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Abstract: The gut microbiome has emerged as a major character in the context of hematopoietic
stem cell transplantation. The biology underpinning this relationship is still to be defined. Re-
cently, mounting evidence has suggested a role for microbiome-derived metabolites in mediating
crosstalk between intestinal microbial communities and the host. Some of these metabolites, such
as fiber-derived short-chain fatty acids or amino acid-derived compounds, were found to have a
role also in the transplant setting. New interesting data have been published on this topic, posing
a new intriguing perspective on comprehension and treatment. This review provides an updated
comprehensive overview of the available evidence in the field of gut microbiome-derived metabolites
and hematopoietic stem cell transplantation.
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1. Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a well-established
treatment for a variety of hematologic malignancies, immune disorders and metabolic
diseases [1]. Allo-HSCT often represents the only possible curative therapy, however it
is hampered by high morbidity and mortality rates for an array of complications, includ-
ing bloodstream infection and graft-versus-host disease (GvHD) [2]. Recently, the gut
microbiome (GM) has emerged as a major contributor to the genesis of these complications
and to transplant outcomes [3–5]. While this relationship has been extensively studied
in terms of clinical correlations, the underlying biological processes still remain poorly
understood [6]. A growing body of evidence is now focused on the role of metabolomics
in the immune response regulation and in other host biochemical processes [7]. Interest-
ingly, among the factors that modify fecal, plasmatic and urinary metabolites, the GM,
alongside with diet, have emerged as the major determinants [8]. Analogously, metabolic
activities of GM are affected by environmental factors and host activities. The latter include
a complex crosstalk taking place in the intestinal mucosa, with the secretion of mucus,
secretory IgA, antibacterial peptides and microRNA [9]. Hence it has been suggested that
microbiome-derived metabolites could provide some insights in the complex relationship
between the GM, immune system and intestinal microenvironment, particularly in the
HSCT setting [10]. To address this issue, we conducted a narrative literature review of
studies addressing the role of gut microbiota derived metabolites in allo-HSCT. Electronic
databases, including PubMed, Google Scholar and EMBASE, were searched to identify
relevant studies published up to December 2020. The search was restricted to English-
language studies involving both humans, mice and pre-clinical models. Papers were
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selected independently by two authors independently, and a third author supervised the
selection. Herein, we provide a comprehensive overview on the current knowledge of gut
microbiome-derived metabolites and their role in determining relevant biological processes
in HSCT (Tables 1 and 2).

Table 1. Summary of studies investigating the role of microbiome-derived metabolites in HSCT setting in mouse model.

Metabolites Results References

Fiber-Derived Metabolites—Short-Chain Fatty Acids

Butyrate Butyrate can improve IEC integrity, decrease apoptosis and mitigate GvHD. Administration
of Clostridiales strain leads to higher butyrate levels. [11]

Butyrate Post-transplant enterococcal domination and loss of Clostridiales were associated with a
reduction in butyrate in mice developing GvHD. [12]

Butyrate, propionate Butyrate and propionate improve GvHD in mouse model. This effect is dependent on the
presence of SCFA receptor GRP43. [13]

Amino Acid-Derived Metabolites

Tryptophan-derived AhR ligand

Indoles and
derivatives

GM derivatives, such as indole, limit intestinal inflammation and damage associated with
myeloablative chemotherapy or radiation exposure and acute GvHD. Treatment with

indole-3-carboxaldehyde can protect from gut damage in HSCT recipients.
[14]

Tyrosine-derived metabolites

Tyrosine Mice with aGvHD present lower levels of tyrosine. Oral administration of tyrosine can
ameliorate aGvHD and modify GM configuration. [15]

Choline-derived metabolites

TMAO TMAO augments allo-reactive T-cell proliferation and Th1 subtype differentiation mediated
by the polarized M1 macrophages. This results in higher severity of GvHD. [16]

Bile Acids

Tauroursodeoxycholic
acid (TUDCA)

BAs were altered after HSCT. Administration of exogenous TUDCA protects intestinal
epithelium by inflammatory cytokines. TUDCA did not influence GM composition. [17]

Table 2. Summary of studies investigating the role of microbiome-derived metabolites in HSCT setting in human.

Metabolites Study Design Results References

Fiber-Derived Metabolites—Short-Chain Fatty Acids

Butyrate 1325 allo-HSCT
adult patients

Post-transplant enterococcal domination and loss of Clostridiales were associated with
a reduction in butyrate in patients developing GvHD. [12]

Butyrate,
propionate, acetate

35 allo-HSCT adult
aGvHD patients

Butyrate, propionate and acetate levels were lower in patients experiencing GvHD 2–3
compared to the control. Butyrate was low even in patents with GvHD 1. [18]

Butyrate, propionate,
acetate, formate

42 allo-HSCT
pediatric patients

Butyrate, propionate, acetate decrease within the first 14 days after HSCT and are lower
in patients developing GvHD. Formate is a possible marker for the Enterobacteriaceae

family. Expression of butyrate transporters in GvHD is altered. Greater number of days
of antibiotic was associated with lower levels of butyrate and propionate.

[19]

Butyrate, propionate,
hexanoate, isobutyrate

10 allo-HSCT adult
cGvHD patients

Plasma concentration of SCFAs reflects fecal content. Patents developing cGvHD
present lower plasma concentration of butyrate, propionate, hexanoate, isobutyrate. [20]

Butyrate 44 allo-HSCT
adult patients

Butyrate levels were correlated with Shannon index and were low in patients
experiencing bloodstream infections within 30 days after HSCT. [21]

Butyrate, propionate,
acetate, desaminotyrosine

360 allo-HSCT adult
patients

Butyrate-producing bacteria and fecal SCFAs were associated with a protection from
viral lower respiratory tract infections [22]

Butyrate 99 allo-HSCT
adult patients

Oral supplementation with resistant starch and commercially available prebiotic
mixture, GFO, resulted in higher post-HSCT butyrate-producing bacteria and a

maintained or increased fecal butyrate concentration.
[23]

Butyrate,
propionate, acetate

20 allo-HSCT
pediatric patients Enteral nutrition resulted in higher fecal concentration of butyrate, propionate and acetate. [24]
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Table 2. Cont.

Metabolites Study Design Results References

Amino Acid-Derived Metabolites

Tryptophan-derived AhR ligand

3-IS 131 allo-HSCT
adult patients

Lower 3-IS urinary levels are associated with higher transplant-related mortality and
worse outcome. 3-IS urinary levels are correlated with GM diversity and with a higher

presence of Eubacterium rectale and Ruminococcaceae.
[25]

3-IS 13 allo-HSCT adult
patients receiving FMT FMT results in higher 3-IS urinary levels. [26]

Indoxyl sulfate Two cohort of 43 and 56
allo-HSCT adult patients

Tryptophan-derived AhR ligand 3-indoxyl sulfate was involved in the GvHD-related
metabolic alterations. [27]

Tyrosine-derived metabolites

Tyrosine 86 allo-HSCT
adult patients

In patients who develop aGvHD tyrosine metabolism was found to be altered. Other
microbiome-derived metabolites (tryptophan, lysine, phenylalanine and secondary

bile acids) were altered.
[28]

Riboflavin (Vitamin B2)-Derived Metabolites

Riboflavin 121 allo-HSCT adult
patients receiving CBT

Patients with post-HSCT MAIT cells reconstitution had a GM with higher expression of
genes involved in the riboflavin synthesis pathway. [29]

Polyamines and Breath Metabolites

N-acetylputrescine,
agmatine

184 allo-HSCT
adult patients

Salivary metabolic profile of HSCT patients with and without severe oral mucositis
(grade 0–1 vs. 3–4) was found to be different. Metabolites such as urea, 5-aminovalerate,
N-acetylputrescine and agmatine, also show differences between the pre-transplant and

the time of mucositis onset.

[30]

2-propanol, acetaldehyde,
dimethyl sulfide, isoprene,

and 1-decene

19 allo-HSCT
adult patients

Comparing patients with and without GI GvHD, the former show modification in the
levels of volatile organic compounds, namely 2-propanol, acetaldehyde, dimethyl

sulfide, isoprene, and 1-decene.
[31]

2. Fiber-Derived Metabolites—Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) are well-known bacterial products derived from the
GM [32]. SCFAs, in particular acetate, propionate and butyrate, are the major products
of the fermentative activity of GM in the cecum and colon on dietary fibers [33]. This
conversion involves most of the enteric bacteria through the establishment of syntrophic
consortia that operate several specific metabolic reactions [33]. Butyrate, an important
SCFA in the allo-HSCT context, derives from two main routes, namely, phosphotransbu-
tyrylase/butyrate kinase and butyryl-CoA:acetate CoA-transferase. The former is carried
out mainly by Coprococcus eutactus and Coprococcus comes, the latter by Eubacterium rectale,
Roseburia spp., Eubacterium hallii, Anaerostipes spp., Coprococcus catus and Faecalibacterium
prausnitzii [34,35]. SCFAs have shown to have important immune-modulatory functions
acting as both intracellular and extracellular signaling molecules targeting different re-
ceptors such as GPR43, GPR41 and GPR109A [10,36]. Intracellularly, these molecules,
specifically butyrate, serve as direct inhibitors of histone deacetylases (HDACs), enzymes
needed to convert chromatin from a permissive to a repressive structure [37]. Through
HDAC inhibition, SCFAs regulate T-cells by directly promoting their differentiation into
T cells producing IL-17, IFN-γ and IL-10. Besides, they also promote de novo differen-
tiation and expansion of regulatory T cells [38,39]. Among this cell subset, butyrate, by
enhancing histone H3 acetylation, induces the upregulation of Foxp3 locus and IL-10 gene
expression [38,40]. Butyrate has also been demonstrated to have a direct effect on the
intestinal mucosa, serving as an energy source for intestinal epithelial cells (IECs) [41]
(Figure 1). Focusing on the allo-HSCT setting, the ability of SCFAs, specifically butyrate, to
inhibit HDACs has been associated with a reduction in acute GvHD (aGvHD) [42]. Data
on mouse models proved that butyrate improves IEC integrity, decreases apoptosis and
mitigates aGVHD. Mathewson et al. have demonstrated that butyrate levels decrease
in the mouse intestine after HSCT, resulting in a significant reduction in the histone H4
acetylation degree and in functional impairment of IECs [11]. Furthermore, they demon-
strated that higher levels of butyrate were associated with reduced severity of aGvHD
and that they could be achieved with the administration of specific clostridial strains [11].
Similar results were found by Stein-Thoeringer et al. in a cohort of 1325 allo-HSCT patients
and in a pre-clinical mouse model. They observed that post-transplant loss of Clostridia
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was accompanied by a significant reduction in fecal butyrate in patients and mice with
GvHD [12]. Fujiwara et al. further confirmed the importance of SCFAs in aGVHD pro-
tection in a mouse model and highlighted the role of the SCFA-specific receptor GPR43
and the signaling pathway involving NLRP3 inflammasome activation in IECs [13]. In
particular, they found that administration of two main SCFAs, butyrate and propionate, in
wild-type mice, reduced aGvHD. Interestingly, administration of butyrate and propionate
in GPR43−/− mice produced lower and no effect in reducing aGvHD, respectively. No
effect was seen for acetate, the most present SCFA in our gut [13]. These data together
underscore the important role of GPR43 in modulating the beneficial effect of SCFAs and
that butyrate has both a GPR43-dependent and independent effect. Later studies on human
HSCT patients found overlapping results. Payen et al. analyzed the SCFA content in
35 adult HSCT patients who went on to develop aGvHD compared to the same number of
non-aGvHD controls. They found that acetate, propionate and butyrate, as well as the total
SCFA level were lower in patients with stage 2–3 aGvHD [18]. Interestingly, a significant
difference only for butyrate was found with controls even in patients with grade 1 aGvHD,
further confirming the very pivotal role of this metabolite [11]. These data were confirmed
by Romick-Rosendale et al. in an exclusive pediatric population. They prospectively ana-
lyzed fecal samples from 42 pediatric patients undergoing HSCT, showing a reduction in
butyrate, propionate and acetate in patients who went on to develop aGvHD [19]. Besides,
the authors found some differences compared to the mouse model. Particularly, they
found a progressive decline in SCFAs in the first 14 days after HSCT, with a significant
reduction in butyrate and propionate. Moreover, by analyzing the RNA expression levels
of several butyrate transporters, they found that, in aGvHD patients, some of them are
decreased, as previously described (e.g., GPR41-FFAR3), but many others are increased
(e.g., GPR41-FFAR2) or not significantly changed. Lastly, the authors suggested a role
of another SCFA, formate, as a possible marker for the Enterobacteriaceae family within
the Proteobacteria phylum [19]. The alteration in SCFA levels can also be ascribed to the
HSCT-related dysbiosis [43]. Romick-Rosendale et al., in their aforementioned study, also
pointed out the impact of antibiotics on SCFAs, showing that a greater number of days
of antibiotic was associated with lower levels of butyrate and propionate [19]. A recent
study by Markey et al. suggested a role of SCFAs also in the context of chronic GvHD
(cGvHD). They analyzed both fecal and plasma SCFA concentrations from nine and ten
cGvHD patients and non-matched controls, respectively. Metabolic alterations were found
to be present both in plasma and in fecal samples of patients with cGvHD. Specifically,
plasma concentrations of butyrate, propionate, hexanoate and isobutyrate were signifi-
cantly lower in patients who went on to develop cGvHD compared with controls [20].
Taxonomic analysis revealed that the presence of Lachnoclostridium, Clostridium and, to
a lesser degree, Faecalibacterium was associated with reduced incidence of cGvHD [20].
Galloway-Peña et al. analyzed the butyrate content in longitudinal fecal specimens from
44 HSCT patients. While in this cohort butyrate was not statistically associated with GvHD,
it was found that patients experiencing bloodstream infections within 30 days after HSCT
had a significantly lower level of butyrate, further suggesting the role of this SCFA in
maintaining endothelial integrity [21]. Regarding viral infections, Haak et al. analyzed
a cohort of 360 adult patients undergoing HSCT in a single institution, focusing on viral
lower respiratory tract infections following allo-HSCT. They showed that patients with
higher abundance of butyrate-producing bacteria were five-fold less likely to develop
such infections. The same relationship was found with the fecal concentration of butyrate,
propionate, acetate and desaminotyrosine [22]. All these data together underscore the
crucial role of SCFAs in gut homeostasis and in the onset of HSCT complications, and,
besides, raise the possibility that host diets may play a role. Yoshifuji et al. analyzed the
impact of resistant starch and a commercially available prebiotic mixture, GFO, given from
the start of the conditioning regimen until day +28 after HSCT on gut microbiota products.
Interestingly, oral supplementation resulted in reduced incidence of all aGvHD grades, a
higher prevalence of butyrate-producing bacteria at day +28 and a consequent maintained
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or increased fecal butyrate concentration [23]. Similar results were obtained by D’Amico
et al. in our pediatric cohort. We prospectively analyzed the impact of enteral nutrition
(EN) compared to parenteral nutrition (PN) on microbiological outcomes. We found that
EN patients were significantly enriched in butyrate, acetate and propionate compared
to subjects who received PN. Moreover, well-known health-associated genera capable of
producing SCFAs were restored in the EN group during the post-HSCT recovery, namely
Faecalibacterium, Dorea, Blautia, Bacteroides, Parabacteroides and Oscillospira [24].
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3. Amino Acid-Derived Metabolites
3.1. Tryptophan-Derived AhR Ligands

Other important GM metabolites are tryptophan and its derivatives (Figure 2). Tryp-
tophan is an essential amino acid, which our organism cannot synthesize, and therefore
must be supplied with food [44]. Degradation of tryptophan can be ascribed to many
intestinal bacteria, such as Fusobacterium, Bacteroides and Enterococcus faecalis, which
have the ability to convert tryptophan into indole and its derivatives. Other reviews have
addressed this issue [44]. Mounting evidence has shown that GM-produced tryptophan
catabolites, such as indole and its derivatives, are important signaling molecules in host-
microbial crosstalk. These metabolites can act on different human physiological processes,
such as gut mucosal homeostasis and reactivity, gastrointestinal motility, insulin secretion,
anti-oxidative and anti-inflammatory processes. Each function seems to be regulated by
different receptors, namely pregnane X receptor [45], G protein-coupled receptors [46],
IL-10 receptors [47], Nrf2 receptors [48], PPAR [49] and aryl hydrocarbon receptor (AhR).
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The latter is a ligand-dependent transcription factor known to strongly interact with our
immune system [50,51]. It has been demonstrated that AhR deficiency or the lack of AhR
ligands reduced intraepithelial lymphocyte numbers and compromised the control of the
GM in the intestinal lumen [52]. Another study showed that the tryptophan catabolite
indole-3-aldehyde, via the AhR pathway, provides colonization resistance to the yeast
Candida albicans and reduces intestinal inflammation [53]. Less is known about these
metabolites in the HSCT context. Swimm et al. analyzed the levels of indoles and its deriva-
tives during HSCT in mouse models. They found that mice exposed to lethal radiation as
well as to chemotherapeutic conditioning regimens had lower urinary levels of 3-indoxyl
sulfate (3-IS) [14]. This metabolite is derived from the tryptophan-derived indole, metabo-
lized by the liver and excreted into the urine, known to be a potent endogenous agonist for
the human aryl hydrocarbon receptor [54,55]. Mice colonized with an Escherichia coli strain
unable to degrade tryptophan had lower 3-IS levels and lower post-transplant overall
survival. The authors then tested the possibility of modulating the level of metabolites with
the supplementation of indole-3-carboxaldehyde, an indole derivative. Very interestingly,
they found that this treatment reduced gut epithelial damage and GvHD-related mortality
by decreasing inflammatory cytokines, suggesting an important immunomodulatory role
of such GM degradation products [14]. In particular, the protective effect exerted by indoles
seems to be mediated by T-helper 17 responses in the intestinal tract and by IL-22-mediated
effects on stem cells [53]. Furthermore, transcriptomic data on mice indicate that indoles
activate IFN1 responses only in the context of GvHD, suggesting a link with concomitant
immune-mediated inflammation [14]. Similar results were found by Weber et al. in human
patients. In a cohort of 131 adult patients receiving allo-HSCT, they tested urinary levels of
3-IS within the first 28 days after transplant and found that low 3-IS levels were associated
with higher transplant-related mortality and worse outcomes, mainly due to gastrointesti-
nal (GI) GvHD. Interestingly, authors also demonstrated that 3-IS urinary levels could be
correlated with GM diversity and with a higher presence of E. rectale and Ruminococ-
caceae, taxa belonging to the Clostridia class [25]. In this study, urinary levels of 3-IS thus
appeared to be a possible marker for assessing the presence of a healthy GM configuration.
DeFilipp et al. also highlighted the possibility of modulating GM-related metabolites. They
performed fecal microbiota transplantation (FMT) by a third-part donor in 13 adult patients
receiving allo-HSCT. In these patients they observed an increase of Clostridiales abundance
and a significant increase in 3-IS urinary concentrations, further confirming previous data
in both mouse and human patients [26]. Michonneau et al. analyzed metabolic alterations
in two independent monocentric and multicentric cohorts composed of 43 and 56 patients,
respectively, receiving allogeneic-HSCT from an HLA-identical sibling donor. Focusing on
metabolic changes at GvHD onset, they observed that the main contributors were bile acids,
plasmalogens, tryptophan and arginine metabolites. Among these, indolepropionate, a
GM-derived compound from tryptophan was the only metabolite less frequently detected
in the multicentric cohort [27]. In both cohorts it was found that the tryptophan-derived
3-IS was involved in the GvHD-related metabolic alterations [27]. These results, alongside
with the one found by Swimm et al. and Weber et al., seem to disagree with other evidence
in patients with end stage renal disease. In fact, 3-IS is also a uremic toxin known to be
associated with adverse outcomes in patients with renal failure. In this particular clinical
setting, monocytes, responding to 3-IS through the AhR pathway, produce increased levels
of TNF-α. The resulting pro-inflammatory environment and immune dysfunction seems
related to vascular endothelial cell damage and to the pathogenesis of cardiovascular dis-
ease [56]. Probably, the different clinical setting and the presence of allo-immune mediate
inflammation may play an important role in modulating the host response to 3-IS. This
disagreement should be addressed in future research.
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Figure 2. Schematic representation of the main gut microbiome-derived metabolites in the allo-HSCT setting (aGvHD—
acute graft-vs-host disease; MAIT—mucosal-associated invariant T cells; TMA—trimethylamine; TMAO—trimethylamine
N-oxide).

3.2. Tyrosine-Derived Metabolites

Tyrosine is a non-essential amino acid found in food, well known as it is involved in
the synthesis of catecholamines [57]. The GM in the large intestine is involved in tyrosine
fermentation resulting in the production of many derived metabolites [58]. Their role
in many brain physiological and pathological conditions has been widely described [59].
Li et al. focused on the role of this amino acid in a mouse model receiving HSCT. They
analyzed the metabolic profile of mice receiving bone marrow only and bone marrow
with donor T cells as a model for in-vivo aGvHD. Strikingly, the analysis indicated that
the low level of tyrosine in the gut was likely to be correlated with the occurrence and
development of aGvHD and that tyrosine-derived metabolites were inversely correlated
with the presence of Blautia and Enterococcus [15]. Furthermore, the authors found that
dietary supplementation with tyrosine was able to ameliorate aGvHD in the early stages,
restore GM diversity and modify the relative abundance of specific taxa [15]. Reikvam et al.
analyzed the pre-transplant metabolic profile in 86 adult patients receiving allo-HSCT [28].
In order to figure out whether a certain metabolic pattern could predict the onset of aGvHD,
they extensively studied a total of 766 metabolites in the serum of patients with and without
aGvHD. Among the large number of produced results, they found that tyrosine metabolism
was altered in patients with aGvHD. They also hypothesize that the observed differences
in tyrosine as well as tryptophan, lysine and phenylalanine suggest a pivotal role of the
pre-HSCT GM metabolic configuration in predicting the development of aGvHD [28].
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3.3. Choline-Derived Metabolites

Wu et al. recently reported the role of choline-derived trimethylamine N-oxide (TMAO)
in the HSCT context [16]. This metabolite is already well known to play an important
role in vascular inflammation and endothelial dysfunction, contributing to the genesis of
atherosclerosis and thrombosis [60]. TMAO derives from the oxidation by hepatic flavin
monooxygenases of trimethylamine (TMA), which is a GM metabolite of betaine, L-carnitine,
choline and other choline-containing compounds, which are present in the diet [61]. The main
involved bacterial strains are Anaerococcus hydrogenalis, Clostridium asparagiforme, Clostridium
hathewayi, Clostridium sporogenes, Edwardsiella tarda, Escherichia fergusonii, Proteus penneri and
Providencia rettgeri [62]. Both TMAO and choline were found to be associated in mouse model
with an enhanced allogeneic GvHD reaction [16]. Furthermore, the authors demonstrate that
TMAO induces the expression of M1 macrophages and M1-like cytokines both in tissues and
in bone marrow in an NLRP3-dependent fashion [16,63].

4. Riboflavin (Vitamin B2)-Derived Metabolites

Another family of GM-derived metabolites found to have an important role in the
HSCT context are riboflavin-based precursors. These metabolites are produced by a wide
range of bacteria including E. coli, Staphylococcus aureus and Pseudomonas aeruginosa,
and have a positive effect in expanding a particular T-cell subtype known as mucosal-
associated invariant T cells (MAIT) [64,65]. In particular, MAIT cells respond to vitamin
B2/B9–derived metabolites presented by MR1, an MHC class I–like molecule, producing
IFN-g, IL-17, releasing cytotoxic granules and antibacterial products [66]. These cells are
known to play a pivotal role in the GvHD genesis after HSCT, both in a mouse model and
in humans [67–70]. However, there is no direct evidence that fecal riboflavin concentration
has an impact on HSCT-related complications or outcome. Konuma et al. analyzed the
GM expression of enzymes involved in the riboflavin synthesis pathway in 121 patients
receiving unrelated cord blood transplant. Intriguingly, they found that within the KEGG
pathway, the amounts the genes ribB and ribA, encoding two important involved enzymes,
namely, 3,4-dihydroxy-2-butanone-4-phosphate synthase and GTP cyclohydrolase II, were
higher in patients with MAIT reconstitution after HSCT [29].

5. Bile Acids

Bile acids (BAs) are cholesterol-derived amphipathic molecules participating in the
digestion and absorption of fat in the diet. Primary BAs are synthesized in the liver,
conjugated with glycine or taurine and secreted in the intestinal tract [71]. Secondary BAs
result from bacterial transformation in the gut by removing glycine or taurine residues
from primary BAs not reabsorbed by IECs [72,73]. BAs were demonstrated to be altered
in a small cohort of HSCT patients developing gut aGvHD. This was related to intestinal
malabsorption but no correlation was made with GM [74]. Haring et al. focused on BA
metabolism in an HSCT mouse model. Firstly, they demonstrated that BAs were decreased,
and BA receptor expression was altered by HSCT [17]. Among BAs they found that GM-
derived tauroursodeoxycholic acid was capable of reducing intestinal cell damage induced
by pro-inflammatory cytokines and improving HSCT outcomes in a prophylactic setting.
Notably, while tauroursodeoxycholic acid was found to protect the intestinal epithelium
by directly affecting intestinal cells, its administration did not lead to a change in microbial
composition [17]. In humans, both Michonneau et al. and Reikvam et al. found alterations
in BAs after HSCT, in particular the latter found a decrease of secondary BAs in patients
developing aGvHD [27,28].

6. Polyamines and Breath Metabolites

The oral microbiome is known to play a major role in the genesis of several patholog-
ical conditions and mucositis in HSCT patients [75,76] (Figure 3). Shouval et al. demon-
strated that also oral microbiome-derived metabolites are altered in patients developing
oral mucositis during HSCT. They analyzed the salivary metabolic profile of patients
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with and without severe oral mucositis, showing a reduction in N-acetylputrescine and
agmatine, metabolites involved in the polyamine pathway [30]. Polyamines are small
polycationic molecules produced by commensal bacteria with a wide array of biological
functions including preservation of mucosal barrier integrity [77]. New interesting insights
were described by Hamilton et al. regarding breath metabolites. They analyzed volatile
organic compounds in 19 HSCT adult patients. They found that in patients developing
GI GvHD, levels of five compounds, namely 2-propanol, acetaldehyde, dimethyl sulfide,
isoprene, and 1-decene, were altered [31]. Some evidence suggests that GM metabolism
may be involved in the production of these compounds [78].
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7. Conclusions

GM-derived metabolites have emerged as crucial players in mediating crosstalk be-
tween GM and host in allo-HSCT recipients. Several questions should still be addressed
in the upcoming studies. Firstly, the different metabolic profiles should be more precisely
characterized and the relationship between specific bacterial strains and derived metabo-
lites should be investigated. These data should be accomplished with ‘–omics’ approaches,
including metabolomics, metagenomics and metatranscriptomics. Alongside with the
aforementioned metabolites, many others have been demonstrated to have a role in human
homeostasis and should thus be investigated in the HSCT setting [10,79]. Future collabo-
rative studies on larger cohorts will also clarify whether specific metabolic profiles could
be associated with allo-HSCT outcomes as it has been demonstrated for GM diversity [3].
Lastly, the different metabolic patterns between children and adults should be directly
addressed, considering the differences in GM configuration [80] and HSCT outcomes [81].
Certainly, these data pose a new intriguing field of research and substantial opportunities
for the near future. GM-derived metabolites might serve as a feasible surrogate marker for
microbiome characterization that may be clinically useful to predict HSCT-related risk [25].
Furthermore, the modulation of GM-derived metabolites should also appear as a target
for therapeutic interventions. These should include diet, which is known to represent
the main strategy to modulate microbial products [8], emphasizing the importance of
nutritional support during HSCT [24,43,82,83]. Other strategies should also be tested in
order to modulate metabolites, such as probiotics, prebiotics and other oral supplements
alongside FMT. In conclusion, GM-derived metabolites have proven to be an important
field of research in the HSCT setting, also appearing as a promising therapeutic target for
the near future.
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3-IS 3-indoxyl sulfate
aGvHD Acute graft-versus-host disease
Allo-HSCT Allogeneic hematopoietic stem cell transplantation
BA Bile acids
cGvHD Chronic GvHD
EN Enteral nutrition
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GI Gastrointestinal
GM Gut microbiome
GvHD Graft-versus-host disease
HDAC Histone deacetylases
IEC Intestinal epithelial cells
MAIT Mucosal-associated invariant T cells
PN Parenteral nutrition
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TMA Trimethylamine
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