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ON THE ALMOST SURE CONVERGENCE OF SUMS

LUCA PRATELLI AND PIETRO RIGO

ABSTRACT. Two counterexamples, addressing questions raised in [1] and [3],
are provided. Both counterexamples are related to chaoses. Let Fy, = Yy, + 2,
where Y, and Z,, belong to different chaoses of uniformly bounded degree. It

L - o
may be that F,, 255 0, F), 2% 0 and E{supn |Fn|5} < 0o, for some § > 0,
and yet Y, fails to converge to 0 a.s.

1. INTRODUCTION

Throughout, (X, : n € N) is a sequence of real independent random variables
such that E(X,) =0 and E(X2) = 1. For p € N, we denote by JF, the collection
of those functions f : N — R such that f is symmetric (i.e., invariant under
permutations of its arguments), f vanishes on the diagonal (i.e., f(j1,...,Jp) =0
whenever j,. = js for some r # s), and

> flne e dp)? < oo
J1s--JpEN
Moreover, for p € N and f € F,, we let

Q)= D fUrsesdp) Xjy oo X,

J1,- aJpeN

Here, the series converges (a.s. and in Ly) because of the martingale convergence
theorem. In fact,

Mn: Z fjl, ..,jp) ...ij

Jiyesdp=1

is a martingale with respect to the filtration o(X1,...,X,) and

sup E{M?} = Z FGrs- )
" G1seesipEN

Therefore, Q,(f) = lim,, M,, where the equality is a.s. and in the Lo-sense.

Multilinear forms in independent random variables, such as Q,(f), play a role in
various frameworks, including multiple stochastic integration, harmonic analysis,
Boolean functions, geometry of Banach spaces, random graphs, concentration of
measures, Malliavin calculus and the Malliavin-Stein method; see [1] and references
therein.

Recently, the following problem has come to the fore. Suppose that
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2 LUCA PRATELLI AND PIETRO RIGO

where F),, and F' are real random variables of the form

q q
Fp=an+Y Qfny) and F=a+> Qulfy)

p=1 p=1
for some ¢ € N, fp, fnp € Fp and a, a, € R. Can one deduce that
(1) a=lima, and Q(fy) = limQy(fn,) forallp=1,...,q7

As possibly expected, the answer is no. To give conditions for (1), hence, is a quite
natural problem.

For instance, by a result of Poly and Zheng [3, Theorem 1.3], condition (1) holds
whenever

sup E{|Xn|2+5} < 00 for some 6 > 0.

Subsequently, this result has been improved by [1, Cor. 2.9], where condition (1) is
shown to be true whenever (X2 : n € N) is uniformly integrable.
Next, for our purposes, we also need to recall the following result.

Theorem 1. (Theorem 1.1 of [3]). Let F,, and F be real random variables and
Sq = @Z:o Hp, where g € N and H,, is the p-th Gaussian Wiener chaos (associated

to a given isonormal Gaussian process). If F, “3 F and F, € Sq for all n, then
FeS, and J,(F,) =% J,(F) forp=0,1,...,q
where J,, is the projection operator onto H,.

In connection with the above results, the following questions are raised in [3].

(i) Does condition (1) hold if each X, is a two point variable ?

(ii) Let T, = @Z:O Z,, where Z, is the p-th Poisson-Wiener chaos; see point (*)
below and [2, Chap. 18]. Is it possible to replace S, with Tj, in Theorem
1 ? Precisely, if F,, % F and F, F,, € T, for all n, can one deduce that
Jp(Fy) 25 J,(F) for all p=0,1,...,q ?

Both (i) and (ii) have been answered (in the negative) by Adamczak; see Exam-
ples 2.11 and 3.1 of [1].
It is worth noting that, under the assumptions of Theorem 1, one also obtains

F, EENy (thanks to the hypercontractivity of the Ornstein-Uhlenbeck semigroup).
In addition, by Theorem 3.2 of [1], question (ii) has a positive answer provided the
sequence (F,) is Lo-bounded and

(2) E{strllp|Fn\} < 0.

Whether or not condition (2) can be dropped, however, is an open problem; see [1,
Example 3.3]. Hence, questions (i)-(ii) could be restated as follows.

(j) Does condition (1) hold if each X,, is a two point variable and F), L2 p o

(jj) Is it possible to remove condition (2) if Fj, L2, F ? Precisely, if F, %5 F,

F, 2 Fand F, F, c T, for all n, can one deduce that J,(F,) <% J,(F)
forallp=0,1,...,q 7
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The only purpose of this note is to answer (in the negative) questions (j)-(jj). Our
counterexamples are actually simple (the main tool is the Borel-Cantelli lemma) and
help to unify the current state of the art on the subject. The second counterexample
suggests that, not only condition (2) can not be removed, but to weaken it seems
to be quite hard.

2. THE COUNTEREXAMPLES

Example 2. (Question (j) has a negative answer). Let (Y,) be a sequence of
independent random variables such that Y,, € {—1,1} and p,, = P(Y,, = 1) € (0,1).

Define
Y, — 2p +1 — P
X, = 5 B \/ “Lyy,=1y —

F=0 and Fn = Pan+1 Xon + \/p2n+1 1- P2n+1) Xon Xony1.

Such X, are independent with E(X,) =0 and E(X2) =1, and we have to choose

Pr in such a way that F), i 0, F, L5 0, but pay,41 Xo, fails to converge to 0 a.s.
Take, for instance,

{Ynffl]w

pon =1/n and popi1 = np=l/VIen  for > 2.

Then:

° E(Fg) = pPon+1 — 0.
o Let A= {an = Yo, 41 = 1 for infinitely many n} Since

S P(Yan = Youy1 = 1) = 3 1mVVEET < o
n

then P(A) = 0. Moreover, on the set A¢, one obtains

F, =F, 1{Y2n+1:1} =F, 1{Y2n:_1;Y2n+1:1} = - 1/(TL - 1)
for each n large enough. (The first equality is because F,, # 0 if and only
if Yo,,41 = 1). Hence, F,, 2% 0.

e Let B= {an = 1 for infinitely many n} The Borel-Cantelli lemma yields
P(B) = 1. Moreover, on the set B, one obtains

1—pon RN s
D2n+1 Xon = D2nt1 "= /n—1p 1/ Vien

Pon

for infinitely many n. Therefore, pa,+1Xa, fails to converge to 0 a.s. (since
Vn—1In~YVieen o),

Example 2 is straightforward. The next example is slightly more elaborate.

Example 3. (Question (jj) has a negative answer). Let (Y,,) be a sequence
of independent Poisson random variables. Define \,, = E(Y},) and

Y, — Ay

Xn = 5
VAn

F =0, F,=MXnt1Xon+ VA2nt1 Xon Xont1-
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As shown below, F,, € Ty and J1(F,) = Agpt1 Xo, for all n. Therefore, to
answer (jj) in the negative, it suffices to choose A, in such a way that

F, Loy 0, F,Z%0, Aon+1 Xop fails to converge to 0 a.s.

We will prove a little bit more. In fact, we will also obtain
E, L2400 and E{sup|Fn\5} < oo for some § > 0.

To begin with, we collect some useful facts in a lemma.

Lemma 4. IfY has a Poisson distribution with parameter X > 0, then
PY >§) < NTYG+1)!  forj=0,1,...
In particular, P(Y > 0) < . Moreover, if A € (0,1], then
E{lY = A2} <V8A and E(Y®?) <VI5A
Proof. By Taylor formula, there is v € (0, A) such that
PY > j)=e S Akl = e_)‘{e’\ - i)\k/k!} — e eI N/ (j+ 1)
k>j k=0

Hence, P(Y > j) < M*T1/(j + 1)! follows from v < X. Next, suppose A € (0,1] and
note that E{|Y — Al} <2\ and E{(Y — A\)*} = 3)A? + X < 4\, Therefore,

E{lY —=XP?} = B{]Y = APy = A\*/?} < \/E{(Y — N4 E{lY - )|} <V8A
Similarly, since E(Y*) = A\ 4+ 6A3 +7A2 + X < 15),
B(Y®/?) = E{y*Y'/?} < JE(Y*) E(Y) < V15 \.

Next, we note that F,, = Xs, Y2,,+1 and we let

Aop = n=3*  and Aopt1 = n=5/16,

Ls/2
e First, by Lemma 4, one obtains F}, 220. In fact,
E{D/?n - )\Zn‘S/Q}

5/2
E(|Fn‘5/2) = E{|X2n }/2n+1|5/2} = )\5/4 E(Y27{+1)
2n
A2n
< V120 ;;j =120 n" /% — 0.
2n

e We next prove F,, =% 0. Fix € > 0 and define
A= {Y2n+1 > en®/® for infinitely many n} and
H = {an #0, Ya,41 # 0 for infinitely many n}

On (AUH)® = A°N H¢, for each n large enough, one obtains Y3,41 = 0 or
Y2, = 0 and Ya,4, < en®/8. In the first case, Fj, = Xa, Ya,41 = 0, while
in the second

|Fnl = | Xon Yont1] = VvV A2n Yong1 = n=3/8 Yont1 < e
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Hence, to prove F,, =% 0, it suffices to see that P(A) = P(H) = 0. In
turn, this follows from

E(Y2 5
&3 P (g > en?) < 30 E0Ba) 5 denet

Aant1 ~17/16
<2 Z Y7 2 Zn <0
n n

and

ZP(YQn 7& 07 }én+l # 0) S Z)\QRAQTL—&-l — Zn*17/16 < 0.

To show that Agy,1 X2, does not converge to 0 a.s., we argue as in Example
2. Let B = {an = 1 for infinitely many n} The Borel-Cantelli lemma
yields P(B) = 1. On the other hand, on the set B, one obtains

L= Ao — pl/16 _

A2n+1 Xon = Aont1 T n /16
2n

for infinitely many n. Therefore, Ao, +1 X0, fails to converge to 0 a.s.
Finally, we prove F(M?) < oo for each 6 € (0, 1/24), where
M = sup |F,|.

Since E(M?®) = [;° P(M > t'/%) dt, it suffices to show that
P(M >t) = Ot~/ as t — oo.
For each t > 0, Lemma 4 yields
P(M >1) <> P(|F| >t) = P(|Xan Yansa| > t)

n

<> {P(0 < Yonsr < VA, [Xan| > VD) + P(Your1 > VD) }

)\[\/Z]H

< ZP(Y2n+1 > 0) P(|X2n| > \/i) +Z%

Define a = S, A3, = >, n~%/% Ift > 9, then [V/{] + 1 > 4 and
VA2t > Aon,. Hence,

)\4
P > 8) <3 dansa P(Yan = Aanl > Vant) +30 7505
n n

e
(Vt—1)2
If n < [t?/3], then Ay, = n=3/* > ¢~1/2 and

P(Yon > \/Aont) < P(Ya, > t/4) <t VA E(Ya,) =t~/ Ny,

S Z)\Zn-i-l P(YQn > )\2n t) +

Otherwise, if n > [t?/%], Lemma 4 yields
P(an > A2p t) < P(YQn > 0) < Aoy,
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Therefore, letting b = 3", Aapi1A2n = >, 7 17/16 one obtains

[t*/°]
Z)\Zn-l-lP(YQn > )\Zn ) i 1/4 Z /\2n+1 >\2n + Z )\2n+1 /\2n
n n>[t2/d]
<pt- U4y Z n—17/16
n>[t2/3]
S bt71/4 4 16 [t2/3}71/16
<bt V446 {23 -1}V
To summarize,
P(M >t) §l)t_1/4—|—16{t2/3—1}71/16—1—L for each t > 9,

(Vt—1)?

and this proves condition (3).

To close the paper, it remains to see that F,, € Ty and J1(F,) = Aapt1 Xon.

(*) The Poisson-Wiener chaos. Let (X, &, 1) be a o-finite measure space and
N a Poisson process with intensity p on some probability space (£2,.4, P). Then,

Ly(Q,0(N),P) =@,  with T, LT, for p # q.

The closed subspace 7, called the p-th Poisson-Wiener chaos, is the collection of
all random variables of the form I,(f), where I, is the multiple Poisson integral
of order p and f ranges over the symmetric elements of Lo(XP,EP, uP). We refer
to [2, Chapter 12] for the general definition of I,. Here, it suffices to note that, if
A=Ay x...x Ay with 4; € &, p(A;) < oo and A; N A; =0 for i # j, then

I, (Z g0 7r> = pl ﬁ{N(Ai) — (4}

where the sum is over all permutations 7 of XP. (A permutation of X' is meant as a
function 7 : AP — &P of the form 7(x1,...,2p) = (2j,,...,2;,) where (ji,...,Jp)
is a fixed permutation of (1,...,p)).

Next, let X = [0,00), £ the Borel o-field, i the Lebesgue measure, and

n—1 n
Y, = N(A,)  where A, = (Z iy )\}
i=1 i=1

Then, (Y,,) is an independent sequence, each Y,, has a Poisson distribution with
parameter \,, and

\/mX% Xon+1 = L(fn) € o where

fn (l‘, y) {1A2n 1A2‘n+1( ) + 1A2n (y)1A2n+1 ((ﬂ)}

2\/7

Similarly,

Aong1 Xop = 11 <>\_1/2)\2n+1 1A2n) €.
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Hence,
F, = /\2n+1 Xop + vV )\2n+1 Xon X2n+1 €T, and Jl(Fn) = >\2n+1 Xon.
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