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Title 

Comparison of Control Charts for Poisson Count Data in Healthcare Monitoring. 

 

Abstract 

Statistical surveillance is a noteworthy endeavor in many healthcare areas such as 

epidemiology, hospital quality, infection control and patient safety. For monitoring hospital 

adverse events the Shewhart u-control chart is the most used methodology. One possible issue 

of the u-chart is that in healthcare applications the lower control limit (LCL) is often 

conventionally set to zero as the adverse events are rare and the sample sizes are not sufficiently 

large to obtain LCL greater than zero. Consequently, the control chart loses any ability to signal 

improvements. Furthermore, as the area of opportunity (sample size) is not constant over time, 

the in-control and out-of-control run length performances of the monitoring scheme are 

unknown. In this article, on the basis of a real case and through an intensive simulation study, 

we first investigate the in-control statistical properties of the u-chart. Then we set up several 

alternative monitoring schemes with the same in-control performances and their out-of-control 

properties are studied and compared. The aim is to identify the most suitable control chart 

considering jointly: the ability to detect unexpected changes (usually worsening), the ability to 

test the impact of interventions (usually improvements), the ease of use and clarity of 

interpretation. The results indicate that the EWMA control chart derived under the framework 

of weighted likelihood ratio test has the best overall performance. 

 

Keywords: Average Run Length; Control Charts; Healthcare; Simulation Studies; Rare 

Events. 

 

  



1 Introduction 

Statistical methods for monitoring the occurrence rates of rare events are needed and used in 

many real world applications. To detect changes in the rate of an event, both the count of events 

recorded at regular time intervals and the corresponding sample size should be available and 

situations where the area of opportunity (sample size) is not constant over time are very 

common. Examples include the monitoring of non-conformities in batches with varying batch 

size, the monitoring of monthly rates of hospital acquired infections when the size of the at-risk 

population changes from month to month or monitoring of the incidence of a disease in a 

changing population (Woodall1, Woodall and Montgomery2 and Woodall and Driscoll3). 

Control charts are effective methods in statistical process control for the continuous 

surveillance of rare events data in cases with varying sample sizes. The usual approach consists 

in modelling the count of events through independent Poisson random variables; therefore, 

detecting a change in the rate of occurrence can simply be achieved by detecting a change in 

the Poisson mean (Ryan and Woodall4, Shen et al5, Montgomery6). 

In the healthcare framework, as for example for monitoring hospital adverse events, the 

Shewhart u-control chart (Montgomery6) is probably the most used methodology (Mohammed 

et al7). It is usually set up after performing a Phase I analysis in which the process parameters 

are estimated and the control limits are calculated from historical in-control data. In real 

applications the control limits are typically established using the 3-sigma rule (Mohammed et 

al7, Woodall et al8). 

The u-control chart has several shortcomings. For example, it is not sensitive enough to detect 

small parameter shifts in real-time monitoring. 

To improve the detection capability relative to that of the Shewhart control charts, several 

alternative monitoring schemes have been developed. Among them, the cumulative sum 

(CUSUM) and the exponentially weighted moving average (EWMA) charts are popular 

(Montgomery6). 

Another possible issue of the u-chart, especially when the area of opportunity (sample size) is 

not constant over time, is that the in-control and out-of-control performances of the monitoring 

scheme are in effect unknown.  

Furthermore, since in healthcare the adverse events are rare and the sample sizes are not 

sufficiently large to obtain lower control limits (LCL) greater than zero, LCL is often 

conventionally set to zero. Consequently, the control chart may lose any ability to signal 

possible improvements. This could result in negative practical implications, as in the healthcare 

framework the interest is frequently to detect the impact of interventions, or new procedures, 



designed for the improvement of performances. It could be argued that improvements (negative 

shifts) may be detected using the supplementary run rules (Zhang and Wu9). However, run rules 

to be used require an adequate statistical education, since may lead to a false alarm rates increase 

(Montgomery6). 

In this article we focus on the use of control charts for monitoring hospital adverse event rates. 

On the basis of a real case and through an intensive simulation study we first investigate the in-

control properties of the Shewhart u-control chart. In this way we are able to assess whether the 

false alarm rate is acceptable for the current case study. It is worth noting that in real healthcare 

surveillance with non-constant area of opportunities, not only the u-chart, but also other 

monitoring algorithms, are often used without any discussion on their actual in-control 

statistical properties. Consequently, hospital performance assessments and/or decisions are 

based on the outcomes of a control chart on which there are no evaluations of its congruence 

with the task to be performed. 

Then we set up several alternative EWMA monitoring schemes with the same in-control (IC) 

performances as the u-control chart. Specifically, we considered the EWMA control charts 

proposed by Dong et al10 (EWMAD), the version with a lower reflecting barrier by Ryan and 

Woodall4 (EWMARW), a proposal of ours based on the one of Dong et al10, but with a different 

variance (EWMAB), and finally the EWMA control chart derived under the framework of the 

weighted likelihood ratio test proposed by Zhou et al11 (WEWMA). Here we limit ourselves to 

EWMA-type control charts given the easy implementation and interpretation. 

The aim is to identify the most suitable control chart considering jointly: the ability to detect 

unexpected changes (usually worsening), to test the impact of interventions (usually 

improvements) and the ease of use and clarity of interpretation. The results indicate that the 

EWMA control chart derived under the framework of the weighted likelihood ratio test has the 

best overall performance.  

The paper is organised as follows. In Section 2, we illustrate the case study, introduce some 

related open issues and compare the control charts on the basis of a real dataset. In Section 3, 

we review the theoretical background of the considered monitoring algorithms, use Monte 

Carlo simulations to study the in-control statistical properties of the u and EWMA charts and 

compare their out-of-control (OC) performances. Finally, Section 4 contains our concluding 

remarks.  

All the simulations and the Figures of this paper are performed using R, (R core team)12. 

 

2 The case study and some open issues. 



Patient falls are one of the most frequent adverse events in health care institutions (Chang et 

al13). A patient fall often causes serious consequences such as an increase in the period of 

hospitalization and a reduction in quality of life of the person that suffered the fall. Furthermore 

such an event increases hospital costs and can result in legal disputes. In order to ensure patient 

safety, evidence-based systems are implemented and the monitoring of adverse events 

constitutes one of an array of methods used by hospital management teams in pursuing safety 

in healthcare institutions (Baker et al14). 

The Local Healthcare Authority of Romagna (Azienda Unità Sanitaria Locale, or AUSL, della 

Romagna) serves a population of around 1,124,896 inhabitants (the provinces of Forlì-Cesena, 

Ravenna and Rimini in Italy), employs 14,789 staff and houses 3,355 inpatient beds.  

The Local Healthcare Authority of Romagna, in collaboration with the Department of Statistical 

Sciences of the University of Bologna, has started a quality improvement project aimed at 

improving process understanding and increasing patient safety and, considering the relevance 

of the “fall event” in the healthcare context, gave priority to the monitoring of monthly fall rates 

in its hospitals. The project involved 29 Hospital units, among these, without loss of any 

generality, we considered the hospital “Unit 1” of the “Infermi Hospital” in Rimini. 

An inpatient fall, as the majority of adverse events in the healthcare framework, has the 

following peculiarities: it is a rare event and the area of opportunity, i.e. the size of the at-risk 

population, is not constant over time (Mohammed et al7). 

We considered the inpatient fall-related adverse events data collected by the Hospital Patient-

Safety reporting System for the period ranging from January 2014 to September 2019. The data 

are shown in Table 1 where for each month the number of falls (xi) are reported together with 

the number of patient days (
*

in ). 

 

[TABLE 1 APPROXIMATELY HERE] 

 

To monitor the adverse event in question a u-chart for the number of falls per 1000 patient-days 

was implemented. Please note that the methodological and mathematical details of the the u-

chart, as well as for the EWMA monitoring schemes presented in this paper, are reported in 

Section 3 below. 

The u-control chart plots the statistic ( )i i iu x n=  where * 1000i in n=  and to estimate the 

unknown falls rate 0  a “Phase I” was performed on the January 2014 – January 2016 period 



(m=25 months). Figure 1 (left side calibration data) shows the u-chart obtained using the R 

package “qcc” (Scrucca15) for the m=25 preliminary samples of Phase I. 

 

[FIGURE 1 APPROXIMATELY HERE] 

Before analyzing the results it is important to check for possible departure from the assumption 

of Poisson distributed data. This is a key issue since concerns the above reported u-chart, the 

EWMA-based monitoring schemes that will be examined in this article and all the simulation 

experiments that we are going to use in order to study and compare the statistical properties of 

the monitoring algorithms. The Poisson distribution depends on a single parameter, which is 

the mean as well as the variance (equidispersion). Problems can arise when the observations 

show more variability than would be expected by chance alone, since control charts, which are 

constructed on the basis of the standard Poisson distribution, on overdispersed data could 

produce high false alarm rate and misleading results. We used the goodness-of-fit test for 

discrete data based on the likelihood ratio statistic discussed in Friendly16 and implemented in 

the R package “vcd” (Meyer et al17). The hypothesis of Poisson distribution was tested on the 

25 preliminary samples of Phase I and we obtained a likelihood ratio test statistic G2=1.369, 

which with 3 degrees of freedom has a p-value=0.713. We completed the picture on the 

distribution issue also by testing for the presence of overdispersed data. In this case we used the 

test introduced by Wetherill and Brown18 and suitably implemented in the R package “qcc” 

(Scrucca15). The test statistic is distributed as a Chi-square distribution with (number of 

observations-1) degrees of freedom. The obtained result was D=19.003 with a corresponding 

p-value=0.75183. Summarizing, the hypothesis of Poisson distributed data was not rejected. 

As the m=25 samples of Phase I did not show any out-of-control signals or particular systematic 

patterns we deem 
0
ˆ 1.745708 =  to be a reliable estimate of the monthly fall rate for 1000 

patient days and the obtained control chart can be used for ongoing monitoring (Phase II) with 

data taken successively over time (Figure 1 right side). By examining the control chart of Figure 

1 it can be noted that the fall rate remained relatively stable in the monitored period (February 

2016-September 2019). 

There are several issues that should be taken into account in connection with the above u-control 

chart. It can be noted that the lower control limit is zero. Therefore, potential decrements in the 

fall rate (i.e. improvements in hospital performance) cannot be reported by the control chart as 

alarm signals. However, for the purpose of completeness, we remind the reader that negative 

shifts could be detected using the supplementary run rules (Montgomery6), but with the typical 



limitations of the sensitizing rules of the Shewhart control charts and with the concern that staff 

poorly trained in statistics could interpret the control charts incorrectly. 

The other relevant issue is that the IC and OC performances of the chart are in effect unknown. 

This lack of knowledge on how often a false alarm should be expected and on the chart’s shift 

detection ability could lead to difficulties or errors in the interpretation of the monitoring 

algorithm’s outcomes. 

A detailed investigation on the statistical properties of the u-chart, as well as for the EWMA-

charts examined in this article, will be developed in the next Section. Here, to continue the 

analysis of the case study and to discuss whether the IC statistical properties of the Shewhart u-

chart are adequate for the current monitoring task, we use some results obtained from the 

aforementioned investigation. 

What resulted is that the IC average run length of the u-chart is ARL0 151. Bearing in mind 

that a false alarm could divert some of the already scarce resources, that in overworked hospital 

units when alarms are excessive important signals are likely to be ignored together with 

irrelevant ones (Burkom19) and considering that we are dealing with monthly data, this value 

of IC ARL can be considered to be acceptable for the case at hand. 

Therefore, for comparison purposes we set up the EWMAD, EWMAB, EWMARW, WEWMA 

(for positive shifts) and WEWMA (for negative shift) control charts with the same in-control 

performance as the u-chart. The results for the period monitored – February 2016 to September 

2019 – are shown in Figures 2-6. 

 

[FIGURE 2 APPROXIMATELY HERE] 

[FIGURE 3 APPROXIMATELY HERE] 

[FIGURE 4 APPROXIMATELY HERE] 

[FIGURE 5 APPROXIMATELY HERE] 

[FIGURE 6 APPROXIMATELY HERE] 

 

To comment these results it is worth remembering that the monitoring actually began in the 

autumn of 2018. Since then, each hospital unit has a Shewhart u-control chart for monitoring 

the monthly fall rates. The fact of having monthly feedback on patient fall rates most probably 

placed a greater attention on the phenomenon leading to an improvement, albeit slight, in the 

performances. This could explain the results obtained: the most sensitive algorithm, the 

WEWMA (for negative shifts) control chart signalled a reduction in the fall rate in July 2019 

whereas the other monitoring schemes did not detect any change. 



 

3 Theoretical Background and Performance Comparisons 

In healthcare surveillance a common situation is to monitor an incidence rate in cases where 

the area of opportunity of the event of interest is not constant over time: as for example the 

monitoring of an adverse event when the size of at-risk population changes randomly from 

month to month. 

The issue of statistical monitoring of an event’s occurrence rate with varying population sizes 

over time can be formalized as follows. 

Let 1X , 2X ,… iX …be a sequence of event counts observed during fixed time periods. We 

assume that the iX ’s are independent Poisson observations with mean 0in , where 0  is the 

incidence rate of the event in question and 1n , 2n ,… in …are the sizes of the population at time 

i, respectively. 

It is assumed that 0  changes to another unknown value 1  at some unknown time tc and the 

objective is to detect the change as early as possible while controlling the false alarms rate. 

 

3.1 The u-control chart 

The Shewhart u-control chart is the simplest and probably the most used, monitoring algorithm 

for handling such changes in the area of opportunity (i.e. the changes in sample sizes). The u-

chart is based on the average number of non-conformities (or adverse events) per inspection 

unit, i.e. ( )i i iu X n=  with central line and control limits (with the usual 3-sigma rule) given 

by 

 0
CL =  (1) 

 0 0
3

i i
LCL n = −  (2) 

 0 0
3

i i
UCL n = +  (3) 

respectively (Montgomery6). When the calculated lower control limit falls below zero it is 

customarily reset to zero because count data cannot fall below zero (Mohammed et al7). The u-

chart signals an out-of-control situation when one of the plotted points iu  exceeds the control 

limits. 

In practice the parameter 0  is often unknown and therefore should be estimated by performing 

a “Phase I” on m in-control-samples. In this case the estimator of 0  is  

 



 0

1 1

ˆ
m m

i i

i i

x n
= =

 
=  

 
   (4) 

and the estimated value 
0

̂  replaces 0
  in the above formulae. 

One drawback of the Shewhart u-control chart is that it is not sensitive enough to detect small 

parameter shifts in real-time monitoring since the decision is based on the current value of the 

plotted statistic. Therefore, more sensitive alternatives such as the cumulative sum (CUSUM) 

and the exponentially weighted moving average (EWMA) control charts, which are based on 

past information along with current data, have been proposed in literature (Montgomery6). In 

what follows we examine several EWMA control schemes. 

 

3.2 The EWMAD control chart 

The first EWMA method under examination was proposed by Dong et al10. The EWMA 

statistic, in the following EWMAD, is 

 ( ) 11i
i D D i

i

X
Z Z

n
  −= + −  (5) 

 

where (0,1]D   is a smoothing parameter, which determines the weights assigned to the past 

observations, and 0 0Z = . The exact variance of the EWMAD is 

 ( )
2 22 2 0

1

1
i

i
i j

D D D

j jn


  

−

=

= −  (6) 

and the bidirectional version of the EWMAD is 

 2

0 ii D DUCL L = +  (7) 

 0CL =  (8) 

 2

0 ii D DLCL L = −  (9) 

 

The factor DL  is the width of the control limits. It is possible to choose the design parameters 

D  and DL  that provide the desired average run length (ARL) performance of the chart. A 

reasonable, often-used rule of thumb is to choose  0.05,0.2D   and to look for the control 

limits coefficient DL  to achieve a specific value of the IC ARL. In practice 0.05D = , 0.1D =  

and 0.2D =  are the most used values. 



The EWMA methods were developed for Phase II monitoring. When the parameter 0  is 

unknown it can be estimated through a Phase I usually performed using a Shewhart u-chart. 

Dong et al10 also explored two other versions of their EWMA method based on the exact 

maximum value of the EWMAD variance 

 

 ( )
2*2 0

0

1 1
2i

iD
D D

Dn

 
 


 = − −
 −

 (10) 

and on the asymptotic maximum value of the EWMAD variance 

 

 *2 0

0 2

D
D

Dn

 



=

−
 (11) 

respectively.  

In the above formulae 0n  is the minimum sample size among all the values of in . However, 

the EWMA charts were mainly developed as Phase II methods, therefore, as Ryan and Woodall4 

noted, there is no justification to consider (10) and (11), since it is not possible to know 

beforehand the minimum sample size as the samples are taken or observed in real time. 

 

3.3 The EWMAB control chart 

A possible solution that overcomes the problem related to the unknown 0n  is to use a modified 

version of the variance 
*2

iD  (10) by substituting 0n  with the current sample size in : 

 ( )
2*2 0 1 1

2i

iB
B B

i Bn

 
 


 = − −
 −

 (12) 

In such a way we include, even if slightly modified, one of Dong et al10 proposals. Note that 

since the variance (12) uses the current sample size in , it leads to less smoothed control limits 

which might contribute to increase chart’s detection capability. 

The EWMA statistic, in the following EWMAB, is 

 ( )* *

11i
i B B i

i

X
Z Z

n
  −= + −  (13) 

and the control limits of the EWMAB-chart are 

 *2

0 ii B BUCL L = +  (14) 

 *2

0 ii B BLCL L = −  (15) 



where (0,1]B  , and 0 0Z = . Also in this case, the design parameters B  and BL can be chosen 

in such a way as to obtain the desired ARL performance of the chart. 

 

3.4 The EWMARW control chart 

Ryan and Woodall4, to avoid a possible problem of inertia in detecting increases in the incidence 

rate, modified the EWMAD control chart by introducing a lower reflecting barrier at 0iZ = . 

Their proposed EWMA statistic, in the following EWMARW, is 

 

 ( )0 1max , 1i
i RW RW i

i

X
Z Z

n
   −

 
 = + − 

 
 (16) 

where (0,1]RW   and 0 0Z  = . The upper control limit is given by 

 

 ( )
2 22 0

0

1

1
i

i j

i RW RW RW

j j

UCL L
n


  

−

=

= + −  (17) 

Also for the EWMARW, RW  and RWL  can be chosen as to obtain the desired ARL performance 

of the chart. 

 

3.5 The WEWMA control chart 

Zhou et al11 proposed an EWMA control chart (WEWMA) derived under the framework of a 

weighted likelihood ratio test WLRT for monitoring Poisson count data with varying sample 

size. For the authors the monitoring task is to test 0 0:H  =  versus 1 1:H  = . By ignoring two 

constant terms with respect to θ, the log-likelihood of the observation 
jX  can be expressed as  

 

 ( ) logj j jl X n  = −  (18) 

At any time point t, consider the following exponentially weighted log-likelihood over samples 

1 to t 

 ( ) ( ),

0

;
z

t

t z j j

j

Y l   
=

=   (19) 

where (0,1]z   is the smoothing parameter, and ( ), 1
z

t j

j z z  
−

= −  is a sequence of constants 

to ensure that all the weights add up to 1 as t →  . For j=0, ( )0 0,X n  can be viewed as a pseudo 



“sample” and is chosen as ( )1 0 1,n n . Given the value of z , the maximum weighted likelihood 

estimate (MWLE) of θ at time point t is defined as the solution to the following maximization 

problem 

 ( )ˆ argmax ;t t zY


  =  (20) 

Since ˆ
t  can be written as (Zhou et al11) 

 
,0 ,

,,0

ˆ

t

j jj c t

t t

p tj jj

X Y

Yn










=

=

= =



 (21) 

 

it follows that the –2×logarithm of weighted LRT (WLRT) statistic is 

 

 
,

, , , 0 ,

0 ,

2 log
z

c t

t c t c t p t

p t

Y
R Y Y Y

Y
 



 
= − + 

  
 (22) 

 

where Yc,t and Yp,t are the exponentially weighted average of counts and populations, 

respectively. The WLRT statistic , ztR  can thus be used for monitoring and the corresponding 

control chart triggers a signal if , ztR   exceeds a specified control limit. Note that Yc,t and Yp,t can 

be written according to the recursive formulations  

 , , 11( )c t z j z c tY X Y  −= + −  (23) 

 , , 11( )p t z j z p tY n Y  −= + −  (24) 

 

where the initial values are ,0 0 1cY n=  and ,0 1pY n=  respectively based on the pseudosample 

( )0 0,X n  defined earlier. The chart can be implemented for detecting positive and negative 

shifts.  

For positive shifts, 0 0:H  =  versus 1 0:H   , the monitoring test statistic is 

 

 
*

, , 0( ˆ )
z zt t tR R I   =   (25) 

and the WEWMA control chart is 

 *

, ,min ; , 1
2z

z
WEWMA t z p

z

T t R L t





 
=   

− 
 (26) 



where , 0z pL   is chosen to achieve a specific value of IC ARL. 

For negative shifts, 0 0:H  =  versus 1 0:H    the monitoring test statistic is 

*

, , 0( ˆ )
z zt t tR R I   =   and the WEWMA control chart is 

 *

, ,min ; , 1
2z

z
WEWMA t z n

z

T t R L t





 
=   

− 
 (27) 

 

where , 0z nL   and is chosen to achieve a specific value of IC ARL. 

Also for the WEWMA a reasonable rule-of-thumb used in practice for designing the control 

chart is to choose  0.05,0.2z   and to look for the control limits coefficient ,p nL  (or ,z nL ) to 

achieve a specific value of the IC ARL.  

 

3.6. IC Performance of the u-Control Chart 

There are several measures for assessing the IC properties of monitoring algorithms. The most 

commonly used measure is the average run length (ARL) when there is no change in the system 

under surveillance.  

The run length of a control chart is a discrete random variable that is defined as the number of 

plotted statistics before an out-of-control point is observed on the chart. The ARL is the 

expected value of this random variable. 

Here we study the IC run length distribution of the u-chart by means of a simulation experiment 

based on k=50000 replications.  

In detail we simulated observations from a Poisson distribution with parameter 
0
ˆ

i
n , i.e. 

( )0
ˆ

i i
x Po n . The varying sample sizes i

n  used for the simulations were generated from a 

uniform distribution ( ),U a b  with ( )min 1.5
Ii

a n= , ( )1.5 max
Ii

b n=  , where ( )min
Ii

n  and 

( )max
Ii

n  are the minimum and the maximum of the sample sizes * 1000
i i

n n=  of the in-control 

data of Phase I, respectively. Note that, in this manner two goals were achieved: i) no particular 

changing patterns are assumed for the sample sizes, thereby this “neutral scenario” ensures that 

the varying i
n  had no systematic effect on the IC performance of the chart; ii) through the 

extension of the distribution’s support [a,b], by 50% with respect to both the minimum and 

maximum of the sample sizes we are able to simulate the sample sizes over a wide and realistic 

range of possible values. 



For each run of the k replications the observations are generated until i iu UCL . The first i for 

which i iu UCL  is the in-control RL. The average of the k RLs is our estimate of the IC ARL 

(ARL0). It is important to remember that when a control chart is developed with estimated 

parameters, to summarize the run length distribution using only the ARL can be misleading 

(Ryan and Woodall4, Jones et al20, Mei21). Therefore we complete the picture of the IC control 

chart performance by also computing the 10th percentile Q(0.10), the median, the 90th 

percentile Q(0.90) of the marginal distribution of the run length, the standard deviation of the 

run length (SDRL) and the false alarm rate (FAR) for the first 30 observations. The results are 

reported in Table 2. 

 

[TABLE 2 APPROXIMATELY HERE] 

 

The IC run length distribution of a control chart is considered to be satisfactory if it is close to 

the geometric distribution or more generally if it varies to a lesser extent than the geometric 

distribution (Hawkins and Olwell22). As a reference, when the run length distribution is 

geometric with an expected value equal to 151.168, the SDRL should be approximately equal 

to ARL0, and Q(0.10), Median, Q(0.90), and FAR should be approximately 16, 104, 347, and 

0.181, respectively. From the results of Table 2 it can be noted that SDRL, Q(0.10) ,Q(0.90), 

Median, and FAR are all approximately equal to the respective theoretical values. Therefore, 

the geometric distribution is a fairly reasonable approximation to the IC run length distributions 

of the u-chart. This means that the IC behavior of the u-chart complies with the theoretical 

expectations and the ARL0 is a suitable summary of its IC run behavior. 

 

3.7. Set-up of the EWMA control charts  

To perform the comparisons all the charts examined must have the same IC performance. Here 

we introduce the simulation-based procedure designed to set up the EWMAD, EWMAB, 

EWMARW and the WEWMA control charts with the same IC performance as the u-chart.  

For convenience we used the same value for the smoothing parameter 0.1D B RW z   = = = =  

and by means of an iterative search algorithm, based on k=50000 simulations we looked for the 

parameters DL , BL , RWL , ,z pL  and ,z nL  that allow us to achieve the same IC ARL (151.168) 

as in the u-chart. 

The algorithm works as follows: 



1) with an initial value for DL  ( BL , RWL , ,z pL  or 
,z nL ) denoted by startL  the empirical ARL0 

is estimated as the average of k=50000 RLs values obtained by simulating observations 

under H0 

2) If   0ARL 151.168 5%  then DL  ( BL , RWL , ,z pL  or 
,z nL ) is set equal to startL  and the 

search algorithm stops  

3) Otherwise, if ARL0>151.168, then 0.05start startL L= − ; if ARL0<151.168, then 

0.05start startL L= +  and the algorithm starts other k simulations. 

The results are summarized in Table 3. 

 

[TABLE 3 APPROXIMATELY HERE] 

 

Examining the results reported in Table 3 it can be seen that the geometric distribution is a 

reasonable approximation to the IC run length distribution for all the EWMA-type control 

charts examined. This confirms that the examined EWMA charts work well under the IC 

condition and for these charts the ARL is a suitable summary of their IC run behavior. 

 

3.8. OC performance comparison 

All the control charts examined are designed to achieve the same IC ARL; therefore we are able 

to study and compare their OC performance. For this purpose, we designed a simulated 

experiment where the observations are generated from a Poisson distribution with parameter 

1 i
n  for different values of 1

 . As values for 1
  we considered cases where the in-control 

parameter 
0

̂  had been increased by 2.5%, 5%, 10% and up to 100% with steps of 10% while 

the varying sample sizes i
n  were generated from a uniform distribution ( ),U a b  as explained 

in Section 3.6. Once again it is important to point out that in this way we assumed a neutral 

scenario for the sample sizes and attention was focused on the effects of a change in the fall-

rate parameter. For each run of the k=50000 simulations we generated observations until iu  (

iZ , 
*

iZ , iZ   or 
*

, ztR  ) was lower than the corresponding upper control limit. The first i (or t) for 

which the test statistic exceeded the UCL was the out-of-control RL. The average of the 50000 

RLs is our estimate of the ARL1. Please note that all the comparisons are made in terms of 

steady-state ARL (Ryan and Woodall4, Zhou et al11). The results are summarized in Table 4. 

 



[TABLE 4 APPROXIMATELY HERE] 

 

To assess the overall performance of these charts we also computed their relative mean index 

(RMI) values. The RMI index assesses the overall performance of a monitoring algorithm by 

providing an average measure of relative efficiency. RMI is defined as (Han and Tsung23) 

 
1

1
l l

l

N

i

ARL MARL
RMI

N MARL

 

=

−
=    (28) 

where N is the total number of shifts considered, lARL  is the OC ARL of the given control 

chart when detecting a parameter shift of magnitude l , and 
l

MARL  is the smallest among all 

OC ARL values of the charts considered when detecting the shift l . The control chart with a 

smaller RMI has the best overall performance. For positive shifts the RMI values are reported 

in the last row of Table 4. 

The WEWMA control chart is designed to detect both positive and negative shifts, however in 

the problem under study the EWMAD and EWMAB are able to detect negative shifts, since it 

can be shown that the sample size required to obtain negative lower control limits should be 

smaller than 1. 

Let us examine the EWMAD control chart. Regarding the sample size in  as an unknown 

quantity, un , and considering the asymptotic maximum value of the EWMAD variance (11) we 

can solve the inequality 0
0 0

2

D
asymptotic D

u D

LCL L
n

 



= − 

−
 with respect to the unknown un . 

The result is 
2

0 2

D D
u

D

L
n



 


−
. In our case, with 0 1.745708 = , 2.35DL =  and 0.1D =  we 

obtain 0.1665un  . For the EWMAB chart ( 2.6BL = ), by a similar approach, the result is 

0.2038un  . 

Therefore, we also studied the statistical properties of these charts for the case of a decrease in 

the incidence rate. The simulation experiment was designed as for positive shifts. The 

observations are generated from a Poisson distribution with parameter 1 i
n  for different values 

of 1
 . As values for 1

  we considered cases where the in-control parameter 
0

̂  had been 

decreased by 2.5%, 5%, 10% and up to 100% with steps of 10%. Also in this case, the varying 

sample sizes i
n  were were generated from a uniform distribution ( ),U a b  as explained in 

Section 3.6. The results are summarized in Table 5.  



 

[TABLE 5 APPROXIMATELY HERE] 

 

The results reveal that for positive shifts, the EWMAB-chart has a performance that is very 

similar to the EWMAD-chart. The RMI values are 0.1166 and 0.1491 for the EWMAD and 

EWMAB charts, respectively (Table 4). For negative shifts, the EWMAB-chart shows a slightly 

better detection ability than the EWMAD-chart. For example, a 10% decrease in the rate is 

detected by the EWMAB-chart after 113 months on average, while the EWMAD-chart signals 

the same shift after 128 months. For negative shifts the RMIs are 0.4791 and 0.4305 for the 

EWMAD and EWMAB charts, respectively (Table 5). These results suggest that the use of 

variance (12) might have contributed to the improvement of the control chart performance. 

For detecting positive shifts, due to the introduction of the lower reflecting barrier, the 

EWMARW-chart performs better than the EWMAB and EWMAD charts and for 

1 0 0
0.6   +  performs slightly better than the WEWMA-chart (Table 4). 

The WEWMA-chart outperforms all the other control charts for negative shifts and for positive 

shifts less than or equal to 50%. 

For example, the WEWMA-chart detects a 5% increase in the rate after 85 months on average, 

the EWMARW after 93, the EWMAB like the EWMAD after 110, and the u-chart after 118. 

Please note that the magnitudes of the shift (from |2.5|% to |100|%) in the falls rate 
0

̂  

considered in this study represent, in our opinion, realistic scenarios for hospital fall count data. 

Therefore, the results obtained can be considered as a reasonable summarized picture of the 

performances of the examined monitoring algorithms. 

 

4. Concluding remarks 

Assessing changes in the outcome of a rare event that is subject to fluctuation in the at-risk 

population is challenging. In these cases it is important to use monitoring algorithms that are 

capable of handling such changes in the sample sizes. 

For monitoring Poisson count data with varying sample sizes, the Shewhart u-chart, albeit with 

some limits, is the most accessible control chart, particularly in terms of setting up the chart. 

In this article, based on a real dataset and using simulations to develop various realistic 

scenarios for healthcare count data, we have compared the u-chart with several EWMA 

monitoring schemes. 



First, through a simulation study, the IC run length performance of the u-chart was studied to 

evaluate whether it was acceptable for the case under examination. With regard to this issue, it 

is worth noting that in real healthcare applications with varying sample size the evaluation of 

the in-control statistical properties of any control chart is often neglected. Consequently, 

hospital performance assessments and the resulting decisions are based on the outcomes of a 

monitoring algorithm without any discussion on its adequacy. We believe that to avoid errors 

and the wasting of resources it could be beneficial to estimate the baseline performance of the 

control chart being used and to discuss whether they are adequate for the current monitoring 

task. 

Then, EWMA-charts, with the same IC performance as the u-chart, were implemented and 

compared on a real dataset. Furthermore, the OC statistical properties were studied by 

developing realistic scenarios for hospital fall count data using simulations. 

Since in the healthcare field it is important not only to quickly identify an increase in the rate 

of adverse events but also to detect any improvement as a result of suitable interventions in 

comparing the control charts, both aspects have been taken into account. 

The results showed that the WEWMA-chart outperforms all the other control charts for negative 

shifts and for small positive shifts 50% . The EWMAB-chart has approximately the same 

performance as the EWMAD-chart. For detecting positive shifts, the EWMARW-chart 

performs better than the EWMAB and EWMAD charts and for relatively large increases (

60% ) it has slightly better performance than the WEWMA-chart. 

To summarise, due to its fast detection properties and the ability to detect shifts in both 

directions, the WEWMA control chart may represent a valuable tool for monitoring hospital 

adverse events. 

A possible minor issue of the WEWMA-chart is that it lacks direct interpretability as the plotted 

statistic cannot be interpreted as an estimate of the current event rate. To overcome this 

problem, since simplicity, training issues and ease of interpretation of charts for healthcare 

teams are important aspects in order to avoid inappropriate decisions and to reduce fatigue, the 

Local Healthcare Authority of Romagna patient safety team opted for the joint use of the 

WEWMA and u-chart. 

As stated in the Introduction, in this work we focused solely on the EWMA control charts. 

However, the CUSUM-type monitoring algorithms are also widely used for monitoring count 

data in many areas including the healthcare framework. We will consider the CUSUM-topic in 

a future piece of research. 



It is also important to remember that control charts for monitoring count data are generally 

constructed under the assumption of Poisson distributed observations. Several studies (Jones 

and Govindaraju24, Heimann25, Laney26, Spiegelhalter27, Mohammed and Laney28), however, 

argued that the underlying equidispersion assumption might not hold as practical cases with 

overdisperion or underdispersion should also be considered. Saghir and Lin29 provided a 

comprehensive review of methodologies for monitoring dispersed count data and gave 

interesting ideas for possible future developments of the present research. 

Finally, we are aware that the performance of the EWMA charts depends on the smoothing 

parameter , which, for the purposes of conciseness, has been set to a constant value in this 

article. Further pieces of research will be devoted to the role of the value of the  on the 

examined EWMA charts. 
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Table 1: xi monthly falls and 
*

in  patient days for the period January 2014-September 2019 

Month 
*

in  xi Month 
*

in  xi Month 
*

in  xi 

Jan-14 1271 1 Dec-15 1058 2 Nov-17 1487 3 

Feb-14 912 0 Jan-16 1334 1 Dec-17 1344 2 

Mar-14 1139 3 Feb-16 1057 2 Jan-18 1234 3 

Apr-14 959 2 Mar-16 1251 1 Feb-18 1435 3 

May-14 1112 1 Apr-16 1118 3 Mar-18 1277 1 

Jun-14 1029 2 May-16 1089 3 Apr-18 1277 1 

Jul-14 1019 2 Jun-16 1123 1 May-18 1450 1 

Aug-14 1046 0 Jul-16 1097 1 Jun-18 1347 3 

Sep-14 1002 1 Aug-16 1009 2 Jul-18 1238 1 

Oct-14 1201 0 Sep-16 1193 3 Aug-18 1424 4 

Nov-14 1062 3 Oct-16 1026 2 Sep-18 1395 2 

Dec-14 1090 5 Nov-16 1087 3 Oct-18 1382 4 

Jan-15 1363 2 Dec-16 1144 2 Nov-18 1423 3 

Feb-15 952 1 Jan -17 1434 3 Dec-18 1505 2 

Mar-15 1285 2 Feb-17 1238 3 Jan-19 1373 1 

Apr-15 992 3 Mar-17 1373 1 Feb-19 1390 0 

May-15 1192 3 Apr-17 1277 1 Mar-19 1106 2 

Jun-15 902 2 May-17 1400 1 Apr-19 1144 1 

Jul-15 1243 3 Jun-17 1337 3 May-19 1123 1 

Aug-15 1102 2 Jul-17 1337 1 Jun-19 1069 1 

Sep-15 1011 3 Aug-17 1386 2 Jul-19 1186 0 

Oct-15 1186 4 Sep-17 1240 2 Aug-19 1026 2 

Nov-15 1034 0 Oct-17 1126 2 Sep-19 1305 2 

 

 

 
Figure 1: u-chart for Phase I (Calibration Data) and Phase II (New Data) 

 

 



 

Figure 2: EWMAD control chart for monitoring the monthly fall per 1000 patient days 

 

 

Figure 3: EWMAB control chart for monitoring the monthly fall per 1000 patient days 

 



 

Figure 4: EWMARW control chart for monitoring the monthly fall per 1000 patient days 

 

 

Figure 5: WEWMA control chart (positive) for monitoring the monthly fall per 1000 patient 

days 

 

 



 
Figure 6: WEWMA control chart (negative) for monitoring the monthly fall per 1000 patient 

days 

 

 

 

 

Table 2: IC RL results from the simulations 

ARL0 SDRL Q(0.10) Median Q(0.90) FAR 

151.1684 151.7784 16 104 348 0.1826 

 

 

 

 

Table 3: IC Run Length Results (ARL0151.168) 

 L SDRL Q(0.10) Median Q(0.90) FAR 

EWMAD 2.35DL =  173.3981 11 98 361 0.2173 

EWMAB 2.6BL =  152.1211 13 101 345 0.1998 

EWMARW 2.4RWL =  158.1871 11 95 341 0.2180 

WEWMA , 3.85z pL =  144.7811 17 103 337 0.1787 

WEWMA , 3.75z nL =  143.0383 18 101 332 0.1767 

 

 



 

 

Table 4: OC ARL results for positive shifts with standard deviations in parenthesis. RMIs in 

last row. 

 u-chart EWMAD EWMAB EWMARW WEWMA 

1 0 0
0.025  = +  

133.9905 

(132.7186) 

132.1178 

(147.8677) 

130.9323 

(134.1310) 

115.3659 

(125.9228) 

110.6871 

(108.5948) 

1 0 0
0.05  = +  

118.6586 

(118.2208) 

110.0868 

(121.8029) 

109.7551 

(111.6834) 

92.7468 

(100.6559) 

84.5281 

(81.2703) 

1 0 0
0.1  = +  

94.0243 

(92.5185) 

73.1380 

(78.6863) 

73.8657 

(73.7917) 

61.4061 

(64.9530) 

54.4491 

(50.8256) 

1 0 0
0.2  = +  

60.5622 

(60.2563) 

35.2278 

(35.3403) 

35.3529 

(33.6384) 

31.5537 

(31.9621) 

27.8345 

(23.6924) 

1 0 0
0.3  = +  

41.3927 

(40.7772) 

20.3272 

(19.2478) 

20.5224 

(18.4503) 

19.0739 

(18.2836) 

17.5386 

(13.5072) 

1 0 0
0.4  = +  

29.1579 

(28.5864) 

13.2522 

(12.0847) 

13.6281 

(11.6449) 

12.7821 

(11.6722) 

12.4624 

(8.8792) 

1 0 0
0.5  = +  

21.3988 

(20.9510) 

9.4756 

(8.338) 

9.8432 

(8.0980) 

9.2430 

(8.0653) 

9.5582 

(6.3000) 

1 0 0
0.6  = +  16.2447 

(15.7133) 

7.2777 

(6.2156) 

7.6341 

(6.0495) 

7.07910 

(5.9804) 

7.7314 

(4.7644) 

1 0 0
0.7  = +  12.4837 

(11.9544) 

5.7699 

(4.8123) 

6.1010 

(4.7502) 

5.7215 

(4.6926) 

6.4493 

(3.7421) 

1 0 0
0.8  = +  9.9399 

(9.4732) 

4.7654 

(3.8853) 

5.0476 

(3.8480) 

4.7233 

(3.7778) 

5.6140 

(3.1488) 

1 0 0
0.9  = +  8.1001 

(7.5586) 

4.0696 

(3.2181) 

4.3154 

(3.1959) 

4.0651 

(3.1682) 

4.9570 

(2.6624) 

1 0 0
1.0  = +  6.6627 

(6.1238) 

3.5041 

(2.7230) 

3.7776 

(2.7516) 

3.5139 

(2.6596) 

4.4419 

(2.3084) 

RMI 1.0006 0.1166 0.1491 0.0431 0.0774 

 

  



 

 

Table 5: OC results for negative shifts with standard deviations in parenthesis 

 EWMAD EWMAB WEWMA 

1 0 0
0.025  = −  

165.8823 

(191.3911) 

154.8556 

(156.7213) 

110.8259 

(106.151) 

1 0 0
0.05  = −  

165.3261 

(191.3279) 

150.7474 

(150.7520) 

85.3380 

(80.6883) 

1 0 0
0.1  = −  

127.5269 

(143.2911) 

112.8251 

(109.7253) 

54.2937 

(48.2809) 

1 0 0
0.2  = −  

55.3412 

(52.9344) 

50.0287 

(43.5181) 

26.4997 

(20.6650) 

1 0 0
0.3  = −  

27.6411 

(22.2168) 

25.7524 

(19.0283) 

15.8329 

(10.3017) 

1 0 0
0.4  = −  

16.2702 

(10.9818) 

15.7219 

(9.9151) 

10.8850 

(5.8512) 

1 0 0
0.5  = −  

10.8676 

(6.2794) 

10.7659 

(5.8794) 

8.2059 

(3.7207) 

1 0 0
0.6  = +  7.8350 

(3.9919) 

7.9465 

(3.7671) 

6.5061 

(2.5376) 

1 0 0
0.7  = +  5.9318 

(2.6232) 

6.1581 

(2.5096) 

5.3999 

(1.7756) 

1 0 0
0.8  = +  4.6687 

(1.7486) 

4.9846 

(1.7596) 

4.6247 

(1.3195) 

1 0 0
0.9  = +  3.7886 

(1.1544) 

4.1282 

(1.2210) 

4.0470 

(1.0008) 

1 0 0
1.0  = +  3.1241 

(0.9257) 

3.5102 

(0.8310) 

3.6081 

(0.7841) 

RMI 0.4791 0.4305 0.0186 

 

 


