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Matrix representations for multi-degree B-splines

Carolina Vittoria Beccaria,⇤, Giulio Casciolaa

aDepartment of Mathematics, University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

Abstract

The paper is concerned with computing the B-spline basis of a multi-degree spline space, namely a space of piecewise
functions comprised of polynomial segments of di↵erent degrees. To this aim, we provide a general method to work
out a matrix representation relating the sought basis with another one easier to compute. This will allow us, for
example, to calculate a multi degree B-spline basis starting from local Bernstein bases of di↵erent degrees or from the
B-spline basis of a spline space where all sections have the same degree. This change of basis can be translated into a
conceptually simple and computationally e�cient algorithm for the evaluation of multi-degree B-splines.

Keywords: Multi-Degree spline, B-spline basis, matrix representation, evaluation, B-spline derivative
2010 MSC: 65D07, 65D17, 41A15, 68W25

1. Introduction

Spline functions are classical tools in approximation theory, with application in various fields ranging from ge-
ometric modeling and computer-aided design, up to solving partial di↵erential equations within the framework of
isogeometric analysis [1]. Classically, a spline is a piecewise function whose pieces belong to a polynomial space of
fixed degree d. Removing the constraint that each piece have the same degree yields a more ample family of splines,
refereed to as multi-degree splines (MD-splines for short) or also changeable-degree splines [2]. Multi-degree splines
are thus piecewise polynomial functions, where each piece may belong to a di↵erent space of algebraic polynomials.
In this way, the structure and the dimension of an MD-spline space can be chosen so as to involve the least degrees of
freedom necessary to approximate an assigned dataset, producing a more e�cient representation.

Multi-degree splines were initially investigated in the context of approximation theory with a view to studying their
zeros and their potential in the solution of Hermite interpolation problems [3, 4] and curve modeling [5]. Recently
they have enjoyed revived interest, not only in the context of geometric modeling [6–8], but also for the resolution
of di↵erential problems on multivariate domains within the framework of isogeometric analysis [9, 10]. The usual
polynomial splines can also be generalized by allowing each piece to be drawn from an Extended Chebyshev space
(see e.g. [11] and references therein, or [12] for a more computationally-oriented approach). In this respect, recent
studies [13, 14] are concerned with extending the multi-degree framework to Chebyshevian splines with section spaces
of di↵erent dimensions.

For practical applications and integration into CAD systems, spline functions are usually expanded in the B-spline
basis, for which e�cient and stable evaluation algorithms have long been known (see e.g. [15]). Akin to classical
splines, MD-spline spaces possess a basis of normalized, compactly supported functions, that we will refer to as
the MDB-spline basis. Early approaches for the derivation of this basis [2, 16–18] are subject to specific continuity
restrictions at the join of pieces of di↵erent degrees and rely on integral recurrence relations, which require a symbolic
implementation and therefore become overly ine�cient as soon as the dimension of the space or the degrees are
relatively high. Two recent methods [6, 9], instead, are capable of producing splines that have arbitrary continuity,
meaning that, between two pieces of degrees di and di+1, they can be Ck continuous for any k 6 min{di, di+1}. This
behavior properly generalizes the continuity properties of conventional splines to the multi-degree framework.
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The paper [6] exploits an integral definition of the MDB-spline basis to show that all the classical properties of
B-spline basis functions carry over to multi-degree spaces. To e�ciently calculate a spline, it is then suggested to
resort to another basis of an MD-spline space formed by transition functions. The transition functions are somewhat
locally supported functions, each of which can easily be computed by solving a system of linear equation of small
size. Thus this approach has the advantage of locality, despite involving the resolution of as many linear systems as
the dimension of the space.

A purely algebraic approach is instead pursued in [9]. The method starts from a vector containing a sequence
of conventional B-spline bases of di↵erent degrees and works out a linear operator, called the H-operator, which
represents the conversion matrix into the MDB-spline basis. In particular, matrix H has as many rows as the dimension
of the MD-spline space and as many columns as the sum of the dimensions of the classical spline spaces to be
connected. Its construction is a global procedure which, however, turns out to be quite e�cient thanks to the sparsity of
the involved matrices, see [7] for implementation details. It is noteworthy that the procedure itself does not guarantee
that a basis of a proper MDB-spline space be generated. Indeed, a rather elaborate proof of its correctness was
provided a posteriori [19].

We finally recall that multi-degree splines, in general, do not possess evaluation formulae akin to Cox-de Boor re-
currence relation [20, 21], which is the main tool for computing conventional splines. More precisely, such recurrence
relations have only been found restraining the continuity between pieces of di↵erent degrees to be (at most) C1[8, 22],
whereas it was inferred in [6] that they may not exist otherwise.

In this paper we propose an innovative procedure to derive a matrix representation relating the MDB-spline basis
with another convenient basis. This representation has the form N = M N0, where N is the sought MDB-spline basis
and N0 should be chosen as a basis for which stable and e�cient evaluation algorithms are available. In this way, we
can for example choose to express an MDB-spline basis N in terms of local Bernstein bases, or also of a conventional
B-spline basis of maximum degree. The method has a similar flavor as the H-operator, but encompasses some major
di↵erences and strengths. In particular, our algorithm relies on iterated knot insertions and degree elevations, familiar
tools to spline and geometric-modeling practitioners. From a conceptual point of view, this means that the impact of a
round of knot insertion and degree elevation is readily predictable and understandable, whereas from a computational
standpoint one is guaranteed to perform e�cient operations, both of which, in the multi-degree context, are of local
nature. Immediate advantages are that the method generates by construction a basis of a proper MD-spline space and
that computations can be optimized by exploiting the sparsity of the involved linear operators. Moreover, one may
retrieve the H-operator as a special case of this matrix representation, by simply setting the initial basis N0 to be the
same as in [19]. Thus, a by-product of our approach is to provide an alternative proof of correctness of the H-operator.
At the same time, the method in this paper is more general, since it allows us to select the initial basis N0 from a vast
class of spaces so as to minimize computational cost and improve numerical accuracy. To illustrate this potential, we
will consider spaces restrained to having C0 continuity between pieces of di↵erent degrees, therefore called C0 MD-
spline spaces. After observing that their MDB-spline basis can e�ciently be computed by a proper generalization of
Cox-de Boor recurrence scheme, we will discuss how the matrix representation relative to C0 MDB-splines is often
the most compact and entails the lowest computational complexity.

From the numerical point of view, previous works have focused on the e�ciency of the evaluation algorithm in
terms of number of operations, which is optimized by exploiting the compact support of the B-spline basis functions
to either solve a local problem [6] or a global problem characterized by sparsity properties [9]. Instead, a study on
the accuracy of computation, similar to those existing for conventional splines [20], has never been undertaken. As
regards e�ciency, it will become clear that the strength of our approach is the synergetic application of subsequent
knot insertion and degree elevation steps, which allows us to further reduce the number of performed operations. In
addition, unlike previous papers, we will also consider the problem of validating the accuracy of the procedure by
experimentally showing its good behavior in a variety of challenging situations.

The remainder of the paper is organized as follows. Section 2 recalls the necessary background on multi-degree
spline spaces and B-spline bases and the results on knot insertion and degree elevation that will serve as building
blocks for the matrix representation. In addition, Section 2.2 illustrates how the basis of a C0 multi-degree spline
space can e�ciently be evaluated by a simple generalization of Cox-de Boor recurrence scheme, which, to the best
of our knowledge, was never discussed elsewhere. Section 3 contains the actual algorithm to convert an assigned
B-spline basis into that of a target MD-spline space and discusses how this procedure yields matrix representations in
terms of easy-to-compute bases. Section 4 presents a numerical study on the computational aspects of the proposed
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method. Conclusions are drawn in Section 5.

2. Multi-degree spline spaces and B-spline bases

In the following we merely recall notions and results that will be necessary for the purpose of this paper, all
of which are taken from [6]. For further acquaintance on multi-degree splines, we refer readers to [6] itself and
[2, 5, 7, 9, 16–19].

A multi-degree spline (MD-spline, for short) is a piecewise polynomial function where each segment may have
di↵erent degree. To define a space of such functions on a real interval [a, b], we shall consider a breakpoint sequence
X B {xi}qi=1, a ⌘ x0 < x1 < . . . < xq < xq+1 ⌘ b, and a vector of positive integers d B

⇣
d0, . . . , dq

⌘
, where di represents

the degree on the interval [xi, xi+1]. In addition we shall take a vectorK B
⇣
k1, . . . , kq

⌘
of non negative integers, where

ki represents the continuity at the breakpoint xi, such that

0 6 ki 6 min(di�1, di), i = 1, . . . , q.

A multi-degree spline space corresponding to the assigned configuration of breakpoint intervals, degrees and
continuities is hence defined as follows.

Definition 1 (Multi-degree spline space). Given a partition X = {xi}q+1
i=0 on the bounded and closed interval [a, b], an

associated vector of polynomial degrees d B
⇣
d0, . . . , dq

⌘
, and a vector K B

⇣
k1, . . . , kq

⌘
of degrees of smoothness,

the corresponding space of multi-degree splines S(Pd,X,K) is the set

S(Pd,X,K) B
n
f
��� there exist pi 2 Pdi , i = 0, . . . , q, such that:

i) f (x) = pi(x) for x 2 [xi, xi+1], i = 0, . . . , q;

ii) D`pi�1(xi) = D`pi(xi) for ` = 0, . . . , ki, i = 1, . . . , q
o
.

In the above definition, Pdi is intended as the space of algebraic polynomials of degree at most di and Pd is the
piecewise polynomial space on X whose restriction to [xi, xi+1] coincides with Pdi , for i = 0, . . . , q.

It follows from standard arguments that a multi-degree spline space S(Pd,X,K) has dimension K, where

K = d0 + 1 +
qX

i=1

(di � ki) or, equivalently, K =
qX

i=1

(di�1 � ki) + dq + 1.

Remark 1. We remark that when di�1 = di = ki, then a multi-degree spline is a polynomial of degree di in the entire
interval [xi�1, xi+1].

Remark 2 (Conventional splines are multi-degree splines). When all degrees are the same, namely di = d, for
all i = 0, . . . , q, then S(Pd,X,K) reduces to the conventional spline space S(Pd,X,K), intended as a classical
polynomial spline space of degree d. Therefore, conventional splines are a special instance of multi-degree splines.

In order to generalize classical spline theory to the multi-degree context, it is appropriate to associate with a spline
space two di↵erent extended partitions, as firstly proposed in [4] and later used for the definition and computation of
MDB-spline basis functions in [6]. When dealing with conventional spline spaces, these two partitions are reduced to
one.

Definition 2 (Extended partitions). The set of knots s B
n
s j
oK

j=1
is called the left extended partition associated with a

multi-degree spline space S(Pd,X,K) if and only if:

i) s1 6 s2 6 . . . 6 sK ;

ii) sd0+1 ⌘ a;
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iii)
�
sd0+2, . . . , sK

 ⌘ {x1, . . . , x1|     {z     }
d1�k1 times

, . . . , xq, . . . , xq|     {z     }
dq�kq times

}.

Similarly, the set of knots t B
n
t j
oK

j=1
is called the right extended partition associated with S(Pd,X,K) if and only if:

i) t1 6 t2 6 . . . 6 tK ;

ii) tK�dq ⌘ b;

iii)
n
t1, . . . , tK�dq�1

o
⌘ {x1, . . . , x1|     {z     }

d0�k1 times

, . . . , xq, . . . , xq|     {z     }
dq�1�kq times

}.

Remark 3. Hereinafter we will confine ourselves to considering clamped partitions, i.e. extended partitions where
s1 = . . . = sd0+1 = x0 and tK�dq = . . . = tK = xq+1. Generalizing the results in this paper to periodic partitions is
straightforward, relying on the classical approach of wrapping breakpoint intervals (see e.g. [15, Chapter 8.1]).

In multi-degree spline spaces it is possible to identify a set of basis functions with properties similar to those
of conventional B-splines. By virtue of this analogy, this basis is called MDB-spline basis and denoted by Ni,m,
i = 1 . . . ,K, where m B max j{d j} [6]. Each element of the basis can be determined through an integral recurrence
relation which warrants that it be nonnegative, have compact support and enjoy the properties listed below. A graphical
illustration of such bases is presented later on (see Figure 2).

Proposition 1 (Properties of MDB-splines). The MDB-spline functions {Ni,m}Ki=1 of S(Pd,X,K) enjoy the following
properties:

i) Local Support: Ni,m(x) = 0 for x < [si, ti];

ii) Positivity: Ni,m(x) > 0 for x 2 (si, ti);

iii) End Point: Ni,m vanishes exactly

• dpsi �max{ j > 0 | si = si+ j} times at si,

• dpti�1 �max{ j > 0 | ti� j = ti} times at ti,

where psi is the index of the break-point associated with the knot si and pti is the index of the break-point
associated with the knot ti;

iv) Partition of unity:
X

i

Ni,m(x) = 1, 8x 2 [a, b].

Remark 4. Note that an MDB-spline Ni,m cannot have continuity higher than Ck j at a breakpoint x j 2 (si, ti). This
can easily be proved using the fact that any function in a multi-degree spline space S(Pd,X,K) can have at most as
many zeros as dimS(Pd,X,K) � 1 (see [4]).

We conclude by observing that a function f 2 S(Pd,X,K), expanded in the MDB-spline basis as

f (x) =
KX

i=1

ci Ni,m(x), x 2 [a, b],

can be represented on a single breakpoint interval [x j, x j+1] by only involving the nonvanishing MDB-splines. This
yields

f (x) =
X̀

i=`�d j

ci Ni,m(x), x 2 [x j, x j+1), s` 6 x j < min (s`+1, b) ,

where we shall take min (s`+1, b) to be b if s`+1 is not defined or equivalently if ` + 1 > K.
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2.1. Knot insertion and degree elevation for multi-degree splines
Throughout the paper we will strongly rely on the two classical spline-related tools of knot insertion and degree el-

evation, that have a natural counterpart in the context of multi-degree splines. In particular, the following Propositions
2 and 3 can be proved by standard arguments, by merely using the compact support and partition of unity properties
of the MDB-spline basis functions.

Proposition 2. (Knot insertion at a break point) Let S(Pd,X,K) and S(Pd,X, bK) be MD-spline spaces with same
breakpoint sequence and degrees. Let also the associated continuity vectors be K = (k1, . . . , k j, . . . , kq) and bK =
(k1, . . . , k j � 1, . . . , kq), for j 2 {1, . . . , q}. Then, the corresponding MDB-spline bases {Ni,m}Ki=1 and {N̂i,m}K+1

i=1 are
related through

Ni,m = ↵iN̂i,m + (1 � ↵i+1)N̂i+1,m, i = 1, . . . ,K, (1)

with coe�cients

↵i =

8>>>>><
>>>>>:

1, i = 1, . . . , ` � d j,

�i, i = ` � d j + 1, . . . , ` � d j + k j,

0, i = ` � d j + k j + 1, . . . ,K + 1,

(2)

where ` is such that s` 6 x j  min(s`+1, b), and 0 < �i < 1.

Proposition 3. (Degree elevation on one interval) Let S(Pd,X,K) and S(Pbd,X,K) be MD-spline spaces with same
breakpoint sequence and continuities. Let also the associated degree vectors be d = (d0, . . . , d j, . . . , dq) and bd =
(d0, . . . , d j + 1, . . . , dq), for j 2 {0, . . . , q}. Then, the corresponding MDB-spline bases {Ni,m}Ki=1 and {N̂i,m̂}K+1

i=1 satisfy
the identity

Ni,m = ↵iN̂i,m̂ + (1 � ↵i+1)N̂i+1,m̂, i = 1, . . . ,K, (3)

with coe�cients

↵i =

8>>>>><
>>>>>:

1, i = 1, . . . , ` � d j,

�i, i = ` � d j + 1, . . . , `,

0, i = ` + 1, . . . ,K + 1,

(4)

where ` is such that s` 6 x j  min(s`+1, b) ,and 0 < �i < 1.

Remark 5. Within an MD-spline space knot insertion can be performed in two di↵erent ways: one consists in dimin-
ishing the continuity at a breakpoint by one order, as in Proposition 2; the other corresponds to placing an additional
breakpoint in an existing interval (x j, x j+1), thus generating two subintervals. Proposition 2 is deliberately concerned
with the former circumstance, since it is the only one of interest in this paper. However, also knot insertion along
a breakpoint interval is featured by a relation akin to (1), which similarly follows from the compact support and
partition of unity properties of MDB-splines.

Remark 6. Degree elevating a multi-degree spline space means raising the degree d j on a given interval [x j, x j+1]
is raised, while leaving all other degrees di, i , j unchanged. Therefore, like knot insertion, also degree elevation
is a local operation, meaning that it only locally a↵ects the structure of a space and its MDB-spline basis functions.
Obviously, the same is not true in the context of conventional splines, where the degree must simultaneously be raised
on all intervals.

Classically, that is for conventional splines, knot insertion and degree elevation formulae akin to (1) and (3)
are viewed as tools to compute the unknown coe�cients �i and �i in (2)–(4), using the fact that the bases of both
spaces can e�ciently be calculated by well-established algorithms. These coe�cients are typically used to update the
representation of a spline function (or often the control polygon of a parametric spline curve) from the “starting” space
to the “arrival” space. Due to the formal analogy of relations (1) and (3) to their conventional counterpart, the same
holds for MD-spline spaces. In particular, knowing the two bases, the expressions of the coe�cients �i and �i were
derived in [6, Propositions 2 and 3]. It is worth noticing that, in this paper, we will instead deviate from the classical
view of knot insertion and degree elevation, since these tools will be used to compute an unknown MDB-spline basis
from a known one.
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2.2. Recurrence relations for C0 multi-degree splines
The purpose of this section is to show that a particular class of MD-splines admits simple and e�cient evaluation

algorithms, which represent a direct generalization of classical B-splines recurrence relations. More precisely, these
splines are identified as follows.

Definition 3 (C0 multi-degree (MD-) spline space). A space S(Pd,X,K) as in Definition 1 is said to be a C0 multi-
degree spline space if its functions are C0 continuous at the join of pieces of di↵erent degrees. Therefore it is defined
by

S(Pd,X,K), with K = (k0, k1, . . . , kq) and ki = 0 if di�1 , di, i = 1, . . . , q.

The following result represents an adaptation to the MD-spline setting of the classical Cox-de Boor recurrence
formula [20, 21], accomplished by using the left and right extended partitions and a local index of recursion related to
the specific degree associated with the evaluation interval. The proof is straightforward and therefore omitted.

Proposition 4 (Cox-de Boor recurrence relation for C0 MD-splines). Let S(Pd,X,K) be a C0 MD-spline space with
left extended partition s = {s j}Kj=1, right extended partition t = {t j}Kj=1 and m B max j{d j}qj=0. Then an MDB-spline
Ni,m, for i = 1, . . . ,K, can be computed on the break-point interval [x j, x j+1) contained in its support [si, ti] by the
following recurrence scheme:

N`,m�d j (x) =

8>><
>>:

1 x j 6 x < x j+1 and ` such that s` 6 x j < min(s`+1, b),

0 otherwise,

Ni,n(x) =
x � si

ti�m+n�1 � si
Ni,n�1(x) +

ti�m+n � x
ti�m+n � si+1

Ni+1,n�1(x), n = m � d j + 1, . . . ,m.

(5)

Note that each undefined Ni,n function in (5) shall be regarded as the zero function and 0/0 shall be intended as 0.

Moreover, derivatives of C0 MDB-splines can e�ciently be evaluated by the following recurrence process.

Proposition 5 (Recurrence relation for derivatives of C0 MD-splines). The setting being the same of Proposition 4,
for x 2 [x j, x j+1) and ` such that s` 6 x j < min (s`+1, b), the right derivatives of MDB-splines can be computed by the
following recurrence scheme:

D+Ni,n(x) =

8>>>>><
>>>>>:

0 n 6 m � d j,

(d j � m + n)
 

Ni,n�1(x)
ti�m+n�1 � si

� Ni+1,n�1(x)
ti�m+n � si+1

!
, n = m � d j + 1, . . . ,m, i = ` � n + m � d j, . . . , `.

(6)
If the evaluation point is instead chosen so that x 2 (x j, x j+1], the above relation holds with the left-hand side of (6)
replaced by D�Ni,n(x).

We remark that, not only Propositions 4 and 5 are an immediate generalization of standard evaluation methods,
but are also reduced to their classical counterpart when applied within conventional spline spaces. This should be no
wonder in that the B-spline basis of a C0 MDB-spline space is locally nothing else than either a Bernstein-type basis
or a conventional B-spline-type basis. An illustration such a basis is given in Figure 2(a) for the C0 MD-spline space
on [a, b] = [0, 4] featured by X = {1, 2, 3}, d = (3, 2, 2, 2) and K = (0, 1, 1), whose MDB-splines are the C0 join of
the the cubic Bernstein basis relative to [0, 1] and the (conventional) quadratic B-spline basis relative to [1, 4].

3. Evaluation and matrix representations of multi-degree B-splines

In this section we develop an algorithmic way to construct the B-spline basis of a multi degree spline space. The
proposed approach yields a matrix representation of the basis functions in terms of another suitable basis and is based
on iterated application of the following Propositions 6 and 7, which are closely related to the concepts of knot insertion
and degree elevation recalled in the previous section.

Since no ambiguity may arise, in the reminder of the paper we will drop the subscript m and use the shorter
notation Ni to indicate Ni,m.
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Proposition 6 (Reverse Knot Insertion (RKI)). Let S ⌘ S(Pd,X,K) and bS ⌘ S(Pd,X, bK) be multi-degree spline
spaces having same breakpoint sequence X and same vector of degrees d. Moreover let the associated continuity
vectors K =

⇣
k1, . . . , kq

⌘
and bK =

⇣
k̂1, . . . , k̂q

⌘
be such that k̂ j = k j � 1, for a given j 2 {1, . . . , q}, and k̂i = ki, for all

i = 1, . . . , q, i , j. Denoted by {N̂i}K+1
i=1 the B-spline basis of bS, the coe�cients ↵i = �i, i = ` � d j + 1, . . . , ` � d j + k j,

in (2) can be computed through the following formula:

1 � ↵i = �↵i�1
Dk j
� N̂i�1|x j � Dk j

+ N̂i�1|x j

Dk j
� N̂i|x j � Dkj

+ N̂i|x j

, (7)

where ↵`�d j = 1.

Proof. Since the MDB-spline function Ni 2 S must have continuity k j at x j, we shall require that

Dk j
� Ni|x j = Dkj

+ Ni|x j .

Substituting (1) in the above equality yields

Dkj
�

⇣
↵iN̂i + (1 � ↵i+1)N̂i+1

⌘
|x j = Dkj

+

⇣
↵iN̂i + (1 � ↵i+1)N̂i+1

⌘
|x j ,

from which (7) follows straightforwardly.

Proposition 7 (Reverse Degree Elevation (RDE)). Let S ⌘ S(Pd,X,K) and bS ⌘ S(Pd̂,X,K) be multi-degree spline
spaces having same breakpoint sequence X and same vector of continuities K . Moreover let the associated degree
vectors d =

⇣
d0, . . . , dq

⌘
and bd =

⇣
d̂0, . . . , d̂q

⌘
be such that d̂ j = d j + 1, for a given j 2 {0, . . . , q}, and d̂i = di, for all

i = 0, . . . , q, i , j. Denoted by {N̂i}K+1
i=1 the B-spline basis of bS, the coe�cients ↵i = �i, i = ` � d j + 1, . . . , `, in (4) can

be computed through the following formula:

1 � ↵i = �↵i�1
Ddj+1
+ N̂i�1|x̄

Ddj+1
+ N̂i|x̄

, (8)

where ↵`�d j = 1 and x̄ is any point in [x j, x j+1).

Proof. On [x j, x j+1) all the nonvanishing MDB-splines Ni 2 S have degree d j and hence

Ddj+1
+ Ni|x̄ = 0, for any x̄ 2 [x j, x j+1).

Substituting equation (3) in the above identity yields

Ddj+1
+

⇣
↵iN̂i + (1 � ↵i+1)N̂i+1

⌘
|x̄ = 0, for any x̄ 2 [x j, x j+1),

from which (8) directly follows.

Remark 7. Note that the denominator in (7) does never vanish in virtue of Remark 4, whereas the denominator in (8)
does never vanish since N̂i is a polynomial of degree exactly equal to d j + 1 on [x j, x j+1].

From the above Propositions 6 and 7 one may see that, provided S ⇢ bS, the coe�cients of knot insertion, resp.
degree elevation, only depend on the MDB-splines of the space having lower (local) continuity, resp. higher (local)
degree. Once these coe�cients are known, the MDB-splines Ni can in turn be generated by (1) or (3). Due to the
locality of reverse knot insertion and degree elevation, the procedure turns out to be rather e�cient, since i) when
passing from bS to S only a limited number of basis functions need to be updated and ii) the computation of each
MDB-spline Ni is extremely local, involving only two MDB-splines N̂i .

One can hence start from an initial MD-spline spaceS0 ⌘ S(Pd0 ,X,K0), such thatS ⇢ S0, and perform successive
steps of reverse knot insertion (RKI) and/or reverse degree elevation (RDE) to generate the MDB-splines of a target
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space S ⌘ S(Pd,X,K). Each round of reverse degree elevation is aimed at diminishing by one the degree in an
interval, until each interval [x j, x j+1] reaches the target degree d j, whereas each round of reverse knot insertion is used
to raise by one the continuity at a breakpoint until each break point x j reaches the target continuity k j. Overall, the
number of steps G required to pass from S0 to S amounts to the total number of RDE and RKI steps to be performed,
that is

G =
qX

j=0

(d0
j � d j) +

qX

j=1

(k j � k0
j ),

where d0
j and k0

j are the degrees and continuities associated with S0.
The process must be accomplished in such a way to generate a sequence of MD-spline spaces Sr ⌘ S(Pdr ,X,Kr),

r = 0, . . . ,G, such that
S B SG ⇢ SG�1 ⇢ · · · ⇢ S1 ⇢ S0,

where each space Sr is defined on [a, b], has same breakpoints X and has dimension Kr B K + (G � r), being K
the dimension of the target space S. In general, there may be more than one sequence of nested spaces leading from
S0 to SG and therefore, while S0 and SG are fixed, the intermediate spaces S1, . . . ,SG�1 will depend on the specific
ordering of RKI and RDE steps performed. In addition, there may be several ways to choose the initial space S0.
For example, a natural criterion would be to select S0 so as to minimize the total number of necessary steps G – see
Section 4 for a more thorough discussion on this regard.

Despite there is no other constraint on the sequence of RKI and RDE steps, to formalize the method it is convenient
to establish an ordering. We will therefore alternately consider an interval and a breakpoint, starting from the leftmost
interval and proceeding from left to right, applying how many RDE or RKI steps necessary, respectively, to reach the
target degree or continuity. The procedure is illustrated in Algorithm 1. It shall be noted that the algorithm is just
intended to schematize the fundamental idea discussed above, whereas the details of the method will be provided later
on in Algorithm 2.

Algorithm 1: Basic outline for the computation of the MDB-spline basis
Data: The MDB-spline basis of an initial space S0.
Result: The MDB-spline basis of a target space S.

1 r  0;
2 for j 0 to q do
3 for h d0

j � 1 to d j do
4 perform RDE to generate the MDB-spline basis of Sr+1 from the MDB-spline basis of Sr with

dr+1 = (d0, . . . , d j�1, h, d0
j+1, . . . , d

0
q) and Kr+1 = (k1, . . . , k j, k0

j+1, . . . , k
0
q);

5 r  r + 1;
6 end
7 if j < q then
8 for h k0

j+1 + 1 to k j+1 do
9 perform RKI to generate the MDB-spline basis of Sr+1 from the MDB-spline basis of Sr with

Kr+1 = (k1, . . . , k j, h, k0
j+2, . . . , k

0
q) and dr+1 = (d0, . . . , d j, d0

j+1, . . . , d
0
q);

10 r  r + 1;
11 end
12 end
13 end

The following example illustrates the process of generating the MDB-spline basis of a given target spaceS(Pd,X,K)
by following the outline of the discussed algorithm.

Example 1. (Evaluation of the MDB-spline basis) In the interval [0, 4], let us consider the MD-spline space S =
S(Pd,X,K) with X = {1, 2, 3}, d = (3, 2, 1, 2) and K = (2, 1, 1). Let us also consider the spaces S0, S1, S2, defined
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x0 x1 x2 x3 x4

d0 = 3 d1 = 2 d2 = 2 d3 = 2C0 C1 C1

s s1⌘s4 s5⌘s6 s7 s8

t t1⌘t3 t4 t5 t6⌘t8
(a) S0

���!
RKI

x0 x1 x2 x3 x4

d0 = 3 d1 = 2 d2 = 2 d3 = 2C1 C1 C1

s s1⌘s4 s5 s6 s7

t t1⌘t2 t3 t4 t5⌘t7
(b) S1

���!
RKI

x0 x1 x2 x3 x4

d0 = 3 d1 = 2 d2 = 2 d3 = 2C2 C1 C1

s s1⌘s4 s5 s6

t t1 t2 t3 t4⌘t6
(c) S2

���!
RDE

x0 x1 x2 x3 x4

d0 = 3 d1 = 2 d2 = 1 d3 = 2C2 C1 C1

s s1⌘s4 s5

t t1 t2 t3⌘t5
(d) S3 ⌘ S

Figure 1: Defining parameters for the spline spaces in Example 1 and corresponding left and right extended partitions.

on the same interval and having same breakpoint sequence as S, such that

S B S3 ⇢ S2 ⇢ S1 ⇢ S0.

A possible choice is to take S0 to be the MD-spline space featured by d0 = (3, 2, 2, 2) and K0 = (0, 1, 1); S1 with
d1 = (3, 2, 2, 2) and K1 = (1, 1, 1) and S2 with d2 = (3, 2, 2, 2) and K2 = (2, 1, 1). Each space S j, j = 0, . . . , 3,
has dimension 8 � j. The defining parameters for these spaces are represented in Figure 1. Note that S0 is a space
of C0 MD-splines and hence its MDB-spline basis can e�ciently be computed by the generalized Cox-de Boor type
recurrence relation discussed in Section 2.2. Denoted by {N j

i } the MDB-spline basis of S j, one can pass from the
basis {N0

i } to {N1
i } and from {N1

i } to {N2
i } through two successive rounds of RKI and from S2 to S3 through one round

of RDE.
More precisely, the RKI step to compute {N1

i } from {N0
i } reads as follows. According to equation (2), ↵1

i = 1, for
i 6 3, and ↵1

i = 0 for i > 5. Moreover, from (7),

(1 � ↵1
4) = �

D0�N̂0
3 |x1 � D0+N̂0

3 |x1

D0�N̂0
4 |x1 � D0+N̂0

4 |x1

,

which yields ↵1
4 =

2
5 . The basis {N1

i } is hence given by (1), where N1
i = N0

i , for i = 1, 2, N1
3 = N0

3 + (1 � ↵1
4)N0

4 ,
N1

4 = ↵
1
4N0

4 + N0
5 and N1

i = N0
i+1, for i = 5, 6, 7.

Knowing {N1
i }, we can now obtain {N2

i } by applying a round of RKI. In this case, from (2) we have ↵2
i = 1, for

i 6 2, and ↵2
i = 0 for i > 6. Moreover, from (7), we obtain

(1 � ↵2
3) = �

D00� N̂1
2 |x1 � D00+ N̂1

2 |x1

D00� N̂1
3 |x1 � D00+ N̂1

3 |x1

and (1 � ↵2
4) = �↵2

3
D00� N̂1

3 |x1 � D00+ N̂1
3 |x1

D00� N̂1
4 |x1 � D00+ N̂1

4 |x1

,

which results in ↵2
3 =

3
8 and ↵2

4 =
5

23 . Having determined all the necessary coe�cients ↵2
i , we can compute the

MDB-splines {N2
i } from (1). In particular, N2

1 = N1
1 , N2

2 = N1
2 + (1�↵2

3)N1
3 , N2

3 = ↵
2
3N1

3 + (1�↵2
4)N1

4 , N2
4 = ↵

2
4N1

4 +N1
5 ,

and N1
i = N0

i+1, for i = 5, 6.
Finally, generating {N3

i } from {N2
i } requires an RDE step as follows. From (4) we have ↵3

i = 1, for i 6 3, and
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Figure 2: MDB-spline bases of the spaces in Example 1, defined on [a, b] = [0, 4], with X = {1, 2, 3} and (a) d = (3, 2, 2, 2) and K = (0, 1, 1)
(initial C0 MD-spline space S0); (b) d = (3, 2, 2, 2) and K = (1, 1, 1) (space S1); (c) d = (3, 2, 2, 2) and K = (2, 1, 1) (space S2); (d) d = (3, 2, 1, 2)
and K = (2, 1, 1) (target space S = S3).

↵3
i = 0 for i > 5. Moreover, from (8), we obtain

(1 � ↵3
4) = �

D00+ N̂2
3 |x1

D00+ N̂2
4 |x1

,

from where ↵3
4 =

23
41 . The computed RDE coe�cients together with (3) allow us to derive the MDB-spline basis of

the target space S ⌘ S3 as N3
i = N2

i , for i = 1, 2, N3
3 = N2

3 + (1 � ↵3
4)N2

4 , N3
4 = ↵

3
4N2

4 + N2
5 and N3

5 = N2
6 . The basis

functions of spaces S0, . . . ,S3 are illustrated in Figure 2.

In the reminder of the section we will show how iterated steps of RDE and RKI type lead to an e�cient algorithm
for evaluating the MDB-spline basis of a target space S and to a matrix representation relating the MDB-spline basis
of S with that of the initial space S0. To this aim, we observe that a step of reverse knot insertion or reverse degree
elevation between two spaces S and bS can be represented in matrix form as

N = � N̂,

where N B (N1, . . . ,NK)T and bN B (bN1, . . . , bNK̂)T are the corresponding MDB-spline bases. If K and bK = K + 1 are
the dimension of S and bS, respectively, then � is a matrix of size K ⇥ (K + 1). In particular, for one step of reverse
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knot insertion � has the following bidiagonal structure

� =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0
. . . 0

1 1 � ↵`�d j+1
↵`�d j+1 1 � ↵`�d j+2

↵`�d j+2
. . . 1 � ↵`�d j+k j

↵`�d j+k j 1

0
. . .

0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (9)

whereas for one step of reverse degree elevation � is a bidiagonal matrix having the following form

� =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0
. . . 0

1 1 � ↵`�d j+1
↵`�d j+1 1 � ↵`�d j+2

↵`�d j+2
. . . 1 � ↵`

↵` 1

0
. . .

0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

. (10)

Let us now denote by {Nr
i } the MDB-spline basis of the Kr-dimensional spline space Sr and define the vector

Nr B
⇣
Nr

1, . . . ,N
r
Kr

⌘T
. On account of the above discussion, there exist a sequence of matrices �r, r = 1 . . .G, each one

having size Kr ⇥ Kr�1 and either one of the forms (9) or (10), such that

N1 = �1N0, N2 = �2N1, . . . , NG = �GNG�1.

If we now indicate by In the identity matrix of size n and set

M0 = IK0 and Mr = �rMr�1, i = 1, . . . ,G,

the MDB-spline bases of S and bS turn out to be related via the matrix representation

NG = M N0, with M B MG, (11)

where M has size KG ⇥ K0.
Algorithm 2, which we call the RDE-RKI Algorithm, contains the steps for computing the representation matrix

M. The algorithm starts from the K0 ⇥ K0 identity matrix M0 and produces, by successive transformations of M0, the
matrix M in (11), that has size KG ⇥ K0.
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Algorithm 2: RDE-RKI Algorithm
Data: A vector N0, whose entries are the elements of the MDB-spline basis of S0.
Result: A matrix M of size KG ⇥ K0 such that NG = MN0.

1 M0  IK0 ;
2 r  0;
3 for j 0 to q do
4 for h d0

j � 1 to d j do
5 compute Dh+1

+ N0 at x j;
6 Dh+1

+ Nr  Mr Dh+1
+ N0;

7 compute ↵r+1
i from (8), i = ` � h + 1, . . . , `, with ` such that s` 6 x j 6 min(s`+1, b) ;

8 Mr+1  �r+1Mr;
9 r  r + 1;

10 end
11 if j < q then
12 for h k0

j+1 + 1 to k j+1 do
13 compute Dh

�N0 and Dh
+N0 at x j+1;

14 Dh
�Nr � Dh

+Nr  Mr (Dh
�N0 � Dh

+N0);
15 compute ↵r+1

i from (7), i = ` � d j+1 + 1, . . . , ` � d j+1 + h, with ` such that s` 6 x j 6 min(s`+1, b) ;
16 Mr+1  �r+1Mr;
17 r  r + 1;
18 end
19 end
20 end
21 M Mr.

Remark 8 (Computational complexity of the RDE-RKI Algorithm). The total number of coe�cients ↵r+1
i to be

determined by the entire algorithm, that is iterating over all the intervals (for RDE steps) and all breakpoints (for RKI
steps), is

CompRDE-RKI =
1
2

0
BBBBBB@

qX

j=0

d0
j (d

0
j � 1) � d j(d j � 1)

1
CCCCCCA +

1
2

0
BBBBBB@

qX

j=1

k j(k j + 1) � k0
j (k

0
j + 1)

1
CCCCCCA . (12)

The above formula takes into account that no computation is required in case an interval has target degree d j s.t.
d j = d0

j , or a breakpoint has target continuity k j s.t. k j = k0
j . Note that CompRDE-RKI depends on the choice of the

initial space S0 and may thus vary accordingly.
We will use CompRDE-RKI as an index of computational complexity, since the number of operations necessary

for the computation of the coe�cients ↵r+1
i and the subsequent updating of matrices Mr can be bounded above by

CompRDE-RKI times a suitable constant, as will be explained by the following two remarks.

Remark 9 (Cost of the computation of each RDE or RKI coe�cient). In our implementation of Algorithm 2, the
derivatives of the C0 MDB-splines in S0 at Lines 5 and 13 are computed in preprocessing at each break point x j up to
the necessary order. The computational cost of each coe�cient ↵r+1

i in an RDE or RKI step is thus given by number
of floating point operations for the computation of the derivatives at Line 6, resp. 14, which involves the product of
the (i� 1)th row of Mr and the precalculated derivatives in S0, plus the number of elementary operations in (8), resp.
(7) (Lines 7 and 15).

Remark 10 (Computational cost of a matrix update). The products �r+1Mr at Lines 8 and 16 of Algorithm 2 can
e�ciently be computed exploiting the structure and sparsity of the involved matrices. In particular any such product
can be obtained by replacing each row of index i of Mr with a combination of the two rows of indices i and i + 1,

12



namely
ith row of Mr+1  � ↵r+1

i (ith row of Mr) + (1 � ↵r+1
i+1 ) ((i + 1)th row of Mr) , (13)

where ↵r+1
i are the nontrivial elements of the bidiagonal matrix �r+1 and correspond to rows i = ` � h, . . . , ` for the

product at Line 8, resp. i = `� d j+1, . . . , `� d j+1 + h for the product at Line 16. In other words, for each pair ↵r+1
i and

↵r+1
i+1 , such that ↵r+1

i+1 has been calculated on the previous line of the algorithm, it is necessary to perform the update
(13), the computational cost of which is the combination of two rows of Mr. The cost of (13) can be further optimized
taking into account that each Mr is a band matrix, in that it represents MDB-spline functions in terms of (compactly
supported) C0 MDB-splines, and so most of its row entries will be zero.

In our implementation of Algorithm 2 matrices Mr are stored in a single matrix, which is overwritten at each
iteration, so no other information needs to be stored while the algorithm is being executed. In particular, the algorithm
starts from the identity matrix M of size K0 ⇥ K0 and updates it until obtaining the final matrix M of size KG ⇥ K0
(where K0 is the dimension of the initial space S0 and KG < K0 is the dimension of the target space S = SG).

Continuing Example 1, we illustrate in the following the successive matrices Mr generated by the RDE-RKI
Algorithm and the resulting matrix representation relating the MDB-spline basis of the target space S with that of the
C0 MD-spline space S0 considered in the example.

Example 1 (Continued). In the considered setting, the starting data are M0 = I8 and a vector N0 = (N0
1 , . . . ,N

0
8 )T

containing the MDB-spline basis of the C0 MD-spline space S0. The first step of the algorithm, which is of RKI type,
leads to a matrix M1 of size 7 ⇥ 8

M1 = �1M0 =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 3/5 0 0 0 0
0 0 0 2/5 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

such that (N1
1 , . . . ,N

1
7 )T = M1 (N0

1 , . . . ,N
0
8 )T . The second RKI-type step produces a matrix M2 of size 6 ⇥ 8

M2 = �2M1 =

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 5/8 3/8 0 0 0 0
0 0 3/8 99/184 18/23 0 0 0
0 0 0 2/23 5/23 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCA

,

such that (N2
1 , . . . ,N

2
6 )T = M2 (N0

1 , . . . ,N
0
8 )T . Finally, the third and last step, which is of RDE type, yields the following

matrix M B M3 of size 5 ⇥ 8

M B M3 = �3M2 =

0
BBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 5/8 3/8 0 0 0 0
0 0 3/8 189/328 36/41 18/41 0 0
0 0 0 2/41 5/41 23/41 1 0
0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCA
.

Matrix M represents the MDB-splines of S ⌘ S3 in terms of the MDB-splines of S0 in such a way that

(N3
1 , . . . ,N

3
5 )T = M (N0

1 , . . . ,N
0
8 )T .

The RDE-RKI Algorithm enables us to compute the MDB-splines of a target space S from those of any space S0
such that S ⇢ S0. The choice of S0 may thus be driven by specific application requirements, simple computational
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e�ciency considerations, or potentially any other criterion. In Section 3.4, we will further delve on this topic and
we will see that a generally good choice is to trigger the algorithm form a space of C0 MD-splines, whose basis can
e�ciently evaluated by the generalized Cox-de Boor recurrence relation in Section 2.2. Alternatively, we may com-
pute the MDB-spline basis starting from the Bernstein bases relative to each interval, or from a “global” conventional
B-spline basis of maximum degree m B max j{d j}qj=0. We can as well choose the initial basis in such a way that the
representation matrix M coincides with the H-operator in [7]. The following Sections 3.1, 3.2 and 3.3 are devoted to
analyzing these special instances of the proposed algorithm.

3.1. Matrix representation in terms of Bernstein bases
In this section, we seek a matrix representation in terms of the Bernstein bases of degree d j relative to the break-

point intervals [x j, x j+1], j = 0, . . . , q. For any given target space S ⌘ S(Pd,X,K), such a representation is obtained
by taking an initial space S0 with continuity vector K0 = (0, . . . , 0) and same degree vector as S and by applying
RKI-type steps to generate the MDB-spline basis of S. Each round of reverse knot insertion raises by one the conti-
nuity at a break point until each break point x j reaches the target continuity k j, in such a way that the total number of
steps necessary to pass from S0 to S is G =

Pq
j=1 k j and S ⌘ SG. Denoted by {Br,d j }, r = 0, . . . , d j the Bernstein basis

relative to [x j, x j+1] and set B = (B0,d0 , . . . , Bd0,d0 , B0,d1 , . . . , Bdq,dq )T , we shall hence take N0 in (11) to be

N0 = AB, with A =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0

0
. . . 0

0 0 1 1 0 0

0
. . . 0

0 0 1
. . .

. . . 1 0 0

0
. . . 0

0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (14)

where the matrix blocks have sizes (d0 + 1) ⇥ (d0 + 1), (d1 + 1) ⇥ (d1 + 1), . . ., (dq + 1) ⇥ (dq + 1). This yields the
following matrix representation in terms of Bernstein bases:

NG = M B, with M B M A.

In this particular situation, Algorithm 2 is reduced to a simplified version, which we refer to as the RKI Algorithm,
consisting of rows 11–19 only and where the continuity vector of S0 has entries k0

j+1 = 0, for all j = 0, . . . , q � 1.
The computational complexity of the RKI Algorithm, measured as the total number of coe�cients ↵r+1

i to be
calculated is

CompRKI =
1
2

qX

j=1

k j (k j + 1), (15)

which corresponds to the second summand at the right-hand side of (12).

3.2. Matrix representation in terms of the conventional B-spline basis of maximum degree
We now address the special case in which we want to represent the MDB-spline basis in matrix form, via multipli-

cation by the B-spline basis of a conventional spline space where all sections have the same degree m B max j{d j}qj=0.
In this situation, for a given target space S ⌘ S(Pd,X,K), we shall choose an initial space S0 having continuity

vector K0 = K and a constant degree vector d0 = (m, . . . ,m). We will hence generate the MDB-spline basis of S
by performing successive reverse degree elevation steps only. Each round of degree elevation diminishes by one the
degree on an interval, until each interval [x j, x j+1] reaches the target degree d j, in such a way that the total number
of steps G necessary to pass from S0 to S is G =

Pq
j=0(m � d j) and S ⌘ SG. In this case, the entries of N0 in (11)
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are the elements of the conventional B-spline basis of degree m and Algorithm 2 consists in processing each interval
[x j, x j+1], j = 0, . . . , q, and perform m � d j RDE steps to diminish the degree up to the target one. This leads to a
simplified version of the algorithm, which we refer to as the RDE Algorithm, consisting of lines 4–10 only and where
the degree vector associated with S0 has entries d0

j = m, for all j = 0, . . . , q. The computational complexity of the
RDE Algorithm, intended as the total number of computed coe�cients ↵r+1

i , is

CompRDE =
1
2

0
BBBBBB@(q + 1) m (m � 1) �

qX

j=0

d j (d j � 1)

1
CCCCCCA , (16)

which corresponds to the first summand at the right-hand side of (12).

3.3. Matrix representation in terms of local conventional B-spline bases
We are interested here in the special setting of the RDE-RKI Algorithm enabling us to reproduce the H-operator

[7]. This occurs when one starts from an MDB-spline basis which is a conventional B-spline basis piecewisely. More
precisely, for a given target space S ⌘ S(Pd,X,K), we shall define the vector J = ( j1, . . . , jp), jr < jr+1, whose
entries are the indices j 2 {0, . . . , q} such that d j�1 , d j. The restriction of S to [x0, x j1 ] is a conventional spline space
of degree d0 and we denote its B-spline basis {Nr,d0 }. Analogously, for i = 1, . . . , p�1, the restriction of S to [x ji , x ji+1 ]
is a conventional spline space of degree d ji with B-spline basis {Nr,d ji

} and finally the restriction to [x jp , xq+1] is a
degree-dq spline space with B-spline basis {Nr,dq }. Altogether these basis functions describe a piecewise conventional
spline space, with C�1 continuity at each knot x ji .

Taking the vector N�1 = (N1,d0 ,N2,d0 , . . . ,N1,d j1
,N2,d j1

, . . . ,N1,dq ,N2,dq . . .)T one may obtain a basis N0 of a C0

MD-spline space by the transformation
N0 = AN�1,

where matrix A has p + 1 blocks and a similar structure as in (14), the only di↵erence being that the size of each
block is now equal to the number of corresponding conventional B-spline functions. In particular N0 is the basis of an
MD-spline space having degree vector d0 = d and continuity vector K0 such that, for i = 0, . . . , q,

k0
i =

8>><
>>:

0 if i is an element of J,
ki otherwise,

which we will take to be the initial space S0. The MDB–spline basis of S is hence generated through the RKI
Algorithm, where each round of reverse knot-insertion raises by one the continuity at a breakpoint x j up to the target
continuity k j. The total number of steps necessary to pass from S0 to S ⌘ SG is thus G =

P
j2J k j. This results in the

following matrix representation in terms of local conventional B-spline bases:

NG = M N�1, with M B M A,

where M coincides with the H-operator in [7].

3.4. Which initial space?
Given the possibility of selecting S0 within a vast family of spaces, it is natural to examine whether there can be an

“optimal” choice or at least a default good one. As usual, specific application requirements, if existing, represent the
most important criterion of choice. For example, IGA practitioners will probably privilege a representation through
local Bernstein bases, like the one we can get from the RKI Algorithm described in Section 3.1. For geometric
modeling purposes, the customary B-spline basis representation will make us more inclined to define S0 as in Sections
3.2 and 3.3. If instead no application-related requirement is dictated, it is reasonable to aim at containing as much as
possible the size of the representation matrix M and the overall computational cost of the algorithm. Recalling that M
has size KG ⇥ K0, we will therefore be naturally oriented towards choosing the space of minimum dimension among
those containing S. In most cases, this will also entail the least computational complexity, estimated as the total
number of coe�cients ↵k+1

i to be calculated (see equations (12), (15), (16)). As a consequence, we may conclude that
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minimizing the dimension of S0 provides a good default criterion, which guarantees the e�ciency of the algorithm in
general circumstances.

It is interesting to notice, however, that there are special cases where the space of smallest dimension does not
correspond to the least computational complexity, nor the best performance of the algorithm. This will be illustrated
by a counterexample later on (see Table 4 and related discussion in Section 4), showing that these aspects can be
improved by an ad-hoc choice of S0.

We conclude the discussion by providing an illustrative example of how many and which initial spaces can be
identified in correspondence of an assigned target space. In the interval [0, 3], consider the MD-spline space S =
S(Pd,X,K) with X = {1, 2}, d = (4, 3, 5) and K = (3, 1), having dimension K = 9. In this setting:

• If we seek a representation in terms of local Bernstein bases as in Section 3.1, then S0 should have same degree
vector as S, continuities K = (0, 0) and thus K0 = 13.

• If instead we aim at a representation in terms of the conventional B-spline basis of maximum degree, as in
Section 3.2, then S0 and S should have the same vector of continuities, but S0 will be a conventional spline
space of degree 5 and dimension K0 = 12.

• A further analysis, shows that there are candidate spaces S0 of even lower dimension, such as the C0 MD-spline
space having degrees d0 = (4, 4, 5) and continuities K0 = (3, 0), having dimension K0 = 11 and resulting in
CompRDE-RKI = 4.

• Though the above are e↵ective and reasonable choices, there are indeed many more possibilities. We might
as well take, for example, d0 = (4, 5, 5) and K0 = (0, 1). Clearly this space has worst performance than the
previous one, since K0 = 14 and CompRDE-RKI = 13.

• Modifying slightly our example, we may now consider the MD-spline space S = S(Pd,X,K) on [0, 3], having
X = {1, 2}, d = (4, 3, 5), K = (3, 2) and dimension K = 8. There are now two spaces of minimum dimension,
corresponding to d0 = (4, 4, 5), K0 = (3, 0) and d0 = (5, 5, 5), K0 = (3, 2), for both of which K0 = 11. In this
circumstance, an analysis of the computational complexity will orient our choice towards the former space, for
which (12) yields CompRDE-RKI = 6 against 11 for the latter space.

Summarizing, we have identified di↵erent spaces S0 to choose from, based on the sought type of representation,
the size of matrix M and the computational complexity of the algorithm. We have observed that, in general, starting
from a C0 MD-spline space allows us to contain the number of steps of the algorithm (fewer matrices Mr to be
calculated) and the size of M, and that this criterion of choice can e↵ectively be complemented by an analysis of
computational complexity.

4. Numerical considerations

The RDE-RKI Algorithm yields a representation matrix M whose entries are nonnegative, smaller than or equal
to one, and where the sum of each column is equal to one. Therefore the change of basis N = MN0 is well-suited for
numerical computations. However the calculation of the entries of M according to (7)–(8) involves a few passages
that may raise some concern from a numerical point of view, such as the evaluation of the derivatives of MDB-spline
functions in S0 and a few arithmetic operations that may be subject to numerical cancellation errors. This makes it
worthy of investigating the accuracy achieved in the computation of the elements of M.

In the absence of round-o↵ error on the data, a common technique for estimating the accuracy of a numerical
method consists in recomputing at a higher precision and test how many digits of the original and more accurate
answer agree (see e.g. [23]). For this purpose, we implemented the RDE-RKI Algorithm and its variants in double
and quadruple precision (16 and 32 decimal digits of precision, respectively) using MATLAB variable-precision
arithmetic capability. We hence performed a thorough experimentation to verify that, in extreme circumstances, the
aforementioned criticality do not destructively a↵ect the computation.

In the following sections, we analyze passages which deserve special attention, discussing how to ensure the
accuracy of computations, and we present an illustrative sample of our numerical experiments. This analysis will
confirm that the RDE-RKI Algorithm yields accurate results for target spaces of practical interest and even beyond.
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4.1. On the computation of the MDB-spline basis functions and of their derivatives
Akin to previous methods [6, 9], the RDE-RKI Algorithm relies on the derivatives of basis functions in the initial

space S0. When such a basis is formed piecewisely by Bernstein or B-spline type bases, the derivatives can be
computed by classical recurrence schemes [21], which are known to be stable for any order of di↵erentiation [24]. As
discussed in Section 2.2, these recurrence schemes can be adapted for the case where S0 is a space of C0 MD-splines,
in such a way that the same stability properties can be expected. This expectation has been experimentally confirmed
by comparing results obtained in double and quadruple precision for several initial data and derivatives of any order,
leading us to conclude that the computed derivatives of a C0 MDB-spline basis are accurate whatever the initial space
S0.

In spite of this, the derivatives of basis functions may become large for high degrees and/or orders of di↵erentiation
and may have di↵erent signs at a breakpoint. For example, at the breakpoints of a uniform partition, B-splines of
degree 20 have 16th derivatives of magnitude ⇡ 1021. Thus to generate a matrix M whose entries are non-negative
and less than or equal to 1, we may have to use much larger intermediate values. This contradicts well-known
good practice, which, in order to prevent accuracy problems, would require, when possible, to avoid working with
intermediate values whose magnitude is significantly higher than the final solution (see e.g. [23], pp. 27).

The above discussion prompts us to use additional care in order to minimize potential loss of significant digits
when dealing with multi-degree spline spaces of locally high degree – namely when derivatives of high order are
involved. In this respect, numerical instability issues may be overcome resorting to multi-precision software libraries,
paying the price for a reduction in the calculation speed, or to the more e�cient EFT (Error-Free Transformation)
approaches, also called compensated algorithms (see e.g. [25, 26] and the monograph [23]). A compensated algorithm
is one where only a subset of operations, those potentially subject to loss of information, are performed with higher
precision and without a↵ecting computational e�ciency. In our case, we have realized a compensated version of the
RDE-RKI Algorithm in which dangerous calculations are performed with 32 digits of precision, whereas 16 digits of
precision are used elsewhere. This strategy has produced highly accurate results in all our numerical experiments, a
sample of which will be discussed in Section 4.3.

4.2. Analysis of the RDE-RKI Algorithm and identification of steps that need to be compensated
To identify potential sources of errors and passages that need to be implemented in a compensated manner, we

shall analyze step by step the operations performed by the RDE-RKI Algorithm. We refer below to Algorithm 2, but
for obvious reasons the same applies to its variants in Sections 3.1, 3.2, 3.3.

i) Evaluation of derivatives. Derivatives of the basis functions in S0 must be calculated at each breakpoint up to
a specific order (Lines 5 and 13 in Algorithm 2). More precisely, an RDE-type step (Line 5), for an interval
with target degree d j, requires computing the derivatives of basis functions of degree d0

j for all orders of di↵er-
entiation from d j to d0

j ; An RKI-type step (Line 13), at a breakpoint x j, entails evaluating derivatives of basis
functions of degrees d0

j�1 and d0
j up to the target order k j. In virtue of the previous discussion (see Section 4.1),

the derivatives DhN0 involved in RDE-type steps and Dh
+N0 and Dh

�N0 involved in RKI-type steps are to be
deemed accurate.

ii) Matrix-vector products. As soon as h > 1, successive entries of the vectors Dh
+N0 and Dh

�N0 � Dh
+N0 may have

di↵erent signs and large values. As a consequence, the matrix-vector products MrDh
+N0 and Mr(Dh

�N0 �Dh
+N0)

(Lines 6 and 14) are potentially subject to numerical cancellation and should be handled with care.

iii) Calculation of the coe�cients ↵i. The calculation of the coe�cients ↵i (Lines 7 and 15) according to (7)–(8)
may be subject to numerical errors in case higher order derivatives are large.

iv) Update of matrix Mr. The computation of Mr+1 (Lines 8 and 16) from Mr involves linear combinations of
positive entries of Mr with coe�cients ↵i 2 [0, 1] and thus is numerically safe.

On account of this analysis, in the compensated version of the RDE-RKI Algorithm only the delicate operations at
the above items ii) and iii) are performed using 32 decimal digits. More precisely, at each iteration, though derivatives
are computed with 16 digits of precision, the matrix-vector products at ii) are then performed and stored with 32
digits; the same precision is also used to calculate the coe�cients ↵i at iii), which are finally converted to 16 digits of
precision prior to the matrix update in iv).
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4.3. Numerical experiments
The error on the result was quantified as

Err = kM16 digits �M32 digitsk1,

where M16 digits and M32 digits are the matrix representations of the target basis NG in the initial basis N0 obtained with
16 and 32 decimal digits of precision. Measuring the error in 1-norm appears as a natural choice in that: i) regardless
of the initial space S0, matrix M has the same number of elements in each column, since the size of M is KG ⇥K0 and
ii) matrix M has column-sum equal to one, therefore producing the same relative and absolute error in 1-norm.

Our experimentation showed that in practical situations, that is for reasonable degrees and moderately non-uniform
breakpoint sequences, the RDE-RKI Algorithm and its variants (merely RKI or merely RDE) always yield accurate
results, with errors laying within working precision. The examples presented here focus instead on more challenging
circumstances, featuring very high degrees and highly non-uniform partitions.

For a target space defined on two breakpoint intervals, the evaluation procedure will reduce to either one of the
simplified versions in Sections 3.1 and 3.2, which consist in performing either RKI or RDE steps. Tables 1 and 2
present a comparison of the RKI and RDE Algorithms and their compensated versions in this circumstance. At first
glance, for algorithms that do not use compensated operations, the error (column Err) seems to grow coherently with
the increase in computational complexity (reported in column CompRDE-RKI and quantified as the total number of
coe�cients ↵i to be determined). A more in-depth analysis, however, shows that in some cases the loss of accuracy
increases at a higher rate that the number of performed arithmetic operations. This undesired behavior is corrected by
the compensated steps (CS) of the algorithms (see column Err CS).

A similar experiment is presented in Table 3 for a target space with several breakpoint intervals. Here numerical
results also suggest that the purely RDE Algorithm may be more prone to loss of accuracy, as one can see from the
central row in the table. This can be explained by the fact that the RDE Algorithm generally works with higher order
derivatives that, though accurate, have larger values. On the other hand, the RDE Algorithm can have much better
performance than the RKI Algorithm for certain target spaces (see e.g. the last two rows), which suggests that, in
more general situations, an adequate combination of RDE and RKI steps should be the best option.

Our last example further reinforces this view. In Section 3.4 good choices for the initial space S0 were identified
to be the C0 MD-spline space of minimum dimension among those containing SG, or the space yielding the lowest
computational complexity. For an assigned target space SG, Table 4 presents an overview of the performance of
the algorithm triggered from the more e�cient initial spaces, along with an analysis on the dimension of S0 (or,
equivalently, the size of M, that is KG ⇥ K0) and the computational complexity. When using the non compensated
algorithm, the best overall performance is not achieved by the space S0 of minimum dimension, nor by that implying
the least number of RDE steps. It is instead obtained by the synergetic use of RDE and RKI steps corresponding to
the space S0 of lowest computational complexity. Out of curiosity, we remark that in this example there exist as many
as 16 di↵erent admissible spaces S0, whose dimension ranges from 20 to 33.

In view of the above discussion and of the obtained numerical results, we shall conclude that triggering the
algorithm from the space S0 of minimum dimension significantly reduces the number of steps and, when coupled
with the compensation strategy described above, produces extremely accurate results even for very high degrees (up
to 30). At the same time, one should take into account how many steps of RKI and RDE type an initial space S0 will
involve, avoiding spaces that require a very large number of RDE steps.

4.4. Further considerations
We gather below some additional considerations of various nature arising from our analysis of the algorithm.

• The MDB-splines NG are evaluated by the matrix product MN0, where M and N0 have nonnegative entries
in [0, 1] and N0 is computed within machine precision accuracy according to our numerical assessment (see
Section 4.1). Therefore, it is reasonable to expect that the error in the evaluation of NG be in line with that on
M. This expectation was confirmed by our numerical tests.

• The matrix representation simultaneously yields the derivatives Dh
+NG of the MDB-spline basis in the target

space. In particular, Dh
+NG =MDh

+N0, where, as observed earlier, the entries of D+N0 may have di↵erent signs
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d K K0 CompRDE-RKI Err Err CS
RKI RDE RKI RDE RKI RDE RKI RDE

(10,5) 11 16 16 15 35 5.4⇥10�15 1.3⇥10�14 1.1⇥10�16 1.1⇥10�16

(10,7) 13 18 16 15 24 2.2⇥10�15 2.7⇥10�15 1.4⇥10�16 8.2⇥10�17

(10,9) 15 20 16 15 9 7.6⇥10�16 2.9⇥10�39 5.0⇥10�17 2.9⇥10�39

(10,11) 17 22 18 15 10 2.0⇥10�16 7.1⇥10�14 8.1⇥10�17 2.5⇥10�37

(10,13) 19 24 22 15 33 2.2⇥10�15 2.1⇥10�12 1.5⇥10�16 8.5⇥10�17

(10,15) 21 26 26 15 60 1.1⇥10�15 9.2⇥10�12 9.3⇥10�17 1.7⇥10�16

(10,17) 23 28 30 15 91 6.9⇥10�16 5.2⇥10�10 1.2⇥10�16 2.0⇥10�16

(10,19) 25 30 34 15 126 4.5⇥10�16 3.9⇥10�8 1.3⇥10�16 1.2⇥10�16

Table 1: Target space S G(Pd,X,K) with [a, b] = [0, 2], X = (1) and K = (5).

k1 K K0 CompRDE-RKI Err Err CS
RKI RDE RKI RDE RKI RDE RKI RDE

5 17 40 36 15 19 2.0⇥10�16 3.3⇥10�11 1.0⇥10�16 2.8⇥10�17

7 19 40 34 28 19 6.7⇥10�15 1.4⇥10�10 1.4⇥10�16 5.6⇥10�17

9 21 40 32 45 19 4.6⇥10�14 1.4⇥10�11 1.7⇥10�16 5.0⇥10�17

11 23 40 30 66 19 1.7⇥10�13 1.0⇥10�09 2.2⇥10�16 5.6⇥10�17

13 25 40 28 91 19 1.4⇥10�12 1.8⇥10�09 2.1⇥10�16 5.6⇥10�17

15 27 40 26 120 19 2.4⇥10�11 2.3⇥10�09 2.5⇥10�16 5.6⇥10�17

17 29 40 24 153 19 2.2⇥10�10 1.5⇥10�10 8.7⇥10�12 5.6⇥10�17

19 31 40 22 190 19 1.3⇥10�9 2.1⇥10�11 5.6⇥10�11 5.6⇥10�17

Table 2: Target space S G(Pd,X,K) with [a, b] = [0, 2], X = (1) and d = (19, 20).

h K K0 CompRDE-RKI Err
RKI RDE RKI RDE RKI RDE

3 20 26 25 12 25 3.1⇥10�39 1.1⇥10�13

4 19 27 23 20 22 4.7⇥10�15 1.0⇥10�13

5 18 28 21 30 18 4.1⇥10�15 1.4⇥10�13

6 17 29 19 42 13 5.9⇥10�14 1.3⇥10�15

7 16 30 17 56 7 9.3⇥10�13 1.1⇥10�39

Table 3: Target space S G(Pd,X,K), with [a, b] = [0, 9], X = (1, 2, 3, 4, 5, 6, 7, 8), d = (8, 8, 8, 8, h, 8, 8, 8, 8), K = (7, 7, 7, h, h, 7, 7, 7). The initial
space S 0 for the RKI algorithm has K0 = (7, 7, 7, 0, 0, 7, 7, 7). The initial space S 0 for the RDE algorithm has d0 = (8, 8, 8, 8, 8, 8, 8, 8, 8).

S 0(Pd,X,K) K0 CompRKI+CompRDE Err Err CS
d =(7,7,7,7,7) 21 39+0 2.6⇥10�14 5.7⇥10�17

K =(3,6,2,4)
d =(7,7,7,5,5) 19 17+3 2.6⇥10�14 5.7⇥10�17

K =(3,6,0,4)
d =(5,6,7,5,5) 25 0+30 5.6⇥10�16 1.5⇥10�16

K =(0,0,0,4)
d =(5,7,7,5,5) 20 6+9 8.6⇥10�17 7.8⇥10�17

K =(0,6,0,4)

Table 4: Target space S G(Pd,X,K) with [a, b] = [0, 5], X = (1, 2, 3, 4), d = (5, 6, 7, 5, 5) and K = (3, 6, 2, 4), KG=14.
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and large values. We were hence concerned with verifying that the computation of derivatives Dh
+NG is not

a↵ected by inaccuracy. Comparison of the results obtained with 16 and 32 digits of precision has shown that
derivatives are computed within the same accuracy as the elements of M.

• For RDE-type steps, the calculation of the coe�cients ↵i in (8) involves ratio of derivatives of same order and
degree. In particular, the hth derivatives of B-spline basis functions of (local) degree d j will produce the factor
d j · ... · d j�h+1 at both the numerator and the denominator of (8) and thus that factor can be omitted. This
implementation measure helps in containing the magnitude of derivatives of high order in RDE type steps.

• Fixed the number and location of RDE and RKI steps, the sequence of these steps is not compulsory. In
particular, as observed in Section 3, the RDE-RKI Algorithm implements just one of the possible sequences
of RKI and RDE steps leading to a target space. In this respect, numerical experiments show that di↵erent
admissible orderings of the steps produce analogous results in terms of accuracy. We can therefore infer that
the specific order in which RDE and RKI steps are performed does not significantly a↵ect the overall accuracy
of the procedure.

• For nonuniform breakpoint sequences, the lengths of breakpoint intervals act as scaling factors on the derivatives
of MDB-splines. It can thus be expected that the behavior of the algorithm for very nonuniform breakpoint
sequences be similar to the case, illustrated in the tables, of a very uneven sequence of degrees. Our numerical
experiments have confirmed an analogous behavior.

• C1 MD-splines may be retrieved from Definition 3, replacing the condition “ki = 0 if di�1 , di” with “ki 6 1 if
di�1 , di”, i = 1, . . . , q. These splines and their derivatives can be evaluated by recurrence relations of Cox-de
Boor type [8]. The RDE-RKI Algorithm can of course be triggered starting from a C1 MD-spline space S0 as
well. In this case, the evaluation of the C1 MDB-spline basis of S0 has a slightly higher complexity, which is
nevertheless compensated by the savings of some RKI-type steps.

• In Section 3.3 we have already shown that the H-operator can be retrieved as a special case of the more general
matrix representation in this paper. It is also reasonable to expect an analogous behavior of the two algorithms
(H-operator and RKI Algorithm) in terms of accuracy on the elements of the representation matrix. In fact both
methods have the same criticality, due to the fact that, in some cases, it may be necessary to perform arithmetic
operations involving high-order derivatives (and thus, possibly, large numbers).

5. Conclusions

We have developed a procedure to compute the MDB-spline basis of a multi-degree spline space, exploiting a
matrix representation in terms of another basis which can be chosen according to di↵erent criteria. For example, one
may want to express the MDB-spline basis starting from local Bernstein bases relative to each breakpoint interval,
or from a conventional B-spline basis of highest degree m, or again from a basis of a C0 MD-spline space. More
generally, the initial basis can be drawn from an arbitrary space containing the target one. We have shown that a
generalization of the classical Cox-de Boor recurrence relation exists in the particular case where the initial space is
featured by C0 MD-splines and that this setting is a good choice to optimize the performance of the algorithm. An
experimental analysis of accuracy for increasing local degrees and continuities has emphasized an excellent numerical
behavior of the algorithm for both spaces of practical relevance and in severely critical situations of more academic
interest.
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