
Teaching the Old Dog New Tricks:
Supervised Learning with Constraints

Fabrizio Detassis1,2 and Michele Lombardi1 and Michela Milano1

Abstract. Methods for taking into account external knowledge in
Machine Learning models have the potential to address outstanding is-
sues in data-driven AI methods, such as improving safety and fairness,
and can simplify training in the presence of scarce data. We propose
a simple, but effective, method for injecting constraints at training
time in supervised learning, based on decomposition and bi-level
optimization: a master step is in charge of enforcing the constraints,
while a learner step takes care of training the model. The process
leads to approximate constraint satisfaction. The method is applicable
to any ML approach for which the concept of label (or target) is well
defined (most regression and classification scenarios), and allows to
reuse existing training algorithms with no modifications. We require
no assumption on the constraints, although their properties affect the
shape and complexity of the master problem. Convergence guarantees
are hard to provide, but we found that the approach performs well
on ML tasks with fairness constraints and on classical datasets with
synthetic constraints.

1 Introduction

Techniques to deal with constraints in Machine Learning (ML) have
the potential to address outstanding issues in data-driven AI methods.
Constraints representing (e.g.) physical laws can be employed to
improve generalization; constraints may encode negative patterns (e.g.
excluded classes) and relational information (e.g. involving multiple
examples); constraints can ensure the satisfaction of desired properties,
such as fairness, safety, or lawfulness; they can even be used to extract
symbolic information from data.

Such techniques can highly improve the learning process in terms
of versatility and control. As a consequence, our work constitutes
a step forward in the direction of a more human-oriented AI, as
it is general and allows for the realization of learning models that
satisfy specific user requirements. This is a fundamental and essential
behaviour in contexts where there exist human-specific constraints,
which the trained AI model has to acknowledge. The present paper
aims at enlarging the pool of tools that can be used to inject an AI
model with external knowledge, a field that is rapidly expanding
thanks to its many potential practical applications.

To the best of the authors knowledge, the vast majority of ap-
proaches for taking into account external knowledge in ML make

1 DISI, University of Bologna, Italy, email: {fabrizio.detassis2,
michele.lombardi2, michela.milano}@unibo.it

2 Corresponding author

Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

assumptions that restrict the type of constraints (e.g. differentiabil-
ity, no relational information), the type of models (e.g. only Decision
Trees, only differentiable approaches), and often require modifications
in the employed training algorithms (e.g. specialized loss terms).

We propose a decomposition-based method, referred to as Moving
Targets, to augment supervised learning with constraints. A master
step “teaches” constraint satisfaction to a learning algorithm by it-
eratively adjusting the sample labels. The master and learner have
no direct knowledge of each other, meaning that: 1) any ML method
can be used for the learner, with no modifications; 2) the master can
be defined via techniques such as Mathematical or Constraint Pro-
gramming, to support discrete values or non-differentiable constraints.
Our method is also well suited to deal with relational constraints over
large populations (e.g. fairness indicators). Moving Targets subsumes
the few existing techniques – such as the one by [13] – capable of
offering the same degree of versatility.

When constraints conflict with the data, the approach prioritizes
constraint satisfaction over accuracy. For this reason, it is not well
suited to deal with fuzzy information. Moreover, due to our open
setting, it is hard to determine convergence properties. Despite this,
we found that the approach performs well (compared to state of
the art methods) on classification and regression tasks with fairness
constraints, and on classification problems with balance constraints.

Due to its combination of simplicity, generality, and the observed
empirical performance, Moving Targets can represent a valuable ad-
dition to the arsenal of techniques for dealing with constraints in
Machine Learning. The paper is organized as follows: in Section 2 we
briefly survey related works on the integration of constraints in ML;
in Section 3 we present our method and in Section 4 our empirical
evaluation. Concluding remarks are in Section 5.

2 Related Works

Here we provide an overview of representative approaches for inte-
grating constraints in ML, and we discuss their differences with our
method.

Most approaches in the literature build over just a few key ideas.
One of them is using the constraints to adjust the output of a trained
ML model. This is done in DeepProbLog [20], where Neural Networks
with probabilistic output (mostly classifiers) are treated as predicates.
[25] presents a Neural Theorem Prover using differentiable predicates
and the Prolog backward chaining algorithm. The original Markov
Logic Networks [24] rely instead on Markov Fields defined over
First Order Logic formulas. As a drawback, with these approaches the
constraints have no effect on the model parameters, which complicates
the analysis of feature importances. Moreover, dealing with relational
constraints (e.g. fairness) requires access at prediction time either to a



representative population or to its distribution [12, 11].
A second group of approaches operate by using constraint-based

expressions as regularization terms at training time. In Semantic
Based Regularization [7] constraints are expressed as fuzzy logical
formulas over differentiable predicates. Logic Tensor Networks [26]
focus on Neural Networks and replace the entire loss function with a
fuzzy formula. Differentiable Reasoning [27] uses in a similar fashion
relational background knowledge to benefit from unlabeled data. In
the context of fairness constraints, this approach has been taken in
[1, 10, 28, 5, 15]. Methods in this class account for the constraints
by adjusting the model parameters, and can therefore be used to an-
alyze feature importance. They can deal with relational constraints
without additional examples at prediction time; however, they ide-
ally require simultaneous access at training time to all the examples
linked by relational constraints (which can be problematic when using
mini-batches). They often require properties on the constraints (e.g.
differentiability), which may force approximations; they may also be
susceptible to numerical issues.

A third idea consists in enforcing constraint satisfaction in the
data via a pre-processing step. This is proposed in the context of
fairness constraints by [13, 14, 18]. The approach enables the use
of standard ML methods with no modification, and can deal with
relational constraints on large sets of examples. As a main drawback,
bias in the model or the training algorithm may prevent getting close
to the pre-processed labels.

Multiple ideas can be combined: domain knowledge has been
introduced in differentiable Machine Learning (e.g. Deep Networks)
by designing their structure, rather than the loss function: examples
include Deep Structured Models in [16] and [19]. These approaches
can use constraints to support both training and inference.

Though less related to our approach, constraints can be used to
extract symbolic knowledge from data, for example by allowing the
training algorithm to adjusting the regularizer weights. This approach
is considered (e.g.) in [17, 21, 6].

Our approach is closely related to the idea of enforcing constraints
by altering the data, and shares the same advantages (versatility,
support for relational constraints and feature importance analysis,
no differentiability assumptions). We counter the main drawbacks
mentioned above by using an iterative algorithm rather than a single
pre-processing step.

[tb]

Table 1. Notable loss functions (m = # examples, c = #classes)

Loss Function Expression Label Space

Mean Squared Error
1

m
‖y − y∗‖22 Rm

Hamming Distance
1

m

m∑
i=1

I[yi 6= y∗j ] {1..c}m

Cross Entropy
1

m

m∑
i=1

c∑
j=1

y∗ij log yij [0, 1]m

3 Moving Targets

In this section we present our method, discuss its properties, draw
connections with related algorithms and provide some convergence
considerations.

Algorithm 1 MOVING TARGETS

input label vector y∗, scalar parameters α, β, n
y1 = l(y∗) # pretraining
for k = 1..n do

if yk /∈ C then
zk = mα(y

k) # infeasible master step
else
zk = mβ(y

k) # feasible master step
end if
yk+1 = l(zk) # learner step

end for

The Algorithm Our goal is to adjust the parameters of a ML model
so as to minimize a loss function with clearly defined labels, under
a set of generic constraints. We acknowledge that any constrained
learning problem must trade prediction mistakes for a better level
of constraint satisfaction, and we attempt to control this process by
carefully selecting which mistakes should be made. This is similar
to [13, 14, 18], but: 1) we consider generic constraints rather than
focusing on fairness; and 2) we rely on an iterative process (which
alternates “master” and “learner” steps) to improve the results.

Let L(y, y∗) be the loss function, where y is the prediction vector
and y∗ is the label vector. We make the (non restrictive) assumption
that the loss is a pre-metric – i.e. L(y, y∗) ≥ 0 and L(y, y∗) = 0
iff y = y∗. Examples of how to treat common loss functions can be
found in Table 1.

We then want to solve, in an exact or approximate fashion, the
following constrained optimization problem:

argmin
θ
{L(y, y∗) | y = f(X; θ), y ∈ C} (1)

where f is the ML model and θ its parameter vector. With some abuse
of notation we refer as f(X; θ) to the vector of predictions for the
examples in the training set X . Since the model input at training time
is known, constraints can be represented as a feasible set C for the
sole predictions y.

The problem can be rewritten without loss of generality by intro-
ducing a second set B corresponding to the ML model bias. This
leads to a formulation in pure label space:

argmin
y
{L(y, y∗) | y ∈ B ∩ C} (2)

where B = {y | ∃θ, y = f(X; θ)}.
The Moving Targets method is described in Algorithm 1, and starts

with a learner step w.r.t. the original label vector y∗ (pretraining).
Each learner step, given a label vector as input, solves approximately
or exactly the problem:

l(z) = argmin
y
{L(y, z) | y ∈ B} (3)

Note that this is a traditional unconstrained learning problem, since
B is just the model/algorithm bias. The result of the first learner step
gives an initial vector of predictions y1.

Next comes a master step to adjust the label vector: this can take two
forms, depending on the current predictions. In case of an infeasibility,
i.e. yk /∈ C, we solve:

mα(y) = argmin
z

{
L(z, y∗) +

1

α
L(z, y) | z ∈ C

}
(4)

Intuitively, we try to find a feasible label vector z that is close (in
terms of loss function value) to both the original labels y∗ and the



y*

B

y1

z3...z2/y3...

Figure 1. A sample run of our algorithm

current prediction y. A parameter α ∈ (0,∞) controls which of the
two should be preferred. If the input vector is feasible we instead
solve:

mβ(y) = argmin
z
{L(z, y∗) | L(z, y) ≤ β, z ∈ C} (5)

i.e. we look for a feasible label vector z that is 1) not too far from
the current predictions (in the ball defined by L(z, y) ≤ β) and 2)
closer (in terms of loss) to the true labels y∗. Here, we are seeking an
accuracy improvement.

We then make a learner step trying to reach the adjusted labels; the
new predictions will be adjusted at the next iteration and so on. In
case of convergence, the predictions yk and the adjusted labels zk

become stationary (but not necessarily identical). An example run,
for a Mean Squared Error loss and convex constraints and bias, is in
Figure 1.

Properties The learner is not directly affected by the constraints,
thus enabling the use of arbitrary ML approaches. The master prob-
lems do not depend on the ML model, often leading to clean structures
that are easier to solve. Since we make no explicit use of mini-batches,
we can deal well with relational constraints on large groups (e.g. fair-
ness). The master step can be addressed via any suitable solver, so that
discrete variables and non-differentiable constraints can be tackled via
(e.g.) Mathematical Programming, Constraint Programming, or SAT
Modulo Theories. Depending on the constraints, the loss functions,
and the label space (e.g. numeric vs discrete) the master problems
may be NP-hard. Even in this case, their clean structure may allow for
exact solutions for datasets of practical size. Moreover, for separable
loss functions (e.g. all those from Table 1), the master problems can
be defined over only the constrained examples, with a possibly signifi-
cant size reduction. If scalability is still a concern, the master step can
be solved in an approximate fashion: this may lead to a lower accuracy
and a higher level of constraint violation; however, such issues are
partly inevitable, due to algorithm/model bias, and since constraint
satisfaction on the training data does not necessarily transfer to unseen
examples.

Analysis and Convergence Due to its open nature and minimal
assumptions, establishing the convergence of our method is hard. Here
we provide some considerations and connect the approach to existing
algorithms. We will make the simplifying assumption that the learner
problem from Equation (3) can be solved exactly. This holds for a
few cases (e.g. convex ML models trained to close optimality), but in
general the assumption will not be strictly satisfied.

We start by observing that Equation (2) is simply the Best Ap-
proximation Problem (BAP), which involves finding a point in the
intersection of two sets (say B and C) that is as close as possible to a
reference point (say y∗). For convex sets in Hilbert spaces, the BAP
can be solved optimally via Douglas-Rachford splits or the method
from [2], both relying on projection operators. Since our learner is
essentially a projection operator onB, it would seem sensible to apply
these methods in our setting. Unfortunately: 1) we cannot reliably
assume convexity; and 2) in a discrete space, the Douglas-Rachford
splits may lead to “label” vectors that are meaningless for the learner.

We therefore chose a design that is less elegant, but also less sensi-
tive to which assumptions are valid. In particular: 1) in the mα steps,
we use a modification of a suboptimal BAP algorithm to find a fea-
sible prediction vector; then 2) in mβ we apply a modified proximal
operator to improve its distance (in terms of loss) w.r.t. the original
labels y∗. The basis for our mα step is the Alternating Projections
(AP) method, discussed e.g. in [4]. The AP simply alternates projec-
tion operators on the two sets, which never generates vectors outside
of the label space.

Indeed, for α → 0 our mα step becomes a projection of the
predictions yk on C. With this setup we recover the AP behavior, and
its convergence to a feasible point for convex sets. For α → ∞ we
obtain, essentially, the pre-processing method from [13]:mα becomes
a projection of the true labels y∗ on C, and subsequent iterations have
no further effect; convergence to a feasible point is achieved only if
the pre-processed labels are in B, which may not be the case (e.g. a
quadratic distribution for a linear model). For reasonable α values,
our mα step balances the distance (loss) from both the predictions
y and the targets y∗. Convergence in this case is an open question,
but especially in a non-convex or discrete setting (where multiple
projections may exist) this modification helps escaping local minima
and accelerate progress.

When a feasible prediction vector is obtained, our method switches
to the mβ step; we then search for a point in C that is closer to the
true labels, but also not too far from the predictions. This is related to
the Proximal Gradient method, discussed e.g. in [22], but we limit the
distance via a constraint rather than a squared norm, and we search in
a ball rather than on a line. As in the proximal gradient, a too large
search radius prevents convergence: for β →∞ the mβ step always
returns the same adjusted labels, corresponding to the projection of
y∗ on C set.

4 Empirical Evaluation

Our experimentation is designed around a few main questions: 1) How
does the Moving Targets method work on a variety of constraints,
tasks, and datasets? 2) What is the effect of the α, β parameters?
3) How does the approach scale? 4) How different is the behavior
with different ML models? 5) How does the method compare with
alternative approaches? We proceed to describe our setup and the
experiments we performed to address such questions.

Tasks and Constraints We experiment on three case studies, cov-
ering two types of ML tasks and two types of constraints. First, we
consider a classification problem augmented with a balance con-
straint, which forces the distribution over the classes to be approxi-
mately uniform. The loss function is given by the Hamming distance
and the label space is {1..c}m. The mα(y) problem is defined as a
Mixed Integer Linear Program with binary variables zij such that



zij = 1 iff the adjusted class for the i-th example is j. Formally:

min
1

m

m∑
i=1

(1− zi,y∗i ) +
1

αm

m∑
i=1

(1− zi,yi) (6)

s.t.
c∑
j=1

zij = 1 ∀i = 1..m (7)

m∑
i=1

yij ≤
⌈
(1 + ξ)m

c

⌉
∀j = 1..c (8)

zij ∈ {0, 1} ∀i = 1..m, j = 1..c (9)

The summations in Equation (6) encode the Hamming distance w.r.t.
the true labels y∗ and the predictions y. Equation (7) prevents as-
signing two classes to the same example. Equation (8) requires an
equal count for each class, with tolerance defined by ξ (ξ = 0.05 in
all our experiments); the balance constraint is stated in exact form,
thanks to the discrete labels. The mα formulation generalizes the
knapsack problem and is hence NP-hard; since all examples appear in
Equation (8), no problem size reduction is possible. The mβ problem
can be derived from mα by changing the objective function and by
adding the ball constraint as in Equation (5).

Our second use case is a classification problem with realistic fair-
ness constraints, based on the DIDI indicator from [1]:

DIDI c(X, y) =
∑
k∈K

∑
v∈Dk

c∑
j=1

dkvj (10)

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

I[yi = j]− 1

|Xk,v|
∑

i∈Xk,v

I[yi = j]

∣∣∣∣∣∣
where K contains the indices of “protected features” (e.g. ethnicity,
gender, etc.). Dk is the set of possible values for the k-th feature,
and Xk,v is the set of examples having value v for the k-th feature.
The mα(y) problem can be defined via the following Mathematical
Program:

min
1

m

m∑
i=1

(1− zi,y∗i ) +
1

αm

m∑
i=1

(1− zi,yi) (11)

s.t. Equation (7)∑
k∈K

∑
v∈Dk

c∑
j=1

dkvj ≤ ε ∀j = 1..c (12)

dkvj ≥
m∑
i=1

yij
m
−
∑

i∈Xk,v

yij
|Xk,v|

(13)

dkvj ≥ −
m∑
i=1

yij
m

+
∑

i∈Xk,v

yij
|Xk,v|

(14)

zij ∈ {0, 1} ∀i = 1..m, j = 1..c (15)

where Equation (12) is the constraint on the DIDI value and Equa-
tion (13)-(14) linearize the absolute values in its definition. The DIDI
scales with the number of examples and has an intrinsic value due to
the discrimination in the data. Therefore, we compute DIDI tr for the
training set, then in our experiments we have ε = 0.2DIDI tr . This
is again an NP-hard problem defined over all training examples. The
mβ formulation can be derived as in the previous case.

Our third case study is a regression problem with fairness con-
straints, based on a specialized DIDI version from [1]:

DIDI r(X, y) =
∑
k∈K

∑
v∈Dk

dkv (16)

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

yi −
1

|Xk,v|
∑

i∈Xk,v

y

∣∣∣∣∣∣ (17)

In this case, we use the Mean Squared Error (MSE) as a loss function,
and the label space is Rm. The mα problem can be defined via the
following Mathematical Program:

min
1

m

m∑
i=1

(y∗i − zi)2 +
1

αm

m∑
i=1

(zi − yi)2 (18)

s.t.
∑
k∈K

∑
v∈Dk

dkv ≤ ε ∀j = 1..c (19)

dkv ≥
m∑
i=1

yi
m
−
∑

i∈Xk,v

yi
|Xk,v|

(20)

dkv ≥ −
m∑
i=1

yi
m

+
∑

i∈Xk,v

yi
|Xk,v|

(21)

zi ∈ R ∀i = 1..m (22)

This is a linearly constrained, convex, Quadratic Programming prob-
lem that can be solved (unlike our classification examples) in polyno-
mial time. The mβ problem can be derived as in the previous cases:
while still convex, mβ is in this case a quadratically constrained
problem.

Datasets, Preparation, and General Setup We test our method
on seven datasets from the UCI Machine Learning repository [9],
namely iris (150 examples), redwine (1,599), crime (2,215), whitewine
(4,898), adult (32,561), shuttle (43,500), and dota2 (92,650). We
use adult for the classification/fairness case study, crime for regres-
sion/fairness, and the remaining datasets for the classification/balance
case study.

For each experiment, we perform a 5-fold cross validation (with a
fixed seed for random reshuffling) to account for noise due to sampling
and in the training process. Hence, the training set for each fold will
include 80% of the data. All our experiments are run on an Intel Core
i7 laptop with 16GB RAM, and we use Cplex 12.8 to solve the master
problems. Our code and datasets are publicly available3.

All the datasets for the classification/balance case study are pre-
pared by standardizing all input features (on the training folds) to
have zero mean and unit variance. The iris and dota2 datasets are
very balanced (the constraint is easily satisfied), while the remaining
datasets are quite unbalanced. In the adult (also known as “Census
Income”) dataset the target is “income” and the protected attribute
is “race”. We remove the features “education” (duplicated) and “na-
tive country” and use a one-hot encoding on all categorical features.
Features are normalized between 0 and 1. Our crime dataset is the
“Communities and Crime Unnormalized” table. The target is “violent-
PerPop” and the protected feature is “race”. We remove features that
are empty almost everywhere and features trivially related to the tar-
get (“murders”, “robberies”, etc.). Features are normalized between 0
and 1 and we select the top 15 ones according to the SelectKBest
method of scikit-learn (excluding “race”). The protected feature is
then reintroduced.
3 git repository publicly available



Table 2. Effect of parameters α and β on different datasets.

NN (α, β) Ptr α = 1 α = 1 α = 1 α = .1 α = 0+ Ideal case
β = .01 β = .05 β = .1 β = .01 β = 0.1

Iris S .970± .002 .99± .01 .997± .004 .997± .004 .99± .02 0.995± 0.008 .9968± .0004
C .016± .001 .014∗ ± .004 .013∗ ± .004 .013∗ ± .004 .015∗ ± .005 .013∗ ± .004 .013± .004

Redwine S .709± .005 .508± .006 .511± .009 .506± .006 .484± .007 .50± .01 .525± .002
C .200± .001 .019∗ ± .001 .0186∗ ± .0005 .0184∗ ± .0008 .0188∗ ± .0004 .019∗ ± .001 .019± 0

Whitewine S .644± .002 .446± .006 .437± .009 .439± .009 .40± .02 .401± .009 .524± .002
C .189± .003 .015∗ ± .002 .013∗ ± .004 .015∗ ± .003 .014∗ ± .004 .014∗ ± .004 .015± .002

Shuttle S .999± 0 .39± .04 .37± .01 .375± .007 .37± .03 .37± .03 .3608± .0008
C .267± 0 .045∗ ± .03 .029± .003 .028± .006 0.05± .03 .04± .04 .017± 0

Dota2 S .686± .002 .666± .007 .661± .002 .66± .01 .672± .004 .656± .006 .9984± .0009
C .070± .008 .04∗ ± .03 .04∗ ± .03 .09± .06 .023± .006 .07± .03 .025± 0

Adult S .867± 0.001 .818± .005 .86± .02 .841± .006 .852± .004 .84± .02 0.992± .0005
C 1± .03 .18∗ ± .04 .16∗ ± .02 .22∗ ± .07 .22∗ ± .03 .22∗ ± .04 0.200± .0005

Crime S .56± .02 .49± .01 .46± .04 .48± .03 .45± .05 .46± .06 .910± .007
C .97± .03 .22∗ ± .07 .16∗ ± .08 .2∗ ± .1 .19∗ ± .02 .21∗ ± .04 .2± 0

Parameter tuning We know that extreme choices for α and β can
dramatically alter the method behavior, but not what effect can be
expected for more reasonable values. With this aim, we perform an
investigation by running the algorithm for 15 iterations (used in all
experiments), with different α and β values. As a ML model, we
use a fully-connected, feed-forward Neural Network (NN) with two
hidden layers with 32-Rectifier Linear Units. The last layer has either
a SoftMax activation (for classification) or Linear (for regression).
The loss function is respectively the categorical cross-entropy or
the MSE. The network is trained with 100 epochs of RMSProp in
Keras/Tensorflow 2.0 (default parameters and batch size 64).

The results are in Table 2. We report a score (row S, higher is better)
and a level of constraint violation (row C, lower is better). The S score
is the accuracy for classification and the R2 coefficient for regression.
For the balance constraint, the C score is the standard deviation of
the class frequencies; in the fairness case studies, we use the ratio
between the DIDI of the predictions and that of the training data. Each
cell reports mean and standard deviation for the 5 runs. Near feasible
values are marked with a ∗; accuracy comparisons are fair only for
similar constraint violation scores. We consider a solution as near
feasible when the associated constraint score lies within one standard
deviation from the imposed score.

All columns labeled with α and β values refer to our method with
the corresponding parameters. We explore different values of β (for
a fixed α = 1), corresponding to different ball radii in the mβ step;
we also explore different values of α, corresponding to a behavior
of the mα step progressively closer to that of the Alternating Projec-
tions method. The ideal case column refers to a simple projection of
the true labels y∗ on the feasible space C: this corresponds (on the
training data) to the best possible accuracy that can be achieved if the
constraints are fully satisfied. The ptr column reports the results of
the pretraining step, as defined in algorithm 1.

Results are to be read as follows: the ideal case constitutes the
upper bound to the performance of a constrained learner; it exactly
matches the constraint threshold while minimizing the loss function.
On the other hand, the ptr represents the constraint-agnostic behavior:
it retains good performances while not necessarily satisfying the
constraints. Our method lies in between the two extreme cases.

The Moving Targets algorithm can significantly improve the sat-
isfaction of non-trivial constraints: this is evident for the (very) un-

Figure 2. Average master step time, compared to NN training

balanced datasets redwine, whitewine, and shuttle and all fairness use
cases, for which feasible (or close) results are almost always obtained.
Satisfying very tight constraints (e.g. in the unbalanced dataset) gen-
erally comes at a significant cost in terms of accuracy. When the
constraints are less demanding, however, we often observe accuracy
improvements w.r.t. the pretraining results (even substantial ones for
adult and crime): this is not simply a side effect of the larger number
of training epochs, since we reset the NN weights at each iteration.
Rather, this seems a positive side-effect of using an iterative method
to guide training (which may simplify escaping from local optima):
further investigation is needed to characterize this phenomenon. Fi-
nally, reasonable parameter choices have only a mild effect on the
algorithm behavior, thus simplifying its configuration. Empirically,
α = 1, β = 0.1 seems to works well and is used for all subsequent
experiments.

Scalability We next turn to investigating the method scalability:
from this perspective our examples are worst cases, since they must
be defined on all the training data, and in some case involve NP-hard
problems. We report the average time for a master step in Figure 2.
The average time for a learner step (100 epochs of our NN) is shown as
a reference. At least in our experimentation, the time for a master step
is always very reasonable, even for the dota2 dataset for which we
solve NP-hard problems on 74,120 examples. This is mostly due to the
clean structure of themα andmβ problems. Of course, for sufficiently
large training sets, exact solutions will become impractical.



Setup of Alternative Approaches Here we describe how to setup
alternative approaches that will be used for comparison. Namely,
we consider the regularized linear approach from [3], referred to as
RLR, and a Neural Network with Semantic Based Regularization
[8], referred to as SBR. Both approaches are based on the idea of
introducing constraints as regularizers at training time. Hence, their
loss function is in the form:

L(f(X; θ), y∗) + µg(f(X; θ)) (23)

The regularization term must be differentiable. We use SBR only for
the case studies with the balance constraint, which we are forced to
approximate to obtain differentiability:

g(f(X; θ)) = max
j=1..c

m∑
i=1

f(X; θ) (24)

i.e. we use the sums of the NN output neurons to approximate the
class counts and the maximum as a penalty; this proved superior to
other attempts in preliminary tests. The L term is the categorical
cross-entropy.

[tb]

Table 3. Effect of parameter µ in regularization.

µ 0.01 0.1 1

Iris S 0.984 0.97 0.4
C 0.006 0.03 0.13

Redwine S 0.15 0.15 0.17
C 0.12 0.12 0.04

Whitewine S 0.17 0.15 0.14
C 0.08 0.02 0.03

Shuttle S 0.7 0.31 0.14
C 0.14 0.03 0.03

Dota2 S 0.61 0.48 0.49
C 0.2 0.5 0.5

Adult S .83 .75 .75
C 1.6 3.1 3

Crime S .39 0.30 0.30
C .4 0 0

Our SBR approach relies on the NN model from the previous para-
graphs. Since access to the network structure is needed to differentiate
the regularizer, SBR works best when all the examples linked by
relational constraints can be included in the same batch. When this
is not viable the regularizer can be treated stochastically (via subsets
of examples), at the cost of one additional approximation. We use
a batch size of 2,048 as a compromise between memory usage and
noise. The SBR method is trained for 1,600 epochs.

The RLR approach relies on linear models (Logistic or Linear
Regression), which are simple enough to consider large group of
examples simultaneously. We use this approach for the fairness use
cases. In the crime (regression) dataset L is the MSE and the regular-
izer is simply Equation (17). In the adult (classification) dataset L is
the cross-entropy; the regularizer is Equation (10), with the following
substitution:

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

θ>xi −
1

|Xk,v|
∑

i∈Xk,v

θ>xi

∣∣∣∣∣∣
This is an approximation obtained according to [3] by disregarding the
sigmoid in the Logistic Regressor to preserve convexity. We train this
approach to convergence using the CVXPY 1.1 library (with default
configuration). In RLR and SBR classification, the introduced ap-
proximations permit to satisfy the constraints by having equal output

for all classes, i.e. completely random predictions. This undesirable
behavior is countered by the L term.

There is no simple recipe for choosing the value of µ in Equa-
tion (23); therefore, we performed experiments with different µ values
to characterize its effect. The results are reported in Table 3. In most
cases, larger µ values tend as expected to result in better constraint
satisfaction, with a few notable exceptions for classification tasks
(iris, dota, and adult). The issue is likely due to the approximations
introduced in the regularizers, since it arises even on small datasets
that fit in a single mini-batch (iris). Further analysis will be needed
to confirm this intuitions. The accuracy decreases for a larger µ, as
expected, but at a rather rapid pace. In the subsequent experiments,
we will use for each dataset the RLR and SBR that offer the best
accuracy while being as close to feasible as possible (the “ideal case”
column from Table 2): these are the cells in bold font in Table 3.

Alternative Approaches and ML Models We can now compare
the performance of Moving Targets using different ML models with
that of the alternative approaches presented above (with µ = 0.1),
plus a pre-processing approach adapted from [13], referred to as
NNpp and obtained by setting α, β →∞ in our method.

For our method, we consider the following ML models: 1) the
NN from the previous section with α = 1, β = 0.1; 2a) a Random
Forest Classifier with 50 estimators and maximum depth of 5 (used for
all classification case studies); 2b) a Gradient Boosted Trees model,
with 50 estimators, maximum depth 4, and a minimum threshold of
samples per leaf of 5 (for the regression case study); 4a) a Logistic
Regression model (for classification); 4b) a Linear Regression model
(for regression). All models except the NN are implemented using
scikit-learn [23]. In the table, the tree ensemble method are reported
on a single column, while another column (LR) groups Logistic and
Linear regression.

Our algorithm seems to work well with all the considered ML
models: tree ensembles and the NN have generally better constraint
satisfaction (and higher accuracy for constraint satisfaction) than
linear models, thanks to their larger variance. The preprocessing
approach is effective when constraints are easy to satisfy (iris and
dota2) and on all the fairness case studies, though less so on the
remaining datasets. All Moving Targets approaches tend to perform
better and more reliably than RLR and SBR. The case of RLR and
LR is especially interesting, as they differ only for the mechanism
used to enforce constraint satisfaction. In principle we can expect the
two models to have zero gap, for the regularization term has the same
formulation and the problem is convex. The gap is then due to an
incomplete exploration of the space of the multiplier µ, since for the
same multipliers value the gap is null under optimal training (which
is the standard for linear regression). The example emphasizes a
practical problem that often arises when dealing with regularized loss
function: the value of the multiplier has to be thoroughly calibrated
by hand, while Moving Targets allows to directly define the desired
constraint threshold and obtain the best solution associated to it.

Generalization Since our main contribution is an optimization
algorithm, we have focused so far on evaluating its performance on
the training data, as it simplifies its analysis. Now that the property of
our methods are clearer, we can assess the performance of the models
we trained on the test data. The results of this evaluation are reported
in Table 5, in the form of average ration between the scores and the
level of constraint satisfaction in the test and the train data. With a
few exceptions (e.g. satisfiability in iris), the models (especially the
tree ensembles and LR) generalize well in terms of both accuracy and



Table 4. Benchmarks with different ML models and alternative approaches

Regularized methods NN LR Ensemble trees NNpp

Iris S .984± .006 .997± .004 .96± .02 .995± .004 .96± .01
C .006∗ ± .003 .013∗ ± .004 .014∗ ± .005 .012∗ ± .003 .014∗ ± .005

Redwine S .17± .05 .506± .006 .32± .01 .40± .02 .480± .001
C .05± .01 .018∗ ± .001 .031± .005 .08± .01 .073± .006

Whitewine S .15± .03 .439± .009 .025± .009 .37± .04 .47± .02
C .02∗ ± .004 .015∗ ± .003 .027± .003 .10± .01 .084± .009

Shuttle S .31± .04 .375± .007 .332± .007 .51± .05 .5± .1
C .03∗ ± .02 .028± .005 .023∗ ± .007 .11± .01 .2± .02

Dota2 S .61± .02 .66± .01 .592± .005 .53± .01 .689± .003
C .2∗ ± .1 .09± .06 .038± 0 .16± .04 .02∗ ± .02

Adult S .834± .001 .841± .006 .805± .006 .76± .01 .865± .003
C 1.7± .05 .22∗ ± .07 .20∗ ± .03 .01∗ ± .03 .081∗ ± .09

Crime S .30± .01 .48± .03 .369± .008 .49± .01 .484± .008
C 0± 0 .2∗ ± .1 .02∗ ± 0 .24± .01 .19∗ ± .02

constraint satisfaction. Given the tightness of some of the original
constraint and the degree to which the labels were altered, this is a
remarkable result.

[tb]

Table 5. Generalization of various models in the test scenario

NN Ensemble Trees LR

Iris Sts/Str 0.96 0.96 0.99
Cts/Ctr 5.68 5.17 4.31

Redwine Sts/Str 0.62 0.92 0.94
Cts/Ctr 1.22 1.04 1.35

Whitewine Sts/Str 0.70 0.96 1.00
Cts/Ctr 1.11 1.00 0.99

Shuttle Sts/Str 0.99 1.00 0.99
Cts/Ctr 0.97 1.00 1.01

Dota2 Sts/Str 0.83 1.00 0.99
Cts/Ctr 1.10 1.00 1.03

Adult Sts/Str 0.99 1.00 1.00
Cts/Ctr 1.55 1.92 0.98

Crime Sts/Str 0.75 0.73 0.93
Cts/Ctr 0.74 1.05 1.03

5 Conclusion
In this paper we have introduced Moving Targets, a decomposition
approach to augment a generic supervised learning algorithm with
constraints, by iteratively adjusting the example labels. The method
is designed to prioritize constraint satisfaction over accuracy, and
proved to behave very well on a selection of tasks, constraints, and
datasets. Its relative simplicity, reasonable scalability, and the ability
to handle any classical ML model make it well suited for use in real
world settings.

Many open questions remain: we highlighted limitations of reg-
ularization based techniques that deserve a much deeper analysis.
The convergence properties of our method still need to be formally
characterized (even in simpler, convex, scenarios). The method scala-
bility should be tested on larger datasets, for which using approximate
master steps will be necessary. Given the good performance of the
pre-processing approach in Table 4, it may be interesting to skip the
pretraining step in our method. Improvements may be possible by
using specialized algorithms in specific settings: Douglas-Rachford
splits could be applied in a numeric setting, or probabilistic predic-
tions could be employed (when available) to refine the projection
operators.

Acknowledgement
This research has been partially funded by the H2020 Project AI4EU,
grant agreement 825619.

REFERENCES
[1] Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos, ‘Learning

optimal and fair decision trees for non-discriminative decision-making’,
in Proceedings of AAAI, IAAI, EAAAI, pp. 1418–1426, (2019).

[2] Francisco J Aragón Artacho and Rubén Campoy, ‘A new projection
method for finding the closest point in the intersection of convex sets’,
Computational optimization and applications, 69(1), 99–132, (2018).

[3] Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J.
Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth, ‘A convex
framework for fair regression’, CoRR, abs/1706.02409, (2017).

[4] Stephen Boyd, Jon Dattorro, et al., ‘Alternating projections’, EE392o,
Stanford University, (2003).

[5] Toon Calders and Sicco Verwer, ‘Three naive bayes approaches for
discrimination-free classification’, Data Mining and Knowledge Discov-
ery, 21(2), 277–292, (2010).

[6] Alessandro Daniele and Luciano Serafini, ‘Knowledge enhanced neural
networks’, in Proceedings of PRICAI 2019, pp. 542–554, (2019).

[7] Michelangelo Diligenti, Marco Gori, and Claudio Sacca, ‘Semantic-
based regularization for learning and inference’, Artificial Intelligence,
244, 143–165, (2017).

[8] Michelangelo Diligenti, Marco Gori, and Claudio Saccà, ‘Semantic-
based regularization for learning and inference’, Artificial Intelligence,
244, 143 – 165, (2017). Combining Constraint Solving with Mining and
Learning.

[9] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
[10] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and

Richard Zemel, ‘Fairness through awareness’, in Proceedings of the 3rd
innovations in theoretical computer science conference, pp. 214–226,
(2012).

[11] Benjamin Fish, Jeremy Kun, and Ádám D Lelkes, ‘A confidence-based
approach for balancing fairness and accuracy’, in Proceedings of the
2016 SIAM International Conference on Data Mining, pp. 144–152.
SIAM, (2016).

[12] Moritz Hardt, Eric Price, and Nati Srebro, ‘Equality of opportunity
in supervised learning’, in Advances in neural information processing
systems, pp. 3315–3323, (2016).

[13] Faisal Kamiran and Toon Calders, ‘Classifying without discriminat-
ing’, in 2009 2nd International Conference on Computer, Control and
Communication, pp. 1–6. IEEE, (2009).

[14] Faisal Kamiran and Toon Calders, ‘Data preprocessing techniques for
classification without discrimination’, Knowl. Inf. Syst., 33(1), 1–33,
(2011).

[15] Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy, ‘Discrimination
aware decision tree learning’, in 2010 IEEE International Conference
on Data Mining, pp. 869–874. IEEE, (2010).



[16] Guosheng Lin, Chunhua Shen, Anton Van Den Hengel, and Ian Reid,
‘Efficient piecewise training of deep structured models for semantic
segmentation’, in Proc. of the IEEE CVPR, pp. 3194–3203, (2016).

[17] Marco Lippi and Paolo Frasconi, ‘Prediction of protein β-residue con-
tacts by markov logic networks with grounding–specific weights’, Bioin-
formatics, 25(18), 2326–2333, (2009).

[18] Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini, ‘k-nn as an
implementation of situation testing for discrimination discovery and
prevention’, in Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 502–510,
(2011).

[19] Xuezhe Ma and Eduard Hovy, ‘End-to-end sequence labeling via bi-
directional lstm-cnns-crf’, in Proc. of ACL, pp. 1064–1074. Association
for Computational Linguistics, (2016).

[20] Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas
Demeester, and Luc De Raedt, ‘Deepproblog: Neural probabilistic logic
programming’, arXiv preprint arXiv:1805.10872, (2018).

[21] Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, and
Marco Gori, ‘Integrating learning and reasoning with deep logic models’,
in Proc. of ECML, (2019).

[22] Neal Parikh, Stephen Boyd, et al., ‘Proximal algorithms’, Foundations
and Trends R© in Optimization, 1(3), 127–239, (2014).

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ‘Scikit-learn: Machine learning in Python’, Journal of Machine
Learning Research, 12, 2825–2830, (2011).

[24] Matthew Richardson and Pedro Domingos, ‘Markov logic networks’,
Machine learning, 62(1-2), 107–136, (2006).

[25] Tim Rocktäschel and Sebastian Riedel, ‘End-to-end differentiable prov-
ing’, in Advances in Neural Information Processing Systems, pp. 3788–
3800, (2017).

[26] Luciano Serafini and Artur d’Avila Garcez, ‘Logic tensor networks:
Deep learning and logical reasoning from data and knowledge’, arXiv
preprint arXiv:1606.04422, (2016).

[27] Emile Van Krieken, Erman Acar, and Frank Van Harmelen, ‘Semi-
supervised learning using differentiable reasoning’, Journal of Applied
Logic, (2019). to Appear.

[28] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork,
‘Learning fair representations’, in International Conference on Machine
Learning, pp. 325–333, (2013).


	Introduction
	Related Works
	Moving Targets
	Empirical Evaluation
	Conclusion

