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Abstract
This work aims to provide useful insights into the course of action and the challenges faced by machine manufacturers when
dealing with the actual application of Prognostics and Health Management procedures in industrial environments. Taking into
account the computing capabilities and connectivity of the hardware available for smartmanufacturing, we propose a particular
solution that allows meeting one of the essential requirements of intelligent production processes, i.e., autonomous health
management. Indeed, efficient and fast algorithms, that does not require a high computational cost and can be appropriately
performed on machine controllers, i.e., on edge, are combined with others, which can handle large amounts of data and
calculations, executed on remote powerful supervisory platforms, i.e., on the cloud. In detail, new condition monitoring
algorithms based on Model-of-Signals techniques are developed and implemented on local controllers to process the raw
sensor readings and extract meaningful and compact features, according to System Identification rules and guidelines. These
results are then transmitted to remote supervisors, where Particle Filters are exploited to model components degradation and
predict their Remaining Useful Life. Practitioners can use this information to optimise production planning and maintenance
policies. The proposed architecture allows keeping the communication traffic between edge and cloud in the nowadays
affordable “Big data” range, preventing the unmanageable “Huge data” scenario that would follow from the transmission of
raw sensor data. Furthermore, the robustness and effectiveness of the proposed method are tested considering a meaningful
benchmark, the PRONOSTIA dataset, allowing reproducibility and comparison with other approaches.
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Introduction

The introduction of emerging technologies, increasing com-
puter computational capabilities and storage, e.g., Big-Data
analysis tools and Artificial Intelligence, into the industrial
world is enabling new models, new forms, and new method-
ologies to transform the traditional manufacturing system
into a smart system. Among those, Prognostics and Health
Management (PHM) of machines has risen, in recent years,
as one of the main topics within Industry 4.0 and a relevant
factor in firms adopting the main concepts of Smart Factory
and Intelligent Manufacturing. Systems with the possibility
to autonomously perform the diagnostics and prognostics of
faulty conditions are now becoming a source of value and
competitive advantage for machine builders and an essential
requirement for their customers.

With a focus on the industrial automation andmanufactur-
ing domain, the involved research field has proposed a wide
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variety of tools and solutions to apply PHM on machinery
(Gouriveau et al. 2016; Atamuradov et al. 2017; Vogl et al.
2019). These propositions are typically accurately defined
fromamethodological perspective, however, lacking in terms
of actual design and implementation in the industrial envi-
ronment. On the other hand, Industry 4.0 is pushing industrial
automation suppliers to develop capable hardware, suitable
software tools, and ensure reliable inter-system communi-
cation to support intelligent manufacturing. The main issue,
in this case, is in the separation between the methodological
aspect and the technological one in the industrial application
of PHM. Hence, these two aspects should be simultaneously
considered and developed.

In practice, the increase in computing capacity of Pro-
grammable LogicControllers (PLCs), particularly in the case
of PC-based ones, allows the integration of hardware and
software solutions to perform PHM on traditional machin-
ery. The intrinsic real-time features of PLCs already permit to
handle, through Fieldbus, a large number of sensor measure-
ments to capture information coming from working machine
components. In addition, the increased computational power
enables controllers to possibly house part of the processing
required for PHM,working as refining edge-computing units.
Besides, the increased connectivity allows the outsourcing
of further elaborations to remote computing units, which can
be either within the machine supervising network or through
cloud-computing.

Given those considerations, PHM methodologies have to
be studied and structured to take into account the possi-
bility of adopting PLCs as edge-computing units running
feasible information extraction/refinement algorithms. Then,
more complex calculations can be remotely performed
to interpret the useful health indicators for maintenance
decision-making. Lastly, it is necessary to ensure that the
interconnection of the systems involved is sustainable by
the automation pyramid underlying network. The data flow,
therefore, is feasible for the already in place networking
solutions, such as Fieldbuses and supervising LANs. Also,
manufacturers have the advantage of developing methodolo-
gies on known industrial platforms, based on their expertise.

For the purposes mentioned above, we firstly present a
brief review of the commonly used PHM methodologies in
automatic machines and secondly propose a suitable solu-
tion tailored to the available technologies mentioned above,
taking into account their potential and limitations. We will
develop a particular PHM course of actions in which data
regarding the machinery degradation is collected and refined
locally on board the controller. Then, this information is
remotely transmitted for further elaborations and presented
for maintenance purposes.

In detail, Model-of-Signals (MoS) technique, which it is
suitable for PLC implementation (Barbieri 2017; Barbieri
et al. 2018), is firstly implemented to obtain useful infor-

mation from sensor data. This technique is a data-driven
method based on system identification, granting useful the-
oretical foundations for signal information extraction. In
this scenario, the ability to process data locally enables the
compression of measurement streams (i.e., Huge-Data) into
compact pieces of information (i.e., Big-Data), which are
easier to handle and transmit over the network. Secondly,
following PLC-Supervisor/Cloud data transmission, Health
Indicators (HIs) are computed from the obtained signal mod-
els. Finally, Particle Filtering (PF) is adopted to track the
degradation evolution and to predict the system’s Remaining
Useful Life (RUL), which is one of the main indicators to
optimise maintenance.

Furthermore, the applicability of the proposed methodol-
ogy is validated using PRONOSTIA and IMS benchmarking
data sets, taken from the NASA repository. PLC-Supervisor
architecture is simulated to execute the various task involved.
Even if it is not a real industrial application, we expect that
making use of an open-source database to develop our dis-
cussion may be useful for practitioners willing to add PHM
to their machinery with a repeatable example. Besides, the
algorithm Prognostic Horizon (PH) performance metric is
computed, allowing us to compare our results with other
methodologies.

The remainder of the paper is organized as follows: in
“Methods review and proposed methodology” section we
give a brief review of the available PHM techniques and
maintenance policies to highlight the proposedmethodology.
Then, in “Theoretical foundations” section, the theoretical
background used to develop our proposition, from Model-
of-Signals to Particle Filtering, is introduced. “Case studies
and results” section aims to show a detailed application of
the methodology to the PRONOSTIA and IMS open-source
datasets and discusses the obtained results in terms of perfor-
mance. Finally, “Conclusions” section draws the conclusions
of the proposed work. A scheme of the paper organisation is
shown in Fig. 1.

Methods review and proposedmethodology

Tracking equipment condition during operations, on-board
the system, is known as Condition Monitoring (CM). This
technique allows the implementation of autonomous PHM
solutions that provide useful information to perform suit-
able servicing decisions. The servicing strategies, based on
CM of machinery parts, are referred to as Condition-Based
Maintenance (CBM) (Jardine et al. 2006) and Predictive
Maintenance (PM). The former is usually triggered when
a device/component reaches a certain level of degradation,
while the latter depends on the component/device’s predicted
level of degradation. This paper is dedicated to proposing a
new prognostics solution that provides useful information
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Fig. 1 Schematic of paper
organisation

for optimisation of PM policies. In general, an autonomous
health management procedure consists of the following three
main steps:

1. data acquisition;
2. data processing, modelling, and analysis;
3. maintenance decision-making.

The application of AutonomousHealthManagement (AHM)
procedures on machinery components require significant
sensor measurements, suitable data processing algorithms,
and appropriate servicing choices, either automated or
with human intervention. In the literature, the majority of
papers cover fault diagnostics and prognostics algorithms
of machine’s critical components, such as bearings, gears,
drive mechanical parts, and electrical equipment (Lee et al.
2014). However,most of the existingworks does not take into
account systems available to manufacturers to perform the
task, neither their implementation and deployment in indus-
trial automation platforms. Hereinafter, the three previously
mentioned AHM steps, and their main tools, are discussed to
select suitable solutions that respond to the industrial automa-
tion framework’s requirements.

Data acquisition

Machinery can typically provide measurement data from
on-board sensors, such as temperature, current, sound and
vibration, and supervisory data, such as information about
products, production, and faults history. The latter is so far

themost used to define the reliability of systems and their ser-
vicing (Lee et al. 2014). Besides, the use of on-board sensors
to gather data characterizing the machinery health state is
the foundation of CM-based PHM procedures (Jardine et al.
2006). This data collection procedure is traditionally per-
formed on external equipment (e.g., National Instruments
DAQs). However, newly available PLCs I/O modules, such
as Beckhoff EL3632 and B&RX20CM4800X, can also han-
dle the same operation. In this fashion, to develop an AHM
solution on-board, we propose the machinery controller as
the edge-computing unit to process the sensor measurements
for further elaborations without additional external devices.

Data processing, modelling and analysis

Data processing, modelling, and analysis, which aims to
extract useful information from sensor signals, has a key role
in the definition of what PHM can provide for the decision-
making stage. The methods employed to achieve this task
are usually classified into three groups, depending on how
much they exploit (mathematically) the physical knowledge
related to the monitored system:

– Model-Based methods.
– Data-Driven methods.
– Hybrid methods.

Model-Based methods (Isermann 2005) rely on physi-
cal modelling to build mathematical approximations, of
increasing degree of complexity, to characterise the system
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input/output behaviour, together with expressions character-
ising the degradation evolution of systems. These methods
are particularly effective in terms of diagnostics and prognos-
tics of faults. However, its complexity may result prohibitive
for edge-computing in the automaticmachines field.Machin-
ery controllers’ common programming languages have no
libraries nor tools to run physical models in parallel with the
system. On the other hand, Data-Driven methods (Cerrada
et al. 2018) exploit signals measured on-board to perform
CM, mainly through signal processing and machine learning
techniques. The implementation of such strategies is simpler
and requires, in general, less time and resources. Finally,
hybrid methods combine the previously mentioned ones,
a promising solution for the development of autonomous
health management systems.

In this paper, the Model-of-Signals method (Isermann
2006), based on black-box system identification theory
(Söderström and Stoica 1989), is used to track the signal
changes, and we experimented it in the context of CBM
(Barbieri et al. 2018, 2019a, b, 2020). This method can be
considered as a hybrid one because it relies on mathematical
expression to model the signal trend and also use the moni-
toring data to estimate the model parameters. In practice, it
allows facilitating the integration of PHM modules into the
on-board controller thanks to the following main properties:

– the proposedmethod allows compressing signal informa-
tion into models, that are easier to handle, and facilitates
distributed computing to increase the computational
capacities in real-time.

– its developed mathematical models can carry inherent
information about system physical characteristics, that is
useful information to improve the diagnostics and prog-
nostics results.

– the availability of its recursive algorithms permit its direct
implementation on the PLC, hence exploiting its edge-
computing capabilities.

Maintenance decision-making

This step relies on the processed data to drive maintenance
decisions depending on the systems state. In this context,
decision-making can be done either by human operators or
with automated solutions. The latter nowadays becomes a
fascinating subject that receives increasing attention in the
literature. For autonomousmaintenance decisionmaking, the
refined data from the previous steps are used to predict sys-
tem faults, described with failure probabilities or Remaining
Useful Life (RUL) indications. Then, defining a threshold
on those quantities, it is possible to trigger an automated
alarm and to launch an optimisation process for maintenance
decision-making.

The key element of the autonomous health management
process, RUL prediction, can be performed based on vari-
ous data-driven techniques (Si et al. 2011), from statistics to
machine learning.Among these techniques, Particle Filtering
is an efficient method that is widely used to accomplish the
RUL prediction task (Tulsyan et al. 2016; Wang et al. 2019).
This method allows building the degradation model of the
monitored system and then, based on this result, forecasting
its RUL.

Proposedmethodology

Smart manufacturing sites typically use PLCs to handle
the production process and PCs to supervise their work.
The technological development of those devices enables
the integration of autonomous health management solutions
alongside logic control tasks. Given these considerations,
together with the previously mentioned brief review, we
propose an efficient and practical methodology that allows
integrating automated PHMmodules in machine controllers,
using standard industrial platforms and architectures. The
proposed solution, presented in Fig. 2, is based on a widely
used architecture by industrialmanufacturers: PC-supervised
PLCs connected via LAN. The PLCs ensure the edge-
computing unit role, providing themonitoring equipment and
the first refinement of the collected data. The PC supervisor is
the remote computing unit providing the final data processing
to extract reliable prognostics information for maintenance-
decision making purposes.

Besides the logic control task, the PLC is capable of
handling the measured signals (e.g., currents, temperatures,
and vibrations), coming from the on-board sensing devices,
and process them (see the left side of Fig. 2). In detail, the
Model-of-Signals technique, implemented on PLCs, allows
extracting useful information from sensor measurements. It
compresses huge-data streams into models that retain the
majority of the inherent signal characteristics. Its imple-
mentation can be easily performed based on main coding
languages used to program machinery controllers, such as
Structured Text (ST) (Barbieri 2017).

Then, the estimated model’s parameters are used to cal-
culate Health Indicators (HIs), giving an indication of the
health state of monitored parts on top of which the signals are
measured. Their elaboration can be done locally or remotely,
depending on the complexity of the computations and related
loads. In this work, we propose the construction of both a
local HI and a remote HI (see “Anomaly detection and health
indicator construction” section for the details). The first one
serves as a backup for the worst-case scenario of a LAN dis-
connection. It allows continuous monitoring of the system’s
health state when it is impossible to receive information from
the supervisor. The second one is the primary indicator used
for health state prediction andmaintenance decision-making.
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Fig. 2 Schematic of the overall methodology

The edge-computed model, built based on the Model-of-
Signals technique, is sent over LAN to the remote computing
unit, see Fig. 2 on the right side. This remote computing unit
enables complex calculations that require higher computa-
tional resources for a reliable RUL prediction. To do that,
the PC computes the related HI and monitors its evolution
in time. Machines typically work under nominal conditions
for a long time before an anomaly occurs in their compo-
nents. During those healthy conditions, it is not necessary
to perform prognostics. Hence, it is required the identifica-
tion of a HI threshold Thprog for anomaly detection, which
is related to the moment when the degradation of the moni-
tored systems starts. This event triggers the execution of the
prognostics task performed by Particle Filtering. The PF is
used to learn the degradation model and, consequently, pre-
dict its evolution toward the failure threshold. The definition
of this second threshold is essential to evaluate the moni-
tored system’s Remaining Useful Life (RUL). Finally, this
information provides valuable indications for maintenance
optimisation and decision-making.

The next section intends to describe in detail the theo-
retical foundations of the proposed methodology and also
present the mathematical tools used to accomplish it.

Theoretical foundations

Model-of-signals

Model-of-Signals (MoS) techniqueusesmathematical expres-
sions, whose parameters are estimated from the available
data, to model the measured signals (Isermann 2006). Those
mathematical expressions are, typically, constructed based
on black-box system identification theory (Ljung 1999;
Söderström and Stoica 1989), which provides essential rules
and guidelines to derive the appropriate signal model. This

model and its variation in time can then be used as the primary
source of information for fault diagnostics and prognostics
methods.

Figure 3 shows a summary of the main steps to execute
MoS. It starts with the sampling of the available signal for
which the appropriate underlying model parameter structure
and the proper model order are selected. Then, the estima-
tion algorithm is defined depending on the picked model
structure. In the end, the model’s parameters are obtained
by injecting the sampled signal into the chosen estimation
algorithm. Hereinafter, we present in detail how to apply this
procedure for the case of bearings, which is the case study
we are going to analyse later.

Vibration signals are used to track bearing degradation
andmodelled as AutoRegressive (AR) processes. Their iden-
tification is efficiently performed by means of the Recursive
Least Squares (RLS) algorithm (Ljung 1999; Söderström and
Stoica 1989). As shown in (Barbieri 2017; Barbieri et al.
2018, 2019a), the RLS implementation on board the PLC
is feasible because of its recursive nature and requires the
definition of a library containing the involved matrix opera-
tions. In this paper, we apply the Overdetermined Recursive
Instrumental Variable (ORIV) (Friedlander 1984), which is
an enhanced version of RLS that uses more equations to
increase model estimation robustness.

To introduce the algorithm, we assume the evolution of
the vibrational signal y(t) as modelled by the following AR
process of order n:

y(t)+a1 y(t−1)+a2 y(t−2)+· · ·+an y(t−n) = e(t) (1)

or in its discrete-time transfer function form:

y(t) = 1

A(z−1)
e(t) (2)
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Fig. 3 Summary of
model-of-signals

where the driving noise e(t) is a zero-mean white process
with varianceσ 2

e ,n is themodel order and A(z−1) is a polyno-
mial in the backward shift operator z−1 (z−1 y(t) = y(t−1)).

Equation (1) can be rewritten in the linear regression form

y(t) = ϕT
y (t)θ + e(t) (3)

with

ϕy(t) = [−y(t − 1) . . . − y(t − n)]T (4)

θ = [a1 . . . an]T . (5)

Define also the following vector of instruments:

ϕ̄y(t) = [−y(t − 1) . . . − y(t − n − q)]T , (6)

with q ≥ 0. Starting from the set of available samples
y(1), y(2), . . . , y(N ), it is possible to compute the following
extended instrumental variable (IV) estimate (Söderström
and Stoica 1989)

θ̂ = R̂+ ρ̂, (7)

where

R̂ =
N∑

τ=τ0

ϕ̄y(τ )ϕT
y (τ ), ρ̂ =

N∑

τ=τ0

ϕ̄y(τ )y(τ ), (8)

τ0 = n + q + 1, and R̂+ denotes the pseudoinverse of the
matrix R̂. Note that, if q = 0 we have ϕ̄y(τ ) = ϕy(τ ) so
that the estimate (7) becomes the classic Least Squares (LS)
estimate θ̂ = R̂−1 ρ̂.

Given those premises, it is possible to introduce the recur-
sive version of the extended IV algorithm, as proposed in
(Friedlander 1984) where it is called Overdetermined Recur-
sive Instrumental Variable (ORIV). The ORIV coding is
attainable in PLC software environment. However, ORIV
requires some slight modifications from the RLS implemen-
tation that we proposed in (Barbieri 2017). Equation (7) is
rewritten with R̂+ expanded as P̂(t)R̂T (t):

θ̂ (t) = P̂(t)R̂T (t)ρ̂(t) (9)

where

ρ̂(t) =
t∑

τ=τ0

ϕ̄y(τ )y(τ ) (10)

R̂(t) =
t∑

τ=τ0

ϕ̄y(τ )ϕT
y (τ ) (11)

P̂(t) =
[
R̂T (t)R̂(t)

]−1
. (12)

Then, following the computations done in (Friedlander
1984), the recursive version of the algorithm is given below.

Algorithm 1 (ORIV)

1. η(t) = RT (t − 1)ϕ̄y(t)
2. φ(t) = (η(t) ϕy(t))

3. Λ(t) =
(−ϕ̄T

y (t)ϕ̄y(t) 1
1 0

)

4. v(t) =
(

ϕ̄T
y (t)ρ(t − 1)

y(t)

)

5. K (t) = P(t − 1)φ(t)
[
Λ(t) + φT (t)P(t − 1)φ(t)

]−1

6. θ̂ (t) = θ̂ (t − 1) + K (t)
[
v(t) − φT (t)θ̂(t − 1)

]

7. R(t) = R(t − 1) + ϕ̄y(t)ϕT
y (t)

8. ρ(t) = ρ(t − 1) + ϕ̄y(t)y(t)
9. P(t) = P(t − 1) − K (t)φT (t)P(t − 1)

The initial step may be defined in the following way

θ̂ (0) = 0, P(0) = ψ In,
ρ(0) = 0, R(0) = 0,

(13)

with ψ any large positive number.

Note that the algorithm requires no inversion of an n × n
matrix, which is highly computationally demanding for a
PLC, whereas the 2×2 matrix inversion at step (5) has fixed
dimensions and well-known implementation.

Model order selection

The use of AR processes to represent the measured signals
requires to define a proper model order n, see equation (1).
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Two criteria that are often used for model order selection are
the Final Prediction Error (FPE) and the Minimum Descrip-
tion Length (MDL) (Söderström and Stoica 1989). They are
typically based on the statistical properties of the residu-
als of the LS identification. However, in this case we will
make use of the ORIV identification residuals. Considering
an AR model of order n and the associated parameter vec-
tor θ̂n identified by applying the ORIV method to a set of
N measurements: y(1), y(2), . . . , y(N ), FPE and MDL are
criteria with complexity terms that consist in selecting the
order n leading to the minimum of the following loss func-
tions (Söderström and Stoica 1989; Ljung 1999):

FPE(n) = N + n

N − n
J (θ̂n) (14)

MDL(n) = N log(J (θ̂n)) + n log N , (15)

where

J (θ̂n) = 1

N

N∑

t=1

ε2(t, θ̂n), (16)

and ε(t, θ̂n) = y(t) − ϕT (t) θ̂n is the residual (prediction
error) obtained after the ORIV identification. In this work,
the choice of the order n is performed by combining the
FPE and MDL criteria applied to the residual sequence
ε(1, θ̂n), . . . , ε(N , θ̂n).

Anomaly detection and health indicator
construction

Health Indicators (HI) are obtained by computing model dis-
tance metrics. They permit to evaluate how far the current
estimatedmodel θ̂ (t), at some time point in time t , is from the
reference one θ̂nom, identified during nominal healthy condi-
tions. HI time evolution is used either for fault detection or
prediction depending on its behaviour.

Figure 4 summarizes the HI construction procedures pro-
posed in this paper. We make use of two HIs: the first is
directly evaluated on the PLC while the second is calculated
on the PC supervisor. In detail, the Normalized Root Mean
Square Error (NRMSE), which is effectively implementable
onPLCs, is chosen to evaluate the distance between reference
and current model:

H INRMSE =

√√√√√

∥∥∥θ̂ − θ̂nom

∥∥∥
∥∥∥θ̂nom

∥∥∥
, (17)

This proposed HI is useful to prevent the system from reach-
ing a non-return failure point. Especially, when the controller
and the supervisor are not able to communicate it acts as a

last resort solution used to avoid unwanted damages. Indeed,
it is a positive index that allows fault detection when exceed-
ing a failure threshold. However, its high non-linear and
non-smooth behaviours can lead to non-reliable prognos-
tics results. Hence, it is necessary to simultaneously develop
another HI on the PC supervisor to derive precise and robust
prognostics results. This health indicator is calculated based
on a symmetric version of the Itakura-Saito spectral distance
(Itakura 1968; Magnant et al. 2014):

H II-S = 1

2

(
DI-S(θ |θnom) + DI-S(θnom|θ)

)
(18)

with

DI-S(θ
1|θ0) = spec(θ1)

spec(θ0)
− log

(
spec(θ1)

spec(θ0)

)
− 1, (19)

where spec(θ i ) represents the Power Spectral Density (PSD)
computed from the parameters θ i of the AR model.

This HI, that typically can not be evaluated on PLCs
because of its computational complexity, is used for RUL
prediction purposes because it is well correlated over time
with the degradation process of the system and can be easily
modelled (i.e. its evolution fits simple exponential functions,
see “Remote-computing on PC” section). In this framework,
prognostics is triggered when this indicator excesses the
anomaly threshold, pointing out the starting of the degra-
dation. Then, the RUL is computed by means of a upper
limit failure threshold on the H II-S evolution prediction. In
the next section we describe the tool used to perform this
prediction: Particle Filtering (PF).

Particle filtering

Particle Filtering (PF) is based on the recursive Bayesian
estimation framework (Gordon et al. 1993). It starts by con-
sidering the following state space model:

xk = f (xk−1, ωk−1) (20)

yk = h(xk, vk), (21)

where xk is the state vector; f (·) is the possibly non-linear
state transition function; h(·) is the state to output mapping;
ωk and vk are the independent identically distributed process
and measurement noise respectively with known statistics;
and k ∈ N index refers to the time step.

The goal is to reconstruct the Probability Density Func-
tion (PDF) of the current state xk , defined as p(xk), exploiting
the information collected through the observations sequence
y1, y2, . . . , yk , denoted y1:k compactly, given the conditional
PDF p(xk |y1:k). This posterior probability can be obtained
by means of a recursive procedure employing two main
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Fig. 4 HI construction
procedure implemented on PLC
and PC supervisor

stages: prediction and update. Given the initial state PDF
p(x0) = p(x0|y0), we start the description of the afore-
mentioned stages at time k − 1, given the conditional PDF
p(xk−1|yk−1).

The prediction stage makes use of Eq. (20) to obtain the
prior PDF of the state vector at step k. This is used within
the Chapman-Kolmogorov equation:

p (xk | y1:k−1)

=
∫

p (xk |xk−1, y1:k−1) p (xk−1|y1:k−1) dxk−1

(22)

where if we assume the underlying process to be a first-order
Markov one:

p (xk |xk−1, y1:k−1) = p (xk |xk−1) , (23)

we get the following equation:

p (xk |y1:k−1) =
∫

p (xk |xk−1) p (xk−1|y1:k−1) dxk−1.

(24)

Then, once the new observation yk is available it is pos-
sible to perform the update stage by using the Bayes’ Rule:

p (xk |y1:k) = p (yk |xk) p (xk |y1:k−1)

p (yk |y1:k−1)
(25)

to get the posterior PDFof the state. Thenormalizing constant

p (yk |y1:k−1) =
∫

p (yk |xk) p (xk |y1:k−1) dxk (26)

depends on the likelihood function p (yk |xk) which is based
on (21). The recursion of Eqs. (22) and (25) pave the way to
the optimal solution of this Bayesian framework.

Actually, the Bayesian solution is just a conceptual one,
since, due to its complexity, it is possible to attain it ana-
lytically only under certain assumptions or conditions, such
as Kalman Filters where all posterior PDFs are assumed to
be Gaussian. Because of this reason, sub-optimal filters are
required in order to at least approximate the solution.

One of the most used sub-optimal filters is the Particle
Filter (PF), which is based on the Sequential Monte Carlo
(SMC)method. Themain idea of this filter is to exploit recur-
sively MC simulations to represent the required posterior
density function by a set of random samples with associated
weights and to compute estimates based on these samples and
weights. A suitably large number of samples, called particles
in this case, is able to characterize an equivalent represen-
tation of the posterior PDFs involved in the framework. A
thorough explanation of such methods is presented in Aru-
lampalam et al. (2002).

The particle filtering approach proposed in this paper
is Sampling Importance Resampling (SIR), which is used
widely in the prognostic field (Tulsyan et al. 2016; An et al.
2013; Saha and Goebel 2011; Skima et al. 2016), and makes
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use of Np weighted particles:

{〈xik, wi
k〉 ; i = 1, . . . , Np}, compactly {xik, wi

k}Np
i=1, (27)

to approximate p(xk |y1:k), wherewi
k is the weight of particle

i at time k.
Starting from the initial distribution p(x0), approximated

by the sequence {xi0}Np
i=1 with uniform weights {wi

0 =
1
Np

}Np
i=1, we summarize the steps to accomplish SIR Particle

Filtering within the recursive Bayesian filtering framework
in the following:

Algorithm 2 (SIR PF)

1. Prediction: compute the new a priori PDF of the state xk
by propagating through model described by Eq. (20) the

particle set from {xik−1}
Np
i=1 to {xik}

Np
i=1. In this way, the

approximation of p (xk |xk−1), which is the state transi-
tion PDF, is obtained.

2. Update: once the new measurement yk is available, the
likelihood function p (yk |xk) is exploited to compute
importance weights according to:

{
wi
k = p

(
yk |xik

)

∑Np
i=1 p

(
yk |xik

)

}Np

i=1

(28)

3. State estimation: the estimate is given by the particle
mean value:

x̂k = 1

Np

Np∑

i=1

xikw
i
k (29)

4. Re-sample: Re-sample from {xik, wi
k}

Np
i=1, proportionally

to the new computed weights, the new sequence of par-

ticles {xik}
Np
i=1 is obtained. This sequence distribution is

recursively approximated by p(xk |yk).

Fault prognostics

In the previous section we described how to employ SIR
Particle Filtering to estimate the system state xk and its
unknown parameters based on the collected observation yk
at time step k (instant tk in time units, from now on). This
means that, if we apply it to the degradation model of the
studied system, we can learn, through its HI observations,
the underlying system failure evolution. The left column of
Fig. 5 refers to this course of actions: the learning stage.

Then, using this knowledge, we are able to propagate the
posterior PDF to forecast the degradation state in the future.
The simplest way to perform prognostics in this framework
is, at a given moment in time tk , to reiterate the prediction

step of Algorithm 2 by propagating the particles {xik}
Np
i=1 until

xik (or also yik , obtained through Eq. (21)) reaches the failure
threshold ThEoL at the End-of-Life (EoL) time t iEoL. Then, the
Remaining Useful Life PDF is obtained from the distribution
of those failing times t iEoL with respect to tk , i.e. p(t iEoL −
tk). This is summarized in the right column of Fig. 5: the
prediction stage.

In this paper, the H II-S evaluated on the PC supervisor
is used for system health state estimation and RUL predic-
tion. PF learning phase will start as soon as the HI excesses
the prognostics trigger threshold, while the RUL prediction
phase will start when the HI reaches the EoL limit.

Case studies and results

This section aims to verify the efficiency and the robustness
of the proposedmethod formachinery prognostics and in par-
ticular bearings. For this purpose, two benchmark datasets:
PROGNOSTIA (“Case studies and results” subsection) and
IMS (“Case study: IMS dataset” section) in the NASA repos-
itory are investigated.

Case study: PRONOSTIA dataset

The first case study relies on the bearing prognostics dataset
PRONOSTIA (Nectoux et al. 2012), obtained from the
NASA prognostics Data Center (NASA 2019). It provides
run-to-failure vibrational signals obtained from 17 ball bear-
ings of the same typology under 3 different operating
conditions, causing accelerated degradation on the compo-
nent under test.

PRONOSTIA test bench description

The test bench setup, shown in Fig. 6, consist of an AC
motor driving with timing belts. The shaft is connected to
the inner ring of the bearing under test. The NI sensing sys-
tem provides logging files of the data collected from two
accelerometers positioned at 90◦ from each other: one mea-
suring vibration in the direction perpendicular to the base,
while another is setup parallel to the base. They are sampled
with a frequency of FS = 25, 600 Hz for 0.1 s of acquired
signal every 10 s. Accelerated degradation is simulated by
means of a pneumatic actuator pushing radially on the bear-
ing frame/outer ring. Shaft rotating speed and actuator force
determine the load conditions under which the test is per-
formed and are defined as follows:

1. Speed: 1800 rpm–Force: 4000 N;
2. Speed: 1650 rpm–Force: 4200 N;
3. Speed: 1500 rpm–Force: 5000 N.
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Fig. 5 Application of particle
filtering for prognostics purpose

Fig. 6 Experimental ball
bearing diagnostics and
prognostics setup: PRONOSTIA
(Nectoux et al. 2012)

The dataset contains run-to-failure measurements of 7 bear-
ings under condition (1), 7 ones under condition (2) and 3
ones under condition (3). Vibration signal logs are organized
in folders, one folder for one tested bearing, and divided in
time-sorted .csv files, containing 2560 samples per file, for
both accelerometers. Originally, the dataset was distributed
for the PHM Challenge in 2012 and divided into two parts:
training and validation. The former consists of 2 bearings
per condition and the latter contain the remaining ones with
truncated logs. Nowadays, the full data set is available for
research purposes. An example of vibration signal from the
database is shown in Fig. 7.

The proposed methodology (“Proposed methodology”
section) is applied on the described PRONOSTIA open
source database to serve as reference for practitioners

in industrial environments with PLC controlled automatic
machines. Its algorithms are coded with Matlab, and can be
easily implemented on the proposed PLC-Supervisor archi-
tecture. To do this, we provide practical guidelines, starting
from the arrangement of measurements for MoS estimation,
through the communication procedure between logic con-
troller and supervisor, and ending with the use of Particle
Filtering for RUL prediction.

Edge-computing on PLCs

Machinery controllers are based on real-time operating sys-
tems. They are able to respond to eventswithin precise timing
constraints, and they are reliable in accurately handling sen-
sormeasurementswithin their fieldbus network. For instance,
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Fig. 7 Vibration signal from the
database

Beckhoff EL3632 and B&R X20CM4800X I/O modules
have sampling rates of up to 25 kHz. On the other hand, bear-
ing failingmodes are a function of the driving shaft speed and
typically in the range of 1–500Hz. In PRONOSTIA (Soualhi
et al. 2014) thosemodes are around 200 Hz. Higher sampling
rates require a lot of available bandwidth on the Fieldbus
and also PC-based PLCs powerful enough to handle them,
together with the control task. On the other hand, a sam-
pling of 1 kHz is enough in this situation to catch the faulty
behavior of the component. Thus, reducing the sampling rate
allows the methodology to be feasible also in less powerful
controllers without hindering the logic control task and with-
out any loss of prognostics performance, reducing also the
costs of its implementation.

Given those considerations, we downsampled PRONOS-
TIA bearing vibration signals to 2560 Hz (i.e by a factor
of 10), so a log file now carries 256 usable samples per
accelerometer. Since MoS identification algorithm requires
a higher number of data to feasibly perform its computa-
tions, we concatenated windows of 12 files together into
a circular buffer: N = 3072 samples over a 2 min span
in PRONOSTIA time steps. This solution measures vibra-
tions for a brief interval (Tmeas = 0.1 s) every larger interval
(Tacq = 10 s) and concatenates them. It facilitates the imple-
mentation of such bufferingmodalities in non-powerful logic
controllers thanks to its low requirements in terms of com-
putational and memory resources. Moreover, the use of a
circular buffer, that updates with a FIFO policy every time a
new (batch) measurement is available, allows providing the
sequence y(1), . . . , y(N ) to the MoS program every Tacq .

This means, in our case, the model can be elaborated every
10 s.

Once the buffer is ready, the array of data is fed to the
ORIVAlgorithm (1). It has been configuredwithmodel order
n = 8, which was chosen by means of the MDL criterion,
and the hyper-parameter q = n = 8, see “Model order selec-
tion” section. In the end, the algorithm is initialised with
ψ = 10 as stated in (13). The model parameters obtained
from Bearing 2’s vibration signals under test condition 1
are shown in Fig. 8, where it is possible to appreciate their
evolution during the component life span. We highlighted
the moment at 1500 s by a dashed vertical line because
that is roughly the moment at which the bearing lubricant
grease reaches its temperature working point (in the range of
90–110 ◦C). This instant marks the starting of model trans-
mission to the supervisor, and the reference model θnom is
obtained by computing the mean value of the first 10 col-
lected ones.

The computations of the local HI start after the reference
model is defined. When there is a disconnection between
PLC and PC supervisor, the H IN RMSE is used as a backup
solution for fault detection, with the failure threshold defined
in the range [1, 1.1]. A sample of the H IN RMSE evolution is
shown in Fig. 9 where the application of threshold ThNRMSE =
1 is applied to avoid severe failing modes.

At this point, the PLC has to handle the communication
of the computed quantities to the supervisor PC. The pro-
posed architecture does not require high payloads in data
transmission because only a piece of information, i.e., model
parameters, is remotely sent from the PLC to the supervisor
PC every 10s. Various communication protocols are avail-
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Fig. 8 MoS evolution in time of
bearing 2 of testing condition 1

able to perform this task and can be easily integrated into
the majority of PLCs. Various communication protocols are
available together with their functions library, for instance,
OPC-UA and MQTT are commonly used. In addition, log-
ging of the computed θs and of H IN RMSE can be performed
locally, if feasible for the system resources.

Given the previous considerations, we can elaborate more
on the ”Huge-Data to Big-Data” claim. Suppose we want
to continuously stream the vibration signal from the PLC
to the PC via LAN. The controller collects each vibration
measurement into a REAL type variable, which is worth 4B
(bytes), at a frequency of 2560 Hz, meaning 10 KB/s of raw
data flownot counting overheads.As the PLC simultaneously
performs the logic control task, this transmission may be
difficult to handle. On the other hand, in our depicted solution
where only model parameters (REAL variables) are sent, the
transmission flow is reduced and equals to 3.2B/s. Compared
to the signal streaming, this is 3000-times smaller, and much
less demanding in terms of network and storage.

Figure 10presents the three functions previously described,
i.e. measurement pre-processing, MoS generation and net-
work and storage, that are implemented within the PLC
programs. The I/O acquisitionmodules have higher sampling
rates with respect to PLC cycling times. This is typically han-
dled by the Fieldbus so that a set of samples is collected
and provided at each cycle. Thus, the measurement pre-
processing program, that fills the data buffer forMoS, should
be attached to the main priority task with the lower period
(usually 1 ms). This allows managing the data flow with fea-
sible modalities, suitable to follow the acquisition schedule
previously depicted. MoS generation is the most demanding
in terms of computational load on the CPU of the PLC. It

should be appended to a lower priority task (e.g. a program
with 10–100mscyclic period) than themain control program.
Network and storage handling programs are usually already
available on machines, for production supervision and qual-
ity control. The quantities required for transmission by the
methodology should be added effortlessly, as discussed pre-
viously.

Remote-computing on PC

On the supervisor side, the remote computing unit, i.e., a
PC, collects the data sent from the PLC and can possibly
log and store them. Then, its next task is to compute the
H II-S health indicator, presented in Eq. (18), on which the
prognostics procedure is based. Firstly, since this index is
quite noisy, a simple filtering method using the mean value
of 12 samples is applied to smooth it. The obtained result is
noted as H̄ I I-S. Then, the index is monitored until it reaches
the anomaly threshold Thprog = 0.1 where the prognostics
procedure starts.

Prognostics is handled by exploiting the properties of Par-
ticle Filtering to learn the parameters of the degradation
model and then to forecast its evolution. Considering Fig. 11,
showing only the main cases for the sake of compactness and
readability, H̄ I I-S is an increasing function whose behaviour
may seem different from bearing to bearing. By a closer anal-
ysis, it is possible to point out that such quantity follows a
piece-wise evolution starting from an exponential growth,
whose parameters are to be learnt, and ending with a poly-
nomial tail. This means that the first stage of the degradation
process can be represented by an exponential function, while
the second stage, that starts at a random time, Tchange, may
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Fig. 9 H IN RMSE evolution
over time of bearing 2 under
testing condition 1

Fig. 10 PLC programs and
internal information flow of the
procedure on the edge side

be characterised by a polynomial function. To capture this
changing point, after the aforementioned analysis, we define
a threshold for the first order difference of the health indica-
tor, namely Thdiff . In detail, the changing point is identified by
the moment, at which the difference of H̄ I I-S at two consec-
utive times is superior than Thdiff . Hence, the H̄ I I-S evolution
is re-written as follows:

H̄ I I-S(tk) =

=
{
aebtk ΔH̄ I I-S(tk) ≤ Thdiff
c(tk − Tchange)2 + d ΔH̄ I I-S(tk) > Thdiff

(30)

where

ΔH̄ I I-S(tk) = H̄ I I-S(tk) − H̄ I I-S(tk−1) (31)

and Thdiff is determined in this case as 0.2. Then, the coeffi-
cients a and d correspond to Thprog and H̄ I I-S(Tchange), while
b and c are positive parameters modelled as conditioned ran-
dom walks:

b(tk) = b(tk−1) + λ(tk) (32)

c(tk) = c(tk−1) + γ (tk) (33)

withλ ∼ N (0, σ 2
λ = 10−5) and γ ∼ N (0, σ 2

γ = 10−5). The
learning phase of the Particle Filter in this case is employed
to estimate firstly b and secondly c. Then, the predictions are
done at every time step and RUL is estimated based on the
end of life threshold ThEoL = 10, which is a safe one, to stop
production and to start maintenance activities before it is too
late.
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Fig. 11 Evolution of H̄ I I-S of
bearing 1 and 2 under testing
condition 1 during their relevant
run-to-failure tests

Fig. 12 Evolution of H̄ I I-S of
bearing 3 under test condition 1:
Filtering, state estimation, and
RUL prediction
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Fig. 13 Evolution of H̄ I I-S of
bearing 4 under test condition 1:
Filtering, state estimation, and
RUL prediction

Figures 12 and 13 illustrate how the Particle Filter
performs when the degradation evolves only through the
exponential function (e.g. Bearing 3) or when there exist
the model changing point (e.g. Bearing 4). These figures
describe what happens at a particular time instant tk where
the PF learning ends and the prediction starts. H̄ I I-S’s actual
evolution is shown in blue, while the filtered PF mean state
computed until tk is shown in yellow and the state prediction
from that point on is in orange. The introduced model allows
state filtering close to the observed one and its propagation
fits H̄ I I-S evolution. Moreover, the final RUL probability
density is shown in red together with threshold levels Thprog
and ThEoL presented in dashed black lines. p(RUL) depends
on how long the prediction is propagated to reach ThEoL . The
longer the time it takes the greater its variance is.Moreover, in
Fig. 12, RUL prediction helps in maintenance decision mak-
ing, since, given the accelerated degradation, there is plenty
of time to plan the servicing (we have 50min to play with).
Besides, Fig. 13 shows that RUL predition can be used to
avoid severe bearing degradation which may result in a crit-
ical failure.

A broader view of the RUL prediction is shown in Figs. 14
and 15. These figures represent, by the blue-dotted line, the
mean value of the computed RULs of the various particles
throughout the test, from the starting of prognostics to the
component end of life. The orange-dashed line represents
the actual RUL. Figure 14 shows feasible RUL prediction
when the there is no change in the underlying PF model
structure, after an initial drift, the more the filter “learns” the
more it gets close to the actual value. On the other hand, the
momentwhen themodel structure changeoccurs is uncertain.

From the available data, it turns out that it is not predictable,
however, our procedure is capable of catching it as soon as
it occurs, offering essential times for intervention. Figure 15
shows how the predictor treats the incoming observationwith
the exponential model until it recognises the change in the
evolution and gets back in track with the actual RUL value.
For these reasons, the communication between PLC and PC
should be in both directions. In an automated maintenance
perspective, the supervisor transmits the predicted RULs to
the machinery to trigger fail-safe policies in the worst-case
scenario.

Performance results

Finally, to assess the performance of the algorithm on the
overall dataset we make use of the Prognostic Horizon (PH)
metric (Saxena et al. 2010), a standard indicator that provides
information on how the algorithm is able to suitably predict
the system RUL. PH is defined as the difference between
the time index t when the predictions first meet the specified
performance criteria (based on data accumulated until time
index t) and the time index for EoL, tEoL. The performance
requirement is specified in terms of an allowable error bound
(α) around the true EoL where the choice of α depends on
the estimate of time required to take a corrective action. A
formal definition is given in the following:

PH = tEoL − tkα (34)
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Fig. 14 RUL over time of
bearing 3 under test condition 1
using the proposed prognostics
PF method

Fig. 15 RUL over time of
bearing 5 under test condition 1
using the proposed prognostics
PF method

with

kα = min
{
k | (k ∈ P) ∧ ((

r∗k − α.tEoL
)

≤ r̂(tk) ≤ (
r∗k + α.tEoL

))∀k ≥ kα

}
(35)

where P is the set of all time indices for which a prediction is
made, r∗k is the true RUL at time tk and r̂(tk) is the predicted
RUL at time tk (i.e., its mean value in our particular case).
Moreover, to stress the methodology robustness, we choose

the value of PH having also the predictions obtained after
tkα within the bounds. Table 1 shows the obtained results
with α = 0.2. The considerations drawn before about the
commuting degradation model still hold and the results show
thatwhen themodel function changes to polynomial there is a
minute span to handle the possible fault. On the other hand,
when the degradation keeps its exponential trend, at least
20min are available to program preventive actions. Notice
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Table 1 Prognostic Horizon results on PRONOSTIA dataset

PH (min) Bearing
1 2 3 4 5 6 7

Cond. 1 136.5 2 125.17 1.67 2.5 3.17 4.3

Cond. 2 3.5 2.17 – 2 – 1.17 1

Cond. 3 1.17 20 3.67

Data obtained with α = 0.2

Table 2 Prognostic horizon results on PRONOSTIA dataset

PH (min) Bearing
1 2 3

Soualhi et al. (2014) 6.8 2 1.2

Our results 136.5 2 125.17

Comparison with Soualhi et al. (2014)

that no results are available for bearing 3 and 5 of condition
2 because their run-to-failure data is incomplete.

To highlight the performance of the proposed approach,
its results are compared to the outcomes obtained in (Soualhi
et al. 2014) on the first three bearings under condition 1. As
shown in Table 2, our procedure has better results for bearing
1 and 3, and the same result for bearing 2.

Case study: IMS dataset

To further validate our proposition, we port it on another
bearing prognostics dataset within the NASA prognostics
Data Center (NASA 2019), the IMS (Lee et al. 2007) one. It
contains three run-to-failure experiments with four bearings
each, constantly driven at 2000 rpm and under a radial load
of 6000 lbs (2721.554 kg). Vibrational data of each bearing
were collected for Tmeas = 1 s at a 20 kHz every Tacq =
10 min and logged into .txt files until bearings EoL. We
applied the proposed methodology with the same course of
action previously described throughout “Case studies and
results” section. To avoid the redundancy, for this case study,
we briefly present in this section the modalities of data pre-
processing to suit MoS estimation and PF structure, and also
the definition of the method hyperparameters.

Given the data set organisation, the signal set-up for
MoS estimation is similar to the previous one. The data
are downsampled to 2500 Hz for the same parsimony and
cost effectiveness reasons described for PRONOSTIA. Each
logged file is regarded as the data buffer (with a window
size of 2500 samples) on which a model is identified. In
this case, the first two bearings of the first test were used to
obtain the method’s hyperparameters in advance. The result-
ing model order was n = 8 and q = 8 more equations
were used to increase the robustness of the ORIV estima-
tion. Besides, the healthy references for the computations

Table 3 Prognostic horizon results on IMS dataset

PH (min) Bearing
1 2 3 4

Test 1 90 100 10 10

Test 2 1010 1250 1300 810

Test 3 1440 1100 350 1450

Data obtained with α = 0.2

of the HIs are computed by averaging the models obtained
in the first 2 operational hours of each bearing. Then, the
threshold to start prognostics on the H̄ I I-S indicator, which
is filtered in the same way as in PRONOSTIA, has been set
to Thprog = 0.1. The underlying particle filtering prognostics
model is unchanged from (30)–(33) except for the commu-
tation threshold, which has been set to Thdiff = 0.11. Finally,
for this data set the End-of-Life threshold, on which RUL
predictions are computed, is ThEoL = 2. A snapshot of the
prognostic task using the particle filtering model of Eq. (30)
with the selected thresholds is shown in Fig. 16 for bearing 3
of the second run-to-failure test. The overall evolution of the
mean value of the estimated RUL of that bearing is provided
in Fig. 17.

Table 3 shows the results obtained by the methodology in
prognostic performance using thePHmetric. In this situation,
the methodology still holds its performance and is able to
grant at least a 10min scope for prognosis when a model
change occurs, while at least almost 6 hours when the model
keeps its exponential evolution.

Conclusions

In this work, we proposed an autonomous health man-
agement solution for smart manufacturing. It focuses on
exploiting the increased computational power of machin-
ery controllers and their interconnection with the supervising
PCs of the automation pyramid. In detail, the logic controller
is the edge-computing unit that performs the condition mon-
itoring task. It employs the Model-of-Signals technique to
refine the information measured from onboard sensors into
compact andmeaningful features. The supervising PC acts as
the remote-computingunit collecting those computedmodels
to produce health indicators for the prognostics task. Then,
it makes use of Particle Filtering to model the degradation of
the components to forecast their Remaining Useful Life.

Manufacturers can take advantage of this methodology
to integrate autonomous maintenance policies as features in
theirmachines, keeping their expertisewith standard automa-
tion platforms. The procedure exploits the structure of the
automation pyramid as well as the commercial equipment
already in place, avoiding the addition of non-standard equip-
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Fig. 16 Evolution of H̄ I I-S of
bearing 3 of test 2: filtering, state
estimation, and RUL prediction

Fig. 17 RUL over time of
bearing 3 of test 2 using the
proposed prognostics PF method

ment to perform the task. Local sensor data refinement allows
reducing the impact of PHM information transmission over
thePLC-PCnetwork and todistribute the computational load.
This converts the “Huge-Data” problem of streaming raw
sensor signals to remote computing units into a manageable
one. This is possible because of the light weight nature of
the recursive algorithm used to produce MoS that is able to
feasibly run alongside the logic control task.

Two case studies are employed to test and validate the
method. The PRONOSTIA dataset is investigated to guide

the industrial practitioners on how to apply the proposed
methodology and lay the foundations for autonomous health
management functionalities on PLCs. The procedure is
described in detail from the implementation of condition
monitoring through MoS on controllers to the definition of
the PF degradation model, based on the HI evolution, and
RUL forecasting on the supervising PC. In addition, the IMS
dataset has been used to further evaluate the methodology
under similar PHMconditions. Then, performance indicators
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have been computed for both the datasets using the prognos-
tic horizon metric.

Even though the focus was on the development of an
“industrial technology aware” methodology, we made use
of bearings datasets to develop our discussion on its imple-
mentation, allowing us to cover the main technological
and architectural aspects of the method application. Con-
sequently, this choice bonded our proposition with the
mechanical domain and in particular with the use of vibra-
tional signals as a starting point and the degradation model
of the component. The selection of the adequate signals upon
which apply MoS and the related recursive estimation algo-
rithm is crucial to accomplish the first stage of the method.
On the other hand, the proposed degradation model is not
general and inevitably considers the nature of component
under test and the indicator to which we link its degradation.
Future studies should also take into account those aspects,
with more in-depth analysis on other machinery provided
measurements and components.

Given those considerations, the aim of this work is to build
a first bridge between the industrial and research field. The
obtained results are promising, laying the foundations for
the deployment on industrial equipment of the method to
“unlock”machinery smart potential, a step toward intelligent
manufacturing.
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