitable and complex products are produced. Indeed, this
plant has the largest production capacity, and is capable to manage the widest production
mix. In this industry, supply chain planning is currently organized into 2 different levels
of responsibility, namely corporate planning and plant planning, possibly yielding to some
inefficiency; the proposed approach allows an integrated solution of these two phases, and
may produce considerable savings.

Case B is a global food/bakery company. Demand is less seasonal than in the previous
case and is mainly influenced by the trends in lifestyle. The production process starts
with semi-finished items produced in batches, that are transformed and packaged in lines.
In this case, changeovers and setup operations considerably impact on manufacturing, as
specific cleaning procedures need to be carried out in the shop-floor to eliminate potential
allergenic contaminations. Despite operations are distributed into 9 different plants, focused
on specific finished products categories, some of the high-volume items can be manufactured
in alternative plants, to serve market demand in a more efficient way. Batch manufacturing of
the semi-finished items is centralized in a few facilities, and the products are then distributed
to the other manufacturing plants. In both cases, the planning managers have also to take
into account all the issues connected to product shelf-life.

Table 2 reports the main characteristics of the two test-cases, expressed in terms of
number of products (|K|), customers (|J |), plants (|I|), lines (|M|), different shift configu-

|K| |J | |I| |M| |H| |F| |T | |π| |O|

A 887 3 6 40 5 160 41 11 27,760

B 541 7 9 31 7 152 52 14 26,024

Table 2: Main characteristics of the real-world test-cases.
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rations (|H|), product families (|F|), time periods (|T |) and multiperiods (|π|). Finally, the
last column (|O|) gives the total number of orders that have to be satisfied.

Realistic instances. Starting from the two real-world test-cases, we produced an addi-
tional benchmark of 80 realistic instances. The realistic instances were obtained by a random
perturbation of the original input data. In particular, for each real-world test-case, we gen-
erated:

• 10 similar instances in which the demand of each order dkjt has been replaced by a
demand in the range [0.9 dkjt, 1.1 dkjt];

• 10 varied instances in which the demand of each order dkjt has been replaced by a
demand in the range [0.7 dkjt, 1.3 dkjt].

All the remaining input parameters were left unchanged.

Experimental setting. All procedures were implemented in C++ and all experiments
were performed on a computer equipped with a 3.20 GHz Intel Core I7 processor and 64
GB of RAM. Our algorithm is sequential in nature and cannot take advantage from the
parallelism of our hardware. However, considering the orders according to different sortings
produces different solutions. Thus, we implemented a parallel version of the algorithm in
which 4 threads are used, each running the same algorithm on the same input, but with a
different sequence for processing the orders. Then, the best of the four solutions is returned
to the user. Preliminary experiments in which orders are considered according to (common-
sense) deterministic rules produced solutions of the same quality as using random sortings.

6.1 Parameter Tuning

Our solution approach includes 2 main parameters:

• Parameter Λ, which defines the fraction of additional cost for the activation of a shift
configuration that is allocated to the current order;

• Parameter IterNum, which determines the number of iterations of local search to be
performed after the first phase of the algorithm.

We performed the tuning of our algorithm on the original instances using 7 different
values for Λ, namely 0.00, 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50. Our first order of business was
to determine the best values of parameter Λ for the two real-world test-cases. To this aim, we
considered only the values of the solutions produced by the algorithm, without considering
the computing time. Table 3 reports the total cost for different values of Λ and gives the best
solution found by the 4-threads algorithm after the execution of the constructive algorithm
and one iteration of Local Search. All entries in the table are given in Me, as the tactical
nature of the problem, spanning over one year or alike, makes the solution cost very large.
It is worth underlining that parameter Λ is used during the first phase of the algorithm only;
thus, there would not be any additional information in considering more than one iteration
of local search.
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0.00 0.05 0.10 0.20 0.30 0.40 0.50

A 119.15 118.43 118.17 118.29 119.57 120.09 122.62

B 263.44 252.66 248.13 255.64 265.97 280.48 288.84

Table 3: Effect of parameter Λ on real-world instances.

Results in Table 3 suggest that Λ = 0.10 is the best value for the two real-world test-
cases. For the first instance, while the average solution value (for the considered values of
the parameter) is equal to 119.47, using Λ = 0.10 produces a solution with value 118.17, with
a saving equal to 1.09%. In the second case, the saving is more relevant and is equal to 6.37%.

As to the second parameter, we performed the following experiment. We considered
instance A and run the algorithm for a (potentially very large) number of iterations, halting
the procedure when no improvement is obtained after the last iteration of local search.
Figure 1 reports the cost of the best solution found as a function of the computing time.
The first point of the curve corresponds to the solution at the end of the first phase, while
each subsequent point is the solution cost obtained after an additional iteration of the local
search. As most of the computing time is spent in the local search phase, the computational
effort grows almost linearly with the number of local search iterations. The picture shows
that the first two iterations of the local search are very effective in reducing the solution
cost, the associated cost reduction being around 9%. On the other hand, while subsequent
iterations have a marginal effect. Thus, we set the second parameter IterNum to 2 in our
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Figure 1: Cost of a solution as a function of the computing time for subsequent iterations of
Local Search.
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experiments.
For all the results reported in the remainder of the paper, the computational time with

this configuration of the algorithm is approximately 90 seconds, for instance A, and 160
seconds, for instance B.

6.2 Comparison with MIP

In this section we compare the performances of our algorithm (in its best configuration, as
described in the previous section) with those of a general-purpose commercial MILP solver.
To this aim, we considered both the real-world and the realistic instances, and used IBM-
ILOG Cplex 12.7.1 (CPLEX, in the following) to solve the mathematical formulation of Section
3.3. CPLEX was run on 4 threads with a limit of 10 hours of computing time; all the remaining
parameters are set to their default values.

Table 4 compares the values of the gap obtained through our heuristic algorithm (HEUR,
in the following) with those obtained by CPLEX. The first line of the table is associated with
the real-world instances, while the remaining lines refer to the realistic instances. For each
instance and algorithm we report the percentage gap of the best solution found, computed as
%gap = 100U−L

L
, where U is the solution value and L denotes the best lower bound obtained

by CPLEX at the time. In one instance, CPLEX could not terminate for memory reasons; in
this case, marked with an asterisk (*), we report the gap reached until that moment. Due
to the difficulty and size of the MILP formulation, we removed constraints (8) when solving
the model with CPLEX. Thus, the results reported in columns CPLEX refer to solutions that
are likely to be infeasible from this point of view, i.e., the comparison is by design in favour
of CPLEX.

The results show that, on the real-world instances, our metaheuristic algorithm produces
solutions whose gap is very close to that of the best solution found by CPLEX with a huge
computational effort. Results are similar when realistic instances are considered, though
CPLEX does not take the minimum production constraint into account.

6.3 Solution Structure and Scenario analysis

Finally, in this section we discuss the cost structure of the solutions computed by our method
and we discuss how this structure changes under possible industrial scenarios. Figure 2
considers test-case A and compares the as-is solution (column 1) with the following what-if
situations:

2. the use of external warehouses is forbidden;

3. the distribution costs are doubled;

4. the second most important plant is closes;

5. the scarce resource of the plant is reduced to the 70% of its value;

6. the scarce resource of the plant is available in an infinite quantity;

7. all the operation times of the lines are reduced to the 90% of their value.
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Table 4: Comparison of the percentage optimality gap obtained by our algorithm (HEUR)
and CPLEX

A B

Type Problem HEUR CPLEX HEUR CPLEX

- - 12.92 9.11 15.98 16.16

Similar 1 13.08 10.45 16.65 16.18

2 12.88 11.04 16.34 12.22

3 12.79 10.20 16.78 15.07

4 13.06 11.80 16.17 15.38

5 12.82 9.35 16.33 17.85

6 13.08 12.78 16.51 14.04

7 12.95 10.66 16.68 16.47

8 13.16 14.45 16.39 19.58

9 13.19 10.12 16.38 13.87

10 12.88 10.87 16.27 15.35

Varied 1 13.02 10.88 16.40 *19.93

2 13.10 12.26 16.45 16.30

3 13.59 11.18 16.86 15.75

4 13.41 10.09 15.93 13.96

5 13.26 10.28 16.24 15.74

6 13.32 26.51 16.36 16.34

7 13.40 12.40 17.04 14.36

8 12.81 11.89 16.48 15.77

9 13.40 9.41 16.94 13.96

10 12.45 9.65 16.81 13.31

19



In scenario 2 the total cost is slightly larger than in the as-is solution; since the external
warehouses are not available, the inventory costs decreases, but the amount of undelivered
orders increases. In scenario 3, though distribution costs are doubled, the amount of orders
that are delivered is almost the same as in the default setting; indeed, the Out of Stock costs
do not change significantly with respect to the as-is situation, while the total distribution
costs are actually doubled. Scenario 4 shows that closing an important plant has a relevant
(negative) impact on the Out of Stock costs. Scenarios 5 and 6 show the importance of
the plant resource availability: when it is decreased (scenario 5), then a larger part of the
demand remains unsatisfied. If instead the resource is assumed to be unlimited (scenario 6),
then the production is able to meet more than half of the demand that was unsatisfied in the
as-is solution. Finally, scenario 7 shows that decreasing the operation times of the lines could
allow to save a relevant fraction of the production and distribution costs. Observe that in all
the scenarios, production costs are very small if compared with the other costs, confirming
that is this beverage application shipping or configuration costs are the most relevant.

Figure 2: Cost distribution in different what-if scenarios.
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7. Conclusions

In this paper we addressed an integrated production and distribution problem that arose from
a real-world application. The problem includes several products, whose production must be
scheduled on lines belonging to different plants, and several customers, whose demand must
be satisfied taking into account the transportation costs from the plants to the customer
locations.

After providing the formal definition of the problem based on a MILP formulation, we
introduced both an iterative constructive heuristic algorithm and a metaheuristic approach
based on the ruin-and-recreate paradigm.

An extensive analysis of the results of computational experiments on two real-world test-
cases and on a set of realistic instances proved that the approximations obtained in short
computing time by our metaheuristic approach are very close to those that can be achieved
by running a state-of-the-art commercial solver on the mathematical model for a very long
computing time.

Finally, our metaheuristic algorithm is used to perform a what-if analysis, aimed at
determining the impact of different industrial scenarios on the solution cost.
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