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ABSTRACT
Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law,
and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal
axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and
scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere
negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the
limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the
Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together
with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications,
e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining
the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models,
to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.

Key words: methods: analytical – galaxies: elliptical and lenticular, cD – galaxies: kinematics and dynamics – galaxies: struc-
ture.

1 I N T RO D U C T I O N

Axially symmetrical models of galaxies are useful tools in stellar
dynamics (see e.g. Binney & Tremaine 2008, hereafter BT08; Bertin
2014) and are often adopted to investigate the presence of dark matter
haloes (hereafter DM), or central black holes (hereafter BHs), or to
study the orbital structure of these systems.

In this paper, we extend to the ellipsoidal axisymmetric case two
families of two-component (stars plus DM) spherical galaxy models
that have been recently presented. In the first family of spherical
models (JJ models; Ciotti & Ziaee Lorzad 2018, hereafter CZ18), the
stellar density profile is described by a Jaffe (1983) law, while the
total is another spherical Jaffe model of larger total mass and different
scale length. In the second family (J3 models; Ciotti, Mancino &
Pellegrini 2019, hereafter CMP19), the stellar density follows again
a Jaffe model, while the total is a spherical density profile with a
logarithmic slope equal to −3 at large radii. Therefore, the total
mass is finite in the JJ models and infinite in the J3 ones. In addition,
as supermassive BHs with a mass of the order of MBH � 10−3M∗
are generally found at the centre of stellar spheroids of total mass
M∗ (see e.g. Magorrian et al. 1988; Kormendy & Ho 2013), in both
models, a BH is added at the centre of the galaxy.

In CZ18, it was shown that it is always possible to choose a total
mass so that the DM halo resulting from the difference between the
total and the stellar density distributions reproduces remarkably well
the Navarro–Frenk–White profile (Navarro, Frenk & White 1997,
hereafter NFW) in the inner region. This interesting possibility was
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further improved in CMP19, where it was proved that the DM halo
in the so-called minimum halo model can be tuned to reproduce very
well the NFW profile over the whole radial range. Summarizing, JJ
and J3 models present several interesting features, such as analytical
simplicity, flexibility in the choice of the structural parameters,
realistic stellar and DM density profiles, and fully analytical solutions
for the Jeans equations even in presence of a central BH. It is
then natural to explore the possibility of a generalization of these
spherical models to ellipsoidal (axisymmetrical) shapes: we call the
new models JJe and J3e, respectively. Some additional considerations
are in order. The first concerns the positivity of the DM halo
obtained as the difference of two ellipsoidal distributions with
different flattenings and scale lengths. Quite surprisingly, we find
that the problem can be solved analytically, and the constraints on
the model parameters in order to have a positive DM can be expressed
via extremely simple algebraic relations. As a consequence, the
positivity problem in JJe and J3e models does not require numerical
investigations. The second consideration is about the solution of the
Jeans equations. As shown in CZ18 and CMP19, in the spherical
case, they can be solved analytically, but of course in ellipsoidal
models, this cannot be expected to be true. In general, to solve them
for JJe and J3e models requires the use of numerical codes (see
Caravita, Ciotti & Pellegrini, in preparation). However, in the limit
of small flattening, density and potential of ellipsoidal distributions
can be expanded at the desired order in the flattening by using the
homoeoidal expansion method. Here, we show that in this limit, the
Jeans equations for the homoeoidally expanded JJe and J3e models
can be solved analytically (although, not unexpectedly, the formulae
are more complicated than that in the spherical case). This possibility
to study and plot the resulting kinematical fields and also to have the
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quantities entering the Virial Theorem expressed in analytical form
for realistic ellipsoidal two-component models, without the need for
resorting to numerical time-expensive integrations, is a very useful
property of JJe and J3e models.

The models here introduced, in addition to the standard appli-
cations, can be useful in the building of hydrostatic, barotropic
and baroclinic models for hot rotating atmospheres in galaxies
(see e.g. Barnabè et al. 2006). Moreover, they can be adopted in
hydrodynamical simulations of gas flows in galaxies, where the
stellar velocity fields are major ingredients in the description of
the energy and momentum source terms due to the evolving stellar
populations (see e.g. Posacki, Pellegrini & Ciotti 2013; Negri et al.
2014).

The paper is organized as follows. In Section 2, the main structural
properties of the models are presented, and in Section 3, we set up
and discuss the associated Jeans equations. In Section 4, the solution
of the Jeans equations is presented, while in Section 5, the asymptotic
behaviours of the projected velocity profile at small and large radii
are discussed. In Section 6, the Virial Theorem is presented and the
global energetics is explicitly calculated. The main results are finally
summarized in Section 7, while the appendices contain technical
details and formulae.

2 T H E M O D E L S

The ellipsoidal JJ models (hereafter, JJe models) and the ellipsoidal
J3 models (hereafter, J3e models) are the natural generalization of
the spherically symmetric JJ and J3 models introduced and fully
discussed in CZ18 and CMP19, respectively. It is, however, useful
to recall how these spherical models are defined. The stellar density
profile

ρ∗(r) = ρn

s2(1 + s)2
(1)

is the same for the two families, where

ρn ≡ M∗
4πr3∗

, s ≡ r

r∗
, (2)

and M∗ and r∗ are the total stellar mass and the stellar scale length,
respectively. The normalization potential and the BH-to-stellar mass
ratio are defined as

�n ≡ GM∗
r∗

, μ ≡ MBH

M∗
. (3)

Following CZ18 and CMP19, the total density profiles can be written
as

ρg(r) = ρn ×

⎧⎪⎪⎨
⎪⎪⎩

Rξ

s2(ξ + s)2
, (JJ),

R
s2(ξ + s)

, (J3),

(4)

where ξ ≡ rg/r∗ is the galaxy scale length rg in units of r∗, and R is
a measure of the total-to-stellar density: in particular, for JJ models
R = Mg/M∗, while for J3 modelsR/ξ can be interpreted as the ratio
of the total over the stellar density at the centre. Of course, this latter
interpretation holds also for the JJ models. The cumulative galactic
mass inside a sphere of radius r reads

Mg(r) = M∗ ×

⎧⎪⎪⎨
⎪⎪⎩

Rs

ξ + s
, (JJ),

R ln
ξ + s

ξ
, (J3).

(5)

Note that, while Mg(r) tends to a finite value in the case of JJ models,
for J3 models, it diverges logarithmically. Finally, the (relative)
galaxy potential is given by

�g(r) = �n ×

⎧⎪⎪⎨
⎪⎪⎩

R
ξ

ln
ξ + s

s
, (JJ),

R
ξ

ln
ξ + s

s
+ R

s
ln

ξ + s

ξ
, (J3).

(6)

In the present approach, the DM halo density distribution is obtained
as ρDM(r) = ρg(r) − ρ∗(r).

We can now introduce the new ellipsoidal models discussed in this
paper. The stellar component of JJe and J3e models is given by the
mass-conserving ellipsoidal generalization of equation (1),

ρ∗(R, z) = ρn

q∗m2∗(1 + m∗)2
, m2

∗ = R̃2 + z̃2

q2∗
, (7)

where q∗ = 1 − η∗ measures the flattening of the density distribution
and R̃ ≡ R/r∗ and z̃ ≡ z/r∗ are the dimensionless cylindrical coor-
dinates. From volume integration of equation (7), the independence
of the total mass M∗ on q∗ can be immediately verified. In analogy
with equation (4), for the total galaxy density profile, we assume

ρg(R, z) = ρn ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rξ

qgm2
g(ξ + mg)2

, (JJe),

R
qgm2

g(ξ + mg)
, (J3e),

(8)

where m2
g = R̃2 + z̃2/q2

g , and qg = 1 − ηg is the axial ratio of the
total density profile. Of course, when q∗ = qg = 1, JJe and J3e models
reduce, respectively, to JJ and J3 models. As expected, the total mass
Mg(R, z) converges to a finite Mg in JJe models and diverges in J3e
case. It is important to note that for qg �= q∗, i.e. in the case of different
flattenings for the total and stellar densities, ρDM is not stratified on
ellipsoidal surfaces.

The projected stellar density associated with equation (7) can be
easily obtained from ellipsoidal projection. In particular, when the
line of sight is inclined by an angle i measured from the z-axis (for
example, with rotation around the y-axis), the projected density is

�∗(�) = M∗
r2∗q∗(i)

f (�), q∗(i) ≡
√

cos2 i + q2∗ sin2 i, (9)

(see e.g. Riciputi et al. 2005), where the function f(�) is given in
equation (6) of CZ18, and the isodensity (�) in the projection plane
(X, Y) is

�2 = X2

r2∗q2∗(i)
+ Y 2

r2∗
, (10)

so that q∗(i) is the ‘isophotal’ flattening (see Section 5). The projected
stellar mass contained inside the ellipse defined by � is

Mp∗(�) = M∗× g(�), (11)

where g(�) is again the same function as in the spherical case [see
CZ18, equation (9)]. In particular, the effective ellipse corresponds
to g(�e) = 1/2, i.e. �e � 0.7447, with a circularized radius (i.e. the
radius of the circle in the projection plane with the same area of the
effective ellipse) given by 〈Re〉 � 0.7447 r∗

√
q∗(i).

2.1 The dark matter halo: positivity

As the DM component is given by a difference of two density
distributions, a preliminary study of the positivity of its density
ρDM as a function of the parameters is in order. We follow the
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similar approach already discussed for spherical models in CZ18
and CMP19; of course, the situation is now more complicated, due
to the possible different shape of the total and stellar distributions.
Quite surprisingly, we find that the discussion can be carried out
analytically. We begin by considering the case of two-component
ellipsoidal γ models (see Dehnen 1993; Tremaine et al. 1994), where
the DM density profile is defined as

ρDM(R, z) = (3 − γ )ρnRξ

qgm
γ
g (ξ + mg)4−γ

− (3 − γ )ρn

q∗m
γ
∗ (1 + m∗)4−γ

. (12)

Then, JJe models are the γ = 2 case. In Appendix A, we show that
the positivity of ρDM requires R ≥ Rm, with

Rm(JJe) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qg

q∗
max

(
1

ξ
, ξ

)
, q∗ ≤ qg,

q∗
qg

max

(
q2

∗
q2

g ξ
, ξ

)
, q∗ ≥ qg.

(13)

Note that once q∗ and qg have been chosen, Rm(JJe) ≥ 1 for every
value of ξ > 0. A model with R = Rm is called a minimum halo
model. Clearly, when qg = q∗, the positivity conditions reduce to that
of spherical JJ models [see CZ18, equation (18)].

The positivity condition for the DM component of J3e models is
instead given by

Rm(J3e) = max
(
Rc,R0,Rπ

2
,Rint

)
, (14)

where Rc, R0, Rπ
2

, and Rint are given in Appendix A. We may
notice that, at variance with the previous case, Rm(J3e) can be less
than unity for some choice of the parameters; this is not surprisingly,
since the positivity condition for J3e models must reduce to that of
spherical J3 models for q∗ = qg = 0, which gives Rm < 1 when ξ <

1 [see equation (16) in CMP19].
For illustrative purposes, in Fig. 1, we show the isodensity contours

of the stellar and DM density profiles in the meridional plane for
four minimum halo galaxy models. In the top panels, the galaxy is
spherical (ηg = 0), while η∗ = 1/3; in the bottom panels, the galaxy
is flatter (ηg = 1/3), while the stellar density is spherical. Note that,
as expected, for ηg = 0, the DM distribution is elongated along the
z-axis, with a prolate-like shape. From the results in Appendix A, one
has that a negative DM density is obtained for a total mass below the
minimum halo mass. Finally, note how, at any fixed distance from
the Galactic Centre (but especially outside r∗), the DM density is
larger for J3e than for JJe models.

2.2 Homoeoidal expansion

As pointed out in the Introduction, one of the main ideas behind
this work is to combine the approach of model construction based
on the assignment of the total and stellar profiles (as carried out for
spherical models in Ciotti, Morganti & de Zeeuw 2009, hereafter
CMZ09; see also CZ18 and CMP19) with the homoeoidal expansion
technique (see CB05), a methods that allows to describe, in a tractable
way, ellipsoidal models in the limit of small flattening. Of course,
the models here presented can also be investigated in the case of
finite flattenings by using a numerical approach (see Caravita et al.,
in preparation), and the comparison of analytical and numerical
results is a useful sanity check for both methods. Finally, the present
approach, combining the merits of model difference and analytical
tractability, is not completely new; in particular, we recall the seminal
paper by Evans (1993).

Before presenting the analytical solution of the Jeans equations
for the JJe and J3e models (see Sections 3 and 4), we now consider

the homoeoidal expansion at fixed mass (the so-called constrained
expansion) as a function of the two flattenings η∗ and ηg. The
formulae are obtained from Appendix B, where we also show that,
in order to have physically acceptable stellar density, η∗ ≤ 1/3; when
considering the total density, instead, equation (B5) shows that ηg ≤
1/3 for JJe models, while ηg ≤ 1/2 for J3e models.

The expansion of the total density up to linear terms in the
flattenings ηg → 0 reads

ρg(R, z) = ρnR
[
ρ̃g0(s) + ηgρ̃g1(s) + ηgR̃

2ρ̃g2(s)
]
, (15)

where s = r/r∗, R̃ = R/r∗, and the general expression of the three
spherical functions is given in Appendix B. As will be discussed in
Section 3, there are two different interpretations of the expansion
above: one as the linearized expansion of a true ellipsoidal model,
and the other as a genuine density distribution with arbitrary values
of ηg, provided that positivity is assured. We shall return to this point.

For JJe and J3e models, the three dimensionless functions are
given by

ρ̃gi(JJe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ

s2(ξ + s)2
,

− ξ (ξ + 3s)

s2(ξ + s)3
,

2ξ (ξ + 2s)

s4(ξ + s)3
,

ρ̃gi(J3e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

s2(ξ + s)
,

− ξ + 2s

s2(ξ + s)2
,

2ξ + 3s

s4(ξ + s)2
,

(16)

for i = 0, 1, 2, from top to bottom, respectively. Note that ρ̃g1 is
everywhere negative, whereas ρ̃g0 and ρ̃g2 are positive functions of
s. Finally, since the stellar distribution is the same for the JJe and
J3e models, and it is of the same family of ρg of JJe models, its
homoeoidal expansion is

ρ∗(JJe, J3e) = ρn

[
ρ̃∗0(s) + η∗ρ̃∗1(s) + η∗R̃2ρ̃∗2(s)

]
, (17)

where the functions ρ̃∗i are obtained by setting ξ = 1 in ρ̃gi(JJe).
Fig. 2 shows the isodensity contours of the stellar density profile
for two different values of η∗. Black dashed lines correspond to the
ellipsoidal Jaffe model, described by equation (7), while red solid
lines refer to the homoeoidally expanded Jaffe model, provided by
equation (15): note how the outermost expanded contours differ from
the elliptical shape as η∗ approaches the value 1/3.

The potential associated with equation (15), following Ap-
pendix B, can be written as

�g(R, z) = �nR
[
�̃g0(s) + ηg�̃g1(s) + ηgR̃

2�̃g2(s)
]
, (18)

where, as for the density, we recast equation (B10) in terms of R̃. The
general integral expressions of the three spherical functions in the
equation above are given in Appendix B; for both JJe and J3e models,
all these integrals are elementary, with the normalized densities
ρ̃(m) = ξ/[m2(ξ + m)2] and ρ̃(m) = 1/[m2(ξ + m)], respectively.
The final result is

�̃gi(JJe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

ξ
ln

ξ + s

s
,

− s2 + 2ξs + 4ξ 2

3s2(ξ + s)
+ 1

3ξ
ln

ξ + s

s
+ 4ξ 2

3s3
ln

ξ + s

ξ
,

ξ (s + 2ξ )

s4(ξ + s)
− 2ξ 2

s5
ln

ξ + s

ξ
,

(19)
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Figure 1. Isodensity contours of the stellar (solid) and DM (dotted) density distributions for JJe (left) and J3e (right) models. The densities are normalized to
ρn, and the lengths to r∗. The contours correspond to values of 10, 1, and 10−1 from inside to outside. Top panels: the stellar distribution is flatter than the total,
with η∗ = 1/3, while the galaxy is spherical. Bottom panels: the stellar distribution is spherical, while the total is flatter, with ηg = 1/3. Both JJe and J3e models
are minimum halo models with ξ = 5, for which Rm = 15/2 [see equations (13) and (14)].

and

�̃gi(J3e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

ξ
ln

ξ + s

s
+ 1

s
ln

ξ + s

ξ
,

− s − 2ξ

3s2
+ 1

3ξ
ln

ξ + s

s
− 2ξ 2

3s3
ln

ξ + s

ξ
,

s − 2ξ

2s4
+ ξ 2

s5
ln

ξ + s

ξ
,

(20)

for i = 0, 1, 2, from top to bottom, respectively. As a check, the
formulae (16), (19), and (20) have been verified to satisfy the Poisson

equation for the dimensionless potential-density pair (�̃g, ρ̃g) from
the linearization of equation (B12). Finally, the total potential �T is
obtained by adding to �g the contribution of a central BH of mass
MBH, so that the total potential is given by

�T(R, z) = �g(R, z) + μ�n

s
. (21)

A useful quantity to characterize the total potential is the circular
velocity in the equatorial plane, given by

v2
c (R) = −R

(
∂�T

∂R

)
z=0

= v2
g(R) + v2

BH(R). (22)
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Figure 2. Stellar isodensity contours for two values of η∗, for the true model (dashed), and the homoeoidal expansion (solid); the densities are normalized to
ρn and the lengths to r∗. The contours correspond to values of 10, 1, 10−1, and 10−2 from inside to outside.

For the homoeoidally expanded models,

v2
c (R) = �nR

[
ṽ2

g0(R̃) + ηgṽ
2
g1(R̃)

]
+ μ�n

R̃
, (23)

where for JJe and J3e models, the normalized functions are given
by

ṽ2
gi(JJe) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ξ + R̃
,

ξ (R̃ + 2ξ )

R̃2(ξ + R̃)
− 2ξ 2

R̃3
ln

ξ + R̃

ξ
,

(24)

and

ṽ2
gi(J3e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

R̃
ln

ξ + R̃

ξ
,

R̃ − 2ξ

2R̃2
+ ξ 2

R̃3
ln

ξ + R̃

ξ
,

(25)

for i = 0, 1, from top to bottom, respectively. As expected, galaxy
flattening increases the value of vc, because the gravitational field in
the equatorial plane, at fixed total mass and major-axis scale length,
becomes stronger for flattened systems. The trend of vc(R) is shown
in Fig. 3 (solid lines) for two minimum halo models with ξ = 5, ηg =
0, and with μ = 0.002 (see Kormendy & Ho 2013 for this choice of
μ); black lines show the quite flat case with η∗ = 0.10, red lines refer
to the η∗ = 0.30 case. Note how, for fixed value of R in the external
regions, vc(R) increases for increasing η∗, due to the dependence of
Rm on η∗; near the centre, instead, the BH contribution is always
dominant over that of the galaxy, and so vc(R)∝R−1/2 independently
on η∗. Finally, we note that the expansion method allows for simple
expressions for the radial epicyclic frequency and vertical epicyclic
frequency (see Appendix B).

2.2.1 Asymptotic behaviour

For future use, we also report the leading term of the density,
potential, and circular velocity in the central region and at large

radii, as obtained by expansion of the corresponding quantities with
R̃ = s sin θ . At small radii, the asymptotic behaviour of density,
potential, and circular velocity for JJe models coincides with that of
J3e models; we find

ρg

ρn
∼ R 1 + ηg(1 − 2 cos2θ )

ξs2
, (26)

�g

�n
∼ −R 3 + ηg

3ξ
ln s,

v2
g

�n
∼ R 3 + ηg

3ξ
. (27)

As expected, in absence of a central BH, vc reduces to a constant
value depending on the models parameters. Instead, in the external
regions,

ρg

ρn
∼ R ×

⎧⎪⎪⎨
⎪⎪⎩

ξ
1 + ηg(1 − 4 cos2θ )

s4
, (JJe),

1 + ηg(1 − 3 cos2θ )

s3
, (J3e),

(28)

�g

�n
∼ R

s
×

⎧⎨
⎩

1, (JJe),

ln s, (J3e),

v2
g

�n
∼ R

R̃
×

⎧⎨
⎩

1, (JJe),

ln R̃, (J3e).
(29)

Of course, the analogous expressions for the stellar density are
obtained by setting R = ξ = 1 in equation (26) and in the JJe case
of equation (28). Note that at variance with the density, the galaxy
potential �g at large radii is spherical, also for the J3e models with
their divergent total mass.

3 T H E J E A N S E QUAT I O N S

For an axisymmetric density ρ∗(R, z) supported by a two-integrals
phase-space distribution function f(E, Jz), the Jeans equations for the
stellar component are

∂ρ∗σ 2
∗

∂z
= ρ∗

∂�T

∂z
, (30)

∂ρ∗σ 2
∗

∂R
− ρ∗∗

R
= ρ∗

∂�T

∂R
, ∗ ≡ v2

ϕ − σ 2
∗ , (31)
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Figure 3. Radial trends of vc(R) (solid lines) and vϕ (R, 0) (dashed lines), normalized to
√

�n. Left: JJe models; right: J3e models. Both panels refer to a
spherical galaxy, with a central BH with μ = 0.002, isotropic orbits (i.e. k = 1), and a minimum halo with ξ = 5; from equations (13) and (14), Rm = 50/9
when η∗ = 0.10, and Rm = 50/7 when η∗ = 0.30.

(see e.g. BT08); vϕ indicates the azimuthal component of the velocity
v = (vR, vϕ , vz), and the ‘bar operator’ indicates the average value
over the velocity space. These equations are simplified with respect to
the general case because for a two-integrals system: (1) the velocity
dispersion tensor is aligned with the coordinate system, i.e. the phase-
space average of the mixed products of the velocity components
vanishes, vRvz = vRvϕ = vϕvz = 0; (2) the only possible non-zero
streaming motion is in the azimuthal direction; and (3) the radial and
vertical velocity dispersions are equal, i.e. σ 2

R = v2
R = v2

z = σ 2
z . We

define σ R = σ z ≡ σ ∗.
In order to split the azimuthal velocity field in its ordered

(vϕ) and random (σϕ) components, we adopt the Satoh (1980) k-
decomposition

vϕ = k
√

∗, (32)

so that

σ 2
ϕ ≡ v2

ϕ − vϕ
2 = σ 2

∗ + (1 − k2)∗, (33)

where k2 ≤ 1. This implicitly assumes that the phase-space dis-
tribution function depends on k, i.e. f = f(E, Jz; k). The case k
= 1 corresponds to the isotropic rotator, while for k = 0, no net
rotation is present, and all the flattening of ρ∗ is due to the azimuthal
velocity dispersion σϕ . Note that while in the Satoh decomposition k
is independent of position, in principle k can be a function of (R, z),
bounded above by the function kmax(R, z), defined by the condition
σϕ = 0 (see Ciotti & Pellegrini 1996). The k(R, z) formulation can
also be used to add counterrotation in a controlled way (see e.g. Negri
et al. 2014; see also Caravita et al., in preparation).

3.1 The vertical Jeans equation

The vertical Jeans equation (30) is integrated at fixed R with the
natural boundary condition of a vanishing ‘pressure’ for z → ∞, so
that

ρ∗σ 2
∗ = −

∫ ∞

z

ρ∗
∂�T

∂z′ dz′. (34)

Notice that the integration variable at fixed R can be changed from z
′

to r
′
, so that by adopting the expansion (18), the integration acts on

spherical coefficients. Due to the relevance of equation (34), a few
comments are in order before proceeding to the solution.

The first is that the integral in equation (34) is given by the sum of
two contributions: the effect of the galactic potential �g on the stellar
component, and the effect of the central BH. As the BH contribution
can be calculated explicitly in terms of elementary functions even
considering ρ∗ in the fully ellipsoidal case, equation (34) can be
solved with the homoeoidal approximation.

The second comment concerns the general case of a non-spherical
�g. As the integral in equation (34) is performed at fixed R, it is
natural to expand the potential in terms of ηg and use the ‘explicit-
R formulation’ in equation (18). The three components �̃gi are
spherically symmetric, so that equation (34) for the fully ellipsoidal
stellar density could be again expressed as three integrals over the
spherical radius. However, in order to obtain manageable elementary
expressions, we also make use of equation (17).

This leads to a third and final consideration. Due to the linearity
of Poisson’s equation, the expanded potential-density pairs can be
interpreted in two different ways: as a genuinely non-spherical system
of finite flattening, or as the first-order expansion of the ellipsoidal
parent galaxy in the limit of vanishing flattening. In the first case,
when integrating the Jeans equation, all the terms in the product
under the integral should be retained, up to the quadratic order in the
flattenings. In the second case, only linear terms in the flattenings are
retained. For simplicity, here we limit ourselves to the discussion of
the linearized case, and so we consider only the linear terms in η∗ and
ηg. In turn, this choice implies that, in the resulting formulae, only
R2 terms appear explicitly. Of course, the consideration of quadratic
terms in the flattenings does not present special difficulties, only a
larger number of computations.

3.2 The radial Jeans equation

In principle, once the vertical Jeans equation is solved, no further
integration is required because the quantity ∗ can be obtained
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from equation (31) by differentiation. However, this straightforward
approach may produce formulae that contain non-trivial simplifica-
tions and hide important properties of the solution. These problems
are avoided by a very elegant commutator-like formula for the
quantity ∗. For untruncated distributions with vanishing ‘pres-
sure’ at infinity, equation (31) can be recast as a commutator-like
integral:

ρ∗∗
R

=
∫ ∞

z

(
∂�T

∂R

∂ρ∗
∂z′ − ∂�T

∂z′
∂ρ∗
∂R

)
dz′ ≡ [�T, ρ∗]. (35)

It is not surprising that this relation appears both in Fluid Dynamics
(see e.g. Rosseland 1926; Waxman 1978; Barnabè et al. 2006, and
references therein) and in Stellar Dynamics (see Hunter 1977), due to
the strict relation of the isotropic Jeans equations and hydrodynamic
equations. By looking at equation (35), a few important consid-
erations follow. First, for any pair of purely radial functions, the
commutator vanishes. Thus, for fully spherical models, one has ∗ =
0, so that, in the Satoh decomposition, spherical models cannot rotate,
and are necessarily isotropic, independently of the value of k. In a
spherical stellar density, the only non-zero contribution to equation
(34) (and so to rotation in the Satoh decomposition) can be produced
by a non-spherical dark matter halo, and similarly, in presence of
a spherical total potential, rotation can arise only for non-spherical
stellar distributions. This is the case of the BH contribution, where
the only rotation is due to the departure of the stellar distribution
from spherical symmetry.

Moreover, for generic spherically symmetric functions u and v,
and generic function f of the cylindrical radius, it holds that

[f (R)u(r), v(r)] = df

dR

∫ ∞

r

u(r ′)
dv(r ′)
dr ′ dr ′, (36)

as it can be easily proved by direct computation, and with a final
change of integration variable from z

′
to r

′
. Therefore, ∗ in equation

(31), at linear order in the flattenings, can be produced only by the
effect of the �2 term on ρ0, and by the �0 term on ρ2. The resulting
∗ is proportional to R2, so in the Satoh decomposition, ∗ vanishes
on the z-axis for sufficiently regular density distributions.

We conclude this section by noting that the possibility of using the
Satoh decomposition depends on the positivity of ∗, a condition that
can be violated for arbitrary choices of the density components. This
problem is analogous to the issue encountered in the construction
of rotating baroclinic configurations of assigned density distribution
in Fluid Dynamics; here, of course, equations (30) and (31) are
restricted to the isotropic case, and the velocity dispersion is
substituted by the thermodynamic temperature (see Barnabè et al.
2006).

4 T H E S O L U T I O N

First, we provide the solution of the vertical Jeans equation, retaining
for simplicity only first-order terms in the flattenings, as discussed
in detail in the previous section. In full generality, we have

σ 2
∗ = σ 2

BH + σ 2
g , (37)

where σ BH and σ g represent the contribution of the central BH and
of the galaxy potential to the stellar velocity dispersion σ ∗. From the
expansion of ρ∗, it follows that the velocity dispersion profile due to
the BH is given by

ρ∗σ 2
BH = ρn�nμ

[
A(s) + η∗B(s) + η∗R̃2C(s)

]
, (38)

where A(s), B(s), and C(s) are obviously the same for the JJe and J3e
models and are given in Appendix C (see Supporting Information in

the online version). The formulae of the contribution of �g to the
stellar velocity dispersion are more complicated, depending also on
the non-spherical component of the galactic potential. At the linear
order in the flattenings, we have

ρ∗σ 2
g = ρn�nR

[
D(s) + η∗E(s)+ η∗R̃2F (s)

+ ηgG(s) + ηgR̃
2H (s)

]
, (39)

and the functions from D(s) to H(s), for JJe and J3e models, are given
in Appendix C. Fig. 4 shows a map of σ ∗ values in the meridional
plane for minimum halo models with ξ = 5, ηg = 0, and μ =
0.002. Note the clear elongation of the curves with constant σ ∗ along
the z-axis; this behaviour is qualitatively explained by the oblate
stellar density shape, to which σ ∗ must ‘compensate’, in order for
the product ρ∗σ 2

∗ to be roughly spherical (see equation 34, where �T

is spherical).
Secondly, we evaluate ∗ = BH + g from the radial Jeans

equation, where BH and g are the contribution of the BH and of the
galaxy potential, respectively. At the linear order in the flattenings,
by using the general considerations in Section 3.2, and, in particular,
equation (35), remarkable identity holds

ρ∗BH = 2ρn�nμη∗R̃2C(s), (40)

where C(s) is the same function appearing in equation (38). As
anticipated in Section 3.1, it is possible to solve analytically the full
homoeoidal problem, but for simplicity, here we limit ourselves to
the first-order expansion. Thus, the galactic contribution to ∗ is
given by

ρ∗g = 2ρn�nRR̃2
[
η∗F (s) + ηgH (s) − ηgρ̃∗0(s)�̃g2(s)

]
, (41)

where F(s) and H(s) are the same functions in equation (39), and
�̃g2(s) is given in equations (19) and (20) for JJe and J3e models.
Note that, as expected, the two contributions to ρ∗∗ vanish for η∗
= ηg = 0.

Fig. 5 shows a map of σϕ values in the meridional plane for the
same minimum halo models of the previous Fig. 4 and in absence of
net rotation (i.e. k = 0). In both Figs 4 and 5, one can note the flatter
decline of σ ∗ and σϕ , moving outward from the centre, for J3e than
for JJe models, due to the shallower DM distribution of J3e models
(see Fig. 1).

Fig. 3 shows vϕ in the equatorial plane, compared with vc(R), for
isotropic (k = 1) minimum halo models, with ξ = 5, ηg = 0, and
μ = 0.002, and two shapes for the stellar density (η∗ = 0.10 and
0.30). For the same models, but η∗ = 0.10 and 0.20, Fig. 6 shows the
maps of vϕ in the meridional plane. In both Figs 3 and 6, the values
of vϕ keep larger for the J3e model than for the JJe one, at the same
distance from the Galactic Centre, again due to the shallower DM
distribution (see Fig. 1).

Finally, we present in Fig. 7 the trends on the equatorial plane of
two angular momenta per unit mass, Jc(R) = Rvc(R) and Jz(R) =
Rvϕ(R, 0), for the same models of the Fig. 3. The circular orbit
with velocity vc corresponds to the minimum energy, and thus this
figure gives an idea of the radius R where a unit mass ends up in
the equatorial plane, after dissipating the maximum possible of its
energy, while conserving angular momentum. The practical case here
is that of a parcel of gas with a specific angular momentum Jz(R, z)
that falls on the equatorial plane at some R and then moves inward
until it reaches the minimum Rin corresponding to Jc(Rin) = Jz(R, 0).
If the gas origin is in stars close to the equatorial plane, and the gas
inherits the Jz(R, 0) of its parent stars, then it moves inward crossing
a radial interval R − Rin given by the condition Jc(Rin) � Jz(R, 0); this
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Figure 4. Maps of σ ∗(R, z), normalized to
√

�n, for two representative minimum halo JJe (left-hand panels) and J3e (right-hand panels) models with ξ = 5
for a spherical galaxy (ηg = 0) and two values of η∗. A central BH with μ = 0.002 is also present. The contour lines correspond to values that, starting from
0.55, decrease with step 0.05 from inside to outside. From equations (13) and (14), Rm = 50/9 when η∗ = 0.10, and Rm = 25/4 when η∗ = 0.20 for both JJe
and J3e models.

interval can be derived directly from Fig. 7. Fig. 8 further illustrates
these points: the maps of Jz(R, z) give an idea of where gas may
end up if falling on the equatorial plane; the colour bars below the
maps show the Jc(R) values for a short R-range and allow to link the
various Jz(R, 0) to the minimum radii Rin that the gas reaches through
motions at constant Jz but dissipating energy, while on the equatorial
plane. For the models in the figures, gas from the bulk of the galaxies
(�7.5r∗) is expected to end up within ‘discs’ of just R � 2r∗.

4.1 Asymptotic behaviour

A more quantitative analysis of the effects of the model parameters
on the dynamical properties of the stellar component is provided by
the asymptotic expansion of the solutions near the centre and at large
radii.

Near the centre (i.e. for s → 0), from Taylor expansion with
R̃ = s sin θ , the asymptotic behaviour of ρ∗σ 2

∗ and ρ∗∗ for JJe
models coincides with that of J3e models. By expanding up to the

dominant term of the galaxy contribution, we find

ρ∗σ 2
∗

ρn�n
∼ μ

[
5 + η∗(1 − 6 cos2θ )

15s3
− 2 + η∗sin2θ

2s2

]

+R 3(1 − η∗cos2θ ) + ηg(1 + sin2θ )

6ξs2
, (42)

and

ρ∗∗
ρn�n

∼ μ

(
4

5s3
− 1

s2

)
η∗sin2θ + R (3η∗− ηg)sin2θ

3ξs2
. (43)

At large radii (i.e. when s → ∞), we have

ρ∗σ 2
∗

ρn�n
∼ 7 − η∗(1 + 20 cos2θ )

35s5
×

⎧⎨
⎩

R + μ, (JJe),

R ln s, (J3e),
(44)
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Figure 5. Maps of σϕ (R, z), normalized to
√

�n, for the same minimum halo JJe (left-hand panels) and J3e (right-hand panels) models of Fig. 4 in absence of
rotation (k = 0). The contour lines correspond to values that, starting from 0.55, decrease with step 0.05 from inside to outside.

and

ρ∗∗
ρn�n

∼ 8η∗sin2θ

7s5
×

⎧⎨
⎩

R + μ (JJe),

R ln s (J3e).
(45)

The trends above suggest three comments. First, equations (42)
and (44) coincide, for η∗ = ηg = 0, with the analogous formulae in
CZ18 and CMP19 for the fully isotropic case, as expected. Secondly,
note how the BH mass appears in equation (44) for JJe models, due
to the total finite mass, so that the σ ∗ is dominated by the monopole
term of �g. Of course, the presence of μ is totally irrelevant for any
practical application. For the same reason, μ does not appear in the
case of the J3e models, which have an infinite mass. Thirdly, the
present models exhibit a peculiar behaviour, i.e. near the centre, the
velocity dispersion in the non-spherical case for μ = 0 is finite but
discontinuous: approaching the centre along different θ directions,
one determines different values of the velocity dispersion σ ∗. This
results from the non-spherical shape of ρ∗, the central slope of ρ∗, and
the gravitational potential entering the Jeans equations. For example,
by using equation (C.3) in Ciotti & Bertin (2005; see also equation

A.4 in Riciputi et al. 2005), it is easy to prove that in the self-
gravitating case, the central velocity dispersion for the density profile
1/mγ is zero for 0 < γ < 2, finite discontinuous (as the models in this
paper) for γ = 2, and infinite for γ > 2. Instead, σ ∗ → ∞ for generic
γ in presence of a central BH, while σ ∗ is finite discontinuous for
generic values of γ if the ellipsoid is embedded in the potential of
the Singular Isothermal Sphere (Ciotti 2021).

4.2 Asymmetric drift

Asymmetric drift (see e.g. BT08 for a definition) plays some role in
the phenomenon of radial gas flows in rotating systems (see Smet,
Posacki & Ciott 2015). Its computation presents no difficulties in
the framework of homoeoidal expansion of our models; thus, here
we present the basic formulae. We recall that the asymmetric drift
(hereafter, AD) in the equatorial plane is defined as AD = vc − vϕ .
In turn, we define the function Dc ≡ v2

c − vϕ
2, which is of easier

evaluation in analytical studies; indeed, for moderate values of the
asymmetric drift, one has AD � Dc/(2vc). By virtue of equations
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Figure 6. Maps of vϕ (R, z), normalized to
√

�n, for the same minimum halo JJe (left-hand panels) and J3e (right-hand panels) models of Fig. 4 in the isotropic
(k = 1) case. The contour lines correspond to values that, starting from 0.25, increase with step 0.05 from outside to inside. Note the different ranges of colour
and axes values with respect to Figs 4 and 5.

(31) and (32), we readily have

ρ∗Dc = (
1 − k2

)
ρ∗∗− R

∂ρ∗σ 2
∗

∂R
, (z = 0). (46)

For example, in the isotropic case (k = 1), by using equations (38)
and (39), a Taylor expansion near the centre shows that, at the linear
order in the flattenings,

Dc

�n
∼ μ

(
5 − 4η∗

5R̃
− 2 + η∗

)
+ R 3(1 − η∗) + 2ηg

3ξ
. (47)

In presence of a dominant central BH, one finds Dc ∝ R−1 with a
nowhere negative proportionality constant. When μ = 0, instead,
Dc reduces to a constant value, but also in this case, Dc ≥ 0 for
reasonable values of η∗ (which always cannot exceed 1/3) and
ηg (which cannot exceed 1/3 for JJe models, and 1/2 for J3e
models).

In the external regions (i.e. when R → ∞), instead, at the leading
order, we find

Dc

�n
∼ 7 − 8η∗

7R̃
×

⎧⎨
⎩

R + μ, (JJe),

R ln R̃, (J3e).
(48)

By considering the dominant term of the two previous equations,
Dc ≥ 0 for reasonable values of η∗, as expected. For general values
of k, it is sufficient to add in equation (46) the expression for ρ∗∗
(when z = 0) derived in the previous section.

5 PROJECTED DYNAMI CS

The projection of a galaxy model on the plane of the sky is
an important step in the model construction, needed in order to
determine the observational properties of the model itself. In this
paper, we deal with axisymmetric models, so we need to specify just
a single angle i that gives the direction of the line of sight (hereafter,
l.o.s.) to the observer. Moreover, the simple functional form of the
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Figure 7. Radial trends of Jc(R) = R vc(R) (solid lines) and Jz(R, 0) = R vϕ (R, 0) (dashed lines), normalized to Jn = r∗
√

�n = √
GM∗r∗, for the same

isotropic minimum halo JJe (left) and J3e (right) models of Fig. 3.

Figure 8. Maps of Jz(R, z) = R vϕ (R, z), normalized to Jn, for the same isotropic minimum halo models in the two top panels of Fig. 6. The black contour
lines correspond to values that, starting from 0.25, increase with step 0.25 from inside to outside. The bottom colour bars show Jc(R) = R vc(R), normalized to
Jn, up to a value of R whereby Jc(R)/Jn = 2.5 (the discussion at the end of Section 4 illustrates the use of such a bar).

density and of the intrinsic kinematical fields in the homoeoidal
framework leads to further simplifications.

Let our models be described in a Cartesian inertial frame of
reference S0, with coordinates (x, y, z). In addition, consider a second
orthogonal reference system S

′
, with coordinates (X, Y, Z), and same

origin as S0. Due to axisymmetry, and without loss of generality, the
relation between the two sets of coordinates is given by⎛
⎜⎝

x

y

z

⎞
⎟⎠ =

⎛
⎜⎝

cos i 0 sin i

0 1 0

− sin i 0 cos i

⎞
⎟⎠
⎛
⎜⎝

X

Y

Z

⎞
⎟⎠, (49)

with the l.o.s. being directed along Z. With this choice, the (transpose)
of the unit vector n, from S0 to the observer, is n = (sin i, 0, cos i).
Moreover, we consider a counterclockwise rotation of an angle
i around the y-axis, coincident with the Y-axis of the observer.
In particular, for i = 0, corresponding to the so-called face-on
projection, the l.o.s. coincides with the z-axis, and (X, Y) = (x, y);
for i = π/2, corresponding to the so-called edge-on projection, the

l.o.s. coincides with the x-axis, and (X, Y) = (− z, y). In any case, Y
is aligned with the major axis of the projection. The distance from
the centre of the image is indicated by R = √

X2 + Y 2.
Accordingly, the projection of the stellar density is given by

�∗ ≡
∫ ∞

−∞
ρ∗ dZ, (50)

where the function ρ∗ is expressed from equation (49) in terms of
vector X and angle i.

The projection of the component along n of the ordered velocity,
called l.o.s. streaming velocity field and indicated with vlos, is given
by

�∗vlos ≡
∫ ∞

−∞
ρ∗v · n dZ, (51)

where the overline represents the mean over the phase space; again,
as in equation (50), the left-hand side of equation (51) depends on
X, Y, and i. Note that, since the streaming motion of stars occurs
only in the azimuthal direction, we have v · n = − vϕ sin i sin ϕ; as
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a consequence, vϕ > 0 when the galaxy rotates in an anticlockwise
sense. In the limit case of a face-on projection, we have no streaming
motion.

The projection of the squared velocity reads

�∗v2
p ≡

∫ ∞

−∞
ρ∗(v · n)2 dZ. (52)

By introducing the velocity dispersion tensor σ 2
ij , and expanding

equation (52), we have v2
p = σ 2

p + V 2
p , where1

�∗σ 2
p ≡

∫ ∞

−∞
ρ∗σ 2

ij ninj dZ, �∗V 2
p ≡

∫ ∞

−∞
ρ∗(v · n)2dZ. (53)

Note that, if a net rotation is present, the projected velocity dispersion
σ 2

p is not the observed velocity dispersion σ los; the l.o.s. velocity
dispersion, which is related to the broadening of the spectral lines, is
instead given by

�∗σ 2
los ≡

∫ ∞

−∞
ρ∗(v · n − vlos)2 dZ. (54)

Finally, by combining equations (51), (52), and (54), one has

σ 2
los = σ 2

p + V 2
p − v2

los. (55)

In a face-on projection, as n is always perpendicular to v, the previous
equation reduces to σ los = σ p. Moreover, by adopting the Satoh k-
decomposition, it is easy to show that the coefficient k appears only
in vlos; indeed, using equations (32) and (33) one has

�∗v2
p =

∫ ∞

−∞
ρ∗
(
σ 2

∗ + ∗sin2 i sin2ϕ
)
dZ, (56)

and, in case of a constant k,

�∗vlos = − k

∫ ∞

−∞
ρ∗
√

∗sin i sin ϕ dZ. (57)

In the more general case of a coordinate-dependent k, this parameter
would appear inside the integral. Of course, since ∗ vanishes when
η∗ = ηg = 0, spherical models present no streaming motion.

5.1 Asymptotic behaviour

The projection integrals in the previous section in general may be
performed only numerically (see Caravita et al. ). Here, we focus on
the asymptotic expansion of the projected fields at small and large
radii, amenable to analytical treatment.

From Taylor expansion, the asymptotic behaviour of the projected
stellar density, for both JJe and J3e models, can be written as

�∗
�n

∼ π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R̃2 + η∗Ỹ 2 sin2 i

R̃3
, R̃ → 0,

R̃2 + η∗(Ỹ 2 − 2X̃2) sin2 i

2R̃5
, R̃ → ∞,

(58)

where �n ≡ M∗/(4πr2
∗ ), and the tilde indicates the normalization

with respect to r∗.
In the face-on case, for which X = x and Y = y, we have σ 2

ij ninj =
σ 2

∗ . Again, from the asymptotic analysis of ρ∗σ 2
∗ (see Section 4.1),

the behaviour of σ los in the central region is the same for both JJe
and J3e models, and it reads

�∗σ 2
los

�n�n
∼ μ

[
2(5 − η∗)

15R̃2
− π(4 + η∗)

4R̃

]
+ R π(2 − η∗ + ηg)

4ξR̃
. (59)

1The quantity vp coincides with Vrms in Cappellari et al. (2013).

Notice that, in absence of the central BH, σ 2
los reduces to a nowhere

negative constant value for acceptable values of η∗ and ηg. Very far
from the centre, instead, at the leading order, we have

�∗σ 2
los

�n�n
∼ 4(7 − 5η∗)

105R̃4
×

{
R + μ, (JJe),

R ln R̃, (J3e).
(60)

In the edge-on case, in which X = −z and Y = y, the quantities Vp

and vlos are not zero. By considering only the leading order terms of
equations (42) and (43), and limiting to the lowest in the flattenings,
some careful algebra shows that, for R̃ → 0,

�∗σ 2
los

�n�n
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R ag(X̃, Ỹ )

R̃
, (μ = 0),

μ
aBH(X̃, Ỹ )

R̃2
, (μ �= 0),

(61)

and

�∗vlos

�n
√

�n
∼ −k

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
R 3η∗ − ηg

3ξ

2Ỹ

R̃2
, (μ = 0),

√
μη∗

5
B

(
1

2
,

5

4

)
2Ỹ

R̃5/2
, (μ �= 0),

(62)

where B(p, q) is Euler’s complete Beta function. In the external
regions, instead,

�∗σ 2
los

�n�n
∼ 4b(X̃, Ỹ )

7R̃4
×

{
R + μ, (JJe),

R ln R̃, (J3e),
(63)

and

�∗vlos

�n
√

�n
∼ −k

√
2η∗
7

B

(
1

2
,

9

4

)
2Ỹ

R̃9/2
×

⎧⎨
⎩

√
R + μ, (JJe),√
R ln R̃, (J3e);

(64)

the functions ag, aBH, and b are given in Appendix C3 (see Supporting
Information in the online version). As expected, equations (59), (60),
(61), and (63) reduce, for η∗ = ηg = 0, to the analogous formulae
given in CZ18 and CMP19 for the spherical fully isotropic case.

6 T H E V I R I A L T H E O R E M

The Virial Theorem (hereafter, VT) provides important information
about the global energetics of a galaxy model. Here, we focus on the
VT of the stellar components:

2K∗ = − W∗ ≡ − W∗g − W∗BH, (65)

where

K∗ = 1

2

∫
ρ∗
(

2σ 2
∗ + v2

ϕ

)
d3x = 1

2

∫
ρ∗
(

3σ 2
∗ + ∗

)
d3x (66)

is the total kinetic energy of the stars,

W∗g =
∫

ρ∗x · ∂�g

∂x
d3x (67)

is the interaction energy of the stars with the gravitational field of the
galaxy (stars plus DM), and finally

W∗BH =
∫

ρ∗x · ∂�BH

∂x
d3x = U∗BH, (68)

where U∗BH = −∫
ρ∗�BHd3x is the gravitational energy of the stars

due to the central BH. Note that for a Jaffe density distribution, W∗BH

diverges near the origin, so that also the volume integral of ρ∗σ 2
BH

diverges, as can be verified by direct integration of equation (38).
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In the framework of homoeoidal expansion, the integrand in
equation (67) can be expressed in simple form. Indeed, with some
work,2 after transforming variables to spherical coordinates, an
integration over the solid angle shows that, limiting to linear terms
in the flattenings,

W∗g = − UnR × (
w0 + η∗w1 + ηgw2

)
, (69)

where Un ≡ M∗�n, and

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∫ ∞

0
ρ̃∗0

d�̃g0

ds
s3ds,

−
∫ ∞

0

(
ρ̃∗1 + 2

3
s2ρ̃∗2

)
d�̃g0

ds
s3ds,

−
∫ ∞

0
ρ̃∗0

d

ds

(
�̃g1 + 2

3
s2�̃g2

)
s3ds,

(70)

for i = 0, 1, 2, from top to bottom, respectively.
As well known, in multicomponent systems the virial energy W∗

is not the gravitational energy U∗ of the stellar component in the total
potential. In analogy with the previous discussion, we now express
explicitly the different contributions to the potential energy U∗ of the
stellar component. We write

U∗ = U∗g + U∗BH = U∗∗ + U∗DM + U∗BH. (71)

In particular,

U∗g = − 1

2

∫
ρ∗�∗d3x −

∫
ρ∗�DMd3x = B∗g − U∗∗, (72)

where

B∗g = −
∫

ρ∗�gd
3x. (73)

B∗g is useful in the theory of galactic flows. Indeed, Lgrav ∝
|B∗g|, where Lgrav is the energy per unit time to be given to
the ISM (via, e.g. supernova explosions, or thermalization of the
velocity of stellar winds, or AGN feedback) in order to steadily
extract the ISM mass injected over the galaxy body in the unit
time (e.g. from evolving stars; see Pellegrini 2011, Posacki et al.
2013).

By using the homoeoidal expansion for ρ∗ and �g, and changing
variables to spherical coordinates, an integration over the solid angle
shows that limiting to linear terms in the flattenings,

B∗g = − UnR ×(
u0 + η∗u1 + ηgu2

)
, (74)

where

ui =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0
ρ̃∗0�̃g0 s2ds,

∫ ∞

0

(
ρ̃∗1 + 2

3
s2ρ̃∗2

)
�̃g0 s2ds,

∫ ∞

0
ρ̃∗0

(
�̃g1 + 2

3
s2�̃g2

)
s2ds,

(75)

for i = 0, 1, 2, from top to bottom, respectively.

2From equation (18), simple algebra shows that

x · ∂�g

∂x
= �nR

[(
d�̃g0

ds
+ ηg

d�̃g1

ds

)
s + ηgR̃

2
(

s
d�̃g2

ds
+ 2�̃g2

)]
.

6.1 The Virial Theorem for JJe models

For the JJe models, the quantities wi in equation (70) can be easily
computed as

wi(JJe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ − 1 − ln ξ

(ξ − 1)2
,

2(1 − ξ ) + (ξ + 1) ln ξ

3(ξ − 1)3
,

ξ 2 − 1 − 2ξ ln ξ

3(ξ − 1)3
,

(76)

and, for ξ = 1,

w0 = 1

2
, w1 = 1

18
, w2 = 1

9
. (77)

A few comments are in order. First, in case of η∗ = ηg = 0, the
function W∗g reduces to that of spherical models already given in
CZ18. Secondly, for ξ → ∞, the contribution to W∗g in equation
(69) due to the function w1 is subdominant with respect to those of
w0 and w2, and we get

W∗g ∼ − UnR
3 + ηg

3ξ
. (78)

In the minimum halo case, frorm equation (13), it follows that W∗g

tends to a finite value depending only on the two flattenings η∗ and
ηg. The third comment concerns the contribution of the DM to W∗g

= W∗∗ + W∗DM (where W∗∗ is due to the self-interaction of the
stellar distribution, and W∗DM to the effect of the DM halo). From
equation (69), we have the estimate of W∗g for small flattenings of
the total and stellar distributions. As the total density in JJe models is
a Jaffe ellipsoidal model as the stellar one, it is obvious that equation
(69) can be used also to estimate W∗∗ for small flattenings, just by
considering in it R = 1, ξ = 1, and ηg = η∗, so that W∗DM = W∗g −
W∗∗.

For what concerns the function B∗g, from equation (75), we find

ui(JJe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ln ξ

ξ − 1
,

ξ − 1 − ln ξ

3(ξ − 1)2
,

1 − ξ + ξ ln ξ

3(ξ − 1)2
,

(79)

where, for ξ = 1,

u0 = 1, u1 = 1

6
, u2 = 1

6
. (80)

As for W∗g, in the limit case of η∗ = ηg = 0 also, the function B∗g

coincides with that found in CZ18. For large values of ξ (i.e. ξ →
∞), also in case of B∗g, the spherical term and that due to the total
distribution dominate over the stellar one; the resulting behaviour
reads

B∗g ∼ − UnR
3 + ηg

3ξ
ln ξ ∼ W∗g ln ξ. (81)

Therefore, at variance with W∗g, the quantity B∗g diverges for a DM
halo much more extended than the stellar distribution. Note that U∗∗
can also be obtained, for JJe models, not only from W∗g but also
from B∗g, evaluating B∗g/2 with R = 1, ξ = 1, and ηg = η∗. Once
U∗∗ is obtained, the evaluation of U∗DM through B∗g is trivial, since
U∗DM = B∗g − 2U∗∗. Fig. 9 shows the trend of |B∗g| for a spherical
galaxy, as a function of ξ , for different stellar flattenings.
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Figure 9. Absolute value of the energy B∗g, normalized to Un ≡ �nM∗ = GM2∗/r∗, as a function of ξ , for three representative minimum halo models, for a
spherical galaxy without a central BH (i.e. μ = 0). Left: JJe models; right: J3e models. Notice how for large values of ξ , the curves in the two panels have
similar behaviour. It can be proved that for ξ → ∞, they become identical (see Section 6).

6.2 The Virial Theorem for J3e models

The quantities w0, w1, and w2 are given by

wi(J3e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H(ξ, 0) − ln ξ

ξ − 1
,

1

3
H(ξ, 0) − ξ − 1 + (ξ − 2) ln ξ

3(ξ − 1)2
,

ξ − 1 − ln ξ

3(ξ − 1)2
,

(82)

where the function H(ξ, s) is defined as

H(ξ, s) ≡
∫ ∞

s

ln

(
1 + 1

t

)
dt

ξ + t
, (83)

and it can be expressed in terms of the dilogarithm function (for more
details, see equation C1 in CMP19). In particular, for ξ = 1,

w0 = π2

6
− 1, w1 = π2

18
− 1

2
, w2 = 1

6
. (84)

In analogy with equation (79), for J3e models, the function B∗g is
determined by

ui(J3e) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H(ξ, 0),

1

3
H(ξ, 0) − ln ξ

3(ξ − 1)
,

ln ξ

3(ξ − 1)
,

(85)

where, for ξ = 1,

u0 = π2

6
, u1 = π2

18
− 1

3
, u2 = 1

3
. (86)

For η∗ = ηg = 0, the quantities W∗g and B∗g coincide with that found
in CMP19. Moreover, when considering large values of ξ , a simple
expansion shows that the asymptotic behaviours of W∗g and B∗g are
identical to that derived in case of JJe models (see Fig. 9): a qualitative
explanation is that in both cases, the Jaffe stellar distribution, for ξ

→ ∞, is embedded in what we call ‘singular isothermal ellipsoid’.

7 DI SCUSSI ON AND CONCLUSI ONS

In this paper, we present two new families of two-component
axially symmetrical galaxy models: the ellipsoidal generalization
of the spherical JJ and J3 models, introduced in CZ18 and CMP19,
respectively. In both these new families, the stellar density follows
an ellipsoidal Jaffe profile; then, in the JJe models, the total density
is described by another ellipsoidal Jaffe law; in the J3e models, the
total density is such that its difference with the stellar density (e.g.
the resulting DM halo) can be made similar to an ellipsoidal NFW
model. In both families, the total density has a different flattening and
scale length with respect to the stellar density. Finally, a BH is also
added at the centre. The JJe and J3e models are fully determined once
the stellar mass (M∗) and the scale length of the stellar density (r∗) are
assigned, together with the total-to-stellar scale length ratio (ξ ), the
total-to-stellar density ratio (R), the flattening of the stellar profile
(η∗), the flattening of the total profile (ηg), and finally a BH-to-stellar
mass ratio (μ).

One of the main advantages of the JJe and J3e models is that, thanks
to a homoeoidal expansion to the first order adopted in this paper,
an analytical treatment of several quantities of interest in theoretical
and observational works is possible, as detailed below.

(i) The constraints on R and ξ to assure the positivity of the
DM halo density profile are derived analytically. For a given ξ ,
the model with the minimum value Rm allowed for R is called
minimum halo model. A general method to discuss the positivity of
the DM distribution, defined as the difference between two arbitrary
ellipsoidal distributions, is also presented in the appendix.

(ii) We expand the density and potential profiles for a small devia-
tion from spherical symmetry by adopting the so-called homoeoidal
expansion method (see CB05). The derived analytical expressions
correspond to positive densities if η∗ ≤ 1/3, and ηg ≤ 1/3 (JJe) or ηg

≤ 1/2 (J3e). The circular velocity vc in the equatorial plane (z = 0)
is also obtained.

(iii) Using the homoeoidal expansions, we analytically solve
the two-integral Jeans equations, where the Satoh (1980) k-
decomposition is adopted to split the azimuthal velocity field in its
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ordered (vϕ) and random (σϕ) components. The solutions are given
at their first-order terms in the flattening; the asymptotic expansion
near the centre and in the outer regions is presented, and maps of
σ ∗, σϕ , and vϕ in the meridional plane for a representative galaxy
are also shown. The σ ∗ contour lines are elongated along the z-axis.
For fixed distance from the Galactic Centre, the values of σ ∗, σϕ,

and vϕ keep larger for the J3e model than for the JJe one, due to
the broader DM distribution of the former models. Finally, the link
between the angular momentum Jz(R, z) away from the equatorial
plane and that on the plane Jc(R ) is briefly presented; this link is
useful to consider for problems involving infalling gas that conserves
its angular momentum.

(iv) Finally, the analytical expressions for the quantities entering
the Virial Theorem, such as the interaction energy and the potential
energies, are derived as a function of the model parameters.

The JJe and J3e models represent a significant improvement over
the spherical counterparts discussed in CZ18 and CMP19: they
provide a more advanced modelling of the dynamics of elliptical
galaxies, while still keeping realistic mass distributions, as are the
Jaffe or the NFW laws. The analytical formulation of all their
dynamical properties (e.g. kinematical quantities and virial energies)
can be used to understand what is the effect of the various parameters
(flattening, scale lengths, mass ratio, rotational support) in deter-
mining these properties. The analytical expressions are also useful
when realistic axially symmetric two-component galaxy models are
needed, for example to be given in input in numerical simulations,
as those reproducing galactic flows (see e.g. Gan et al. 2019).

AC K N OW L E D G E M E N T S

We thank Caterina Caravita, Zhaoming Gan, and Federico Marinacci
for careful and independent numerical checks of several formulae.
The anonymous referee is warmly thanked for several suggestions
that considerably improved the paper.

DATA AVAILABILITY

No data sets were generated or analysed in support of this research.

RE FERENCES
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APPENDI X A: POSI TI VI TY OF THE DM
DI STRI BUTI ON

In order to discuss the positivity of the DM distribution of JJe and
J3e models, it is convenient to set up the problem in the more general
case of two arbitrary ellipsoidal distributions and then to specialize
the results to the specific cases. Let

ρ∗ = E∗(m∗), ρg = REg(mg), (A1)

be the stellar and total density distributions, with E∗ and Eg the
arbitrary functions describing the profiles, where m∗ and mg are
defined in Section 2. We change variables from (R, z) to (rsin θ ,
rcos θ ), so that

m∗ = s �∗, mg = s �g, s = r

r∗
, (A2)

and

�2
∗ = sin2θ + cos2θ

q2∗
, �2

g = sin2θ + cos2θ

q2
g

. (A3)

The positivity condition for ρDM = ρg − ρ∗ becomes

R ≥ Rm = sup
I

F (s, θ ), F (s, θ ) = E∗(m∗)

Eg(mg)
, (A4)

where, from Fig. A1, I ≡ {(s, θ ) | s ≥ 0, 0 ≤ θ ≤ π/2}: we restrict
to values of θ between 0 and π/2 since F (s,π − θ ) = F (s, θ ). A

Figure A1. Illustration of the region I over which the function F (s, θ ) must
be maximized in order to guarantee positivity of the DM density distribution
ρDM = REg(mg) − E∗(m∗).
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DM halo with R = Rm is called a minimum halo: clearly, if R
decreases slightly below Rm, the DM density becomes first negative
at the position where F (s, θ ) = Rm. It follows that

Rm = max
(
Rc,R∞,R0,Rπ

2
,Rint

)
, (A5)

where the values within parentheses are the supF (s, θ ) over the
corresponding regions in Fig. A1. Geometrically, supF (s, θ ) can be
located only at the centre, at infinity, on the equatorial plane, along
the symmetry axis, or in the interior.

We first show that for q∗ �= qg, the function F has no critical points
in int (I). Indeed, a simple computation shows that its gradient can
vanish when⎧⎪⎪⎨
⎪⎪⎩

�∗
dE∗
dm∗

Eg = �g
dEg

dmg
E∗,

d�∗
dθ

dE∗
dm∗

Eg = d�g

dθ

dEg

dmg
E∗,

(A6)

where the first equation corresponds to ∂F/∂s = 0, and the second
to ∂F/∂θ = 0. The proof proceeds as follows. If the first equation
is not satisfied in int (I), there is nothing to prove. So, let us assume
that the first identity is satisfied somewhere in int (I). Then, for
non-negative and monotonically decreasing density distributions, the
second equation reduces to

d�∗
dθ

�g = �∗
d�g

dθ
; (A7)

however, it is trivial to show that, for q∗ �= qg, there are no solutions for
0 < θ < π/2. We are left with the case q∗ = qg. In this circumstance,
the two equations of the system (A6) become coincident. As a
consequence, Rint must be determined by solving the equation
∂F/∂s = 0, and imposing the condition q∗ = qg. In particular, we
note that in the special case q∗ = qg, the problem formally reduces
to the study of the positivity in spherical systems (see e.g. CZ18;
CMP19).

A1 The positivity condition for JJe models

We now apply the previous considerations to the ellipsoidal general-
ization of the spherical two-component γ models in CZ18, where

F (s, θ ) = 1

ξα

(
�g

�∗

)γ(
ξ + s �g

1 + s �∗

)4−γ

, α ≡ q∗
qg

, (A8)

and 0 ≤ γ < 3.
We start with the discussion of the positivity condition on the

boundary of I (see Fig. A1). Along Ic,

Rc = ξ 3−γ

α
× max

0≤θ≤ π
2

f γ (θ ), f (θ ) ≡ �g

�∗
, (A9)

so that the problem reduces to the study of

df

dθ
∝ (

1 − α2
)
sin 2θ. (A10)

For q∗ < qg (i.e. α < 1), the maximum (1) is reached at θ = π/2,
while for q∗ > qg (i.e. α > 1), the maximum (αγ ) is reached at θ =
0. Summarizing,

Rc = ξ 3−γ × max

(
1

α
, αγ−1

)
. (A11)

Over I∞ (i.e. for s → ∞), from a similar analysis,

R∞ = 1

ξα
× max

0≤θ≤ π
2

f 4 (θ ) = 1

ξ
× max

(
1

α
, α3

)
. (A12)

The positivity along the symmetry axis I0, and on the equatorial
plane Iπ

2
, requires

R0 = α3

ξ
sup
s≥0

(
ξqg + s

q∗ + s

)4−γ

= max

(
α3

ξ
, ξ 3−γ αγ−1

)
, (A13)

and

Rπ
2

= 1

ξα
sup
s≥0

(
ξ + s

1 + s

)4−γ

= 1

α
× max

(
1

ξ
, ξ 3−γ

)
. (A14)

Finally, we consider int (I), and, according to equation (A6), only
for q∗ = qg (i.e. α = 1). Under this condition, the study of equation
(A8) is trivial, and it shows that no maxima are contained in int (I),
even in this case. The positivity condition in the special case α = 1
is then obtained from equation (A5), and it reads

R ≥ Rm = max

(
1

ξ
, ξ 3−γ

)
, (q∗ = qg), (A15)

in agreement with the result for spherical JJ models in CZ18.

A2 The positivity condition for J3e models

Equation (A8) becomes

F (s, θ ) = 1

α

(
�g

�∗

)2
ξ + s �g

(1 + s �∗)2
, α ≡ q∗

qg
. (A16)

Repeating the same treatment of JJe models, we immediately
obtain

Rc = ξ

α
× max

0≤θ≤ π
2

(
�g

�∗

)2

= ξ × max

(
1

α
, α

)
; (A17)

moreover, as in J3e models, the total density profile decreases more
slowly than the stellar density for s → ∞, positivity at large radii is
assured independently on the value of R, so that formally R∞ = 0.
Along the symmetry axis I0,

R0 = qgα
3 sup

s≥0

ξqg + s

(q∗ + s)2
= α ×

⎧⎪⎪⎨
⎪⎪⎩

α2

4(α − ξ )
, ξ ≤ α

2
,

ξ, ξ ≥ α

2
,

(A18)

and, along the equatorial plane Iπ
2

,

Rπ
2

= 1

α
sup
s≥0

ξ + s

(1 + s)2
= 1

α
×

⎧⎪⎪⎨
⎪⎪⎩

1

4(1 − ξ )
, ξ ≤ 1

2
,

ξ, ξ ≥ 1

2
.

(A19)

For what concerns the positivity in the interior of I, the only case
to be considered is q∗ = qg (i.e. α = 1). It is easy to show that F
has no critical points in int (I) when ξ > 1/2; for ξ ≤ 1/2, instead,
Rint = 1/[4(1 − ξ )]. In conclusion, for α �= 1, R is obtained from
equation (A5) and the previous results, while in the special case α =
1, the final condition is

R ≥ Rm =

⎧⎪⎪⎨
⎪⎪⎩

1

4(1 − ξ )
, ξ ≤ 1

2
,

ξ, ξ ≥ 1

2
,

(q∗ = qg), (A20)

in agreement with the result for spherical J3 models in CMP19.

A P P E N D I X B : H O M O E O I DA L E X PA N S I O N

A thorough description of the homoeoidal expansion method can be
found in CB05. Here, we just report the formulae strictly needed for
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the present work. Consider an ellipsoidal mass density distribution
ρ stratified, in Cartesian coordinates, over surfaces labelled by

m2 ≡ x2

a2
+ y2

b2
+ z2

c2
= x2

a2
+ y2

a2(1 − ε)2
+ z2

a2(1 − η)2
, (B1)

where a ≥ b ≥ c > 0, b/a ≡ 1 − ε, and c/a ≡ 1 − η; when ε = η =
0, m = s = r/a. We write

ρ(m) = ρn× ρ̃(m)

(1 − ε)(1 − η)
, ρn ≡ Mn

4πa3
, (B2)

where ρn is a normalization density, and Mn is the mass of the
ellipsoid contained inside the arbitrary ellipsoid defined by m. With
this choice, Mn is independent of the adopted flattenings, the so-
called constrained case. Of course, for a model of finite total mass,
the natural choice is to adopt for Mn the total mass. Note that, for a
model of finite total mass M, the normalization assures that the total
mass is conserved independently of the value of ε and η. In case
of an infinite total mass (such as ρg in J3e models), the condition
assures that the mass contained inside any m is conserved. The oblate
axisymmetric models discussed in this paper (see Section 2.2) are
obtained for ε = 0, a = r∗, η = 1 − q∗ for the stellar component, and
η = 1 − qg for the total density.

By expanding at the linear order in terms of the flattenings, one
obtains

ρ̃(m)

(1 − ε)(1 − η)
= �̃0(s) + (ε + η) �̃1(s) + (

εỹ2 + ηz̃2
)
�̃2(s), (B3)

where ỹ ≡ y/a, z̃ ≡ z/a, and

�̃0(s) = �̃1(s) = ρ̃(s), �̃2(s) = 1

s

dρ̃(s)

ds
. (B4)

In order to be physically acceptable, the expanded density must
be nowhere negative, and this requirement sets an upper limit on
the possible values of ε and η, as a function of the specific density
profile adopted. By changing variables to spherical coordinates, and
following the approach introduced in Appendix A, it can be shown
that positivity of equation (B3) for 0 ≤ ε ≤ η < 1, and for a
monotonically decreasing ρ̃(s), is assured provided that

ε ≥ (AM − 1)η − 1, AM ≡ sup
s≥0

∣∣∣∣d ln ρ̃(s)

d ln s

∣∣∣∣ . (B5)

For γ models, AM = 4, so that in the axisymmetric case (ε = 0), we
recover the condition η ≤ 1/3 (see CB05).

The general quadrature formula for the potential of a density
distribution ρ(m) is given by

�(x) = πabcG

∫ ∞

0

�[m(x; τ )]√
(a2 + τ )(b2 + τ )(c2 + τ )

dτ, (B6)

(see e.g. Kellogg 1953; Chandrasekhar 1969; BT08), where

�[m(x; τ )] ≡ 2
∫ ∞

m(x;τ )
ρ(m)mdm, (B7)

and

m2(x; τ ) ≡ x2

a2 + τ
+ y2

b2 + τ
+ z2

c2 + τ
; (B8)

note that the variable τ has the dimension of a squared length.
By inserting equation (B2) in equation (B6), and after normal-

ization of all lengths to a (and τ to a2), it is immediate to show
that

�(x) = �n× �̃(x), �n ≡ GMn

a
, (B9)

where the meaning of the function �̃ is obvious. Expanding the
integrand in equation (B6) at linear order in the flattenings, and
inverting order of integration, some algebra shows that

�̃(x) = ψ̃0(s) + (ε + η)ψ̃1(s) + (
εỹ2 + ηz̃2

)
ψ̃2(s), (B10)

where

ψ̃i(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

s

∫ s

0
ρ̃(m)m2dm +

∫ ∞

s

ρ̃(m)mdm,

1

3s3

∫ s

0
ρ̃(m)m4dm + 1

3

∫ ∞

s

ρ̃(m)mdm,

− 1

s5

∫ s

0
ρ̃(m)m4dm,

(B11)

with i = 0, 1, and 2, respectively. Then, Poisson’s equation for the
dimensionless potential-density pair (�̃, ρ̃) becomes

∇̃2�̃(x) = − ρ̃(m)

(1 − ε)(1 − η)
, ∇̃2 ≡ a2∇2. (B12)

The previous formulae, in the axisymmetric oblate case, are obtained
by setting ε = 0 and 0 < η < 1. It may be convenient in some
computation to recast equations (B3) and (B10) in terms of R2 instead
of z2 = r2 − R2, and in this case, the corresponding functions are
given by

ρ̃0 = �̃0, ρ̃1 = �̃1 + s2�̃2, ρ̃2 = − �̃2, (B13)

and

�̃0 = ψ̃0, �̃1 = ψ̃1 + s2ψ̃2, �̃2 = − ψ̃2. (B14)

For example, when computing properties on the equatorial plane,
where z = 0, such as, for example, in the derivation of the circular
speed vc(R), angular momentum Jc(R), or radial epicyclic frequency
κR(R), it is useful to work with the ‘explicit-z formulation’, while in
some other case, such as the integration of the Jeans equations, or the
derivation of the vertical epicyclic frequency κz(R), it is more useful
to use the ‘explicit-R formulation’. In particular, we recall that κR

and κz are defined as

κ2
R(R) ≡ 1

R3

dJ 2
c

dR
, κ2

z (R) ≡ −
(

∂2�

∂z2

)
z=0

. (B15)

By defining κ2
n ≡ �n/a

2, simple algebra shows that

κ2
z (R)

κ2
n

= κ̃2
z0(R̃) + ηκ̃2

z1(R̃) + ηR̃2κ̃2
z2(R̃), (B16)

where

κ̃2
zi(R̃) ≡ − 1

R̃

d�̃i(R̃)

dR̃
, (i = 0, 1, 2), (B17)

and

κ2
R(R)

κ2
n

= κ̃2
R0(R̃) + ηκ̃2

R1(R̃), (B18)

with

κ̃2
Ri(R̃) ≡ − 1

R̃3

d

dR̃

[
R̃3 dψ̃i(R̃)

dR̃

]
, (i = 0, 1). (B19)
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