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Pointcloud-based Identification of Optimal Grasping Poses

for Cloth-like Deformable Objects

Alessio Caporali, Gianluca Palli

DEI - Department of Electrical, Electronic and Information Engineering

University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Abstract— In this paper, the problem of identifying optimal
grasping poses for cloth-like deformable objects is addressed by
means of a four-steps algorithm performing the processing of
the data coming from a 3D camera. The first step segments
the source pointcloud, while the second step implements a
wrinkledness measure able to robustly detect graspable regions
of a cloth. In the third step the identification of each individual
wrinkle is accomplished by fitting a piecewise curve. Finally,
in the fourth step, a target grasping pose for each detected
wrinkle is estimated. Compared to deep learning approaches
where the availability of a good quality dataset or trained model
is necessary, our general algorithm can find employment in very
different scenarios with minor parameters tweaking. Results
showing the application of our method to the clothes bin picking
task are presented.

Index Terms— Deformable Object Manipulation, Point
Clouds, Computer Vision, Robotic Applications.

I. INTRODUCTION

The manipulation of clothes and fabrics, in general, con-

stitutes a very active research topic other than a broad field

of interest for industrial manufacturing. Clothes are highly

deformable objects which means that their mechanical and

visual properties (shape, appearance) change during time due

to previous handling or external effects as the gravitational

force. This result in their manipulation being more challeng-

ing compared to rigid objects, in particular concerning the

development of perception-related capabilities.

A recent survey covering the literature of robotic sensing

and manipulation of deformable objects can be found in

[1]. Among the main contributions of the study, the authors

propose a classification scheme for deformable objects based

on their geometric shape and physical properties. In this

study, clothes are classified as biparametric objects not

possessing any compression strength. Biparametric means

that they have one dimension considerably smaller that its

other two, i.e. the thickness of the fabric. In the surveys,

the authors recognize a tendency of approaches to develop

task-specific techniques or to exploit peculiar assumptions

on object type and characteristic. The authors conclude that

the lack of general solutions remains a major open issue.
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(a) Bin picking (b) Washing Machine picking

Fig. 1: Scenarios in which our proposed algorithm can find

employment: robot executing grasp operations in a) bin

picking task and b) washing machine picking task.

Extensive work has emerged in the garment manipulation

literature, as noted by [1]. In the following, major contribu-

tions are presented.

In [2] the authors use 3D data to recognize the shape of

a cloth while being held in the air by a humanoid robot.

From a crumble configuration, the cloth is re-grasped along

the rim, and its configuration is compared to simulated data

obtained based on the object size and softness.

In [3] the authors describe a three layer architecture for the

detection of informed initial grasping points using a RGB-

D image. A Bag of Features descriptor is constructed using

texture and geometric information and a detection probability

map is built based on the descriptor. The map expresses the

probability of a polo collar to be present in a given region.

Local peaks of the probability map are refined. A graspability

measure (shown in details in [4]) is applied to the depth

image. It assigns more importance to the regions of the image

showing wrinkle-like structures. Combining the graspability

measure results and the probability map, it is possible to

obtain grasping points corresponding to the polo collar.

In [5], the goal is to bring a cloth in a planar state with

the least amount of manipulations. A method is developed

for obtaining two grasp point for a cloth randomly placed

on a flat surface. Utilizing a dual-arm robot and the two

computed grasp points, the cloth is spread out directly.

Shape description and grasp point representation are based

on hem elements. Grasp points are selected comparing a

candidate point to a training dataset where ideal points were

assigned manually. Similarly, in [6], a stereo robot head



gathers high-quality RGB-D images of clothes from which a

preprocessing stage extracts and ranks wrinkle structure. The

largest wrinkle is targeted and an heuristic cloth-flattering

strategy employing a dual-arm robot is applied.

In [7] the authors address the problem of grasping a cloth

lying flat on a surface. The solution proposed is based on the

generation of a wrinkle and its utilization for the grasping.

The approach uses a single arm robot with a parallel gripper.

More related to garment manipulation efficiency, in [8]

an approach for separating clothes on a table with the least

amount of manipulations is discussed. The task is defined as

a partially observable Markov decision problem (POMDP).

Finally, addressing the problem of garment folding, we can

cite [9], [10] and [11]. In [9] the authors present a vision-

based algorithm for the reliable detection of corners in a

piece of cloth. Only geometric cues are used making the

algorithm robust to variation in texture. Depth-discontinuity

edges in the image are key properties used by the algorithm

to identify borders. In addition, a procedure for the folding

of the cloth is discussed, it is based on the employment of

a two arm robot performing a sequence of vision-based re-

grasps and manipulation both in the air and on a table. In this

work, only clothes with a rectangular shape are addressed.

Differently, in [10], the folding of T-shirts with a dual-arm

robot is presented. The cloth, covered with fiducial markers,

is rotated by 360 degrees and a pointcloud representation

generated. The current grasp point is estimated and the next

grasp point is selected and evaluated (using machine learning

techniques). The goal is to reach a configuration where the

robot holds the T-shirt by the shoulders in order to perform

the folding sequence. In [11] different types of clothes are

addressed. Starting from a spread out configuration on a

table, a system composed by a dual arm robot is capable

of folding the garment. Key points are detected by fitting

the contour mask to a polygonal model. The latter allows

the algorithm to work with various types of objects.

In this paper, we propose an algorithm able to identify

optimal grasping poses for cloth-like deformable objects. Our

approach does not require any prior knowledge of the clothes

under exams nor any validation/comparison stage employing

a machine learning technique. Hence, it is very general

and can be applied to completely new scenarios without

performing any early step in preparation (e.g. creation of

a dataset and training). Additionally, our proposed algorithm

addresses the drawbacks highlighted by the authors in [3] and

[4], specifically the absence of any concavity measure and

the missing usage of points height information in defining

the graspability measure. This work aims at showing how the

exploitation of these auxiliary cues combined with a wrinkles

detection algorithm increases the robustness in the estimation

of the grasping poses.

The paper is structured as follow. In Sec. II the proposed

algorithm is discussed, while in Sec. III experimental results

are presented to verify the algorithm effectiveness with

different samples of pointcloud data obtained from a ToF

3D sensor. Finally, Sec. IV draws some conclusions on the

achieved results and mentions future works.

II. PROPOSED METHOD

The method here proposed aims at detecting a reliable

grasping pose where the robot can attempt a robust grasp

by using a parallel gripper. For this task, performing the

grasp on a sleeve, neck or collar is not relevant. Hence,

the identification of these peculiar regions is not addressed.

Moreover, although a wrinkle generation strategy [7] re-

moves the problem of identify the grasping pose, it increases

the number of manipulations and execution time required.

Thus we focus on providing an efficient algorithm where the

grasp is executed in one motion only.

The algorithm is organized in four steps:

• Step 1: performs the segmentation of the source point-

cloud in order to provide, to the next step, a new

pointcloud composed by only cloth-related points;

• Step 2: implements the detection of the graspable re-

gions by exploiting an entropy measure combined with

convexity and depth maps to increase the detection

robustness;

• Step 3: performs the fitting of piecewise curves to

identify the wrinkles;

• Step 4: estimates the grasping pose for each detected

wrinkle.

In Fig. 2, a graphical representation of the algorithm

workflow is provided. The algorithm is developed in C++

and takes advantage of the PointCloud Library (PCL) [12]

and the Eigen Library. The four steps of the algorithm are

analyzed below.

A. PointCloud Segmentation

This step is intrinsically scenarios dependent. Geometrical

considerations and tools available inside the PointCloud

library are used to perform the segmentation. Even if not

mandatory, the segmentation of the source pointcloud brings

beneficial effects, as: a) ambiguous points that do not be-

long to a cloth are removed; b) the overall size of the

pointcloud is reduced and, consequently, the computation

efficiency increased; c) the bin segmentation enables resizing

the considered interior region of the bin, i.e. removing areas

too close to the bin wall to add a safe space for the gripper

operations.

In more details, given the organized source pointcloud PS ,

the edges are detected as shown in [13]. The plane with edges

inliers that is both parallel and most distant from the ground

plane is found and its points are extracted. The four corners

of the bin are found in the extracted points by fitting four

lines and by verifying the orthogonality for each pair of lines

composing a corner. Fig 2(b) shows the detected bin contour

with corners depicted in red. The RANSAC algorithm [14]

is used to fit both plane and line models to the pointcloud.

From the corners, a convex hull is built and used to crop

the internal volume of the bin, as shown in Fig. 2(c) by the

yellow points inside the bin. The eight red dots display the

corners of the volume considered which is reduced from the

original one to introduce a safe space nearby the bin walls.



Fig. 2: Schema of the proposed algorithm. a) Image showing the input clothes inside a bin; b-c) Pointcloud segmentation

applied to the bin (step 1); d) Entropy map related to the graspable regions detection (step 2); e) Source pointcloud with

estimated grasp poses (steps 3-4).

B. Graspable Regions Detection

The segmented pointcloud is processed in the second

step in order to detect graspable regions. A graspability

measure is employed to gain an understanding of the location

of highly wrinkled areas in the cloth. This information is

encoded into an entropy map. A depth map and convexity

map are used as auxiliary cues to robustify the detection of

the wrinkled areas.

1) Normals Estimation: The first step in the detection of

the regions is based on low-level features as the surface

normals of the pointcloud. They are computed relying on

the Moving Least Squares algorithm [15] which smooth out

the pointcloud surface by fitting a polynomial curve before

estimating the surface normals. By using this approach, a

reduction in the noise in the estimation process is obtained.

The normal vectors obtained are expressed in Cartesian

coordinates as (nx, ny, nz). They are transformed in spheri-

cal coordinates since only two components are relevant. The

transformation involved is documented in [16]. The pair of

angles (φ, θ) are calculated as:

φ = atan

(

nz

ny

)

, θ = atan





√

n2
z + n2

y

nx





The angle φ is denoted as azimuth angle while θ as

inclination angle.

2) Convexity Map: Detecting the concavity or convexity

of a local area is important to remove from the highly

wrinkled areas the regions that are not easily graspable.

The method presented here is capable of providing such

understanding with a very small computation footprint. This

procedure can determine if a point’s neighborhood is con-

vex or concave [17]. Given the input and normal vectors

pointclouds in Cartesian coordinates, for each point a local

neighborhood is found by choosing local patches composed

by 9 points. Focusing on a given patch, lets denote by ~p1 the

(x, y, z) coordinates of the considered point and by ~n1 its

normal. Lets ~p2 and ~n2 be in turn one of its neighborhood

points. The distance vector between ~p1 and ~p2 is computed

as ~d = ~p1 − ~p2. Then, the angle α1 between ~n1 and ~d is

compared with the one α2 between ~n2 and ~d. A convex

connection between ~p1 and ~p2 is defined if α1 is smaller

than α2. The condition can be expressed as:

α1 < α2 ⇒ cos(α1)− cos(α2) > 0 ⇐⇒ ~n1 · d̂−~n2 · d̂ > 0
(1)

d̂ =
~p1 − ~p2

||~p1 − ~p2||

If the condition (1) is not satisfied, the two points will ex-

hibit a concave connection between them. The computation is

performed for all the neighborhood points that satisfy a check

based on the normal vectors difference angle: the convex

connectivity is calculated only if the two normal vectors n1

and n2 have a significant angle difference between them. The

original point is set to be convex if all of its neighborhood

exhibit a convex connection with him. Figure 3 displays the

convex and concave conditions. The results show that this

simple approach is able to detect convex regions as wrinkles

and edges in the clothes, at least in an approximated way. The

combination of the entropy filter with the convexity check

allows the robust detection of convex wrinkles only.

3) Depth Map: The depth map importance is twofold.

First, it is used for the calculation of the weight factor in case

the weighted version of the entropy formula is employed (see

Sec. II-B.4). Second, it allows to correctly detect situations

in which the target cloth lies completely flat on a planar

surface with not detectable wrinkles. Indeed, the entropy

filter in absence of wrinkles identifies as ”highly wrinkled

areas” the corners along the edge of the cloth although this

type of points is not easily graspable. The depth map is build

~p1 − ~p2

~p1

~p2

~n1

~n2

α1

α2

(a) convex

~p1 − ~p2

~p1

~p2

~n1

~n2

α1

α2

(b) concave

Fig. 3: Drawing showing the convex and concave conditions.



(a) Convexity map (b) Depth map

Fig. 4: Convexity and depth maps. The convexity map can

be interpreted as binary map, where red points correspond

to concave or flat regions and blue points to convex areas.

In the depth map blue points correspond to low depth values

whereas red points signify high depth values in that regions.

by using a reference plane and by evaluating the distance

between each point in the input pointcloud and this plane.

The choice of the reference plane depends on the scenario.

In the bin picking, the knowledge of the four top vertices

location is used for the computation of the bin-top plane.

The point to plane distance is computed for all the points

of the segmented pointcloud. At the height of the point

corresponding to the largest distance is fit a plane parallel

to the bin-top one using RANSAC. This plane is used as

reference level for the calculation of the map.

4) Entropy Filter: The entropy filter is employed in order

to quantify how much information exists in a given local

region. In particular, the goal is to discover regions of the

clothes with a sparse distribution of normals. They will result

in a high value in the entropy measure. Instead, regions with

normals mostly aligned with each other will be characterized

by a low value in the entropy measure. For each point

in the input pointcloud a local region is considered and a

two-dimensional histogram is constructed. The histogram is

built with the two spherical components of the surrounding

normal vectors. Hence, the histogram is used to model

the spherical coordinate angles distributions. The entropy

measure is defined as:

H(x) = −wx

n
∑

i=1

p(xi) log p(xi) (2)

where x is the point considered to which a two-dimensional

histogram of orientation angles in spherical coordinates (az-

imuth and inclination) is associated. The histogram is made

of n bins for each dimension. The parameter wx is the weight

related to point x. With xi we are denoting the i-th bin of

the histogram and with p(xi) its associated value. The weight

factor comes from the depth map (Sec. II-B.3). In particular,

wx represent the intensity value in the depth map of the point

considered. As the point is far away from the reference plane,

its associated intensity value is larger and the weight factor

increases. As result, the points that are more distant from

the plane are preferred. If the not weighted version of the

formula is needed, wx can be set equal to one.

5) Entropy Map Segmentation: The last operation per-

formed in the second step is the extraction of the graspable

areas. The input pointcloud is segmented based on an entropy

threshold. All the points having entropy normalized values

above a threshold are kept. This threshold value is a user-

defined parameter.

C. Wrinkles Curve Fitting

Ideally, the wrinkles of a cloth represent the best areas

to perform the grasp, especially when working with a robot

equipped with a parallel gripper. For this reason, we try to

discover all the wrinkles present. The detection is performed

on the segmented entropy map pointcloud of the previous

step. Each wrinkle is detected individually by the process

described in Algorithm 1.

Algorithm 1: Curves Fitting Algorithm

Result: Set of piecewise curves

1 initialization: ps = global maximum entropy point;

2 for all possible high entropy areas do

3 for it ≤ itmax do

4 extraction of PNN given ps;

5 calculation of pC and MC given PNN ;

6 estimation of propagation direction;

7 step in the estimated direction;

8 update of ps;

9 if ‖pNN
s − ps‖ ≤ threshold then

10 it++;

11 else

12 break;

13 end

14 end

15 curve = concatenation of pC points;

16 extraction of curve area from entropy map;

17 ps = new global maximum entropy point;

18 end

In Alg. 1, with PNN is denoted the pointcloud composed

by the neighborhood points of ps (search point). The symbols

pC and MC are referred to the centroid and covariance matrix

respectively. The matrix MC is normalized and its eigenval-

ues and eigenvector are used to estimate the direction of

propagation. An increasing motion is enforced by checking

the angle between the new direction and the previous one.

The step motion is performed from pC . The symbols pNN
s

indicates the closest neighborhood point of ps belonging to

the segmented entropy map pointcloud.

D. Poses Estimation

Each extracted wrinkle is stored as a set of sequence of

points B. By connecting each point one after the other, a

piecewise representation of a curve denoting the wrinkle’s

path is obtained, see Fig. 5. The grasp pose is computed

by considering a picking motion orthogonal to the ground

plane. Hence, the curve is projected on the ground plane and

the RANSAC algorithm applied to identify the most linear



Fig. 5: Wrinkles estimated with grasping frames shown on

source pointcloud. A zoom highlighting the piecewise curves

on the segmented entropy map is shown as well: the prop-

agation is initialized from the bluish regions corresponding

to the local maxima of entropy values.

section of the curve. In such spot the target grasping frame is

attached. The origin of the frame is translated back from the

projected curve to the original one. The first axis is aligned to

the wrinkle direction while the second one is set orthogonal

to the first one and, at the same time, parallel to the ground

plane due to the projection. The last axis is orthogonal to

both the first and second one. The procedure described is

performed for all the wrinkles detected in step 3. The target

frames are expressed in the camera reference frame, therefore

they need to be transformed in the world frame to properly

make use of them. Moreover, the grasp poses can be further

ordered according to their distance from the bin border in

order to select the safer for the robot to execute the grasp.

III. EXPERIMENTAL RESULTS

The setup used during the experiments is composed of a

PC running Ubuntu 16.04 LTS and the PointCloud Library

in version 1.9.1. The processing power consists of a dual

core CPU with a maximum speed of 2.90 GHz.

We have performed tests taking pointcloud samples from

a CamBoard Pico Flexx 3D ToF device. The samples have a

resolution of 224 x 171 (38k) pixels, the maximum possible.

They consist of one or more clothes randomly placed inside

a bin. In particular, the clothes were dropped from above.

In Fig. 6, the use of the weighted version of the entropy

formula (2) is compared to the not weighted one. Moreover,

this figure provides a comparison between the calculation

of the entropy for all the pointcloud points or for only the

convex points obtained from the convexity map described in

Sec. II-B.2 and reported in Fig 4a.

A comparison of the average execution time of the al-

gorithm is provided in Fig. 7, where the execution time

of step 2 only is reported in blue and the one of the

entire algorithm is reported in orange. In Convexity Map,

the entropy calculation has been performed only for convex

points instead of considering all the pointcloud points.

Figure 6(A) shows how for some concave areas, an high

entropy value is detected. The usage of the weighted version

of eq. (2) allows to mitigate this effect since areas with

a greater depth value are probably convex. This can be

appreciated by comparing the ”bluish” areas of Fig. 6(C)

Fig. 6: Comparison involving the entropy formula applica-

tion: A) not weighted on all points; B) not weighted on

convex points; C) weighted on all points; D) weighted on

convex points

Fig. 7: Average execution time of the algorithm.

with the convexity map shown in Fig. 4a. By exploiting the

convexity map, other than an increase in the robustness of

the algorithm in computing graspable poses, a reduction in

the execution time due to the decrease in the total number

of points to evaluate is obtained, see Fig. 7 which shows a

reduction in time by 1/3.

Extensive tests were performed on clothes with different

configurations. Some results are presented in Fig. 8. From

these results, it is possible to observe that the algorithm is

effective also in case of very crumbled configurations and

with clothes in an almost flat configuration having only small

wrinkles. The user-defined parameters used to obtain the

results shown are noted in Table I. Figures 8-(C, D, and E)

present highly wrinkled clothes, resulting into more than one

possible grasping poses. On the contrary, in Figures 8-(A, B,

and F) the possible grasping pose is just one. This difference

is due to the utilization of the weighted version of the

entropy formula (2) where wrinkled areas with greater depth

value are prioritized. In order to detect the other ”shallow”

wrinkles, an iterative approach can be utilized where the area

of the previously detected wrinkle is removed. Alternatively,



Fig. 8: Results of tests performed on clothes with different

crumbled configurations.

the entropy threshold parameter can be decreased to include

a larger set of points.

IV. CONCLUSIONS

In this paper, an algorithm for the identification of grasping

poses of deformable objects like clothes given an input

pointcloud is proposed. For tasks involving the development

of perception capabilities for robotic manipulation of de-

formable objects, it is usually the case that the scenario

analyzed is constrained by several restrictive assumptions.

In the work here presented, a general and modular vision-

based procedure where restrictive assumptions were reduced

as much as possible has been developed and demonstrated

through experiments by the application of the algorithm to

the clothes bin picking task. The solution proposed does not

require any prior knowledge of the type of clothes under

exams, nor any initial training phase.

TABLE I: Parameters used during the experimental tests.

Parameters Values

Entropy threshold 0.5
Depth threshold [m] 0.03
Convexity angle threshold [deg] 5
Curvature threshold 0.1
Local search neighborhood [pixels] 500
Downsampling leaf-size [m] 0.005
Histogram dimensions [n] 64x64

Future work includes the generalization of the algorithm

and its experimental evaluation with different types and

loading conditions of the clothes’ containers. Moreover, tests

involving the application of the algorithm to other tasks, as

the washing machine picking of Fig. 1(b), can be explored.

Finally, a more computationally efficient implementation can

be investigated as well as a reduction in the number of user-

defined parameters.
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