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Abstract ─ Graphics Processing Units (GPU), have 

opened up new opportunities for speeding up general-

purpose parallel computing applications. In this paper, 

we present the computation efficiency in terms of time 

performances of a novel ray launching field prediction 

algorithm which relies on NVIDIA GPUs and its Compute 

Unified Device Architecture (CUDA). The software tool 

assesses the propagation losses between a wireless 

transmitter - carried by an Unmanned Air Vehicle (UAV) - 

over a 3D urban environment. Together with other 

effective features, the software tool is shown to reduce 

by several orders of magnitude the computation time of 

simulations. Performances and cost-benefit analysis of 

three different NVIDIA GPU configurations are thus 

investigated over three different urban scenarios, taken 

as test-cases for Air-to-Ground (A2G) communications 

for 5G applications and beyond. 

 

Index Terms ─ 5G, Air-To-Ground (A2G) propagation, 

GPU, NVIDIA, ray launching, UAV. 
 

I. INTRODUCTION 
Deterministic wave propagation modelling represents 

a state-of-the-art technique for RF channel analysis. The 

accuracy of site-specific propagation models, like ray 

tracing or ray launching, has seen great improvements  

in the last few decades thanks to better characterization 

of propagation mechanisms [1]. Although the compute 

capability of modern processors is constantly increasing, 

deterministic models still require significant runtimes  

to achieve accurate results, which has motivated the 

research community to extensive look for optimized and 

efficient acceleration methods [2]. Unfortunately, the 

complex mechanisms of electromagnetic waves as well 

as the huge amount of geometric calculations can make 

Central Processing Unit (CPU) computation inefficient. 

It has been argued that standard models - lacking of  

any speeding-up expedient - take more than an hour  

to retrieve channel characteristics across a kilometre-

scale scenario with a single radio source [3]. Parallel 

computing – on the contrary - is a process of decomposing 

a large serial task into smaller sub-tasks, which can be 

calculated concurrently. Multi-core processors are 

currently the most commonly available and exploited 

parallel computing platform, allowing much faster 

computations compared to a single core, as long as  

the computer code is optimized to take advantage from 

the multiple cores [4]. Furthermore, interest has grown 

rapidly in recent years towards harnessing the power of 

graphic hardware to perform general-purpose parallel 

computing. This alternative approach has become 

widespread and is based on the use of the GPU—in 

addition to the CPU—for general purpose computing.  

Having effectively reached a limit in the 

improvement of the single-core frequency of CPUs, 

GPU computing has become the method of choice for 

applications with high computational demands. Although 

GPUs have been known in the computing industry for 

over 40 years, they haven’t represented a breakthrough 

until programmable and general purpose (GPGPU) have 

been developed. Since then, the computation potential 

has gained increasing acknowledgement, and GPUs  

have become far more than an embedded device for 

display operations: their special design allows us to 

perform many operations simultaneously and to perform 

computation-heavy tasks that would otherwise require a 

large computer cluster. Moreover, modern GPUs are 

equipped for double-precision mathematical operations 

in parallel configuration, which extends the range of 

applications even further. It is anyway important to note 

that even if parallelisation is not always guaranteed by 

simply having installed a GPU card and using CUDA 

language, it can be potentially achieved at a high- or low-

level scale for many applications [5].  

By means of a comparative study of the computation 

efficiency in terms of calculation time, this paper aims at 

shedding light on the crucial benefits that GPU computing 

can bring to the characterization of electromagnetic 

propagation between an UAV flying over an urban area 

and users roaming at street level. To the best of the 

authors’ knowledge, no papers have been published so far 

with comparative, detailed, cost-benefit analyses of GPU 

architectures applied to electromagnetic computation 

problems. This represents the main novel contribution of 
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this paper; surprisingly, high-end, more powerful GPU 

card might not always provide the greatest computation 

efficiency as it will be shown in the next sections. 

As a matter of fact, while UAV assisted wireless 

communications are currently envisaged in the framework 

of 5G and beyond [6], experimental investigations of the 

A2G link are extremely challenging and complex due to 

the limited payload, the problem in powering up flying 

transceivers and the regulations to comply with at 

national/international level especially within inhabited 

areas. Therefore, ray-launching simulations can represent 

an easier and cheaper way to improve awareness about 

A2G propagation properties, as long as the corresponding 

computation effort is worth it. In this regard, a key 

characteristic of the ray launching approach is that rays 

do not interact each other along their own propagation 

paths. From departure to arrival, ray paths can be 

independently traced, which is of great advantage  

for GPU-based computation thanks to the intrinsic 

parallelisation degree within the whole propagation 

process. 

This document is structured as follows: in Section II 

we provide general details of the ray-launching software 

while in Section III we introduce the hardware and 

software configurations, with a particular focus on the 

NVIDIA GPU cards. In Section IV we go through the 

main results in terms of computation time and speed-up 

factors, both for isotropic and directive antennas. The 

final Section V summarises the results while briefly 

drawing the main conclusions. 

 

II. PRINCIPLES OF RAY-LAUNCHING 

ACCELERATION 
Due to the increase in the computational demands  

of modern applications, many developers are currently 

looking for different ways to accelerate their applications 

beyond the – limited – speed that conventional CPUs can 

provide. Among all the possible solutions, the baseline 

for the GPU-based A2G propagation assessment proposed 

within this paper is the Discrete Environment-Driven 

Ray Launching model (DED-RL), which has been 

introduced for the first time in [7] together with the 

related computational theory. As with all RL algorithms, 

DED-RL is suitable for prediction over large areas or 

volumes. More specifically, it has been designed to 

perform fast deterministic propagation prediction on 3-

D outdoor surfaces of all buildings and streets in a given 

target area, to enable multi frequency RF coverage 

design and optimization.  

The software relies on a digitalised 3D urban model  

where each building is a polygon prism with a defined 

shape, material, position and height. The model is totally 

discrete, i.e., the building walls are properly discretized 

into “tiles” with a predetermined size. DED-RL has also 

inherited some advanced features from a pre-existing  

RT model developed at the University of Bologna, such 

as the Effective Roughness (ER) diffuse-scattering 

model. In addition to the environment discretization, the 

algorithm is also “environment-driven”, meaning that 

ray tubes are launched only towards the tiles that are 

visible from the transmitter, and these ray tubes are then 

bounced toward tiles that are visible to each other. 

Another advantage of the discretization is that all the 

visibility relations among the tiles can be pre-computed 

and properly stored into a “visibility matrix” since the 

tile centres can be assumed as fixed points. This visibility 

pre-processing takes advantage of GPU parallelization 

and must be done only one time for a single simulation 

scenario. Once the pre-processing is done, ray bouncing 

can be performed very efficiently for any transmitter 

location in the same environment. All these features  

are implemented in DED-RL through the CUDA C++ 

language for NVIDIA GPUs. Using the combination of 

the above-mentioned techniques in addition to GPU 

parallelization, DED-RL is thus able to achieve very 

high levels of computational efficiency – up to four 

orders of magnitude compared to a conventional ray-

tracing algorithm – while retaining a good level of 

accuracy, despite the intrinsic error introduced by the 

environment discretization [8].  

All the main features of DED-RL algorithm 

described above — visibility pre-processing, launching 

of ray tubes, ray bouncing, and field computation — are 

suitable for code parallelization via GPU acceleration 

and thus may benefit significantly from GPU-based 

computation due to its ability to process vectors or 

matrices with extreme efficiency, as it will be shown in 

the following sections. 

 

III. HARDWARE CONFIGURATION AND 

SIMULATION MODELLING 
In order to investigate the computation time for 

UAV A2G propagation, we performed worst-case ray-

launching simulations of a full three-dimensional (3D) 

scenario. DED-RL simulations were run by means of 

dedicated scripts within a MATLAB R2017B (Update 9) 

environment. The purpose of the scripts was to automate 

in a simple and efficient way the different runs 

concerning UAV positions and flight levels, as well as 

its transmitting frequencies. 
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Table 1: NVIDIA GPUs configurations under investigation 

GPU 

Card 
Architecture 

Streaming 

Processors 

Core 

Clock 

Memory 

Clock 

Bus 

Width 
VRAM 

Single 

Precision 

Double 

Precision 

Tesla 

K40c 

Kepler, 

GK180 
2880 

745 

MHz 

6 GHz 

GDDR5 
384-bit 12GB 

5.04 

TFLOPS 

1.68 

TFLOPS 

Titan 

XP 

Pascal, 

GP102 
3840 

1405 

MHz 

11.4 GHz 

DDR5X 
384-bit 12GB 

12.15 

TFLOPS 

0.38 

TFLOPS 

Tesla 

P100 

Pascal, 

GP100 
3584 

1190 

MHz 

1.4 GHz 

HBM2 
4096-bit 12GB 

9.32 

TFLOPS 

4.73 

TFLOPS 
 

To freeze the hardware configuration throughout  

the different runs, all simulations were set-up on a 

commercial workstation, equipped with an Intel(R) 

Xeon(R) CPU E5-2620 v4 @ 2.10 GHz [8c/16t] and  

48 GB DDR4 RAM.  

As listed and described in Table 1, three different 

NVIDIA GPU cards were set-up: two cards belonging to 

the professional business sector (Tesla series), namely 

Tesla K40c (medium end) and Tesla P100 (high end), 

while the last one belonging to the gaming business one 

(GTX series), namely Titan Xp (high end). Although an 

extensive description of hardware details and specific 

mechanism of NVIDIA GPUs is out of the scope of this 

paper, the reader can find interesting details in [9] for 

Kepler and in [10] for Pascal architectures. 

Regardless of the specific business sector they have 

been designed for, GPU processing capabilities can  

be measured in terms of SP and Video RAM (VRAM), 

together with floating point operations per second, either 

single or double precision. It can be seen from Table 1 

that the three NVIDIA GPU cards show the same VRAM 

but they differentiate from each other for specific features. 

The Tesla series cards, as expected for professional 

business purposes, show better performances in terms  

of double precision TFlops, while the GTX card, 

gaming-oriented, really lacks. Conversely, the GTX card 

outperforms the Tesla series concerning single precision 

TFlops and memory clock, as expected from a card that 

must react promptly in tough gaming sessions. The 

number of SP is comparable between the two high-end 

GTX and Tesla cards, being instead slightly lower in the 

medium-end Tesla card. It should be remarked that 

performance improvements are an increasing function of 

the number of available computing cores; the more cores 

are available, the higher the speedups that can be 

achieved compared to sequential counterpart versions. 

Together with the complexity of device architectures, 

it is seen that computational power of GPUs is rapidly 

growing with many new features proposed to developers, 

to the researchers or to the gaming community, like the 

very recent Ray Tracing (RT) cores for real time ray-

tracing calculations [11]. Nevertheless, we must not  

be inebriated by the multiple features and capabilities: 

one of the most important aspects when comparing 

performances in terms of computation times, is to get a 

fair and balanced set of output metrics for proper 

accelerator comparison. In this regards Table 2 

summarises the main DED-RL parameters set-up during 

the different simulation runs. In fact, it was important to 

fine-tune the DED-RL parameters - among those related 

to the addressed GPU memory and the number of rays 

launched per cycle - with a set of commonly acceptable 

values for all the involved GPUs and to get comparable 

results among the different scenarios.  

For benchmarking purposes, the DED-RL software 

was configured assuming a single UAV hovering over a 

3D urban city environment at different positions in space. 
 

Table 2: Ray launching main simulation parameters 

Parameter Values 

Frequency 0.7, 3.5, 26 and 70 GHz 

UAV heights 
30, 50, 75, 150, 300, 

450 m AGL 

UAV hovering positions 8 circular positions 

Number of 

Interactions 

5 bounces, 5 reflections, 

2 diffractions and 1 scatter 

Number of Combined 

Interactions 

3 reflections/diffractions (max), 

3 diffractions/scatters (max) 

GPU Memory 

Allocation Heap Size 
1536 MB 

Maximum LOS Rays 

Per Cycle 
100000 

Amount of GPU 

Memory for Packets 
40% 

 

Table 3: Urban model environments 

Parameter Bologna Munich 
San 

Francisco 

No. Tiles 170931 148584 268868 

Area [Km2] 6.5 8.8 10.2 

Building/Area 30.5% 37.8% 40.5% 

 

Three different urban models were investigated, 

with a special focus on their city centres: Bologna (Italy), 

Munich (Germany) and San Francisco (USA). This was 

done to explore how much a specific urban map was 

affecting the computation time. Coverage predictions 

were performed on a whole urban area with a single tile 

resolution of 10x10 m and general details as further 

specified in Table 3. 

By means of tic and toc Matlab commands [12], it 
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was possible to measure - and to focus only on - the 

elapsed time before and after the call to the executable 

DED-RL file. 

Although, on one hand, this is the most 

straightforward way to measure the computation time in 

a coherent way among the different GPU cards, on the 

other hand it may be objected that the CPU processing 

affects this measurement as part of the whole RL code 

execution. We can say not only that this part is negligible, 

but we must also emphasise that this part is common – 

and the same – for any simulation run on the same 

workstation, thus returning a set of comparable results. 

 

IV. RESULTS 
Simulation results shown in the following 

subsections represent the combined outcomes of multiple 

aggregated runs corresponding to different UAV spatial 

hovering positions (i.e., lat-long UTM coordinates and 

height above ground level,) or transmitting frequencies, 

over the three different test-referenced scenarios. This 

strategy was agreed to make available significant data 

samples and a clear breakdown of run parameters and 

characteristics. 
 

A. Computation time for isotropic antennas 

In this specific subsection, the UAV was equipped 

with an isotropic antenna. Although this type of antenna 

does not have any physical meaning, it allowed us to  

run a worst-case scenario where rays were launched  

in all directions, thus increasing the computation effort 

of calculating multiple interactions at 360° spherical 

degrees. Furthermore, it is worth noting that the isotropic 

case can somehow represent real situations where the 

radiation lobe of the antenna is wide enough to 

illuminate the whole urban area below the UAV frame.  

To get the representative graphs in Fig. 1, runs have 

been averaged over the UAV spatial positions, as it turned 

out to slightly affect the computation time. According to 

Fig. 1, this time is generally longer at lower frequencies  

and shorter at higher frequencies. Differently from 

“Image” Ray Tracing techniques, where the intensity of 

a ray can be computed only after the whole ray path - 

from the transmitter to the receiver - is traced, Ray 

Launching can take note instead of the ray intensity 

while it is being traced. Therefore, rays with negligible 

intensity can be stopped and discarded, thus saving 

computation time. As propagation losses increase with 

frequency and distance, many rays are therefore 

dismissed by the DED-RL algorithm, thus explaining the 

achieved results. 

At the same time, the Tesla P100 GPU card tends to 

be the fastest one at lower frequencies, with an average 

speed up factor of ~4x vs. Tesla K40c and ~2x vs. Titan 

Xp. This speed-up factor is seen to increase with the 

complexity of the environment. In the most challenging 

case (San Francisco, according to the parameters listed 

in Table 3), the Tesla P100 shows a simulation time 

which is 3x and 7x lower compared to the Titan Xp 

and the Tesla K40 cards respectively, whereas the three 

GPU cards show similar performances from 26 GHz 

onwards. On one hand, these results are reasonable  

and proportional to the number of rays vs. computed 

interactions. On the other hand, this sounds like a 

surprising result: it might be expected the high end Tesla 

P100 card to always be somehow the first of the class 

due to its technical specs and economical value, while 

actually the gap with the Titan Xp is indeed minor.  

In agreement with CUDA programming best 

practices [13] and literature [14], this behaviour is likely 

related to the additional overhead the Tesla P100 brings 

in connection to its intrinsic complexity. This can limit 

the computation speed when there is no good balance 

among the different thread blocks scheduled onto the 

GPU Streaming Multiprocessors (SM). However, this 

imbalance is more likely to happen in less challenging 

cases, i.e. the higher frequencies, due to the selective 

discarding of those rays whose intensity falls below the 

minimum power threshold, as previously mentioned. 
 

B. Computation time for directive antennas 

Following the interesting results of the previous 

subsection, the UAV was then equipped with a 

directional antenna of fixed aperture angle α, placed 

under the UAV fuselage and pointing downwards.  

 

 (a) Bologna, Italy           (b) Munich, Germany          (c) San Francisco, USA 

 

Fig. 1. Computation time [s] over frequency [GHz] for different Nvidia cards and environments. 
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        (a) Bologna, Italy          (b) Munich, Germany       (c) San Francisco, USA  

 

Fig. 2. Computation time [s] over antenna aperture angle [°] for different NVIDIA cards and environments. 
 

This can be seen as a best-case scenario where rays 

are launched only within a specific cone, thus drastically 

reducing the computation effort of calculating additional 

interactions. In this regard, please note that angle α is 

simply the ideal radiation cone aperture, i.e., we assumed 

a simplified 0 dB constant gain inside and instead an –

Inf dB constant gain outside. 

To get the representative graphs in Fig. 2, runs have 

been averaged in terms of spatial positions and results 

split into low and high frequency samples, 700 MHz and 

70GHz respectively. On that note, it is seen that at 

70GHz the simulation time are flat all over the α angle 

span, with the Tesla P100 now the slowest among the 

card.  

As the limited number of rays to be traced at high 

frequency is further reduced by the antenna directive 

pattern, the simulation time is simply dominated by the 

specific overhead of the GPU, which is likely to be 

heavier for the Tesla P100. This is not completely true at 

700MHz, where plots are no longer flat and simulation 

time logically decreases as a function of the angle α, (i.e., 

it increases as a function of antenna directivity).  

Generally speaking, the use of directive antennas in 

our test-case brings out the way in which GPU overhead 

represents an important factor for any evaluation of the 

computation time. From these plots, it is possible to see 

the Titan XP card to better perform out of the other two 

cards, which is not always true in case of an isotropic 

antenna. 

 

V. CONCLUSION 
We have investigated the performance of a Discrete 

Environment-Driven Ray Launching Algorithm in terms 

of computation time and the related speed-ups among 

different NVIDIA GPU cards. 

We have demonstrated the benefit of GPU 

parallelization as a means to accelerate ray launching 

field computation, with typical computation times for 

complete predictions over all building surfaces ranging 

from seconds to few tens of minutes, depending on  

the size of the urban scenario, the hardware used for 

simulation runs and the characteristics of RF 

propagation. This shows the potential benefit of GPUs 

for electromagnetic simulations, and especially for 

deterministic field strength predictions, in fair agreement 

with the main outcomes of previous works in [15-17]. 

It was seen how computation time decreases with 

frequencies and the use of different directive antennas 

could affect simulation time. As it can be expected, the 

wider the antenna radiation cone, the longer the 

simulation time, although remarkable only at lower 

frequencies. It was also seen that both professional and 

gaming GPGPU provide reasonable and consistent 

results in terms of computation time, the former having 

better performances at lower frequencies due to the 

higher number of rays to be processed. On the other 

hand, performance can be degraded when using the high-

end Tesla GPUs in less demanding environments, due to 

their additional overhead. This shows that NVIDIA 

gaming GTX cards should not be automatically 

dismissed and they can be a good choice under specific 

simulation cases, instead of more expensive Tesla cards. 

Future works will focus on more demanding 

simulation environments, i.e., densely urban as well as 

on different and more recent Nvidia GPU architectures, 

especially those with RT cores, like Turing and Ampere. 
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