
A Comparative Study of the Computation Efficiency of a GPU-Based Ray

Launching Algorithm for UAV-Assisted Wireless Communications

Maximilian J. Arpaio, Enrico M. Vitucci, and Franco Fuschini

Department of Electrical, Electronic and Information Engineering “G. Marconi”

Alma Mater Studiorum University of Bologna, Bologna, 40136, Italy

{maximilian.arpaio, enricomaria.vitucci, franco.fuschini}@unibo.it

Abstract ─ Graphics Processing Units (GPU), have

opened up new opportunities for speeding up general-

purpose parallel computing applications. In this paper,

we present the computation efficiency in terms of time

performances of a novel ray launching field prediction

algorithm which relies on NVIDIA GPUs and its Compute

Unified Device Architecture (CUDA). The software tool

assesses the propagation losses between a wireless

transmitter - carried by an Unmanned Air Vehicle (UAV) -

over a 3D urban environment. Together with other

effective features, the software tool is shown to reduce

by several orders of magnitude the computation time of

simulations. Performances and cost-benefit analysis of

three different NVIDIA GPU configurations are thus

investigated over three different urban scenarios, taken

as test-cases for Air-to-Ground (A2G) communications

for 5G applications and beyond.

Index Terms ─ 5G, Air-To-Ground (A2G) propagation,

GPU, NVIDIA, ray launching, UAV.

I. INTRODUCTION
Deterministic wave propagation modelling represents

a state-of-the-art technique for RF channel analysis. The

accuracy of site-specific propagation models, like ray

tracing or ray launching, has seen great improvements

in the last few decades thanks to better characterization

of propagation mechanisms [1]. Although the compute

capability of modern processors is constantly increasing,

deterministic models still require significant runtimes

to achieve accurate results, which has motivated the

research community to extensive look for optimized and

efficient acceleration methods [2]. Unfortunately, the

complex mechanisms of electromagnetic waves as well

as the huge amount of geometric calculations can make

Central Processing Unit (CPU) computation inefficient.

It has been argued that standard models - lacking of

any speeding-up expedient - take more than an hour

to retrieve channel characteristics across a kilometre-

scale scenario with a single radio source [3]. Parallel

computing – on the contrary - is a process of decomposing

a large serial task into smaller sub-tasks, which can be

calculated concurrently. Multi-core processors are

currently the most commonly available and exploited

parallel computing platform, allowing much faster

computations compared to a single core, as long as

the computer code is optimized to take advantage from

the multiple cores [4]. Furthermore, interest has grown

rapidly in recent years towards harnessing the power of

graphic hardware to perform general-purpose parallel

computing. This alternative approach has become

widespread and is based on the use of the GPU—in

addition to the CPU—for general purpose computing.

Having effectively reached a limit in the

improvement of the single-core frequency of CPUs,

GPU computing has become the method of choice for

applications with high computational demands. Although

GPUs have been known in the computing industry for

over 40 years, they haven’t represented a breakthrough

until programmable and general purpose (GPGPU) have

been developed. Since then, the computation potential

has gained increasing acknowledgement, and GPUs

have become far more than an embedded device for

display operations: their special design allows us to

perform many operations simultaneously and to perform

computation-heavy tasks that would otherwise require a

large computer cluster. Moreover, modern GPUs are

equipped for double-precision mathematical operations

in parallel configuration, which extends the range of

applications even further. It is anyway important to note

that even if parallelisation is not always guaranteed by

simply having installed a GPU card and using CUDA

language, it can be potentially achieved at a high- or low-

level scale for many applications [5].

By means of a comparative study of the computation

efficiency in terms of calculation time, this paper aims at

shedding light on the crucial benefits that GPU computing

can bring to the characterization of electromagnetic

propagation between an UAV flying over an urban area

and users roaming at street level. To the best of the

authors’ knowledge, no papers have been published so far

with comparative, detailed, cost-benefit analyses of GPU

architectures applied to electromagnetic computation

problems. This represents the main novel contribution of

ACES JOURNAL, Vol. 35, No. 12, December 2020

Submitted On: April 26, 2020
Accepted On: October 20, 2020 1054-4887 © ACES

https://doi.org/10.47037/2020.ACES.J.351201

1456

this paper; surprisingly, high-end, more powerful GPU

card might not always provide the greatest computation

efficiency as it will be shown in the next sections.

As a matter of fact, while UAV assisted wireless

communications are currently envisaged in the framework

of 5G and beyond [6], experimental investigations of the

A2G link are extremely challenging and complex due to

the limited payload, the problem in powering up flying

transceivers and the regulations to comply with at

national/international level especially within inhabited

areas. Therefore, ray-launching simulations can represent

an easier and cheaper way to improve awareness about

A2G propagation properties, as long as the corresponding

computation effort is worth it. In this regard, a key

characteristic of the ray launching approach is that rays

do not interact each other along their own propagation

paths. From departure to arrival, ray paths can be

independently traced, which is of great advantage

for GPU-based computation thanks to the intrinsic

parallelisation degree within the whole propagation

process.

This document is structured as follows: in Section II

we provide general details of the ray-launching software

while in Section III we introduce the hardware and

software configurations, with a particular focus on the

NVIDIA GPU cards. In Section IV we go through the

main results in terms of computation time and speed-up

factors, both for isotropic and directive antennas. The

final Section V summarises the results while briefly

drawing the main conclusions.

II. PRINCIPLES OF RAY-LAUNCHING

ACCELERATION
Due to the increase in the computational demands

of modern applications, many developers are currently

looking for different ways to accelerate their applications

beyond the – limited – speed that conventional CPUs can

provide. Among all the possible solutions, the baseline

for the GPU-based A2G propagation assessment proposed

within this paper is the Discrete Environment-Driven

Ray Launching model (DED-RL), which has been

introduced for the first time in [7] together with the

related computational theory. As with all RL algorithms,

DED-RL is suitable for prediction over large areas or

volumes. More specifically, it has been designed to

perform fast deterministic propagation prediction on 3-

D outdoor surfaces of all buildings and streets in a given

target area, to enable multi frequency RF coverage

design and optimization.

The software relies on a digitalised 3D urban model

where each building is a polygon prism with a defined

shape, material, position and height. The model is totally

discrete, i.e., the building walls are properly discretized

into “tiles” with a predetermined size. DED-RL has also

inherited some advanced features from a pre-existing

RT model developed at the University of Bologna, such

as the Effective Roughness (ER) diffuse-scattering

model. In addition to the environment discretization, the

algorithm is also “environment-driven”, meaning that

ray tubes are launched only towards the tiles that are

visible from the transmitter, and these ray tubes are then

bounced toward tiles that are visible to each other.

Another advantage of the discretization is that all the

visibility relations among the tiles can be pre-computed

and properly stored into a “visibility matrix” since the

tile centres can be assumed as fixed points. This visibility

pre-processing takes advantage of GPU parallelization

and must be done only one time for a single simulation

scenario. Once the pre-processing is done, ray bouncing

can be performed very efficiently for any transmitter

location in the same environment. All these features

are implemented in DED-RL through the CUDA C++

language for NVIDIA GPUs. Using the combination of

the above-mentioned techniques in addition to GPU

parallelization, DED-RL is thus able to achieve very

high levels of computational efficiency – up to four

orders of magnitude compared to a conventional ray-

tracing algorithm – while retaining a good level of

accuracy, despite the intrinsic error introduced by the

environment discretization [8].

All the main features of DED-RL algorithm

described above — visibility pre-processing, launching

of ray tubes, ray bouncing, and field computation — are

suitable for code parallelization via GPU acceleration

and thus may benefit significantly from GPU-based

computation due to its ability to process vectors or

matrices with extreme efficiency, as it will be shown in

the following sections.

III. HARDWARE CONFIGURATION AND

SIMULATION MODELLING
In order to investigate the computation time for

UAV A2G propagation, we performed worst-case ray-

launching simulations of a full three-dimensional (3D)

scenario. DED-RL simulations were run by means of

dedicated scripts within a MATLAB R2017B (Update 9)

environment. The purpose of the scripts was to automate

in a simple and efficient way the different runs

concerning UAV positions and flight levels, as well as

its transmitting frequencies.

ACES JOURNAL, Vol. 35, No. 12, December 20201457

Table 1: NVIDIA GPUs configurations under investigation

GPU

Card
Architecture

Streaming

Processors

Core

Clock

Memory

Clock

Bus

Width
VRAM

Single

Precision

Double

Precision

Tesla

K40c

Kepler,

GK180
2880

745

MHz

6 GHz

GDDR5
384-bit 12GB

5.04

TFLOPS

1.68

TFLOPS

Titan

XP

Pascal,

GP102
3840

1405

MHz

11.4 GHz

DDR5X
384-bit 12GB

12.15

TFLOPS

0.38

TFLOPS

Tesla

P100

Pascal,

GP100
3584

1190

MHz

1.4 GHz

HBM2
4096-bit 12GB

9.32

TFLOPS

4.73

TFLOPS

To freeze the hardware configuration throughout

the different runs, all simulations were set-up on a

commercial workstation, equipped with an Intel(R)

Xeon(R) CPU E5-2620 v4 @ 2.10 GHz [8c/16t] and

48 GB DDR4 RAM.

As listed and described in Table 1, three different

NVIDIA GPU cards were set-up: two cards belonging to

the professional business sector (Tesla series), namely

Tesla K40c (medium end) and Tesla P100 (high end),

while the last one belonging to the gaming business one

(GTX series), namely Titan Xp (high end). Although an

extensive description of hardware details and specific

mechanism of NVIDIA GPUs is out of the scope of this

paper, the reader can find interesting details in [9] for

Kepler and in [10] for Pascal architectures.

Regardless of the specific business sector they have

been designed for, GPU processing capabilities can

be measured in terms of SP and Video RAM (VRAM),

together with floating point operations per second, either

single or double precision. It can be seen from Table 1

that the three NVIDIA GPU cards show the same VRAM

but they differentiate from each other for specific features.

The Tesla series cards, as expected for professional

business purposes, show better performances in terms

of double precision TFlops, while the GTX card,

gaming-oriented, really lacks. Conversely, the GTX card

outperforms the Tesla series concerning single precision

TFlops and memory clock, as expected from a card that

must react promptly in tough gaming sessions. The

number of SP is comparable between the two high-end

GTX and Tesla cards, being instead slightly lower in the

medium-end Tesla card. It should be remarked that

performance improvements are an increasing function of

the number of available computing cores; the more cores

are available, the higher the speedups that can be

achieved compared to sequential counterpart versions.

Together with the complexity of device architectures,

it is seen that computational power of GPUs is rapidly

growing with many new features proposed to developers,

to the researchers or to the gaming community, like the

very recent Ray Tracing (RT) cores for real time ray-

tracing calculations [11]. Nevertheless, we must not

be inebriated by the multiple features and capabilities:

one of the most important aspects when comparing

performances in terms of computation times, is to get a

fair and balanced set of output metrics for proper

accelerator comparison. In this regards Table 2

summarises the main DED-RL parameters set-up during

the different simulation runs. In fact, it was important to

fine-tune the DED-RL parameters - among those related

to the addressed GPU memory and the number of rays

launched per cycle - with a set of commonly acceptable

values for all the involved GPUs and to get comparable

results among the different scenarios.

For benchmarking purposes, the DED-RL software

was configured assuming a single UAV hovering over a

3D urban city environment at different positions in space.

Table 2: Ray launching main simulation parameters

Parameter Values

Frequency 0.7, 3.5, 26 and 70 GHz

UAV heights
30, 50, 75, 150, 300,

450 m AGL

UAV hovering positions 8 circular positions

Number of

Interactions

5 bounces, 5 reflections,

2 diffractions and 1 scatter

Number of Combined

Interactions

3 reflections/diffractions (max),

3 diffractions/scatters (max)

GPU Memory

Allocation Heap Size
1536 MB

Maximum LOS Rays

Per Cycle
100000

Amount of GPU

Memory for Packets
40%

Table 3: Urban model environments

Parameter Bologna Munich
San

Francisco

No. Tiles 170931 148584 268868

Area [Km2] 6.5 8.8 10.2

Building/Area 30.5% 37.8% 40.5%

Three different urban models were investigated,

with a special focus on their city centres: Bologna (Italy),

Munich (Germany) and San Francisco (USA). This was

done to explore how much a specific urban map was

affecting the computation time. Coverage predictions

were performed on a whole urban area with a single tile

resolution of 10x10 m and general details as further

specified in Table 3.

By means of tic and toc Matlab commands [12], it

ARPAIO, VITUCCI, FUSCHINI: GPU-BASED RAY LAUNCHING ALGORITHM 1458

was possible to measure - and to focus only on - the

elapsed time before and after the call to the executable

DED-RL file.

Although, on one hand, this is the most

straightforward way to measure the computation time in

a coherent way among the different GPU cards, on the

other hand it may be objected that the CPU processing

affects this measurement as part of the whole RL code

execution. We can say not only that this part is negligible,

but we must also emphasise that this part is common –

and the same – for any simulation run on the same

workstation, thus returning a set of comparable results.

IV. RESULTS
Simulation results shown in the following

subsections represent the combined outcomes of multiple

aggregated runs corresponding to different UAV spatial

hovering positions (i.e., lat-long UTM coordinates and

height above ground level,) or transmitting frequencies,

over the three different test-referenced scenarios. This

strategy was agreed to make available significant data

samples and a clear breakdown of run parameters and

characteristics.

A. Computation time for isotropic antennas

In this specific subsection, the UAV was equipped

with an isotropic antenna. Although this type of antenna

does not have any physical meaning, it allowed us to

run a worst-case scenario where rays were launched

in all directions, thus increasing the computation effort

of calculating multiple interactions at 360° spherical

degrees. Furthermore, it is worth noting that the isotropic

case can somehow represent real situations where the

radiation lobe of the antenna is wide enough to

illuminate the whole urban area below the UAV frame.

To get the representative graphs in Fig. 1, runs have

been averaged over the UAV spatial positions, as it turned

out to slightly affect the computation time. According to

Fig. 1, this time is generally longer at lower frequencies

and shorter at higher frequencies. Differently from

“Image” Ray Tracing techniques, where the intensity of

a ray can be computed only after the whole ray path -

from the transmitter to the receiver - is traced, Ray

Launching can take note instead of the ray intensity

while it is being traced. Therefore, rays with negligible

intensity can be stopped and discarded, thus saving

computation time. As propagation losses increase with

frequency and distance, many rays are therefore

dismissed by the DED-RL algorithm, thus explaining the

achieved results.

At the same time, the Tesla P100 GPU card tends to

be the fastest one at lower frequencies, with an average

speed up factor of ~4x vs. Tesla K40c and ~2x vs. Titan

Xp. This speed-up factor is seen to increase with the

complexity of the environment. In the most challenging

case (San Francisco, according to the parameters listed

in Table 3), the Tesla P100 shows a simulation time

which is 3x and 7x lower compared to the Titan Xp

and the Tesla K40 cards respectively, whereas the three

GPU cards show similar performances from 26 GHz

onwards. On one hand, these results are reasonable

and proportional to the number of rays vs. computed

interactions. On the other hand, this sounds like a

surprising result: it might be expected the high end Tesla

P100 card to always be somehow the first of the class

due to its technical specs and economical value, while

actually the gap with the Titan Xp is indeed minor.

In agreement with CUDA programming best

practices [13] and literature [14], this behaviour is likely

related to the additional overhead the Tesla P100 brings

in connection to its intrinsic complexity. This can limit

the computation speed when there is no good balance

among the different thread blocks scheduled onto the

GPU Streaming Multiprocessors (SM). However, this

imbalance is more likely to happen in less challenging

cases, i.e. the higher frequencies, due to the selective

discarding of those rays whose intensity falls below the

minimum power threshold, as previously mentioned.

B. Computation time for directive antennas

Following the interesting results of the previous

subsection, the UAV was then equipped with a

directional antenna of fixed aperture angle α, placed

under the UAV fuselage and pointing downwards.

 (a) Bologna, Italy (b) Munich, Germany (c) San Francisco, USA

Fig. 1. Computation time [s] over frequency [GHz] for different Nvidia cards and environments.

ACES JOURNAL, Vol. 35, No. 12, December 20201459

 (a) Bologna, Italy (b) Munich, Germany (c) San Francisco, USA

Fig. 2. Computation time [s] over antenna aperture angle [°] for different NVIDIA cards and environments.

This can be seen as a best-case scenario where rays

are launched only within a specific cone, thus drastically

reducing the computation effort of calculating additional

interactions. In this regard, please note that angle α is

simply the ideal radiation cone aperture, i.e., we assumed

a simplified 0 dB constant gain inside and instead an –

Inf dB constant gain outside.

To get the representative graphs in Fig. 2, runs have

been averaged in terms of spatial positions and results

split into low and high frequency samples, 700 MHz and

70GHz respectively. On that note, it is seen that at

70GHz the simulation time are flat all over the α angle

span, with the Tesla P100 now the slowest among the

card.

As the limited number of rays to be traced at high

frequency is further reduced by the antenna directive

pattern, the simulation time is simply dominated by the

specific overhead of the GPU, which is likely to be

heavier for the Tesla P100. This is not completely true at

700MHz, where plots are no longer flat and simulation

time logically decreases as a function of the angle α, (i.e.,

it increases as a function of antenna directivity).

Generally speaking, the use of directive antennas in

our test-case brings out the way in which GPU overhead

represents an important factor for any evaluation of the

computation time. From these plots, it is possible to see

the Titan XP card to better perform out of the other two

cards, which is not always true in case of an isotropic

antenna.

V. CONCLUSION
We have investigated the performance of a Discrete

Environment-Driven Ray Launching Algorithm in terms

of computation time and the related speed-ups among

different NVIDIA GPU cards.

We have demonstrated the benefit of GPU

parallelization as a means to accelerate ray launching

field computation, with typical computation times for

complete predictions over all building surfaces ranging

from seconds to few tens of minutes, depending on

the size of the urban scenario, the hardware used for

simulation runs and the characteristics of RF

propagation. This shows the potential benefit of GPUs

for electromagnetic simulations, and especially for

deterministic field strength predictions, in fair agreement

with the main outcomes of previous works in [15-17].

It was seen how computation time decreases with

frequencies and the use of different directive antennas

could affect simulation time. As it can be expected, the

wider the antenna radiation cone, the longer the

simulation time, although remarkable only at lower

frequencies. It was also seen that both professional and

gaming GPGPU provide reasonable and consistent

results in terms of computation time, the former having

better performances at lower frequencies due to the

higher number of rays to be processed. On the other

hand, performance can be degraded when using the high-

end Tesla GPUs in less demanding environments, due to

their additional overhead. This shows that NVIDIA

gaming GTX cards should not be automatically

dismissed and they can be a good choice under specific

simulation cases, instead of more expensive Tesla cards.

Future works will focus on more demanding

simulation environments, i.e., densely urban as well as

on different and more recent Nvidia GPU architectures,

especially those with RT cores, like Turing and Ampere.

ACKNOWLEDGMENT
The authors wish to express their gratitude to

NVIDIA Corporation with the donation of the Titan XP

GPU used for this research.

REFERENCES
[1] Z. Yun, M. F. Iskander, “Ray tracing for radio

propagation modelling: Principles and applications,”

IEEE Access, vol. 3, pp. 1089-1100, July 2015.

[2] N. Kinayman, “Parallel programming with GPUs:

Parallel programming using graphics processing

units with numerical examples for microwave

engineering,” IEEE Microwave Magazine, vol. 14,

ARPAIO, VITUCCI, FUSCHINI: GPU-BASED RAY LAUNCHING ALGORITHM 1460

iss. 4, pp. 102-115, June 2013.

[3] J. D. Owens, D. Luebke, N. Govindaraju, M.

Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell,

“A survey of general-purpose computation on

graphics hardware,” Proc. Eur. Assoc. Comput.

Graph., pp. 21-51, Aug. 2005.

[4] A. Hidic, D. Zubanovic, A. Hajdarevic, A.

Huseinovic, and N. Nosovic, “Attempt of unbiased

comparison of GPU and CPU performance in

common scientific computing,” 2012 IX

International Symposium on Telecommunications

(BIHTEL), Sarajevo, Bosnia & Herzegovina, Oct.

25-27, 2012.

[5] S. W. Keckler, W. J. Dally, B. Khailany, M.

Garland, and D. Glasco, “GPUs and the future of

parallel computing,” IEEE Micro., vol. 31, iss. 5,

Sept.-Oct. 2011.

[6] US Dept. of Transportation. “Unmanned Aircraft

System (UAS) Service Demand 2015-2035:

Literature Review and Projections of Future Usage,”

Technical Report, v. 1.0, Feb. 2014.

[7] J. S. Lu, E. M. Vitucci, V. Degli-Esposti, F.

Fuschini, M. Barbiroli, J. A. Blaha, and H. L.

Bertoni, “A discrete environment-driven GPU-

based ray launching algorithm,” IEEE Transactions

on Antennas and Propagation, vol. 67, iss. 2, pp.

1180-1192, Feb. 2019.

[8] E. M. Vitucci, V. Degli-Esposti, F. Fuschini, J. S.

Lu, M. Barbiroli, J. N. Wu, M. Zoli, J. J. Zhu, and

H. L. Bertoni, “Ray tracing RF field prediction: An

unforgiving validation,” International Journal of

Antennas and Propagation, Hindawi, vol. 2015,

pp. 1-11, Aug. 2015.

[9] NVIDIA Corporation Whitepaper, “NVIDIA’s

Next Generation, CUDA Compute Architecture:

Kepler GK110/210 Family,” 2012.

[10] NVIDIA Corporation Whitepaper, “NVIDIA’s

Next Generation, CUDA Compute Architecture:

Pascal GP100 Family,” 2017.

[11] NVIDIA Corporation Whitepaper, “NVIDIA’s

NVIDIA Turing GPU Architecture: Graphics

Reinvented,” 2019.

[12] The MathWorks, Inc., “Matlab 2017B User Guide:

On-line Help,” referenced resources, 2016.

[13] NVIDIA Corporation, Developer’s zone,

“NVIDIA CUDA Toolkit 10.2.89: CUDA Toolkit

Documentation,” Nov. 2019.

[14] N. Matloff, “Parallel Computing for Data Science:

With Examples in R, C++ and CUDA,” June 4,

2015 Chapman and Hall/CRC Pub., June 2015.

[15] C. Reaño and F. Silla, “Performance evaluation of

the NVIDIA Pascal GPU architecture: Early

experiences,” 2016 IEEE 18th International

Conference on High Performance Computing and

Communications, Sydney, Australia, Dec. 12-14,

2016.

[16] Z. Dai and R. J. Watson, “Accelerating a ray

launching model using GPU with CUDA,” 12th

European Conference on Antennas and Propagation

(EuCAP 2018), London, UK, Apr. 9-13, 2018.

[17] M. Ujaldon, “Using GPUs for accelerating electro-

magnetic simulations,” Applied Computational

Electromagnetics Society Journal, vol. 25, no. 4,

2010.

Maximilian James Arpaio

received the Master degree in

Telecommunications Engineering

from the University of Parma in

2005 and a specialization in wind

engineering and aerodynamics from

the Polytechnic University of Milan

in 2007. He received a Postgraduate

Master in Project Management from the University of

Verona in 2012. Since 2006, he has been collaborating

with various Italian universities by promoting technical

seminars and scientific collaborations. His current

interests are on antennas and RF propagation within

different environments, especially those related to next

generation mobile systems (5G) for UAVs assisted

wireless networks. He is a member of the IEEE and the

Antennas & Propagation Society since 2018.

Enrico Maria Vitucci received the

M.Sc. degree in Telecommunication

Engineering and the Ph.D. degree in

Electrical Engineering from the

University of Bologna, Italy. He is

currently a tenure-track Assistant

Professor in electromagnetic fields

at the Department of Electrical,

Electronic and Information Engineering “G. Marconi”

(DEI) of the University of Bologna. From 2011 to 2016,

he was a Research Associate at the Center for Industrial

Research on ICT of the University of Bologna. In 2015,

he was a Visiting Researcher at Polaris Wireless, Inc.,

Mountain View, USA. His research interests are in

deterministic wireless propagation models and multi-

dimensional radio channel characterization. He is author

or co-author of about 80 technical papers on international

journals and conferences, and co-inventor of 4

international patents. He is a Senior Member of IEEE,

and a member of the Editorial Board of the journal

“Wireless Communications and Mobile Computing”.

ACES JOURNAL, Vol. 35, No. 12, December 20201461

Franco Fuschini graduated with

honours in Telecommunication

Engineering and received the Ph.D.

degree in Electronics and Computer

Science from the University of

Bologna in March 1999 and in July

2003, respectively. In April 1999 he

received the ‘Marconi Foundation

Young Scientist Prize’ in the context of the XXV

Marconi International Fellowship Award. He is now

Research Associate at the Department of Electrical,

Electronic and Information Engineering “G. Marconi” of

the University of Bologna. His main research interests

are in the area of radio systems design and radio

propagation channel theoretical modelling and

experimental investigation. Franco Fuschini is author or

co-author of about 20 papers on IEEE journals about

radio propagation and wireless system design.

ARPAIO, VITUCCI, FUSCHINI: GPU-BASED RAY LAUNCHING ALGORITHM 1462

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210210103019

 1
 1

 TR

 1
 1
 1
 0
 0
 1456
 TR
 1
 0
 0
 435
 74
 0
 1
 R0
 8.0000

 Odd
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 111
 110
 125ffe35-ef19-4ccc-bb70-babc43a4d126
 56

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman (unembedded) 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210210103027

 1
 1

 TL

 1
 1
 1
 0
 0
 1456
 TR
 1
 0
 0
 435
 74

 0
 1
 R0
 8.0000

 Even
 7
 AllDoc
 174

 CurrentAVDoc

 [Sys:ComputerName]
 43.2000
 26.6400

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0m
 Quite Imposing Plus 4
 1

 0
 111
 109
 7e60e9d4-d1cd-43dc-826b-212746804303
 55

 1

 HistoryList_V1
 qi2base

