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Abstract

Nowadays, Unmanned Aerial Vehicles (UAVs) represent a significant aid on scenar-

ios where fixed, ground infrastructures are temporarily or permanently not available;

this is the case of large-scale applications of the Internet of Things (IoTs), e.g. smart

city and agriculture 3.0, where the UAVs can be employed as mobile data mules and

gather the data from Wireless Ground Sensors (WGSs). UAV-aided wireless sensor

networks (WSNs) introduce considerable advantages both in terms of performance and

costs since they avoid the need of error-prone multi-hop communications, and also the

installation of static gateways; at the same time, they pose formidable research chal-

lenges for their implementation, like the synchronization issue between the UAV and

the WGS and the path planning, which should take into account the extremely lim-

ited flight autonomy of the UAVs. In this paper, we address both the issues above by

proposing BEE-DRONES, a novel framework for large-scale, ultra low-power UAV-

aided WSNs. In order to mitigate the synchronization problem, we investigate the

utilization of passive Wake-up Radio (WR) technology on the WGSs, and of wireless

power transfer from the UAVs: by harvesting the energy from the UAV hovering over

it, the WGS is activated only for the short time required to transfer the data toward the

mobile sink, while it experiences zero-consumption in sleep mode. We investigate the
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performance of passive WR-based WGS through real measurements, under different

WGS-UAV distances and antenna orientations. Then, based on such results, we for-

mulate the joint WGS scheduling and UAV path planning problem, where the goal is

to determine the optimal trajectory of the UAVs activating the WR-based WGSs while

taking into account the Value of the Sensing (VoS) as well as the total lifetime of the

WSN. The original problem is transformed into a multi-commodity flow problem, and

both centralized and distributed heuristics over the multi-graph are proposed. Finally,

we evaluate the proposed algorithms through extensive OMNeT++ simulations; the re-

sults demonstrate the gain of BEE-DRONES in terms of extended lifetime compared

to traditional, non WR-based solutions (e.g. duty-cycle), and in terms of reduced data-

correlation compared to non VoS-aware path planning solutions.

Keywords: Wireless Sensor Networks, Unmanned Aerial Vehicle, Wake-Up Radio

1. Introduction

1.1. Goal

According to recent studies, the global market of sensors is expected to grow with a

compound annual rate (CAGR) of 11.3 percent until 2022, when the market will reach

241 billion of dollars2. The rising demand is mainly driven by the Internet of Things5

(IoT) and by its vertical applications [1]; in some cases, like in smart-cities and agricul-

ture 3.0, the deployment of monitoring systems on large-area is required, and the likely

big amount of sensor data are then processed and analyzed via Machine Learning (ML)

approaches. Hence, the energy-efficiency of the sensing devices becomes a fundamen-

tal requirement both in terms of cost-effectiveness and system maintainability. To this10

purpose, Wake-up Radio (WR) technology represents one of the most promising solu-

tion towards ultra low-power IoT nodes [2]. The main idea of WR is to introduce an

additional circuitry able to switch on the main radio when detecting an incoming trans-

mission (the wake-up signal) [2]; moreover, in passive mode, the WR device is able

to harvest the energy from the radio transmissions of an external transceiver, hence15

2Source: https://www.i-scoop.eu/global-sensor-market-forecast-2022/
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achieving true-zero consumption in sleep state [3]. At the same time, the potential of

passive WR technology is constrained by the reduced operative range of the devices

and the consequential need to provision an high number of WR transmitters on large-

scale IoT scenarios, with a negative impact on system cost and scalability. In this paper,

we aim to circumvent such drawback by investigating how to deploy ultra low-power,20

large-scale IoT monitoring systems based on the integration of UAVs and WR-based

wireless ground sensors (WGSs); each UAV serves as a WR transmitter, i.e. it transfer

energy to wake-up a specific WGS, and as a data mule, i.e. it gathers the data sent from

the same WGS. Specifically, we address two joint issues: (i) what is the performance

gain offered by WR technology over state-of-the-art solutions (e.g. duty-cycle) and its25

suitability for UAV-WGS communication links? and, consequently, (ii) how to design

optimal joint WR-based WGS scheduling and UAV path-planning policies able to meet

the requirements of the IoT monitoring systems?

1.2. Context and Motivations

UAV-aided Wireless Sensor Networks (WSNs) have been largely investigated in30

the literature [4]. Several studies demonstrated the advantages of using mobile sinks

for low data-rate sensing applications, or investigated the combined usage of aerial and

ground multi-hop communications [5]. At the same time, the practical deployment of

UAV-aided WSNs poses additional challenges that are far from being addressed. First,

the trajectory of the UAVs must be carefully determined on large-scale scenarios due35

to the limited autonomy of the devices, which is in the order of few tens of minutes

even on top commercial hardware. The UAV path-planning can be considered an in-

stance of the Travelling Salesman Person (TSP) problem, and hence several heuristics

have been proposed [6][7][8]. However, most of them focuses on the overall energy

consumption of the UAVs induced by the mobility or on the energy consumption of40

the WGSs induced by the wireless communication, while few studies take into account

the effective requirements of the sensing applications which must process the sensing

data [9][10][11]. Second, UAV-aided WSNs must face the synchronization problem,

i.e. how the WGSs can be aware of the UAV transit and of the consequential transmis-

sion opportunity. UAV-initiated solutions require the WGSs to be always active, which45
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is not practical for battery-constrained devices [12][13]; vice versa, WGS-initiated so-

lutions assume strict temporal synchronization between the UAV and the WGS, and

consequently they are not easily deployable.

1.3. Contributions

In this paper, we address both the data-quality and the synchronization issues men-50

tioned above, by presenting BEE-DRONES, a novel framework for energy-efficient

data collection on generic UAV-aided WSNs. We consider a scenario where the WGSs

are equipped with the passive wake-up radio circuitry described in [3] and -like the

title suggests- we assume that UAVs will mimic the pollination process operated by

bees, i.e. they hover over a selected WGS, and transfer energy in order to wake-up the55

device, thus solving the synchronization issue with no energy overheads for the WGS.

Also, in BEE-DRONES, the UAVs are able to provide persistent aerial coverage of

the scenario, by scheduling their recharge operations on charging stations placed on

the ground. We provide four main contributions in this study:

• We review the architecture of our WR-based WGS prototype [14], and we show,60

by experimental results, the performance gain introduced by the passive WR

technology compared to traditional duty-cycle mechanisms. Also, we provide

insights of the wake-up operations for different UAV heights and antenna models

and orientations.

• We move from the single UAV-WGS link to a WSN network empowered by65

UAVs, and we address the general problem of determining the optimal trajectory

of each UAV, by modeling the energy harvesting process, the UAV and WGS

battery consumption and the WGS-UAV communication. Differently from pre-

vious studies, the optimization problem takes into account the quality of the

sensing data -called Value of Sensing (VoS) in the following- expressed through70

the correlation of different sensor readings on spatio-temporal dimension, i.e.:

at each flight, the UAVs must maximize the scenario coverage of the readings,

while avoiding discharging always the same WGSs. We considerably extend the

preliminary optimization framework presented in [14] by modeling the UAV po-
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sitioning and orientation errors as well as the communication protocol between75

the UAV and the WGS.

• Given the NP-hardness of the optimization problem, we rewrite it as a multi-

commodity flow problem on a multi-graph; we determine the optimal UAV alti-

tude and hovering time so that the probability of activating a WGS and of gath-

ering the sensor data from it are both higher than pre-defined thresholds. Then,80

we propose a centralized heuristic over the multi-graph that computes the charg-

ing time and the list of WGSs to query during the path for each UAV, assuming

de-synchronized operations among them. Finally, we derive a distributed path

planning algorithm which relies on local information sharing among the UAVs;

hence, this solution is robust also in case of UAVs malfunctioning or of time-85

varying scenario conditions.

• We evaluate the performance of centralized and distributed BEE-DRONES al-

gorithms on simulated OMNeT++ scenarios. The impact of several parameters

(e.g. WGSs density, UAVs availability, data correlation parameters) on the over-

all system lifetime, and on the VoS metric are investigated. Finally, we compare90

them against other path-planning strategies and traditional, non WR-based solu-

tions for the WGSs.

The simulation analysis reveals that both centralized and distributed BEE-DRONES

solutions are able to maximize the data utility compared to basic path planning strate-

gies, and that the usage of WR technology produces a lifetime enhancement up to95

+30% more than duty-cycle mechanisms. The rest of the paper is structured as follows.

Section 2 provides an extensive survey of related works on UAV-aided WSNs, and on

the few recent studies integrating the WR technology on the loop. Section 3 provides

experimental results of the WR-WGS technology on a single communication link. Sec-

tions 4 and 5 introduce respectively the system model and the optimization problem.100

Section 6 revises the problem formulation by using multi-commodity flow theory and it

describes the BEE-DRONES algorithms. Section 7 shows the OMNeT++ simulation

results of the proposed solutions. Section 8 draws the conclusions and discusses the

future research activities.
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2. Related Works105

UAV-aided wireless sensor networks are a well investigated topic; however, few

studies have considered the usage of WR technology for UAV-WGS communications.

We review the literature by classifying the existing studies into three main categories,

i.e. works focusing on WGS-UAV communication, on the UAV path planning for the

sensor data acquisition and finally on UAV-aided WR-based sensor networks.110

2.1. WGS-UAV communication

We further distinguish between studies characterizing the Aerial-to-Ground (AtG)

link at the PHY layer [20][26][27], and studies investigating how to coordinate the

ground-aerial transmissions at the MAC layer [12][13][21]. Regarding the AtG link

performance analysis, we cite the measurements in [20] that demonstrate that the clas-115

sical two-ray path loss model is not accurate at large UAV-WGS distances. Some in-

teresting theoretical results can be found in [26] and [27]; in [26], the authors compute

the the optimal UAV speed and WGS transmitting power so that the overall aviation

time needed to gather the data from sensors placed on a line is minimized. In [27], the

per-node capacity of a WSN covered by one or multiple UAVs is derived. Similarly,120

novel MAC strategies are requested to cope with the mobility of the UAVs, the lim-

ited duration of the transmission opportunity and the possible large number of WGSs

attempting to access the channel at the same time. To this purpose, the MAC proto-

col proposed in [12] and [13] introduces a priority-based data acquisition mechanism

mapping the contention window of the IEEE MAC 802.11 protocol to the position of125

WGSs inside the UAV’s coverage area. Similarly, multiple priority-based data acqui-

sition strategies for UAV-WGS communication are investigated in [21]: the simulation

results demonstrate that the system performance are maximized when using a joint pol-

icy that takes into account the contact duration time and the data-rate on each AtG link.

Cooperative diversity techniques are proposed and evaluated in [22] and [23]. Sensor130

clustering is another approach to reduce the number of AtG transmissions at each UAV

transit and hence to mitigate the MAC collisions; to this purpose, [24] investigates the

optimal balance of multi-hop ground forwarding and aerial communications, based on
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Figure 1: The architecture of the WGS with Passive WR technology (top) and its current implementation on

the WuRx (bottom left) and WuTx (bottom right) devices are depicted.

a latency-energy tradeoff. Finally, the study in [25] evaluates the performance of a

ContikiMAC-based UAV-WGS data acquisition strategy on a small testbed.135

2.2. UAVs Path planning and data acquisition strategies

Determining the optimal path of a fleet of UAVs visiting a set of WGSs is a chal-

lenging problem due to the constrained maneuverability and limited autonomy of the

UAVs, as well as to the reduced communication range of the WGSs. In [6], the au-

thors demonstrate that the optimal UAV trajectory consists of connected line segments140

and hence it can be modeled as an instance of the Traveling Salesman Problem (TSP).

Several heuristics have been proposed: in [7], a solution based on the Ant Colony Op-

timization (ACO) is discussed for farmland information monitoring, while an iterative

procedure based on the Dijkstra algorithm is described in [8]. In [28], the constrained

maneuverability of the UAVs is taken into account in order to transform a TSP tour into145

a smoother path. Clustering-based path planning strategies are proposed in [30] and
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[29]; specifically, the goal of [30] is to define the trajectory of each UAV as a series of

waypoints rather than of WGSs, so that the overall network energy consumption is min-

imized. A special instance of path planning problem is when the position of the WGSs

is unknown; in [31], different strategies to sweep the playground are surveyed, while in150

[32] the UAVs employ POMDP techniques to discover the optimal strategy (i.e. their

trajectories) in post-disaster applications. Since the path planning is often formulated

as an optimization problem, another way to classify the existing studies is based on

the goal function. In [33], the aim is to minimize the maximum energy consumption

of the WGSs, while modeling the reliability of the AtG links under fading conditions.155

In [34], the authors propose a multi-objective path-planner, where the utility function

is a combination of data-related, energy-related, time-related and risk-related metrics.

In [35], the optimization problem aims to guarantee that the minimal capacity of the

aerial link is always greater than a QoS threshold, and that the aerial network is always

connected to a ground station. In [9] and [10], the path planning problem takes into ac-160

count the quality of the data gathered from the WGSs: specifically, the utility function

in [9] expresses the freshness of the data, defined as the time elapsed since each WGS

was queried last. In [10], the application of UAVs for wildlife area monitoring is inves-

tigated; a value of information (VoI) metric including the reliability of the sensed data

is used as reward of the UAVs. In [11], the authors address distributed UAV path plan-165

ning strategies, by considering the eventuality of software/hardware crashes and hence

the need to dynamically re-allocate the WGSs to visit among the available UAVs.

2.3. WR-based WGSs and UAVs

The WR technology constitutes the frontier of ultra low-power devices able to min-

imize the energy consumption in idle mode; despite the recent introduction, several170

architectures and implementations have been proposed so far, extensively surveyed in

[2]. An example of IoT WR node is presented in [15]. In this paper, we rely on the

proposal in [16]. Although some works have proposed the usage of mobile nodes as

wireless charger of the WGSs (e.g. [17]), very few studies have investigated the de-

ployment of UAV-aided sensor networks with WR capabilities. In [18], the authors175

characterize the energy transfer region of two WGs through a theoretical study. Em-
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Figure 2: The energy efficiency of the passive WR-based and Duty-Cycle (DC)-based WGS, when varying

the standy interval (tSTB) between consecutive sensor readings is shown in Figure 2(a). The operative range

of the passive WR-based WGS for different transmission power values is reported in Figure 2(b).

(a) (b)

Figure 3: The maximum lateral displacement between the WuTx and WuRx device is shown in Figure 3(a).

The maximum lateral displacement between the WuTx and the WuRx device equipped with a Yagi antenna

with 7.3 dBi is shown in Figure 3(b).

pirical measurements are conducted in [19]; here, the authors measures the output DC

voltage harvested by the WGS for different UAV heights and speeds.

3. Measurements and Motivations

The WGSs used in this study implement the WR architecture described in [3][16].180

They are composed of three main hardware blocks, as depicted in Figure 1: a battery,

a Wake-up Receiver (WuRx) module, and an IoT node. This latter includes sensors,
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Table 1: Average energy consumption values

Passive wake-up Duty-cycle

EON 494 µJ 225 µJ

ESTB 0 10 µW ·tSTB
EBOOT 7.5 mJ 0

a radio device for data communication and a dedicated antenna. The WuRx circuit

is in charge of detecting signals from the Wake-up Transmitter (WuTx), and of re-

activating the IoT module accordingly. The overall architecture supports two main185

operative modes, i.e. an Active class, where the the WuRx is powered by the internal

battery, and a Passive Class, where the WuRx is able to harvest energy from an external

RF source generated by the WuTx. Differently from our previous studies [3][14], we

focus here on Passive WR-based WGS, since it represents the most energy efficiency

solution. From Figure 1 we can notice that the power supply of the IoT node can be190

dynamically enabled/disabled by acting on a hardware switch. As a result, when the

switch is off, the consumption in standby state (ESTB) is zero, i.e. the WGS is to-

tally powered down; vice versa, an overhead is induced at each boot, both in terms

of energy (EBOOT ) and time (tBOOT ). We used a prototype implementation of the

WuRx radio [16] provided by STMicroelectronics. The WuRx is composed of a radio195

with a sensitivity of -18 dBm at 868MHz in Passive Mode or -38 dBm at 868MHz

in Active Mode, an RF to DC energy transducer (RF energy harvester), an adjustable

Low Dropout (LDO), and an ultra-low power management unit. The IoT module in-

cludes an ultra-low power microcontroller (STM32L13), a subGHz radio device for

data communication (SPIRIT14), a battery and a temperature sensor (STTS7515). The200

microcontroller acquires the temperature data and implements the communication data

link based on DASH7 standard in request/response mode. Table 1 shows the average

measured values of the energy parameters for different operations, i.e. EON (trans-

3Datasheet: http://www.st.com/resource/en/datasheet/stm32l151c6.pdf
4Datasheet: http://www.st.com/resource/en/datasheet/spirit1.pdf
5Datasheet: http://www.st.com/resource/en/datasheet/stts751.pdf
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mit state), ESTB (standby state), EBOOT (boot state). On the same Table, we include

the results when the IoT module (STM32L1+SPIRIT1) implements a duty-cycle (DC)205

mechanism without employing any WR technology. Based on these values, Figure

2(a) compares the passive WR and DC solutions in terms of average energy consump-

tion for an ON-OFF transition (wake-up, transmission and standby phase): on the x

axis, we varied the sleep length (tSTB). For very short tSTB values, the DC class

has the lowest average consumption since it avoids the boot operations; vice versa,210

the energy consumption increases significantly for tSTB > 1000 seconds. However,

it is worth remarking that: (i) in typical UAV-based WSN applications, the interval

between consecutive sensor readings can be quite long; (ii) we assumed perfect tempo-

ral synchronization between the DC length and the UAV transit, which is unpractical

to achieve, and hence additional energy overhead should be considered for the DC215

case. For tSTB > 1000 seconds, the passive WR is the most energy-efficient solution

and more important it intrinsically solves the UAV-WGS synchronization problem. On

Figure 2(b), we depict the maximal distance at which it is possible to wake-up the

WGS with 100% probability of success; on the x-axis, we vary the transmitting power

of the WuTx. We did not introduce the mobility factor, hence both WuTx and WuRx220

are at fixed positions. On the same Figure we also show the maximum distance com-

puted through the well-known Friis model, introduced later in Section 4.3 (Equation

2). We found experimentally that each WuRx device needs a minimum received en-

ergy of EWU = 633.6nJ to be powered on. We can notice from Figure 2(b) that the

analytical results follow quite strictly the experimental results. Moreover, the max-225

imum achievable distance on the UAV-WGS link does not exceed 5 meters, for the

configuration with the maximum power (Pwu=27dBm). Hence the operative range for

passive WR-based WGSs is considerably lower than the active case [14]; however, the

energy overhead introduced by the WR circuitry is equal to zero in idle mode. Also,

the range between the UAV and WGS can be extended through the utilization of di-230

rectional antennas, as further investigated below. In the experimental measurements

reported in Figures 2(b), 3(a) and 3(b), we arranged the WuRx (assuming it is on the

ground) and the WuTx (assuming it is on the UAV) on two supports at a height of 1.7

m from the ground in the line-of-sight condition, to be sure that the ground is out of

11



the Fresnel zone, avoiding interferences and power loss. This experimental setup em-235

ulates with a good approximation the real conditions in which the UAV hovers over

the WGS; the distances on the straight-path we measured in the plane parallel to the

ground correspond to the vertical distances (perpendicular to the ground), i.e. altitude,

in the real conditions with UAVs and WGSs. In the previous analysis, we assumed the

WGS and UAV to be perfectly aligned vertically during the hovering phase; however,240

this assumption might not be completely realistic if we take into account positioning

(e.g. induced by the GPS) or controller errors on the UAV. To this aim, Figure 3(a)

investigates the performance of the wake-up operations when varying the displacement

between the WuRx and WuTx antennas; more in detail, we varied on the x axis the

distance on the straight-path between WuRx and WuTx devices (corresponding to the245

altitude between UAV and WGS), while on the y axis we reported the maximum lateral

misalignment, with respect to the straight-path between WuRx and WuTx, on the left

(blue bars) and right (orange bars, clearly symmetric to the blue ones) at which the

wake-up process is successfully completed with 100% of probability. To better explain

the figure, the zero in the y axis represents the straight-path between WuRx and WuTx,250

and the blue and orange bars represent the area in which the wake-up process can suc-

cessfully happen. We used omni-directional antennas with gain Grx
max = Gtx

max=1dBi.

The maximum lateral misalignment (2.5m) is achieved for a distance of 3.5 meters,

that translated into angles corresponds to a maximum irradiation cone αtx
max equal to

1.314rad. In Figure 3(b), we repeated the range analysis when considering a differ-255

ent antenna on the WuTx device with maximum gain equal to 7.3dBi and irradiation

cone αtx
max equal to 0.743rad. The peaks at 3m and 5m show the antenna side lobes.

Comparing the results of Figures 3(a) and 3(b), we can notice that the operative range

of passive WR technology increases to up to 12 meters: hence, the flying altitude of

the UAVs can be properly tuned according to the antenna model of the WGSs. How-260

ever, this introduces a trade-off with the UAV positioning accuracy and WGS wake-up

probability, which is modeled in the Section below.
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4. System Model

Without loss of generality, we consider a generic scenario of sizeM×M including

WGSs, UAVs and charging stations (see Figure 4). The system evolves over ordered265

time slots T = {t0, t1, . . . , TLIMIT} where each tk ∈ T has length of tslot seconds.

Let S = {s1, s2, . . . , sNS} denote the set of WGSs, deployed at fixed scenario loca-

tions; each sj ∈ S is composed of a passive wake-up receiver (WuRx) and a main

radio interface to send the sensed data to the UAV. We assume that each WuRx device

needs an amount of EWU energy to be powered on, in accordance with the experi-270

mental results depicted in Figure 2(b). In addition, we deploy a fleet of NU UAVs

U = {u1, u2, . . . , uNU }. Each UAV is equipped with a wake-up transmitter (WuTx),

a radio interface to receive data from the WGSs and a localization system for self-

positioning. We do not make any assumption on the wireless technology (WiFi, BLE,

etc) used on the GtA link. Similarly, we assume that the UAV will be in charge of275

storing the data, and of uploading them on a remote server by means of a 4G connec-

tion. In absence of cellular coverage, multi-hop communication among UAVs might be

employed [36][37], also envisaging the usage of DTN-based solutions (e.g. [38]) given

the sporadic nature of wireless contacts among the UAVs on large-scale environments.

However, routing and UAV network topology management are not considered in this280

study since its focus is on the low-power WGS-UAV data gathering.

In order to guarantee a persistent aerial coverage of the environment, we assume the

presence of NU charging stations C = {c1, c2, . . . , cNU } uniformly distributed in the

scenario, and providing wireless recharge to each UAV lying on its surface. Let PC
rec

be the charging power of each ci ∈ C, assumed equal for all the stations; we consider285

the basic case where there is one dedicated charging station for each UAV. Charging

scheduling algorithms like the one described in [40] can be used otherwise. While

not charging, each UAV ui at time slot tk moves at an altitude of htkui meters from the

ground. Finally, let p be the function defining the position of each WGS, of the UAVs

and the charging stations at each time slot tk ∈ T . At system start-up, p(ui, t0) = p(ci)290

(i.e. the UAVs are located at the charging stations); the positions of these latter (p(ci))

and of the WGSs (p(sj)) are assumed fixed and uniformly distributed over the sce-
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Figure 4: The UAV-aided WSN scenario considered in this study.

nario. In Table 2 the main system variables used in this paper are listed with a short

description. In the following, we further detail the system model in terms of UAV

mobility (Section 4.1), antenna characteristics (Section 4.2), energy transfer (Section295

4.3), UAV-WGS communication and data acquisition (Section 4.4) and of the UAV and

WGS energy update rules (Section 4.5).

Table 2: Symbol Table

Symbol Meaning

M Side of the scenario

E(ui, tk), E(sj , tk) Residual energy at time tk for UAV ui and WGS sj

EWU Energy required by each WuRx to wake-up

NS Number of WGSs

htkui Flying altitude of UAV ui at time tk
#»e HOVER(ui, sj , tk) Hovering error of UAV ui over WGS sj at time tk
#»e LOC(ui, tk) Localization error of UAV ui at time tk

f Wake-up signal frequency

αUmax Maximum irradiation angle for UAVs

αSmax Maximum irradiation angle for WGSs

Continued on next page
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Table 2 – continued from previous page

Symbol Meaning

G(α,Gmax, αmax) Antenna gain at angle α

Γ Energy harvested in one time slot

tstartup WGS-UAV connection setup delay

nr Maximum number of REQUEST retransmissions

EUmax UAVs maximum battery capacity

PCrec Charging stations’ power

PUstartup Communication power during UAV startup

PUtx Communication power during UAV transmission

LC Correlation loss function

Ψ VoS function to maximize

σ2
R Variance for the rotation error distribution

datah Data communication success probability

tslot Time slot length

TLIMIT Max system time

Pwu WuTx transmit power

NU Number of UAVs

trtki←j UAV ui received the data from WGS sj at time tk

%uix (tk) x-Rotation of the WuTx antenna at time tk

%uiy (tk) y-Rotation of the WuTx antenna at time tk

GUmax Maximum antenna gain for UAVs

GSmax Maximum antenna gain for WGSs

P
ui,sj
Rx (tk) Power received at WGS sj from UAV ui at time tk

κ(PRx) WuRx transducer efficiency at PRx input power

ttimeout Timout for REQUEST message retransmission

Eηself(e, t) Battery self-discharge rate at each time-slot

η battery monthly self-discharge in percentage

ESmax WGSs maximum battery capacity

Continued on next page
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Table 2 – continued from previous page

Symbol Meaning

PUfly Propulsion power of the UAV

PSstartup Communication power during WGS startup

PStx Communication power during WGS transmission

vmax maximum UAV velocity

mt and kt Coefficients modelling the temporal correlation

ms and ks Coefficients modelling the spatial correlation

LBEE Loss function used in the BEE-DRONES method

Ppl(d) Packet loss probability

σ2
POS Variance for the position error distribution

wuh,t Wake-up success probability

4.1. Hovering model

Each UAV ui ∈ U moves over the scenario by periodically visiting a sequence300

of WGSs in order to gather the sensor data from them. Let htkui be the flying alti-

tude of UAV ui at each time slot tk. Differently from previous studies assuming con-

tinuous UAV mobility (e.g. [12] and [13]), we investigate the case where the UAV

hovers over each selected WGS in order to transfer energy and hence to activate it.

Let hov(ui, sj , tk) be the 2-D ground target of UAV ui at time slot tk while hover-305

ing above WGS sj (we suppose that hov(ui, sj , tk) = p(sj)). We assume that each

UAV is able to geo-localize itself (e.g. via the GPS); at the same time, we model

the impact of positioning errors caused by the lack of precision of the localization

source and/or by the drift in hovering mode (caused by controller errors and/or by

environmental conditions like the presence of wind). The localization estimation er-310

ror is defined as: #»e LOC(ui, tk) = p̂(ui, tk) − p(ui, tk), where p(ui, tk) is the ac-

tual real position of UAV ui at time slot tk and p̂(ui, tk) its local estimation (e.g.

the position returned by the GPS). Similarly, we define the hovering control error

as: #»e HOVER(ui, sj , tk) = hov(ui, sj , tk) − p̂(ui, tk). The overall position error
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Figure 5: Irradiation and positioning model of UAV u1 flying at an altitude of h meters. The rotation of

%(u1, tk) =
〈
%u1
x (tk), %u1

y (tk)
〉

determines a change of the coordinate reference system from 〈x, y, z〉

to 〈x′, y′, z′〉. The angles of irradiation for the power transmission and the reception are denoted as α and

β, respectively. The irradiation area given by h, p(u1, tk), %(u1, tk), and αU
max is depicted in yellow. In

Figure, hov(u1, s1, tk) = p(s1).

for the UAV ui at time slot tk is the sum of the localization error and of the hover-315

ing error, i.e. #»e POS(ui, sj , tk) = #»e LOC(ui, tk) + #»e HOVER(ui, sj , tk). It is easy

to see that ‖ #»e POS(ui, sj , tk)‖ = d2D(ui, sj , tk), i.e. the error is equal to the 2-D

distance between the projected position of UAV ui and WGS sj . In addition, given

again to external (e.g. presence of wind) or to internal factors (e.g. controller errors),

we model the displacement between the UAV antenna and the WGS antenna. Let320

%(ui, tk) =
〈
%uix (tk), %uiy (tk)

〉
be the actual rotation vector of UAV ui at time slot tk,

where %uix (tk) and %uiy (tk) define respectively the rotation on the x and y axis. The ro-

tation on the z axis is not considered because of the symmetric antenna model. Figure

5 shows the hovering model with the notation introduced so far.

4.2. Antenna model325

Each UAV is equipped with a WuTx device and a directional antenna having max-

imum irradiation cone of angle αUmax and maximum gain GUmax. Similarly, each WGS

is equipped with a WuRx and a directional antenna with maximum irradiation cone of
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angle αSmax and maximum gain GSmax. Differently from our previous study [14], and

in accordance with the experimental results of Section 3, we consider directional an-330

tennas; the antenna gain G(α,Gmax, αmax)[dBi] with a receiving/transmitting signal

of angle α is modeled as in [41]:

G(α,Gmax, αmax) =


Gmax +

(
−12 ·

(
α

αmax/2

)2
)

if α ≤ αmax

2

−∞ otherwise

(1)

4.3. Energy transfer model

The wake-up procedure is allowed only when the UAV is hovering over the selected

WGS sj , i.e. hov(ui, sj , tk) = p(sj). The energy power Pui,sjRx (tk)[dBm] received by335

the WuRx device sj at time slot tk by ui is modeled as follows:

P
ui,sj
Rx (tk) =



Pwu +G(γui,sj (tk), GUmax, α
U
max)+

+G(βui,sj (tk), GSmax, α
S
max)− PL(d3D(ui, sj , tk), f)

if γui,sj (tk) ≤ αUmax/2 ∧ βui,sj (tk) ≤ αSmax/2

0 otherwise

(2)

where d3D(ui, sj , tk) is the actual real 3D Euclidean distance between UAV ui and

WGS sj at time slot tk and PL(d, f) is the free-space path-loss at distance d on

frequency f [43]. The values of angles βui,sj (tk) e γui,sj (tk) can be derived from

trigonometry calculations as follows:

βui,sj (tk) = arccos

(
d3D(ui, sj , tk)2 + htk 2

ui − d2D(ui, sj , tk)2

2 · d3D(ui, sj , tk) · htkui

)
(3)

γui,sj (tk) = arccos

(
d3D(ui, sj , tk)2 + d(ui, ai, tk)2 − d(ai, sj , tk)2

2 · d3D(ui, sj , tk) · d(ui, ai, tk)

)
(4)

where d(ui, ai, tk) is the distance between UAV ui and the ground point ai character-

ized by the maximum antenna gain having coordinates
〈
htkui · tan(%uiy (tk)) ,

htkui · tan(%uix (tk))
〉

(see Figure 5), and d(ai, sj , tk) is the distance between the WGS

sj and the point ai. The received power Pui,sjRx (tk) is then converted by a RF-to-DC

energy transducer into an actual current that is used to activate the WGS. Let κ(PRx)
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be the transducer efficiency of the WuRx device when receiving an input power of PRx.

We consider the κ(PRx) function values as defined in [39]. At each time slot tk, the

energy accumulated by WGS sj can be computed as follows:

Esjacc(tk) = Esjacc(tk−1) +
∑
ui∈U

Γ( #»e POS(ui, sj , tk−1), %(ui, tk−1), htk−1
ui ) (5)

where Γ : R2×R2×R→ R is the transferred energy from UAV ui to WSG sj in one

time slot:

Γ( #»e POS(ui, sj , tk), %(ui, tk), htkui) = P
ui,sj
Rx (tk) · κ(PRx) · tslot (6)

and Esjacc(tk) = 0 if no UAV is transferring energy to WGS sj at time slot tk. Finally,

we introduce the helper function Echeck indicating whether WGS sj can be activated

at time slot tk, i.e. whether the received energy Esjacc(tk) is greater than the wake-up

threshold EWU:340

E
sj
check(tk) =

 1 if Esjacc(tk) ≥ EWU

0 otherwise
(7)

4.4. Communication model

In case of wake-up process ends succesfully (Esjcheck(tk)=1), the WGS sj reads

and transfers the sensor data to UAV ui. We do not focus on the wireless technol-

ogy on the AtG link, since out of the scope of the paper; instead, we model a generic

request-response communication protocol with initial connection setup and message345

re-transmissions as depicted in Figure 4. First, the WGS acknowledges that the wake-

up procedure has successfully completed by sending a W-ACK message to the UAV;

let tstartup the connection setup time, assumed equal for all the WGSs. Next, the UAV

sends a REQUEST message to the WGS and waits to receive the REPLY-ACK message

with the sensor data piggybacked; in case no reply is received from the WGS within350

ttimeout time slots, the UAV transmits a new REQUEST, till a maximum of nr attempts.

We assume uniform packet dimension and that both REQUEST and REPLY-ACK mes-

sages can be transmitted and processed in one time slot (i.e. treq = trep = tslot). Also,
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we introduce the following state variables related to the communication model:

trtki→j =


1 if WGS sj receives the REQUEST

from UAV ui successfully at time slot tk

0 otherwise
355

trtki←j =


1 if UAV ui receives the REP-ACK from

WGS sj successfully at time slot tk

0 otherwise

4.5. Battery model

Let E(sj ∈ S, tk ∈ T ) and E(ui ∈ U, tk ∈ T ) define the residual energy of each

WGS and UAV at time slot tk. We assume all the WGSs and all the UAVs to be fully

charged at the system start-up, i.e. E(sj , t0) = ESmax and E(ui, t0) = EUmax. Also, we

introduce the following state variables:360

• UAV state

ftkui =

 1 if UAV ui is flying at time tk

0 if UAV ui is charging at time tk

• Wake-up state

wtk
i,j =

 1 if UAV ui irradiates sj at time tk

0 otherwise

• WGS state

ontksj =

 1 if WGS sj is ON at time slot tk

0 otherwise

Similarly, we define offtksj = 1− ontksj .

• Boot and connection setup365

sutk[ui,sj ] =


1 if UAV ui or the WGS sj is setting the connection at

time tk

0 otherwise
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• Data communication process

rtk[ui,sj ] =


1 if the UAV ui or the WGS sj is in communication mode

at time tk

0 otherwise

• Message exchange process

comtk
[rx,tx],[ui,sj ]

=


1 if UAV ui or the WGS sj is receiving or

transmitting the data packet at tk

0 otherwise

Based on the states above, we introduce the energy update rule for the UAVs as follows:

E(ui, tk) = E(ui, tk−1) (8)

+ (1− ftkui ) · (P
C
rec · tslot)

− ftkui · (P
U
fly · tslot)

−
∑
sj∈S

(
wtk
i,j · Pwu · tslot

)
− sutkui · P

U
startup · tslot

− rtkui ·
((

comtk
tx,ui · P

U
tx

)
+
(
comtk

rx,ui · P
U
rx

))
· tslot

Here, PC
rec is the power of recharging station ci ∈ C (uniform hardware is assumed

in both cases), and PU
fly is the average propulsion power of UAVs where we assume370

comparable energy consumption for the hovering and flying phases because of the

presence of very low number of UAV acceleration/deceleration actions and limited

UAV speed [42]. Similarly, the energy update rule for each WGS is defined as follows:

E(sj , tk) = E(sj , tk−1) (9)

− Eηself (E(sj , tk−1), tslot)

− sutksj · P
S
startup · tslot

− rtksj ·
((

comtk
tx,sj · P

S
tx

)
+
(

comtk
rx,sj · P

S
rx

))
· tslot
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Here, Eηself is the energy loss function during each time slot due to the self-discharge

process that is battery-characteristic (monthly loss rate equal to η% is assumed):

Eηself(e, t) = e ·

(
1−

((
100− η

100

) t
60·60·24·30

))
(10)

5. Optimization Problem

Based on the system model previously introduced, the goal of this study is to de-375

termine the joint WGS wake-up scheduling and the UAV path-planning (i.e. the ftkui ,

wtk
i,j and rtk[ui,sj ] functions), so that the optimal trade-off between the WSN lifetime and

the Value of Sensing (VoS) gathered by the UAVs is achieved. To this aim, we assume

that the primary goal of the IoT data collection is the coverage, i.e. to produce periodic

snapshots on how the sensed quantity is varying over the scenario. The WGSs can be380

distributed in any mode (uniform distribution is not assumed). However, we assume

that: (i) all the WGSs are identical, i.e. they measure the same quantity with the same

accuracy; (ii) the sensed quantity exposes local spatial correlations among different lo-

cations of the environment; (iii) the sensed quantity might vary over time.

More in details, we denote with T = {τ tki,j , · · · } the set of all the sensor readings gath-385

ered by the UAV ui ∈ U , and with τ tki,j the sensor value sent by sj ∈ S to the UAV

at time slot tk where trtki←j = 1. In order to quantify the VoS of each sensor reading

τ tki,j ∈ T , we introduce the cost function LC : T → [0..1] defined as follows:

LC
(
τ tki,j
)

= max
0≤w<k
ul∈U
sx∈S

(
trtwl←x · LS (sj , sx) · LT (tk, tw)

)
(11)

LS (si, sj) =
1

1 + e(d2D(si,sj)−ms)·ks
(12)

LT (ti, tj) =
1

1 + e(|ti−tj |−mt)·kt
(13)

Here, the LC function is a proxy for the data correlation, and it quantifies the rele-

vance of each sensor reading τ tki,j executed before time slot tk when compared with: (i)390

sensor data produced by other WGSs and already gathered by the UAVs (spatial corre-

lation expressed by Equation 12) and (ii) earlier sensor data from any WGS (temporal
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correlation expressed by Equation 13). More in details, the spatial correlation func-

tion LS quantifies the relevance of the current sensor measurement τ tki,j based on the

euclidean distance from the measurements already gathered by the UAVs. Vice versa,395

the temporal correlation function LT reflects the freshness of the data, considering the

time elapsed since the last sensor reading, similar to [9]. In the Equations above, ms,

ks, mt, and kt are user-defined coefficients modeling the shape of the loss functions.

Based on the loss function LC , we introduce the VoS utility function Ψ, defined as

follows:

Ψ =

TLIMIT∑
k=1

∑
ui∈U

∑
sj∈S

trtki←j ·
(
1− LC(τ tki,j)

)
(14)

Finally, the optimization problem can be formally described as follows:

find ftkui ,w
tk
i,j , r

tk
[ui,sj ]

, p(ui, tk), %(ui, tk)

maximize Ψ

subject to the energy constraints defined by Equations 8 and 9, the energy update rule

of Equation 5, and to the following constraints:

d3D(p(ui, tk), p(ui, tk−1)) ≤ vmax · tslot (15)

d2D(p(ui, tk), p(ui, tk−1)) ·
(
1− (ftkui · f

tk−1
ui )

)
= 0 (16)

d2D(p(ui, tk), p(ci)) · (1− ftkui ) = 0 (17)

d2D(hov(ui, sj , tk), p(sj)) · wtk
i,j ≤ h

tk
ui · tan

min(αUmax,α
S
max)

2
(18)

(1− ftkui ) · h
tk
ui = 0 (19)

(1− ftkui ) +
∑
sj∈S

wtk
i,j + sutkui + rtkui ≤ 1 (20)

offtkui · (1− sutksj ) · (1− rtksj ) + ontksj ·
(

sutksj + rtksj

)
= 1 (21)
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(1− sutkui) + (sutkui · (su
tk−1
ui +

∑
sj∈S

w
tk−1

i,j )) = 1 (22)

(1− sutksj ) + (sutksj · (su
tk−1
sj + E

sj
check(tk−1))) = 1 (23)

(
1− wtk

i,j

)
· Esjacc(tk) = 0 (24)

∑
sj∈S

wtk
i,j ≤ 1 ∀ui ∈ U (25)

∑
ui∈U

wtk
i,j ≤ 1 ∀sj ∈ S (26)

(1− rtk[ui,sj ]) + (rtk[ui,sj ] · (r
tk−1

[ui,sj ]
+ su

tk−1

[ui,sj ]
)) = 1 (27)

rtk[ui,sj ] · su
tk−1

[ui,sj ]
·

 k−1∏
l=k−tstartup

sutl[ui,sj ]

+

+ (1− rtk[ui,sj ]) + (1− su
tk−1

[ui,sj ]
) ≥ 1 (28)

offtksj · ontk−1
sj ·

 k−1∏
l=k−(nr·ttimeout)

rtlsj

+ ontksj + offtk−1
sj ≥ 1 (29)

(1− rtkui) · r
tk−1
ui ·

 k−1∏
l=k−(nr·ttimeout)

rtlsj

 +

+

∑
sj∈S

tr
tk−1

i←j

+ rtkui + (1− rtk−1
ui ) ≥ 1 (30)

comtk
[rx,tx],[ui,sj ]

· rtk[rx,tx],[ui,sj ]
+

+ (1− comtk
[rx,tx],[ui,sj ]

) · (1− rtk[rx,tx],[ui,sj ]
) = 1 (31)
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comtk
tx,ui ·

(
sutk−1
ui + comtk−ttimeout

tx,ui

)
+ (1− comtk

tx,ui) = 1 (32)

trtki→j · comtk
tx,ui · comtk

rx,sj + (1− trtki→j) = 1 (33)

trtki←j · comtk
rx,ui · comtk

tx,sj + (1− trtki←j) = 1 (34)

trtki←j ·

(
1−

k−1∏
l=k−ttimeout+1

(1− trtki→j)

)
+ (1− trtki←j) = 1 (35)

E(ui, tk) > 0 (36)

E(sj , tk) > 0 (37)

where all the previous constraints apply ∀ui ∈ U , ∀ci ∈ C, ∀sj ∈ S, and ∀tk ≤400

TLIMIT. Here, constraint 15 limits the UAV speed to vmax; constraints 16 and 17 state

that the UAV cannot change its position while recharging, during the take-off and the

landing; constraint 18 states that the UAV can transfer energy to a WGS only if it is

hoovering in the radiating cone of the WGS’s antenna; constraint 19 states that the

UAV altitude while recharging is equal to zero; constraints 20 and 21 ensure that the405

states w, su and r are mutually disjoint; constraints 22 and 23 ensure that the UAVs

and the WGSs can enter state su only after the wake-up operation (UAVs) or after

being activated (WGSs); constraint 24 states that the accumulated energy of a WGS

not activated by any UAV is zero; constraints 25 and 26 state that the UAV can wake-

up only one WGS at each time-slot, and that a WGS can receive energy by only one410

UAV at each time-slot; constraints 27 and 28 ensure that the state r follows state su for

tstartup time slots; constraint 29 ensures that the WGS remains in communication state

for nr · ttimeout time slots, and constraint 30 sets the analogous condition for the UAV;

constraints 31, 32, 33 and 34 ensure that the data exchange will happen in state r and

that the UAV and the WGS will use the correct mode for transmitting and receiving the415

data packets; constraint 35 states that any REPLY-ACK message can be sent only after
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the REQUEST one and within ttimeout time slots; finally constraints 36 and 37 limit the

lifetime of both WGSs and UAVs.

6. BEE-DRONES Algorithms

The optimization problem described in the previous Section requires a deterministic420

knowledge of how the scenario will evolve over time, since both the controller and

the environmental errors (e.g. the %(ui, tk), #»e HOVER(ui, sj , tk) and #»e LOC(ui, sj , tk)

variables) are defined on a per-slot basis. Since such fine-grained modeling is clearly

unfeasible, we propose to decompose the research problem into three stages:

• Stage I. We assume that the UAV controller and the environmental conditions425

will not change during the mission task. Hence, we replace the per-slot variables

modeling the UAV hovering process (e.g. the %(ui, tk), #»e HOVER(ui, sj , tk),
#»e LOC(ui, sj , tk) and #»e POS(ui, sj , tk) variables) with probability distributions.

In this work we assume these latter as zero mean normal distributions with vari-

ance equal to σ2
R, σ2

HOVER, σ2
LOC and σ2

POS = σ2
HOVER + σ2

LOC, respectively.430

In addition, we introduce two thresholds, i.e.: (i) ξ, defined as the minimal re-

quested probability that the data-transfer between the WGS and the UAV will

occur successfully and (ii) ζ, defined as the requested probability that the wake-

up procedure will end successfully. Both the thresholds above are user-defined,

and provided as input to the optimization problem. Based on them, we compute435

topt and hopt, i.e. respectively the minimal hovering time and maximal height

of the UAVs guaranteeing that the: (i) the UAV will activate the WGS within

topt time-slots with probability at least equal to ξ; (ii) the UAV will successfully

receive the REPLY-ACK message with probability greater or equal than ζ. For

readability reasons, we moved the details on how topt and hopt can be computed440

on the Appendix Appendix A.

• Stage II. We transform the joint scheduling and planning problem of Section

5 into a multi-commodity flow problem on a multi-graph (Section 6.1). Here,

vertexes of the graph correspond to the stop positions of the UAVs (i.e. on a
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charging station or hovering over a WGS), while arcs correspond to the actions445

that can be performed by the UAVs (i.e. flying, recharging, transferring energy

or communicating with the WGSs).

• Stage III. We introduce a centralized, iterative heuristic that computes the itinerary

of each UAV on the multi-graph data structure (Section 6.2). The proposed so-

lution assumes global scenario knowledge but de-synchronized operations of the450

UAVs; i.e., each time a UAV reaches a charging station, its charging duration and

the next flight itinerary are computed by taking into account the WGSs already

visited by the other UAVs and their current itineraries. Then, we further refine

such heuristic with a distributed solution that removes the assumption of global

knowledge and relies on local communication among the UAVs (Section 6.3).455

6.1. Multi-graph formulation

We model the UAVs and WGSs operations by using a multiperiod directed multi-

graph G(V,A). Here, the set of nodes V is composed by pairs (qi, tk), where and

qi ∈ S ∪ C is a stop position of the UAV (i.e. charging or hovering) and tk ∈ T . The

setA denotes the arcs of the multi-graph; here, each element aj ∈ A is defined as a pair460

[(qi, tk), (q′i, t
′
k)]l, where (qi, tk) is the tail of the arc and (q′i, t

′
k) its head. Moreover,

each arc is characterized by an energy cost denoted as W (ai). We distinguish among

seven different arc types (denoted by the subscript l):

• charge arc: [(ci, tk), (ci, tk+1)]rec ∈ Arec ⊂ A, with ci ∈ C, this arc type

models the charging operations at station ci during time slot tk; in this case465

W (ai) = PUrec · tslot.

• fly arc: [(qi, tk), (q′i, t
′
k)]fly ∈ Afly ⊂ A, with qi 6= q′i, this arc type models the

action of flying from node qi at time slot tk to another q′i, with time of arrival

equal to t′k. In this case W (ai) = −PUfly · tslot · (t′k − tk).

• irradiation arc: [(sj , tk), (sj , t
′
k)]irr ∈ Airr ⊂ A, with sj ∈ S, where (t′k − tk) ·470

tslot = tirr; this arc type models the action of energy transfer towards WGS sj ;

in this case W (ai) = −(PUfly + PUwu) · tirr.
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• communication arc: [(sj , tk), (sj , t
′
k)]com ∈ Acom ⊂ A, with sj ∈ S, where

(t′k − tk) · tslot = tstartup + nr · ttimeout. This arc type models the sensor data

gathering from WGS sj . To this purpose, we force a UAV to wait for the full

request/reply procedure before moving towards the next WGS of its itinerary;

moreover, without loss of generality, we assume that the reading τ t
′
k
sj occurs at

time slot t′k:

W (ai) =− PUfly · tslot · (t′k − tk) (38)

− wuhopt,topt ·
(
PUstartup · tstartup

+

(
PUrx +

PUtx − PUrx
ttimeout

)
· nr · ttimeout

)
where wuhopt,topt

is the wake-up probability, defined in Appendix Appendix A.

• off arc: [(sj , tk), (sj , tk+1)]off ∈ Aoff ⊂ A, with sj ∈ S, this arc type indicates

that WGS sj is in off state; in this caseW (ai) = −P η(ESmax, tk+1) ·tslot, where475

P η denotes the power loss due to the battery self-discharge process, and it can

be derived from Equation 10.

• on arc: [(sj , tk), (sj , t
′
k)]on ∈ Aon ⊂ A, with sj ∈ S, this arc type indicates that

WGS sj is in on state, where (t′k − tk) · tslot = tstartup + nr · ttimeout; in this

case:

W (ai) =− P η(ESmax, t
′
k) · tslot · (t′k − tk) (39)

− wuhopt,topt ·
(
PSstartup · tstartup

+

(
PSrx +

PStx − PSrx
ttimeout

)
· nr · ttimeout

)
In the communication and on arcs, wuhopt,topt denotes the probability that a UAV

hovering for topt time-slots is activating a WGS from a ground height of hopt me-

ters; details on how the wuhopt,topt function is derived are provided in the Appendix

A. For modeling purpose, we added the following elements to the graph: (i) a sink

node s, representing the destination of all the flows, and (ii) a set of terminal arcs

[(qi, TLIMIT), s]ter ∈ Ater ⊂ A, ∀qi ∈ S ∪ C connecting all the terminal nodes to the

sink with zero energy cost, i.e. W ([(qi, TLIMIT), s]ter) = 0, ∀qi ∈ S∪C. We modeled
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the action selection process of each UAV ui through the following non-splittable flow

variables set:

ϕui[(qj ,tk),(q′j ,t
′
k)]l
∈ Φ =


1 if ui uses [(qj , tk), (q′j , t

′
k)]l

and l ∈ {rec,fly, irr, com, ter}

0 otherwise

(40)

and for each WGS sj :

ϕ
sj
[(qi,tk),(q′i,t

′
k)]l
∈ Φ =


1 if sj uses [(qi, tk), (q′i, t

′
k)]l

and qi = q′i = sj and l ∈ {on, off, ter}

0 otherwise

(41)

Finally, we rewrite the goal function of Equation 14 and the overall optimization prob-

lem as follows:

ΨMF =
∑
ui∈U

∑
a=[(sj ,tk),(sj ,t′k)]com∈Acom

ϕuia ·
(

1− LC(τ
t′k
i,j)
)

(42)

find ϕa[(qj ,tk),(q′j ,t
′
k)]l

with a ∈ U ∪ S

maximize ΨMF

subject to the following constraints:∑
[(φ,τ),(qj ,tk)]l∈A

ϕa[(φ,τ),(qj ,tk)]l
−

∑
[(qj ,tk),(φ,τ)]l∈A

ϕa[(qj ,tk),(φ,τ)]l

480

= BAL(qj ,tk),a, ∀(qj , tk) ∈ V, a ∈ U ∪ S (43)

E(a, tk) = E(a, tk−1) +
∑

[(φ,τ),(qj ,tk)]l∈A

W ([(φ, τ), (qj , tk)]l) · ϕa[(φ,τ),(qj ,tk)]l
)

∀a ∈ U ∪ S, tk ∈ T (44)

∑
ui∈U

∑
[(sj ,tk),(sj ,t′k)]com∈Acom

ϕui[(sj ,tk),(sj ,t′k)]com
= (45)

=
∑

[(sj ,tk),(sj ,t′k)]on∈Aon

ϕ
sj
[(sj ,tk),(sj ,t′k)]on

∀sj ∈ S, tk ∈ T
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∑
cj∈C,i 6=j

ϕui[(cj ,tk),(cj ,tk+1)]rec
= 0 ∀ui ∈ U, tk ∈ T (46)

zltka ≤ zltk+1
a ∀a ∈ U ∪ S, tk ∈ T (47)

zgtk ≤ zgtk+1 ∀tk ∈ T (48)

zltka ≤ zgtk ∀a ∈ U ∪ S, tk ∈ T (49)

E(a, tk) +M · zltka ≥ 0 ∀a ∈ U ∪ S, tk ∈ T (50)

ϕui[(sj ,tk),(sj ,t′k)]com
≤ 1− zgtk ∀ui ∈ U, sj ∈ S, tk ∈ T (51)

ϕui[(ci,t0),(ci,t1)]rec
= 1 ∀ui ∈ U (52)

ϕ
sj
[(sj ,t0),(sj ,t1)]off

= 1 ∀sj ∈ S (53)

Constraint (43) is the (fundamental) flow conservation constraint. Here, the value

of BAL(qj ,tk),a depends on the considered node, i.e.:

1. for nodes (qj , t0) ∈ V , BAL(qj ,t0),a is equal to −1 if the UAV/WGS is in qj at

time t0 (flow sources);

2. for all nodes (qj , tk) ∈ V such that k > 0, BAL(qj ,tk),a is equal to 0, since they485

are crossed by the UAVs/WGSs and hence they have a null balance;

3. for the sink node s, BALs,a = 1, ∀a ∈ U ∪ S, since it represents the destination

of all the flows.

Constraint (44) is the energy update function, that slightly differs from Equations 8

and 9 since we consider the worst case where the UAV receives the REP-ACK message

after nr attempts. Constraint (45) ensures that maximum one UAV is communicating
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with WGS sj at each time slot. Constraint (46) states that each UAV ui can recharge

only at its charging station ci. Constraints (47, 48, 49, 50) model the event of system

failure (i.e. when at least one UAV or WGS runs out of energy) through the local

status-off variables (zl) and the global status-off variable (zg):

zltka =

1 if a ∈ U ∪ S is off in tk, i.e. E(a, tk) ≤ 0

0 otherwise
(54)

zgtk =

1 if any a ∈ U ∪ S is off in tk

0 otherwise
(55)

The conditions above also ensure that the residual energy of each UAV/WGS is always

greater then zero at each tk, until the global status-off variable is activated (here M is490

an arbitrary integer coefficient, much greater then EUmax and ESmax). Constraint (51)

ensures that no sensor reading occurs when at least one UAV or WGS has run out of

energy. Finally, constraints (52, 53) initialize the flows at time slot t0, i.e. the UAV ui

is starting from its charging station (ci, t0) and the WGS sj from node (sj , t0).

6.2. Centralized Heuristic495

In the optimization problem defined so far, there is an implicit trade-off between the

the correlation of the sensor readings and the amount of data gathered by the UAVs over

time, i.e. the WSN lifetime. We make such trade-off explicit, by slightly modifying the

VoS function for each UAV sensor reading τ tki,j ∈ T in this way:

LBEE

(
τ tki,j
)

= LC
(
τ tki,j
)

+̇LE
(
τ tki,j
)

(56)

Where +̇ symbol indicates the algebraic sum defined as a+̇b = a + b − ab. Here, the

first addendum LC is the spatial correlation function defined in Equation 11, and the

second addendum, i.e. LE is a proxy for the WSN lifetime, ensuring that all the WSGs

are discharged at the same rate, i.e.:

LE
(
τ tki,j
)

= 1−
(

E(sj , tk)−minsl∈S(E(sl, tk))

maxsl∈S(E(sl, tk))−minsl∈S(E(sl, tk))

)
(57)
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Algorithm 1: The BEE-DRONES centralized algorithm
Input: U , S, C, G, Φ

1 ϕui
[(ci,t0),(ci,t1)]rec

∈ Φ← 1; ∀ci ∈ C, ∀ui ∈ U

2 ϕ
sj
[(sj ,tk),(sj ,tk+1)]off

∈ Φ← 1; ∀sj ∈ S,∀tk ∈ T

3 while true do

4 [ui, tk]← LeftmostIdleUAV(G, Φ)

5 if tk ≥ TLIMIT or CheckWGSsEnergy(G, Φ, tk) then

6 break

7 end

8 path← MultiflowPath(G, Φ, ui, tk)

9 UpdateUAVFlowVariables(G, Φ, path, ui)

10 ϕ
sj
[(sj ,tk′′ ),(sj ,tk′′+1)]on

← 1;∀(qi′ , tk′)→ (sj , tk′′) ∈ path

11 end

12 return Φ

Algorithm 2: The LeftmostIdleUAV function
Input: G, Φ

1 Amax ← ∅

2 forall ui ∈ U do

3 ϕui
[(ci,tk),(ci,tk+1)]rec

← argmaxa∈Arec
(ϕui

a · tk))

4 Amax ← Amax ∪ ϕui
[(ci,tk),(ci,tk+1)]rec

5 end

6 ϕui
[(ci,tk),(ci,tk+1)]rec

← argmina∈Amax
(ϕui

a · tk))

7 return [ui, tk+1]
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Algorithm 3: The MultiflowPath function
Input: G, Φ, ui, tk

1 k′ ← k; e← E(ui, tk);

2 while (tk′ < TLIMIT) and (e ≤ EU
max) do

3 [pathk′ , gk′ ]← BSFMultiFlow(G, Φ, ui, tk′ , e)

4 e← e+W ([(ci, tk′), (ci, tk′+1)]rec)

5 k′ ← k′ + 1

6 end

7 k∗ ← argmaxk≤k∗<k′ (gk∗)

8 ϕui
[(ci,tk′ ),(ci,tk′+1)]rec

← 1;∀k ≤ k′ < k∗

9 return pathk∗

The centralized heuristic is based on the multi-graph data structure described in the

previous Section; it determines the path of each UAV until any WGS runs out of battery

or the requested WSN lifetime TLIMIT is achieved. The optimal path of the UAV fleet

can be computed through a complete exploration of the multi-graph, hence considering

all possible combinations of the actions of the UAVs over time; however, this approach500

is clearly unfeasible due to the high computational cost. For this reason, we propose an

iterative heuristic which computes the path of each UAV, by splitting it into episodes;

each episode is composed of an initial recharging phase (i.e. a sequence of time-slots

during which UAV ui recharges its battery at ci) and a feasible path, defined as a list

of WGSs to wake-up. Each feasible path for UAV ui starts and ends necessarily at ci,505

i.e. the charging station. For each possible duration of the charging phase, we explore

the multi-graph via a revised Breadth-First Search (BFS) technique with pruning rules,

in order to keep the complexity always polynomial in NS , i.e. the number of WGSs.

The feasible path minimizing the cost LBEE is selected for the current episode of the

target UAV. The heuristic proceeds by determining the episode of the next UAV, while510

keeping track of the set of WGSs visited so far, so that the LC and LE correlation fac-

tors are properly updated. The technical details of the proposed centralized heuristic

are provided below.
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Algorithm 4: The BSFMultiFlow function
Input: G, Φ, ui, tk, e

1 path(ui, tk)← ∅; Φ(ui, tk)← Φ

2 R((ui, tk))← e; L← {(ui, tk)}; g((ui, tk))← 0

3 Q.enqueue((ui, tk))

4 while (not Q.empty) do

5 (qi′ , tk′)← Q.dequeue

6 forall sj 6= qi′ ascending ordered by LΦ(qi′ ,tk′ )
BEE (τ tmsj ) with m← k′ + F [qi′ , sj ] do

7 if R((qi′ , tk′))−D[qi′ , sj ]−D[sj , ci] > 0 and path((sj , tm)) = ∅ then

8 Q.enqueue((sj , tm))

9 path(sj , tm)← path(qi′ , tk′) + (sj , tm)

10 R((sj , tm))← R((qi′ , tk′))−D[qi′ , sj ]

11 g((sj , tm))← g((qi′ , tk′)) +
(

1− LΦ(qi′ ,tk′ )
BEE (τ tmsj )

)
12 Φ(sj , tm)← Φ(qi′ , tk′)

13 ϕui
[(qi′ ,tk′ ),(sj ,tm)]fly

∈ Φ(sj , tm)← 1

14 L← L \ {(qi′ , tk′)}; L← L ∪ {(sj , tm)}

15 if L.size > NS then

16 (s, t)← argmin
(s,t)∈L

(
g((s, t))

)
17 L← L \ {(s, t)}

18 Q.remove((s, t))

19 end

20 end

21 end

22 end

23 (s, t)← argmax
(s,t)∈L

(
g((s, t))

)
24 return [path(s, t), g((s, t))]
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The pseudo-code of the heuristic is described by Algorithm 1. First, the ϕ set is ini-515

tialized (lines 1, 2), by assuming that all the UAVs are in charging state and the WGSs

are switched off. The iterative procedure works by computing the episode of each UAV

in isolation; to this aim, the leftmost UAV ui in the multi-graph G is selected (function

LeftmostIdleUAV in Algorithm 2), till any WGS runs out of energy (checked by

the function CheckWGSsEnergy) or the time limit is reached (line 5 of Algorithm 1).520

The function MultiflowPath (defined by Algorithm 3) returns the path for UAV ui,

starting from time slot tk: for each possible duration of the charging time and before

reaching the time limit (line 2 of Algorithm 3) the minimum-cost feasible path is com-

puted. The best calculated path is returned as result of the procedure (lines 7 and 9 of

Algorithm 3) and the multiflow variables are updated accordingly (line 8 of Algorithm525

3). As previously stated, a path is said feasible whether it originates from the node

(ci, tk) ∈ V (i.e. from the charging station), includes only WGS nodes (sj , tk∗) ∈ V

and terminates on a charging node (ci, tk∗∗) ∈ V , with the UAV residual energy al-

ways positive at each intermediate node. The feasible paths from each starting node

(ci, tk) ∈ V are computed by the function BSFMultiFlow (Algorithm 4), which530

properly explores the multi-graph data structure, through a variation of the Breadth-

First Search (BFS) algorithm. Like in legacy BSF, a queue (Q) is used to keep the list

of nodes that need to be explored at the current layer; however pruning mechanisms are

used in order to limit the number of active exploration paths to the number of WGSs

(NS). In the BSFMultiFlow procedure, the variable path(q, t) stores the calculated535

path toward the initial node (ci, tk); R((q, t)) is the residual UAV energy at node (q, t);

L is the set of active paths; Φ(q, t) is a temporary copy of the original flow variables Φ

used to keep track of the visited WGSs; g((q, t)) is the total gain of path path(q, t). At

each level, the BSF visits the WGSs in an ascending order based on the total gain (line

6 of Algorithm 4); here LΦ(q,t)
BEE defines the reading loss based on the temporary flow540

variables set Φ(q, t). At each exploration of node (sj , tk∗) ∈ V , we check the feasi-

bility of the path by ensuring that the residual energy of the UAV is enough to reach

the WGS sj and then the charging station ci; in case, the WGS sj is added to the path

(lines 8-14 of Algorithm 4). In line 15-19 of Algorithm 4 we implement the pruning

mechanism: if the number of active paths is grater then the threshold NS , the path with545
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the lowest gain value (line 16 of Algorithm 4) is removed from the queue. Then, the

path with maximum gain among the available NS is selected (line 23 of Algorithm 4).

Finally, in lines 9 and 10 of Algorithm 1 the flow variables are updated according to

the calculated path. Here, the UpdateUAVFlowVariables procedure updates the

flow variables ϕui belonging to the fly, irr and com classes.550

Computational complexity

The computational complexity of Algorithm 1, CC(Algorithm1), is determined

by the main loop (line 3 of Algorithm 1) where, at each round, the method

MultiflowPath is invoked in the worst case, npath times, i.e. until TLIMIT. It

is easy to notice that: npath = tLIMIT

EUmax/P
C
rec+EUmax/P

U
fly

. The total computational cost is555

then CC(Algorithm1) = O(NU · npath · CC(MultiflowPath)).

The CC(MultiflowPath) executes the BSFMultiFlow function while recharg-

ing and then it chooses the minimum cost path. The loop at line 2 of Algorithm 3

is executed at maximum nrec =
EUmax

PCrec·tslot
times, hence: CC(MultiflowPath) =

O(nrec · CC(BSFMultiFlow)). The CC(BSFMultiFlow) is dominated by the560

while loop (line 4 of Algorithm 4) that is used to traverse the multi-graph. Let us de-

fine Lev =
EUMAX

PUfly·(davg/vmax)
as the average number of WGSs that an UAV can visit in a

single path, where davg is the average distance between two WGSs. In the legacy BSF

algorithm, the number of visited arcs grows exponentially over the number of levels

Lev, i.e. O(N Lev
S ). However, through the pruning mechanism, only NS paths are565

active (line 15 of Algorithm 4) and hence the number of arcs visited is O(NS · Lev).

While visiting the arcs, the algorithm computes the reading losses and then orders

the WGSs list based on the loss values (line 6 of Algorithm 4). The LBEE func-

tion can be executed in O(NS)6, while the ordering procedure has a cost of O(NS ·

log2(NS)). Hence, the total cost of the command at line 6 of Algorithm 4 is O(NS ·570

log2(NS) + N 2
S ) = O(N 2

S ). Hence, the total cost of the BSFMultiFlow proce-

dure is CC(BSFMultiFlow) = O(N 3
S · Lev), and the overall computational cost

6We assume that the most affecting reading in the loss calculation (i.e. the last one) is stored for each

WGS.
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of Algorithm 1 is CC(Algorithm1) = O(NU · npath · nrec · N 3
S · Lev). Hence, the

computational cost is polynomial over the number of WGSs and of UAVs.

6.3. Distributed heuristic575

The centralized algorithm described in the previous Section assumes global sce-

nario knowledge and coordination among the UAVs, and the presence of a static num-

ber of UAVs in the field; however, this assumption might not hold due to UAV failures

and/or to UAV additions. To this purpose, we propose here a distributed method that

works similarly to the centralized one, except that it is executed locally on each UAV.580

At the system startup, the UAVs are not aware of the presence of other peers. Hence,

each UAV computes its path on the multi-graph data structure, that is populated with

local information only. In order to avoid uncoordinated actions with multiple UAVs

activating the same sequence of WGSs, the following enhancement is introduced: the

UAVs periodically broadcast their current path on the wireless channel. When receiv-585

ing a message from another peer, a priority rule is used to merge the information on

the multi-graph of the UAV with the lowest priority; the path with the list of the next

WGSs to visit is re-calculated accordingly.

The technical details of the proposed heuristic are shown in Algorithm 5. Each

UAV calculates a feasible path through the MultiflowPath function (line 9). If590

no feasible path is found, then the UAV ui keeps recharging at ci (lines 10-12). Oth-

erwise, the UAV ui follows the path by visiting the WGSs (lines 14-21) and mov-

ing at its charging station at the end of the episode (lines 22-23). We assume that

the information exchange happens when two UAVs ui and uq are at a distance lower

than dcom, which models the radio propagation range of the UAVs. When meeting595

UAV uq , the UAV ui broadcasts at time tk a beacon message with the following

information: BEACONi = 〈Φi, Ui〉, where Ui = {〈ui, ci, E(ui, tk)〉 , . . . } is the

set of known UAVs, their charging station positions and their actual residual energy.

When receiving the BEACONq message from the UAV uq , the UAV ui invokes the

MeetWhileFlying function (line 1): a priority check is performed by considering600

the residual energy of both devices. If E(uq, tk) < E(ui, tk), i.e. UAV uq has the

highest priority (line 18), then UAV ui adds the received data to its local multi-graph
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Algorithm 5: The BEE-DRONES Distributed heuristic
Input: ui, S, ci, G, Φi

1 Function MeetWhileFlying(Φq , Uq):

2 Ui ← Ui ∪ Uq

3 Φi ← Φi ∪ Φq

4 return

5 k ← 0

6 li ← ci

7 Ui ← {〈ui, ci〉}

8 while true do

9 path← MultiflowPath(G, Φi, ui, tk)

10 if path = ∅ then

11 ϕui
[(ci,tk),(ci,tk+1)]rec

← 1

12 k ← k + 1

13 else

14 while (sj , tm)← getNext(path) do

15 ϕui
[(li,tk),(sj ,tm)]fly

← 1

16 k ← m

17 li ← sj

18 if CheckChanged(Φi) then

19 path← MultiflowPath(G, Φi, sj , tk)

20 end

21 end

22 ϕui
[(li,tk),(ci,tk+F [li,ci]

)]fly
← 1

23 k ← k + F [li, ci]

24 end

25 end
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Figure 6: The utility function Ψ for TLIMIT=1 day and varying numbers of WGSs and UAVs is shown in

Figure 6(a) and 6(b), respectively.

data structure, and recomputes its current path accordingly.

Computational complexity

The computational complexity is determined by the CC(MultiflowPath) method:605

CC(Algorithm5) = O(nrec ·N 3
S · Lev), where nrec is the number of executed loops

in MultiflowPath and Lev is the average number of WGSs that an UAV can visit

in a single path. We can see that Algorithm 5 is polynomial over the number of WGSs.

7. Experimental results

In this Section, we evaluate the system performance of the BEE-DRONES frame-610

work by simulating the scenario presented in Section 4 and the WGS/UAV operations

via the OMNeT++ tool. Unless stated otherwise, we used the following parameters:

M = 10 Km is to simulate a large-scale scenario; Pwu = 27 dBm, f = 868MHz,

EWU = 633.6 nJ , GUmax = 7.3 dBi, GSmax = 1 dBi, αUmax = π/4, and αSmax = π/2

are the parameters used and measured during the experiments presented in Section615

3; PCrec = 20 W , PUfly = 4 · 21.7 W , ESmax = 4 kJ (300 mAh at 3.7 V battery),

EUmax = 120 kJ (3000 mAh at 11.1 V battery), η = 8%, vmax = 12 m/s, and

dcom = 100 m describe a generic quadcopter having 4 brushless motors equipped

with a 3000 mAh battery with ∼23 min flight time, on the average; we used an
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Figure 7: In Figure 7(a) we show the impact of different correlation parameters (ms and mt). The average

number of readings for TLIMIT=1 day and varying numbers of WGSs is shown in Figure 7(b).

high value η = 8% as self-discharge parameter (actual Li-Po batteries have 2-3%620

self-discharge value) in order to speed-up the simulations, without invalidating them.

PSstartup = PUstartup = 5 mW , PStx = PUtx = 100 mW , PSrx = PUrx = 10 mW ,

tslot = 0.2 s, tstartup = 1 s, ttimeout = 1 s, and nr = 3 are used to simulate the

communication model described in Section 4.4. ms = 2.5 km, ks = 0.004, mt = 4 h,

kt = 0.0006, ξ = ζ = 0.9 describe the correlation model for the sensor’s readings.625

Here, we described sensors, like air temperature/humidity sensors, that have low spatial

correlation (below 0.1) at distance over 3 km and low temporal correlation after 5 h.

Finally, TLIMIT = 1 day, NS = 80, NU = 6, σ2
POS = 1, σ2

R = π/128. Based on the

parameters ξ and ζ, and by using Equations A.10 and A.11, we derived hopt = 6.6 m

and topt = 5. We set consequently tirr = topt · tslot.630

We compare the performance of centralized BEE-DRONES (C–BSFBEE) of Sec-

tion 6.2, and distributed BEE-DRONES (D–BSFBEE) of Section 6.3, against the fol-

lowing algorithms: (i) DSFBEE, i.e. a centralized version of Algorithm 1 that is using

the depth-first search on a single path, rather than the breadth-first search on NS paths;

(ii) Distance-based heuristic, which builds the path of each UAV in a greedy way by635

selecting the closest WGS at each step; (iii) Energy-based heuristic, which -similar to

the previous case- builds the path of each UAV by selecting the WGS with the lowest

residual energy at each step. Similarly to C–BSFBEE, both the Distance-based and the
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Figure 8: The system lifetime for varying numbers of WGSs and TLIMIT = ∞ is depicted in Figure 8(a).

The system lifetime when comparing the Wake-up Radio (WR) and the Duty-Cycle (DC) technologies is

depicted in Figure 8(b)

Energy-based algorithms explore the multi-flow graph using the BSF algorithm; how-

ever, the distance metric and the residual energy metric are used in the exploring step640

(line 6) of Algorithm 1, respectively. It is easy to notice that the Distance-based solu-

tion aims to maximize the number of sensor readings performed by the UAVs, while

the Energy-based solution aims to maximize the WSN lifetime.

In Figure 6(a), we show the utility function Ψ when varying the number NS of

WGSs for a fixed number of UAVs NU = 6. Generally speaking, the Ψ values slightly645

increase for the C–BSFBEE schemes when increasing NS , since higher numbers of

WGSs translate into lower temporal correlation values of the sensor readings. In ad-

dition, we can notice that: (i) the proposed centralized C–BSFBEE overcome all the

other path-planning strategies; (ii) the distributed version D–BSFBEE behaves simi-

larly to the DSFBEE, and in any case it greatly overcomes both the Distance-based650

and the Energy-based for all values of NS .

The results shown in Figure 6(a) can be compared with those in Figure 7(b), where

the average number of per-WGS sensor readings is shown. The Distance-based and

Energy-based schemes produce the highest values of sensor readings; however, they

do not maximize the VoS, since several readings are correlated in both time and space,655

and hence they could be considered unnecessary. Vice versa, the C–BSFBEE schemes
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Figure 10: The heatmaps showing the scenario coverage for the BSFBEE centralized algorithm and the

Distance-based algorithm are showed in Figure 10(a) and Figure 10(b), respectively.

performs a careful WGS selection by balancing the requirements of the sensing ap-

plication (e.g. area coverage) with the system lifetime. This is also made evident in

Figure 6(b) that shows the utility function Ψ when varying the number NU of UAVs,

for a fixed number of NS = 80 WGSs. Also in this case, the C–BSFBEE algorithms660

maximize the VoS compared to the Distance-based and Energy-based schemes, while

the DSFBEE algorithm does not scale with a large number of UAVs. Furthermore, we

can notice an interesting saturation effect for the utility function Ψ, i.e. given NS and

42



the specific correlation parameters in use (ws = 2.5km and wt = 4H), there exists an

optimal number of UAVs (NU = 2 in this case) maximizing the Ψ function. The utility665

function decreases when adding more UAVs (in our case NU > 2). The motivation is

that -regardless of the path-planning scheme- too many UAVs in the scenarios will re-

duce the quality of the data gathered by increasing the average correlation of the sensor

readings. To this purpose, Figure 7(a) shows the value of the utility faction Ψ for dif-

ferent correlation parameters ws and wt (on the x−axis). Lowering these parameters670

translates into an increase of the Φ metric for all the schemes. However, even under

different correlation parameters, the C–BSFBEE algorithm is able to maximize the VoS

against the competitors. In Figure 8(a) we show the the system lifetime, i.e. the time-

slot in which the first WGS runs out of energy. In this case we set TLIMIT = ∞. We

can notice that - when increasing the number of WGSs in the scenario- the C–BSFBEE675

algorithms produce significant improvements also compared to the Energy-based so-

lution; indeed, this latter involves more sensor readings with respect to BEE-DRONES

(see Figure 7(b)) and hence it drains the battery of the WGSs faster. In Figure 8(b),

we provide further insights on the energy efficiency of our proposal, by comparing the

usage of the wake-up radio (WR) technology against classical duty-cycle (DC) mech-680

anism that sets the WGS in sleep mode during idle phases. For the DC consumption in

sleep mode, we used the experimental values reported in Table 1 (i.e. 10µW ). Since

the focus of the analysis is on the WGS technology, and not on the path-planning strat-

egy, we used C–BSFBEE in both cases. The lifetime increment produced by the WR

technology is remarkable, and it achieves the 30% for NS=100. Also, we assume in685

this analysis that the WGSs using the DC mode are able to perfectly synchronize their

duty cycles with the UAVs hovering over them, which is unfeasible in real-world sce-

narios; vice-versa, no synchronization issues occur in case the WR technology is used.

Figure 9 shows the adaptiveness of the distributed algorithm D–BSFBEE in a scenario

characterized by a time-varying number of UAVs; on the y axis we depict the Ψ gain690

over time, while on the y2 axis there is the average number of per-WGS sensor read-

ings. At the system startup, we set NU = 6; at time t = 12H we added two more

UAVs (NU = 8) and finally at time 24H we simulate the failure of 4 UAVs (NU = 4).

As expected, the number of readings follows the number of available UAVs. However,
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we can see the effectiveness of the UAV coordination in the WGS selection, which695

translates into a fast adaptation of the Ψ gain. Also, how previously depicted in Figure

6(b), there is a saturation issue when NU > 6, while for NU = 4 the Ψ gain increases.

Finally, Figures 10(a) and 10(b) demonstrates the ability of BEE-DRONES algorithms

to provide adequate scenario coverage. More specifically, the heatmaps show the areas

of the scenario where the sensor data are acquired by the UAVs; the color of each loca-700

tion is related to the number of sensor readings performed by the UAVs. We compared

C–BSFBEE (Figure 10(a)) with Distance-based (Figure 10(b)). In this experiment

NS = 80 and NU = 6. As expected the Distance-based method is able to gather more

sensor data, however it concentrates its operations on few areas (i.e. those closer to

the charging stations). On the other side, the C–BSFBEE algorithm provides a more705

uniform coverage of the target area, by balancing the readings over the WGSs.

8. Conclusions

In this paper, we proposed BEE-DRONES, a novel framework for the deploy-

ment of ultra low-power UAV-aided Wireless Sensor Networks (WSNs) on large-scale

IoT scenarios. The utilization of Wake-up Radio (WR) technology has been proposed710

in order to address the synchronization problem between the UAVs and the Wireless

Ground Sensors (WGSs); to this purpose, the effectiveness of WR technology has been

tested via measurements under different power and antenna configurations. Then, we

moved from the UAV-WGS link to the UAV-WSN scenario, and we formulated the re-

search problem of the optimal path-planning strategies for the UAVs which must gather715

sensing data from WR-based WGSs: differently from other studies, the optimization

framework takes into account the lifetime of the WGSs, the energy constraints of the

UAVs, and the Value of Sensing (VoS) data gathered by the application. Both central-

ized and distributed heuristics have been proposed and evaluated through OMNeT++

simulations. The experimental results demonstrate that both centralized and distributed720

BEE-DRONES solutions are able to maximize the VoS when compared with greedy

path-planning strategies. Also, they are able to greatly increase the system lifetime

with respect to Duty-Cycle (DC) technology. Future works include: the realization
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Figure .11: The successful data communication probability with probability of packet loss Ppl(d3D) = 1−
1

1+e(d3D−20)·0.3 is shown in Figure 11(a). The wake-up probability with GU
MAX = 7.3dBi, αU

MAX =

π/4, GS
MAX = 1dBi, αS

MAX = π/2, Pwu = 27dBm, tslot = 0.2s and TWU = 5 is shown in Figure

11(b).

of a small-case testbed of a WR-based UAV-aided WSN, the extension to a scenario

where the number of charging stations is lower than the available UAVs, the modeling725

of interference on the aerial communications.

Appendix A. Derivation of the optimal flight altitude and of the optimal hovering

interval for the UAVs

Let
#»E LOC = 〈ExLOC, E

y
LOC〉 be the random variable defining the localization esti-

mation error of the UAV, and F #»E LOC
be its probability distribution function with zero

mean and variance σ2
LOC. Similarly, let

#»E HOVER = 〈ExHOVER, E
y
HOVER〉 be the ran-

dom variable defining the UAV controller error and F #»E HOVER
its probability distribu-

tion function with zero mean and variance σ2
HOVER. The UAV position error is defined

as follows:
#»E POS =

#»E LOC +
#»E HOVER with F #»E POS

( #»e ) =
∫

#»e ′∈R2(F #»E LOC
( #»e ′) ·

F #»E LOC
( #»e − #»e ′)) having variance σ2

POS = σ2
LOC + σ2

HOVER. Moreover, let R =

〈Rx,Ry〉 be the random variable defining the rotation of a UAV and FR its probabil-

ity distribution function with zero mean and variance σ2
R.

Now, we determine the probability of successful data transmission between the UAV

and the WGS by using the communication protocol defined in Section 4. Let D3D(h)
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Figure .12: The expected time to wake-up at different flight altitude.

be the random variable that defines the 3D distance between a UAV and the actual

WGS while hovering at an altitude of h:

D3D(h) =

√
(h)2 +

∣∣∣∣∣∣ #»E POS

∣∣∣∣∣∣2 (A.1)

The expected value of the 3D distance is:

E(D3D(h)) =

√
(h)2 +

∫
#»e ∈R2

(
‖ #»e ‖2 · F #»E POS

( #»e )
)

(A.2)

We define Pnodata(h) as the probability of data failure for a request/reply procedure

between the WGS and the UAV flying at an altitude of h meters:

Pnodata(h) = 2 · Ppl(E(D3D(h)))− Ppl(E(D3D(h)))2 (A.3)

Here, the term Ppl(d3D) indicates the data loss probability at a specific distance, and it

depends from the path-loss model in use [44]. Vice versa, the probability Pdata(h) of730

successful data transmission between the UAV and the WGS can be derived as follows:

Pdata(h) = 1− (Pnodata(h))
nr (A.4)

where nr is the maximum number of communication attempts. Let hmax(ξ) be the

maximum altitude of the UAV so that the probability of successful data transmission is
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equal or higher than the threshold ξ:

hmax(ξ) = argmax
a∈R+

(Pdata(a) ≥ ξ) (A.5)

For the energy transfer model, we introduce the conditional random variable

ONh|Twu = t that defines the event of waking up a WGS powered for t time slots

by a UAV flying at an altitude h: ONh = 1 indicates that the WGS is activated

by the UAV, ONh = 0 otherwise. We define the conditional wake-up probability

wuh,t = P(ONh = 1|Twu = t):

wuh,t = 1−
∫ EWU

0

P (Erx
h = e|Twu = t) de (A.6)

The conditional variable Erx
h,t = (Erx

h |Twu = t) models the total energy received735

by a WGS when powered by the UAV for t time slots, and its probability can be derived

as follows:

P(Erx
h = e|Twu = t) =

∫
· · ·
∫ EWU

0

ce(e1, . . . , et) ·
t∏

j=1

P(Eh,1 = ej) de1 . . . det

(A.7)

where ce is a check function that is equal to 1 if e1 + · · ·+ et = e, and 0 otherwise. We

introduce the probability distribution function of Eh,1, which depends on the random

variables
#»E POS andR:740

P(Eh,1 = e) =

∫∫ +dmax
2D (e,h)

−dmax
2D (e,h)

∫∫ +%max

−%max

cΓ,e(x, y, %x, %y)· (A.8)

· F #»E POS
(〈x, y〉) · FR(〈%x, %y〉) d%x d%y dx dy

where cΓ,e is the check function that is equal to 1 if Γ(〈x, y〉 , 〈%x, %y〉 , h) = e, and

0 otherwise; dmax
2D (e, h) defines the maximum 2D distance so that the UAV is able to

transfer an amount of e energy from an altitude of hmeters; %max is the maximum UAV

rotation error. Based on wuh,t, we derive the duration of the energy transfer phase (i.e.

the minimum number of time slots), so that the wake-up probability is higher than a

threshold ζ:

twu
min(h, ζ) = argmin

t∈Z+

(wuh,t ≥ ζ) (A.9)
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Finally, hopt and topt can be derived as follows:

hopt = argmax
h≤hmax(ξ)

(cζ (h) · h) (A.10)

where cζ(h) is the function that is equal to 1 if exists t such that wuh,t ≥ ζ, and 0

otherwise.

topt = twu
min(hopt, ζ) (A.11)

The Equations above can be solved numerically; in Figures 11(a), 11(b) and .12 we

reported the impact of the flight altitude on the WGS-UAV communication and on

the WGS wake-up process. More specifically, Figure 11(a) shows the probability of745

successful communication between the UAV and the WGS when varying the flight al-

titude, for different environmental conditions (σ2
POS). In this case, the UAV rotation

%(ui, tk) is not relevant because we assume omni-directional antenna for the data com-

munication. As expected, the higher is the error, the lower is the maximum altitude

for a successful data transmission. In Figure 11(a), the red line indicates the minimum750

requested probability ξ = 0.9. Additionally, in Figure 11(b) we show the wake-up

probability for different values of σ2
POS and σ2

R, when varying the flight altitude. The

red reference line of ζ = 0.9 denotes the altitude at which the wake-up procedure meets

the user requests, i.e. wuh,5 > 0.9. In Figure 11(b) we also reported the experimental

results for the static case, i.e. σ2
POS = 0 and σ2

R = 0 (see Section 3); it is easy to notice755

that the analytical results are very close to the experimental one. At low altitudes, the

position error σ2
POS has a negative impact on the wake-up procedure due to the antenna

directionality and the zenith offset between the UAV and the WGS; however, the prob-

ability increases with the altitude once the WGS enters inside the antenna irradiation

cone. Finally, Figure .12 depicts the time to wake-up (E(TWU)) with different rota-760

tion and position errors; as expected, the time to wake-up increases with the amount of

errors.
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