Supporting Information for

An electrochemically controlled supramolecular zip tie based on host-guest chemistry of $C B[8]$

 Peinador*a
${ }^{\text {a D Departamento de Química and Centro de Investigaciones, Científicas Avanzadas (CICA), }}$ Universidade da Coruña, Facultad de Ciencias, E-15071 A Coruña, Spain.
${ }^{\text {b }}$ Department of Chemistry "G. Ciamician" - Alma Mater Studiorum-University of Bologna, Via San
Giacomo 11, Bologna, Italy

General 3
Synthetic procedures: 3
Synthesis and characterization of 2-((4-(bromomethyl)benzyl)oxy)naphthalene (4) 3
Synthesis and characterization of 1-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]- 1-ium bromide ($5 \cdot \mathrm{Br}$) 4
Synthesis and characterization of ((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(4-methylbenzenesulfonate) (6) 4
Synthesis and characterization of 1-bromo-2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethane (7). 5
Synthesis and characterization of 1-methyl-[4,4'-bipyridin]-1-ium hexafluorophosphate (8) 5
Synthesis and characterization of 1-(2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate(9-2PF ${ }_{6}$).6
Synthesis and characterization of 1-methyl-1'-(2-(2-(2-(2-(1'-(4-)((naphthalen-2- yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)ethoxy)ethoxy)ethoxy)ethyl)-[4,4'- bipyridine]-1,1'-diium hexafluorophosphate (1-4PF ${ }_{6}$) 7
Synthesis and characterization of 3,6,9,12,15-pentaoxaheptadecane-1,17-diyl bis(4- methylbenzenesulfonate) (10) 8
Synthesis and characterization of 1,17-dibromo-3,6,9,12,15-pentaoxaheptadecane (11) 8
Synthesis and characterization of 1-(17-bromo-3,6,9,12,15-pentaoxaheptadecyl)-1'-(4- ((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (12.2PF ${ }_{6}$) 9
Synthesis and characterization of 1-methyl-1'-(17-(1'-(4-((naphthalen-2- yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)-3,6,9,12,15-pentaoxaheptadecyl)-[4,4'- bipyridine]-1,1'-diium (2•4PF) 10
Synthesis and characterization of 3,6,9,12,15,18,21-heptaoxatricosane-1,23-diyl bis(4- methylbenzenesulfonate) (13) 11
Synthesis and characterization of 1,23-dibromo-3,6,9,12,15,18,21-heptaoxatricosane (14) 11
Synthesis and characterization of 1-(23-bromo-3,6,9,12,15,18,21-heptaoxatricosyl)-1'-(4- ((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (15-2 PF_{6}) 12
Synthesis and characterization of 1-methyl-1'-(23-(1'-(4-((naphthalen-2- yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)-3,6,9,12,15,18,21-heptaoxatricosyl)- [4,4'-bipyridine]-1,1'-diium hexafluorophosphate (3•4PF $\mathbf{6}$). 13
Synthesis and characterization of $1 \subset C B[8]$ 14
Synthesis and characterization of $\mathbf{2} \subset \mathrm{CB}[8]$ 15
Synthesis and characterization of $\mathbf{3} \subset \mathrm{CB}[8]$ 16
NMR spectra 30

General

The chemicals used in this work were purchased from commercial suppliers and used without further purification. Compound 8•PF ${ }_{6}$ was prepared using a modified procedure. ${ }^{1}$ The purity of the $\mathrm{CB}[8]$ was assessed as previously reported by Kaifer et al. ${ }^{2}$ Milli-Q water was purified with a Millipore Gradient A10 apparatus. Merck 60 F254 foils were used for thin layer chromatography, and Merck 60 (230-400 mesh) silica gel was used for flash chromatography. NMR spectra were recorder on a Bruker Advance 400 or 500 MHz for ${ }^{1} \mathrm{H}$, and 100 or 125 MHz for ${ }^{13} \mathrm{C}$, equipped each other with a dual cryoprobe. The solvent for NMR experiments was deuterium oxide ($\mathrm{D}_{2} \mathrm{O}$), methanol ($C_{2} O D$) and acetonitrile ($C^{2} \mathrm{CN}$). Mass spectrometry experiments were carried out in a LCQ-q-TOF Applied Biosystems QSTAR Elite spectrometer for low and high resolution ESI. UV/Vis spectra were recorded on a Jasco V-650 spectrometer. Microwave-assisted reactions were carried out in an Anton Paar Monowave 300 reactor operating at 2455 MHz in a sealed reaction vial using microwave power between 0-850 W . The samples were irradiated with the microwave power necessary for reaching the temperature of $150{ }^{\circ} \mathrm{C}$ heating with a "as fast as possible" protocol. The reaction mixture temperature was monitored via built-in IR sensor.

EPR measurements. Compounds $\mathbf{1}^{4+}-3^{4+}$ were added to a water $/ \mathrm{CH}_{3} \mathrm{CN}(3 / 2, \mathrm{v} / \mathrm{v})$ solution saturated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$. The samples under nitrogen were immediately sealed in a capillary EPR tube. The EPR spectra were recorded on a Bruker ESP300 spectrometer equipped with an NMR gaussmeter for field calibration and Bruker ERO33M field-frequency lock. The instrument settings were as follows: microwave power 0.79 mW , modulation amplitude $1.0-0.2 \mathrm{G}$, modulation frequency 100 kHz , scan time $180 \mathrm{~s}, 2 \mathrm{~K}$ data points.

Synthetic procedures:

Synthesis and characterization of 2-((4-(bromomethyl)benzyl)oxy)naphthalene (4).

To a solution of 2-hydroxynaphthalene ($1.4 \mathrm{~g}, 9.8 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.8 \mathrm{~g}, 50 \mathrm{mmol})$ in 60 mL of acetone α, α^{\prime}-dibromo- p-xylene ($2.0 \mathrm{~g}, 7.6 \mathrm{mmol}$) was added. The mixture was left under stirring at room temperature for 18 hours. After stirring for 20 hours at room temperature, the resulting mixture was filtered off and purified by column chromatography ($\mathrm{SiO}_{2}, \mathrm{EtOAc}: \mathrm{Hex} 1: 7$) to give 4 as a

[^0]white solid ($0.6 \mathrm{~g}, 23 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}) 7.43(\mathrm{~m}$, $5 \mathrm{H}), 7.32(\mathrm{t}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 156.73$ (C), 137.69 (C), 137.40 (C), 134.60 (C), $129.67(\mathrm{CH}), 129.48$ (C), 129.26 (CH), $128.05(\mathrm{CH})$, $127.81(\mathrm{CH}), 126.94(\mathrm{CH}), 126.57(\mathrm{CH}), 123.93(\mathrm{CH}), 119.17(\mathrm{CH}), 107.30(\mathrm{CH}), 69.69\left(\mathrm{CH}_{2}\right), 33.30\left(\mathrm{CH}_{2}\right)$ ppm. HRMS-ESI (m/z): calcd. [M] ${ }^{+}$: 247.1117, found 247.1115.

Synthesis and characterization of 1-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1-ium bromide ($5 \cdot \mathrm{Br}$).

To a solution of 4 ($470 \mathrm{mg}, 1.40 \mathrm{mmol}$) in 50 mL of $\mathrm{CH}_{3} \mathrm{CN}, 4,4$-bipyridine was added ($560 \mathrm{mg}, 3.60$ mmol) and the mixture was left under reflux. After for 4 hours the mixture was cooled down to reach room temperature and 200 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added. The precipitate formed was filtered off and washed with 25 mL of toluene to give $5 \cdot \mathrm{Br}(480 \mathrm{mg}, 70 \%)$ as a yellow solid. ${ }^{1} \mathrm{H} N M R(500 \mathrm{MHz}$, $\left.C D_{3} O D\right) \delta: 9.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.83(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.41 (ddd, $J=8.1,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.27$ (s, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, C \mathrm{C}_{3} \mathrm{OD}$) $\delta: 156.4$ (C), 154.22 (C), 150.41 (CH), 145.10 (CH), 142.12 (C), 139.63 (C), 134.63 (C), 132.59 (C), 129.10 (CH), 128.99 (CH), 128.35 (CH), 127.19 (CH), 126.42 $(\mathrm{CH}), 126.01(\mathrm{CH}), 125.98(\mathrm{CH}), 123.42(\mathrm{CH}), 122.14(\mathrm{CH}), 118.36(\mathrm{CH}), 106.97(\mathrm{CH}), 68.74\left(\mathrm{CH}_{2}\right), 63.73$ $\left(\mathrm{CH}_{2}\right)$ ppm. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd: $\left[\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 403.1804$, found 403.1807.

Finally, $\mathbf{5} \cdot \mathrm{Br}$ was dissolved in 100 mL of MeOH and KPF_{6} was added until no more precipitation was observed. The MeOH was removed under reduced pressure to leave a yellow crude. The crude was suspended into 100 mL of $\mathrm{H}_{2} \mathrm{O}$ and the yellow powder was filtered off to afford 5•PF ($540 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta: 8.82(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.78-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} N M R\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta$: 157.07 (C), 155.24 (C), 151.76 (CH), 145.53 (CH), 141.72 (C), 139.93 (C), 135.17 (C), 133.13 (C), 130.10 (CH), $129.95(\mathrm{CH}), 129.27(\mathrm{CH}), 128.16(\mathrm{CH}), 127.26(\mathrm{CH}), 127.18(\mathrm{CH}), 126.89(\mathrm{CH}), 124.49(\mathrm{CH})$, $122.44(\mathrm{CH}), 119.33(\mathrm{CH}), 107.94(\mathrm{CH}), 69.61\left(\mathrm{CH}_{2}\right), 64.44\left(\mathrm{CH}_{2}\right)$. HRMS-ESI (m/z): calcd. [$\left.\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 403.1804, found 403.1807 .

Synthesis and characterization of ((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(4methylbenzenesulfonate) (6).

KOH THF/ $\mathrm{H}_{2} \mathrm{O}$ 3h, r.t.

96\%

A solution of 2,2'-((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethan-1-ol) (5.0 g, 25,7 mmol) and 4methylbenzenesulfonyl chloride ($14.7 \mathrm{~g}, 77.2 \mathrm{mmol}$) in 100 mL of THF was stirred for 15 minutes at $0^{\circ} \mathrm{C}$ in an ice bath. Then, a solution of $\mathrm{KOH}(10.1 \mathrm{~g}, 180.2 \mathrm{mmol})$ in 25 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise for 1 hour. After the complete addition, the solution was left 2 h under stirring at room temperature. Consecutively, a mixture of $150 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}(1: 3)$ was added and the organic phase was separated from the aqueous phase. The aqueous phase was extracted again with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. The productcontaining organic fractions were combined and washed with 200 mL of a saturate solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and 200 mL of $\mathrm{H}_{2} \mathrm{O}$. Finally, the organic phase was dried with MgSO_{4} and the solvent was removed under reduced pressure to afford 6 as a yellow oil $(12.4 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.79$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.15(\mathrm{t}, J=5.4,4.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.67(\mathrm{t}, J=5.4,4.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.56(\mathrm{~m}$, 8 H), $2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125} \mathrm{MHz}$,CDCl 3) $\delta: 144.96$ (C), 132.91 (C), 129.97 (CH), 128.12 (CH), $70.89\left(\mathrm{CH}_{2}\right), 70.70\left(\mathrm{CH}_{2}\right), 69.39\left(\mathrm{CH}_{2}\right), 68.84\left(\mathrm{CH}_{2}\right), 21.79\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$: calcd. $\left[\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]^{+}: 525.1223$, found 525.1202.

Synthesis and characterization of 1-bromo-2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethane (7).

95\%
A solution of $6(10.0 \mathrm{~g}, 19.8 \mathrm{mmol})$ and $\mathrm{LiBr}(6.9 \mathrm{~g}, 79.5 \mathrm{mmol})$ in 100 mL of acetone was left under reflux for 18 hours. Then, the solvent was removed under reduced pressure and the crude was dissolved in 200 mL of a mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}$ (1:1). The organic phase was separated from the aqueous phase and this one was extracted again with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. The product-containing organic fractions were combined, dried with MgSO_{4} and the solvent was removed under reduced pressure to afford 7 as a yellow oil ($6.1 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.79(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 4 \mathrm{H})$, $3.65(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 8 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 71.1\left(\mathrm{CH}_{2}\right), 70.64$ $\left(\mathrm{CH}_{2}\right), 70.53\left(\mathrm{CH}_{2}\right), 30.36\left(\mathrm{CH}_{2}\right)$ ppm. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd. $\left[\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{O}_{3}\right]^{+}$: 318.9538, found 318.9536.

Synthesis and characterization of 1-methyl-[4,4'-bipyridin]-1-ium hexafluorophosphate (8).

A solution of 1-(2,4-dinitrophenyl)-[4,4'-bipyridin]-1-ium ${ }^{3}$ ($3.2 \mathrm{~g}, 9 \mathrm{mmol}$) and methanamine (1.7 mL , 19.8 mmol) in a mixture 100 mLEtOH and 30 mL of $\mathrm{H}_{2} \mathrm{O}$ was stirring at room temperature for 3 hours. Then, the solvent was removed under reduced pressure and the crude was dissolved in 200 mL of a mixture of $\mathrm{H}_{2} \mathrm{O} / E t O A c(1: 1)$. The organic phase was separated from the aqueous phase and this one was extracted again with EtOAc $(3 \times 75 \mathrm{~mL})$. The product-containing organic fractions were

[^1]combined and KPF_{6} was added until no more precipitation was observed. The solid was filtered off and washed with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ to leave $8 \cdot \mathrm{PF}_{6}(1.64 \mathrm{~g}, 58 \%)$ as a brown solid. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.C D_{3} C N\right) \delta: 8.85(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, CD $\left.{ }_{3} \mathrm{CN}\right) \delta: 155.14$ (C), $152.48(\mathrm{CH}), 147.10(\mathrm{CH}), 142.50(\mathrm{C})$, $126.68(\mathrm{CH}), 123.10(\mathrm{CH}), 49.23\left(\mathrm{CH}_{3}\right)$ ppm. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2}\right]^{+}$: 171.0916, found 171.0917.

Synthesis and characterization of 1-(2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (9•2PF 6).

A solution of $5 \cdot \mathrm{PF}_{6}(0.48 \mathrm{~g}, 0.88 \mathrm{mmol})$ and $7(1.60 \mathrm{~g}, 4.44 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was left under reflux for 48 hours. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{NaCl}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1\right)$. The productcontaining fractions were combined and the solvents evaporated. The residue was suspended in EtOH and filtered off to remove NaCl . The EtOH was removed under reduced pressure to afford $9 \cdot 2 \mathrm{Cl}$ as a yellow oil. The yellow oil was dissolved in the minimal amount of $\mathrm{H}_{2} \mathrm{O}$ and KPF_{6} was added until no more precipitation was observed. The solid was filtered off and washed with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ to leave 9•2 PF_{6} ($155 \mathrm{mg}, 19 \%$) as an orange oil. ${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, C D_{3} C N\right) \delta: 8.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $8.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{dd}, J=9.0,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.17(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.76-4.69(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 2 \mathrm{H})$, 3.69 (dd, J = 6.1, 5.3 Hz, 2H), 3.60-3.56 (m, 2H), $3.56-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 4 \mathrm{H}), 3.43$ (dd, J $=6.1,5.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta: 157.02$ (C), 150.99 (C), 150.53 (C), 146.83 (CH), $146.13(\mathrm{CH}), 140.04(\mathrm{C}), 135.12(\mathrm{C}), 132.80(\mathrm{C}), 130.12(\mathrm{CH}), 130.07(\mathrm{CH}), 129.61(\mathrm{C}), 129.28(\mathrm{CH})$, $128.13(\mathrm{CH}), 128.05(\mathrm{CH}), 127.32(\mathrm{CH}), 127.16(\mathrm{CH}), 127.16(\mathrm{CH}), 124.46(\mathrm{CH}), 119.32(\mathrm{CH}), 107.89$ (CH), $71.25\left(\mathrm{CH}_{2}\right), 70.88\left(\mathrm{CH}_{2}\right), 70.54\left(\mathrm{CH}_{2}\right), 70.53\left(\mathrm{CH}_{2}\right), 70.49\left(\mathrm{CH}_{2}\right), 69.56\left(\mathrm{CH}_{2}\right), 69.11\left(\mathrm{CH}_{2}\right), 65.02$ $\left(\mathrm{CH}_{2}\right), 62.23\left(\mathrm{CH}_{2}\right), 32.23\left(\mathrm{CH}_{2}\right)$ ppm. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~F}_{6} \mathrm{P}\right]^{+}$: 787.1729, found 787.1749; calcd. $\left[\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{BrN}_{2} \mathrm{O}_{4}\right]^{+2}: 321.1041$, found 321.1050.

Synthesis and characterization of 1-methyl-1'-(2-(2-(2-(2-(1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)ethoxy)ethoxy)ethoxy)ethyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (1•4PF $)$.

A mixture of $9 \cdot 2 \mathrm{PF}_{6}(155 \mathrm{mg}, 0.16 \mathrm{mmol})$ and $8 \cdot \mathrm{PF}_{6}(525 \mathrm{mg}, 1.6 \mathrm{mmol})$ in 7 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was heated up to $110{ }^{\circ} \mathrm{C}$ for 6 hours using microwave-assisted heating. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO_{2}) using two different eluent phases: $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{NaCl}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1$) to remove impurities and $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{KPF}_{6}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1\right)$ to elute the compound. The product-containing fractions were combined and the solvents evaporated. The obtained residue was then suspended in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and filtered off to remove excess KPF_{6} and dissolved in $\mathrm{CH}_{3} \mathrm{CN}$. Finally, the $\mathrm{CH}_{3} \mathrm{CN}$ was removed under reduced pressure to leave $1.4 \mathrm{PF}_{6}$ as a brown oil ($51 \mathrm{mg}, 23 \%$). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(500 \mathrm{MHz}, C D_{3} \mathrm{CN}\right) \delta: 9.01$ (d, J $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.91(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.41-8.34(\mathrm{~m}, 8 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2 H), $7.76(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (ddd, $J=8.2,6.7,1.2 \mathrm{~Hz}$, 1 H), $7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{t}, J=4.9,4.5 \mathrm{~Hz}$, $4 \mathrm{H}), 4.40(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.64-3.55(\mathrm{~m}, 4 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta: 157.45$ (C), 151.42 (C), 151.15 (C), 151.11 (C), 150.58 (C), 147.49 (CH), 147.15 (CH), 147.15 (CH), 146.61 (CH), 140.47 (C), 135.56 (C), 133.26 (C), $130.54(\mathrm{CH}), 130.51(\mathrm{CH}), 130.06$ (C), $129.73(\mathrm{CH}), 128.57(\mathrm{CH}), 128.49(\mathrm{CH}), 127.81(\mathrm{CH}), 127.79(\mathrm{CH}), 127.72(\mathrm{CH}), 127.68(\mathrm{CH}), 127.60$ $(\mathrm{CH}), 124.91(\mathrm{CH}), 119.73(\mathrm{CH}), 108.32(\mathrm{CH}), 71.28\left(\mathrm{CH}_{2}\right), 70.85\left(\mathrm{CH}_{2}\right), 70.00\left(\mathrm{CH}_{2}\right), 69.55\left(\mathrm{CH}_{2}\right), 65.46$ $\left(\mathrm{CH}_{2}\right), 62.67\left(\mathrm{CH}_{2}\right), 49.59\left(\mathrm{CH}_{3}\right)$ ppm. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd. $\left[\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~F}_{18} \mathrm{P}_{3}\right]^{+}$: 1169.2752, found 1169.2710; calcd. [$\left.\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~F}_{12} \mathrm{P}_{2}\right]^{+2}$: 512.1552, found 512.1531.

Synthesis and characterization of 3,6,9,12,15-pentaoxaheptadecane-1,17-diyl bis(4methylbenzenesulfonate) (10).

A solution of $3,6,9,12,15$-pentaoxaheptadecane-1,17-diol ($2.0 \mathrm{~g}, 7.1 \mathrm{mmol}$) and 4methylbenzenesulfonyl chloride ($4.0 \mathrm{~g}, 21.3 \mathrm{mmol}$) in 50 mL of THF was stirred for 15 minutes at $0^{\circ} \mathrm{C}$ in an ice bath. Then, a solution of $\mathrm{KOH}(2.8 \mathrm{~g}, 49.7 \mathrm{mmol})$ in 25 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise for 1 hour. After the complete addition, the solution was left 2 h under stirring at room temperature. Consecutively, a mixture of $150 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}$ (1:3) was added and the organic phase was separated from the aqueous phase. The aqueous phase was extracted again with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. The productcontaining organic fractions were combined and washed with 200 mL of a saturate solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and 200 mL of $\mathrm{H}_{2} \mathrm{O}$. Finally, the organic phase was dried with MgSO_{4} and the solvent was removed under reduced pressure to afford $10(3.9 \mathrm{~g}, 94 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.78$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.18-4.09(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{q}, J=1.3 \mathrm{~Hz}$, $\left.8 \mathrm{H}), 3.57(\mathrm{~s}, 8 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125} \mathrm{MHz} \mathrm{CDCl} 3,\right) \delta: 144.86(\mathrm{C}), 132.83(\mathrm{C}), 129.85(\mathrm{CH})$, $127.99(\mathrm{CH}), 70.71\left(\mathrm{CH}_{2}\right), 70.58\left(\mathrm{CH}_{2}\right), 70.52\left(\mathrm{CH}_{2}\right), 70.47\left(\mathrm{CH}_{2}\right), 69.29\left(\mathrm{CH}_{2}\right), 68.65\left(\mathrm{CH}_{2}\right), 21.69\left(\mathrm{CH}_{3}\right)$. HRMS-ESI (m / z): calcd. $\left[\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{11} \mathrm{~S}_{2}\right]^{+}$: 591.1928, found 591.1966.

Synthesis and characterization of 1,17-dibromo-3,6,9,12,15-pentaoxaheptadecane (11).

66\%

A solution of $10(3.9 \mathrm{~g}, 6.7 \mathrm{mmol})$ and $\operatorname{LiBr}(2.3 \mathrm{~g}, 26.7 \mathrm{mmol})$ in 60 mL of acetone was left under reflux for 18 hours. Then, the solvent was removed under reduced pressure and the crude was dissolved in 200 mL of a mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}$ (1:1). The organic phase was separated from the aqueous phase and this one was extracted again with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. The product-containing organic fractions were combined, dried with MgSO_{4} and the solvent was removed under reduced pressure to afford $11(1.8 \mathrm{~g}, 66 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.83(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 4 \mathrm{H})$, $3.72-3.65(\mathrm{~m}, 16 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 71.19\left(\mathrm{CH}_{2}\right), 70.66$ $\left(\mathrm{CH}_{2}\right), 70.58\left(\mathrm{CH}_{2}\right), 70.57\left(\mathrm{CH}_{2}\right), 70.52\left(\mathrm{CH}_{2}\right), 30.38\left(\mathrm{CH}_{2}\right)$ ppm. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{Br}_{2}\right]^{+}$: 407.0063, found 407.0083.

Synthesis and characterization of 1-(17-bromo-3,6,9,12,15-pentaoxaheptadecyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (12•2PF6).

A solution of $5 \cdot \mathrm{PF}_{6}(250 \mathrm{mg}, 0.47 \mathrm{mmol})$ and 11 ($950 \mathrm{mg}, 2.34 \mathrm{mmol}$) in 25 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was left under reflux for 48 hours. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{NaCl}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1\right)$. The product-containing fractions were combined and the solvents evaporated. The residue was suspended in EtOH and filtered off to remove NaCl . The EtOH was removed under reduced pressure to afford $\mathbf{1 2 \cdot 2} \mathbf{C l}$ as a yellow oil. The yellow oil was dissolved in the minimal amount of $\mathrm{H}_{2} \mathrm{O}$ and KPF 6 was added until no more precipitation was observed. The solid was filtered off and washed with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ to leave 12•2 $\mathrm{PF}_{6}(163 \mathrm{mg}, 34 \%)$ as an orange oil. ${ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, C D_{3} \mathrm{CN}\right) \delta: 8.99(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.40(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2 H), 7.76 (dd, $J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (ddd, $J=8.2$, $6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{t}, \mathrm{J}=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.46(\mathrm{~m}, 14 \mathrm{H}), 3.46$ $-3.41(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, C D_{3} \mathrm{CN}\right) \delta: 156.04$ (C), 150.05 (C), 149.43 (C), 145.95 (CH), 145.18 (CH), 139.05 (C), 134.16 (C), 131.94 (C), 129.17 (CH), 129.14 (CH), 128.64 (C), 128.35 (CH), 127.20 $(\mathrm{CH}), 127.15(\mathrm{CH}), 126.41(\mathrm{CH}), 126.31(\mathrm{CH}), 126.23(\mathrm{CH}), 123.53(\mathrm{CH}), 118.39(\mathrm{CH}), 106.85(\mathrm{CH})$, $70.22\left(\mathrm{CH}_{2}\right), 69.80\left(\mathrm{CH}_{2}\right), 69.69\left(\mathrm{CH}_{2}\right), 69.68\left(\mathrm{CH}_{2}\right), 69.62\left(\mathrm{CH}_{2}\right), 69.61\left(\mathrm{CH}_{2}\right), 69.51\left(\mathrm{CH}_{2}\right), 69.50\left(\mathrm{CH}_{2}\right)$, $69.47\left(\mathrm{CH}_{2}\right), 68.55\left(\mathrm{CH}_{2}\right), 68.16\left(\mathrm{CH}_{2}\right), 64.03\left(\mathrm{CH}_{2}\right), 61.21\left(\mathrm{CH}_{2}\right), 31.20\left(\mathrm{CH}_{2}\right)$. HRMS-ESI (m/z): calcd. [$\left.\mathrm{C}_{40} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~F}_{6} \mathrm{PBr}\right]^{+}: 875.2253$, found 875.2252.

Synthesis and characterization of 1-methyl-1'-(17-(1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)-3,6,9,12,15-pentaoxaheptadecyl)-[4,4'-bipyridine]-1,1'-diium (2•4PF $)$.

A mixture of $\mathbf{1 2} \cdot 2 \mathrm{PF}_{6}$ ($163 \mathrm{mg}, 0.16 \mathrm{mmol}$) and $\mathbf{8} \cdot \mathrm{PF}_{6}(505 \mathrm{mg}, 1.6 \mathrm{mmol})$ in 7 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was heated up to $110{ }^{\circ} \mathrm{C}$ for 6 hours using microwave-assisted heating. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using two different eluent phases: $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{NaCl}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1\right)$ to remove impurities and $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{KPF}_{6}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1\right)$ to elute the compound. The product-containing fractions were combined and the solvents evaporated. The obtained residue was then suspended in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and filtered off to remove excess KPF_{6} and dissolved in $\mathrm{CH}_{3} \mathrm{CN}$. Finally, the $\mathrm{CH}_{3} \mathrm{CN}$ was removed under reduced pressure to leave $\mathbf{2} \cdot 4 \mathrm{PF}_{6}$ as a brown oil ($74 \mathrm{mg}, 33 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, C D_{3} \mathrm{CN}\right) \delta: 8.99(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.95-8.89(\mathrm{~m}, 4 \mathrm{H}), 8.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.42-8.34(\mathrm{~m}, 8 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.32$ (m, 2H), 7.21 (dd, J = 8.9, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.84(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{q}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.39(\mathrm{~s}, 3 \mathrm{H})$, 3.94 ($\mathrm{q}, \mathrm{J}=4.6 \mathrm{~Hz}, 4 \mathrm{H}$), $3.61-3.45(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C} N M R\left(125 \mathrm{MHz}, C{ }_{3} \mathrm{CN}\right) \delta: 156.29(\mathrm{C}), 150.29(\mathrm{C})$, 149.85 (C), 149.84 (C), 149.41 (C), 146.29 (CH), 146.03 (CH), 146.03 (CH), 145.42 (CH), 139.30 (C), 134.38 (C), 132.10 (C), 129.38 (CH), 129.35 (CH), 128.88 (C), $128.55(\mathrm{CH}), 127.40(\mathrm{CH}), 127.33$ (CH), $126.63(\mathrm{CH}), 126.61(\mathrm{CH}), 126.54(\mathrm{CH}), 126.52(\mathrm{CH}), 126.44(\mathrm{CH}), 123.75(\mathrm{CH}), 118.57(\mathrm{CH}), 107.14$ $(\mathrm{CH}), 70.10\left(\mathrm{CH}_{2}\right), 69.91\left(\mathrm{CH}_{2}\right), 69.87\left(\mathrm{CH}_{2}\right), 69.62\left(\mathrm{CH}_{2}\right), 68.83\left(\mathrm{CH}_{2}\right), 68.37\left(\mathrm{CH}_{2}\right), 64.29\left(\mathrm{CH}_{2}\right), 61.45$ $\left(\mathrm{CH}_{2}\right), 48.43\left(\mathrm{CH}_{3}\right)$. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{51} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~F}_{18} \mathrm{P}_{3}\right]^{+}$: 1257.3276, found 1257.3273; calcd. $\left[\mathrm{C}_{51} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~F}_{12} \mathrm{P}_{2}\right]^{+2}: 556.1814$, found 556.1813; calcd. [$\left.\mathrm{C}_{51} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~F}_{6} \mathrm{P}\right]^{+3}: 322.4660$, found 322.4662.

Synthesis and characterization of 3,6,9,12,15,18,21-heptaoxatricosane-1,23-diyl bis(4methylbenzenesulfonate) (13).

A solution of $3,6,9,12,15,18,21$-heptaoxatricosane-1,23-diol (1.0 g, 2.7 mmol) and 4methylbenzenesulfonyl chloride ($1.5 \mathrm{~g}, 8.1 \mathrm{mmol}$) in 50 mL of THF was stirred for 15 minutes at $0^{\circ} \mathrm{C}$ in an ice bath. Then, a solution of $\mathrm{KOH}(1.1 \mathrm{~g}, 18.9 \mathrm{mmol})$ in 25 mL of $\mathrm{H}_{2} \mathrm{O}$ was added dropwise for 1 hour. After the complete addition, the solution was left 2 h under stirring at room temperature. Consecutively, a mixture of $150 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:3) was added and the organic phase was separated from the aqueous phase. The aqueous phase was extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The product-containing organic fractions were combined and washed with 200 mL of a saturate solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and 200 mL of $\mathrm{H}_{2} \mathrm{O}$. Finally, the organic phase was dried with MgSO_{4} and the solvent was removed under reduced pressure to afford 13 as a yellow oil ($1.3 \mathrm{~g}, 72 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 4 \mathrm{H}), 3.71-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.66-3.60$ ($\mathrm{m}, 16 \mathrm{H}$), $3.58(\mathrm{~s}, 8 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 144.79(\mathrm{C}), 132.98(\mathrm{C}), 129.82$ $(\mathrm{CH}), 127.98(\mathrm{CH}), 70.73\left(\mathrm{CH}_{2}\right), 70.58\left(\mathrm{CH}_{2}\right), 70.54\left(\mathrm{CH}_{2}\right), 70.49\left(\mathrm{CH}_{2}\right), 69.24\left(\mathrm{CH}_{2}\right), 68.67\left(\mathrm{CH}_{2}\right), 21.64$ $\left(\mathrm{CH}_{3}\right)$ ppm. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{13} \mathrm{~S}_{2}\right]^{+}: 679.2452$, found 679.2462.

Synthesis and characterization of 1,23-dibromo-3,6,9,12,15,18,21-heptaoxatricosane (14).

$\xrightarrow[\substack{\text { acetone } \\ \text { 18h, reflux }}]{\mathrm{LiBr}}$
95\%

A solution of 13 ($1.30 \mathrm{~g}, 1.9 \mathrm{mmol}$) and $\mathrm{LiBr}(0.67 \mathrm{~g}, 7.6 \mathrm{mmol})$ in 50 mL of acetone was left under reflux for 18 hours. Then, the solvent was removed under reduced pressure and the crude was dissolved in 100 mL of a mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1). The organic phase was separated from the aqueous phase and this one was extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The product-containing organic fractions were combined, dried with MgSO_{4} and the solvent was removed under reduced pressure to afford $14(0.92 \mathrm{~g}, 95 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.83(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, $4 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 24 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 71.21\left(\mathrm{CH}_{2}\right)$, $70.65\left(\mathrm{CH}_{2}\right), 70.58\left(\mathrm{CH}_{2}\right), 70.53\left(\mathrm{CH}_{2}\right), 30.32\left(\mathrm{CH}_{2}\right)$ ppm. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{Br}_{2}\right]^{+}$: 495.0587, found 495.0600 .

Synthesis and characterization of 1-(23-bromo-3,6,9,12,15,18,21-heptaoxatricosyl)-1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate (15•2PF6).

A solution of $5 \cdot \mathrm{PF}_{6}$ ($331 \mathrm{mg}, 0.60 \mathrm{mmol}$) and 14 ($1500 \mathrm{mg}, 1.95 \mathrm{mmol}$) in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was left under reflux for 48 hours. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{NaCl}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1\right)$. The product-containing fractions were combined and the solvents evaporated. The residue was suspended in EtOH and filtered off to remove NaCl . The EtOH was removed under reduced pressure to afford $\mathbf{1 5} \cdot \mathbf{2 C l}$ as a yellow oil. The yellow oil was dissolved in the minimal amount of $\mathrm{H}_{2} \mathrm{O}$ and KPF_{6} was added until no more precipitation was observed. The solid was filtered off and washed with 50 mL of $\mathrm{H}_{2} \mathrm{O}$ to leave $15 \cdot 2 \mathrm{PF}_{6}(80 \mathrm{mg}, 7 \%)$ as an orange oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, C D_{3} \mathrm{CN}\right) \delta: 9.00(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 8.95 (d, J = 7.0 Hz, 2H), 8.41 (t, J = 6.9 Hz, 2H), 7.81 (d, J = $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (dd, J = 8.3, 1.1 Hz , 1 H), $7.64(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}$, $2 \mathrm{H}), 7.22(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=4.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=6.2,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.48(\mathrm{~m}, 24 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125MHz}$, $\left.C D_{3} C N\right) \delta: 159.21$ (C), 153.17 (C), 152.75 (C), 149.03 (CH), 148.38 (CH), 142.25 (C), 137.33 (C), 135.06 (C), $132.30(\mathrm{CH}), 132.28(\mathrm{CH}), 131.83(\mathrm{C}), 131.49(\mathrm{CH}), 130.34(\mathrm{CH}), 130.30(\mathrm{CH}), 129.61(\mathrm{CH}), 129.45$ $(\mathrm{CH}), 129.36(\mathrm{CH}), 126.67(\mathrm{CH}), 121.51(\mathrm{CH}), 110.09(\mathrm{CH}), 73.39\left(\mathrm{CH}_{2}\right), 72.97\left(\mathrm{CH}_{2}\right), 72.60\left(\mathrm{CH}_{2}\right), 72.53$ $\left(\mathrm{CH}_{2}\right), 72.51\left(\mathrm{CH}_{2}\right), 72.50\left(\mathrm{CH}_{2}\right), 72.48\left(\mathrm{CH}_{2}\right), 72.41\left(\mathrm{CH}_{2}\right), 72.37\left(\mathrm{CH}_{2}\right), 72.35\left(\mathrm{CH}_{2}\right), 72.33\left(\mathrm{CH}_{2}\right), 71.75$ $\left(\mathrm{CH}_{2}\right), 71.34\left(\mathrm{CH}_{2}\right), 67.23\left(\mathrm{CH}_{2}\right), 64.30\left(\mathrm{CH}_{2}\right), 34.22\left(\mathrm{CH}_{2}\right) \mathrm{ppm} . \quad H R M S-E S I \quad(\mathrm{~m} / \mathrm{z})$: calcd. $\left[\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~F}_{6} \mathrm{PBr}\right]^{+}$: 963.2778, found 963.2787; calcd. $\left[\mathrm{C}_{44} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Br}\right]^{+2}$: 409.1565, found 409.1571.

Synthesis and characterization of 1-methyl-1'-(23-(1'-(4-((naphthalen-2-yloxy)methyl)benzyl)-[4,4'-bipyridin]-1,1'-diium-1-yl)-3,6,9,12,15,18,21-heptaoxatricosyl)-[4,4'-bipyridine]-1,1'-diium hexafluorophosphate $\left(3 \cdot 4 \mathrm{PF}_{6}\right)$.

A mixture of $15 \cdot 2 \mathrm{PF}_{6}$ ($115 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathbf{8} \cdot \mathrm{PF}_{6}$ ($329 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was heated up to $110{ }^{\circ} \mathrm{C}$ for 6 hours using microwave-assisted heating. Then, the solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO_{2}) using two different eluent phases: $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{NaCl}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1\right)$ to remove impurities and $\left.\mathrm{CH}_{3} \mathrm{CN} / \mathrm{KPF}_{6}(0.6 \mathrm{M}) / \mathrm{MeOH} 4 / 1 / 1\right)$ to elute the compound. The product-containing fractions were combined and the solvents evaporated. The obtained residue was then suspended in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and filtered off to remove excess KPF_{6} and dissolved in $\mathrm{CH}_{3} \mathrm{CN}$. Finally, the $\mathrm{CH}_{3} \mathrm{CN}$ was removed under reduced pressure to leave $3 \cdot 4 \mathrm{PF}_{6}$ as a brown oil ($42 \mathrm{mg}, 27 \%$). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(500 \mathrm{MHz}, C D_{3} \mathrm{CN}\right) \delta: 9.00(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.42-8.36(\mathrm{~m}, 8 \mathrm{H}), 7.80(\mathrm{dd}, J=8.4,1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.75(\mathrm{dd}, \mathrm{J}=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ (ddd, $J=8.2$, $6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.79-$ $4.72(\mathrm{~m}, 4 \mathrm{H}), 4.39(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{q}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta: 156.19$ (C), 150.20 (C), 149.72 (C), 149.70 (C), 149.31 (C), 146.23 (CH), $146.04(\mathrm{CH}), 146.01(\mathrm{CH}), 145.37(\mathrm{CH}), 139.19(\mathrm{C}), 134.30(\mathrm{C}), 132.12(\mathrm{C}), 129.32(\mathrm{CH}), 129.30(\mathrm{CH})$, $128.79(\mathrm{C}), 128.51(\mathrm{CH}), 127.35(\mathrm{CH}), 127.30(\mathrm{CH}), 126.56(\mathrm{CH}), 126.50(\mathrm{CH}), 126.46(\mathrm{CH}), 126.44(\mathrm{CH})$, $126.40(\mathrm{CH}), 123.70(\mathrm{CH}), 118.53(\mathrm{CH}), 106.97(\mathrm{CH}), 69.99\left(\mathrm{CH}_{2}\right), 69.75\left(\mathrm{CH}_{2}\right), 69.73\left(\mathrm{CH}_{2}\right), 69.56\left(\mathrm{CH}_{2}\right)$,
$68.71\left(\mathrm{CH}_{2}\right), 68.34\left(\mathrm{CH}_{2}\right), 64.18\left(\mathrm{CH}_{2}\right), 61.35\left(\mathrm{CH}_{2}\right), 48.36\left(\mathrm{CH}_{3}\right)$ ppm. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calcd. $\left[\mathrm{C}_{55} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~F}_{12} \mathrm{P}_{2}\right]^{+2}$: 600.2076, found 600.2094; calcd. [$\left.\mathrm{C}_{55} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~F}_{6} \mathrm{P}\right]^{+3}: 351.8168$, found 351.8172.

Synthesis and characterization of $1 \subset C B[8]$

A solution of $1.4 \mathrm{PF}_{6}(6.5 \mathrm{mg}, 0.005 \mathrm{mmol})$ in 2.5 mL of a mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$ was prepared and 1 equivalent of $C B[8]$ was added. The mixture of the reaction was stirred for 10 minutes. A portion of 0.6 mL was taken from the resulting mixture and the solvent was evaporated under reduced pressure to leave the crude product. The solid was dissolved in $D_{2} \mathrm{O} / C D_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$ ($0.6 \mathrm{~mL}, 2 \mathrm{mM}$ with respect to $1 \cdot 4 \mathrm{PF}_{6}$). ${ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, D_{2} \mathrm{O} / C D_{3} \mathrm{CN}(3 / 2)\right.$): $\delta 9.46(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 9.35(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.01(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $8.86(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.83-8.77(\mathrm{~m}, 8 \mathrm{H}), 8.18(\mathrm{dd}, J=9.0,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{m}, 4 \mathrm{H}), 7.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ (s, 2H), $6.01(\mathrm{dd}, \mathrm{J}=25.3,15.2 \mathrm{~Hz}, 16 \mathrm{H}), 5.70(\mathrm{~s}, 16 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{t}, \mathrm{J}=14.9 \mathrm{~Hz}, 16 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}), 3.36(\mathrm{bs}, 4 \mathrm{H}), 2.54(\mathrm{bs}, 2 \mathrm{H}), 2.47-2.36(\mathrm{bs}, 2 \mathrm{H}), 2.19-2.14(\mathrm{bs}, 2 \mathrm{H}), 2.11(\mathrm{bs}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, C D_{3} C N$): $\delta 155.77$ (C), 149.85 (C), 148.91 (C), 147.55 (C), 147.13 (CH), 146.92 (CH), 146.16 (CH), 145.97 (CH), 145.88 (CH), 145.46 (C), 137.76 (C), 134.99 (C), 132.29 (C), 130.41 (CH), 129.30 (CH), 129.27 (C), 128.50 (C), $127.80(\mathrm{CH}), 127.26(\mathrm{CH}), 127.16(\mathrm{CH}), 126.68(\mathrm{CH}), 126.46(\mathrm{CH}), 126.34$ $(\mathrm{CH}), 125.98(\mathrm{CH}), 125.81(\mathrm{CH}), 123.82(\mathrm{CH}), 107.06(\mathrm{CH}), 102.04(\mathrm{CH}), 72.84\left(\mathrm{CH}_{2}\right), 71.25(\mathrm{CH}), 69.43$ $\left(\mathrm{CH}_{2}\right), 69.30\left(\mathrm{CH}_{2}\right), 69.21\left(\mathrm{CH}_{2}\right), 68.64\left(\mathrm{CH}_{2}\right), 66.92\left(\mathrm{CH}_{2}\right), 66.64\left(\mathrm{CH}_{2}\right), 64.14\left(\mathrm{CH}_{2}\right), 61.11\left(\mathrm{CH}_{2}\right), 53.53$ $\left(\mathrm{CH}_{2}\right), 47.80\left(\mathrm{CH}_{3}\right)$.
The solid was dissolved in $\mathrm{CD}_{3} \mathrm{CN}\left(0.6 \mathrm{~mL}, 2 \mathrm{mM}\right.$ with respect to $\left.1 \cdot 4 \mathrm{PF}_{6}\right) .{ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, C D_{3} \mathrm{CN}\right)$ $\delta: 9.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.90-8.86(\mathrm{~m}, 4 \mathrm{H}), 8.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 4 \mathrm{H}), 7.48$ (ddd, J=8.2, 6.8, 1.3 Hz, 1H), $7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H}), 5.77(\mathrm{dd}, J=25.2,14.9 \mathrm{~Hz}, 16 \mathrm{H}), 5.29(\mathrm{~s}, 16 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.45-4.55(\mathrm{~s}, 2 \mathrm{H}), 4.40$ (s, 3H), 4.08 (dd, J = 15.0, $10.7 \mathrm{~Hz}, 16 \mathrm{H}$), $3.11-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} N M R(125 \mathrm{MHz}$, $\left.C D_{3} C N\right) \delta: 156.36$ (C), 155.64 (C), 155.57 (C), 148.46 (C), 148.26 (C), 147.05 (C), 146.76 (CH), 146.71 (CH), 145.91 (CH), 145.87 (CH), 138.95 (C), 134.41 (C), 132.39 (C), 129.74 (CH), 129.40 (CH), 128.89 (C), 128.57 (C), $128.20(\mathrm{CH}), 127.47(\mathrm{CH}), 127.23(\mathrm{CH}), 126.54(\mathrm{CH}), 126.54(\mathrm{CH}), 126.52(\mathrm{CH}), 126.09$ $(\mathrm{CH}), 125.83(\mathrm{CH}), 123.84(\mathrm{CH}), 118.65(\mathrm{CH}), 107.16(\mathrm{CH}), 72.19\left(\mathrm{CH}_{2}\right), 71.31(\mathrm{CH}), 70.14\left(\mathrm{CH}_{2}\right), 70.11$ $\left(\mathrm{CH}_{2}\right), 68.93\left(\mathrm{CH}_{2}\right), 67.26\left(\mathrm{CH}_{2}\right), 67.21\left(\mathrm{CH}_{2}\right), 63.82\left(\mathrm{CH}_{2}\right), 63.82\left(\mathrm{CH}_{2}\right), 60.98\left(\mathrm{CH}_{2}\right), 60.85\left(\mathrm{CH}_{2}\right), 53.08$
$\left(\mathrm{CH}_{2}\right), 53.03\left(\mathrm{CH}_{2}\right), 47.93\left(\mathrm{CH}_{3}\right)$ ppm. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{95} \mathrm{H}_{98} \mathrm{~N}_{36} \mathrm{O}_{20} \mathrm{~F}_{12} \mathrm{P}_{2}\right]^{+2}: 1176.3515$, found 1176.3417; calcd. [$\left.\mathrm{C}_{95} \mathrm{H}_{98} \mathrm{~N}_{36} \mathrm{O}_{20} \mathrm{~F}_{6} \mathrm{P}\right]^{+3}$: 735.9127, found 735.9092.

Synthesis and characterization of $2 \subset C B[8]$

A solution of $2.4 \mathrm{PF}_{6}(7.0 \mathrm{mg}, 0.005 \mathrm{mmol})$ in 2.5 mL of a mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$ was prepared and 1 equivalent of $\mathrm{CB}[8]$ was added. The mixture of the reaction was stirred for 10 minutes. A portion of 0.6 mL was taken from the resulting mixture and the solvent was evaporated under reduced pressure to leave the crude product. The solid was dissolved in $\mathrm{CD}_{3} \mathrm{CN}(0.6 \mathrm{~mL}, 2 \mathrm{mM}$ with respect to $\left.2 \cdot 4 \mathrm{PF}_{6}\right) .{ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, C D_{3} \mathrm{CN}\right): \delta 8.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.82(\mathrm{~m}, 8 \mathrm{H}), 8.74(\mathrm{~d}, \mathrm{~J}=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.53(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{~s}, 5 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 16 \mathrm{H}), 5.28(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 16 \mathrm{H}), 4.72(\mathrm{~s}, 3 \mathrm{H}), 4.67(\mathrm{~m}, 2 \mathrm{H})$, $4.38(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 16 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.29$ (overlap) ppm. ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 156.63(\mathrm{C}), 148.01(\mathrm{CH}), 147.27(\mathrm{CH}), 147.14(\mathrm{CH}), 146.39(\mathrm{CH}), 133.15(\mathrm{CH}), 131.58$ $(\mathrm{CH}), 130.56(\mathrm{CH}), 129.87(\mathrm{CH}), 129.40(\mathrm{CH}), 128.87(\mathrm{CH}), 128.30(\mathrm{CH}), 127.70(\mathrm{CH}), 127.24(\mathrm{CH})$, $125.00(\mathrm{CH}), 119.78(\mathrm{CH}), 108.34(\mathrm{CH}), 72.46(\mathrm{CH}), 72.20\left(\mathrm{CH}_{2}\right), 71.62\left(\mathrm{CH}_{2}\right), 71.29\left(\mathrm{CH}_{2}\right), 70.89\left(\mathrm{CH}_{2}\right)$, $70.49\left(\mathrm{CH}_{2}\right), 70.10\left(\mathrm{CH}_{2}\right), 69.32\left(\mathrm{CH}_{2}\right), 65.04\left(\mathrm{CH}_{2}\right), 64.24\left(\mathrm{CH}_{2}\right), 63.62\left(\mathrm{CH}_{2}\right), 55.22\left(\mathrm{CH}_{2}\right), 49.66\left(\mathrm{CH}_{3}\right)$. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{99} \mathrm{H}_{106} \mathrm{~N}_{36} \mathrm{O}_{22} \mathrm{~F}_{12} \mathrm{P}_{2}\right]^{+2}$: 1220.3777, found 1220.3758; calcd. $\left[\mathrm{C}_{99} \mathrm{H}_{106} \mathrm{~N}_{36} \mathrm{O}_{22} \mathrm{~F}_{6} \mathrm{P}\right]^{+3}$: 765.2635, found 765.2657.

A solution of $3.4 \mathrm{PF}_{6}(7.5 \mathrm{mg}, 0.005 \mathrm{mmol})$ in 2.5 mL of a mixture of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$ was prepared and 1 equivalent of $\mathrm{CB}[8]$ was added. The mixture of the reaction was stirred for 10 minutes. A portion of 0.6 mL was taken from the resulting mixture and the solvent was evaporated under reduced pressure to leave the crude product. The solid was dissolved in $\mathrm{CD}_{3} \mathrm{CN}(0.6 \mathrm{~mL}, 2 \mathrm{mM}$ with respect to $\left.3 \cdot 4 \mathrm{PF}_{6}\right) .{ }^{1} \mathrm{H} N M R\left(500 \mathrm{MHz}, C D_{3} C N\right): \delta 9.03(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.98(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 8.89 (d, J = $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.86 (d, J = $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $8.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 8.44(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 4 \mathrm{H}), 7.48$ (ddd, $J=8.2,6.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 2 \mathrm{H}), 5.76$ ($\mathrm{d}, \mathrm{J}=14.9 \mathrm{~Hz}, 16 \mathrm{H}$), $5.24(\mathrm{~s}, 16 \mathrm{H}), 4.74(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 16 \mathrm{H})$, $3.78(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~m}, 2 \mathrm{H}), 2.92$ ($\mathrm{m}, 4 \mathrm{H}$), $2.82(\mathrm{~m}, 6 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CD $\left.{ }_{3} \mathrm{CN}\right): \delta 156.09(\mathrm{C}), 155.25(\mathrm{C})$, 149.14 (C), 148.70 (C), 148.53 (C), 148.24 (CH), 146.76 (CH), 146.25 (CH), 145.99 (CH), 145.17 (CH), 138.67 (CH), 134.17 (CH), 132.39 (CH), $129.40(\mathrm{CH}), 129.16$ (CH), 128.64 (CH), 128.06 (CH), 127.40 $(\mathrm{CH}), 127.25(\mathrm{CH}), 126.72(\mathrm{CH}), 126.33(\mathrm{CH}), 123.62(\mathrm{CH}), 71.96(\mathrm{CH}), 69.92\left(\mathrm{CH}_{2}\right), 69.53\left(\mathrm{CH}_{2}\right), 69.32$ $\left(\mathrm{CH}_{2}\right), 69.25\left(\mathrm{CH}_{2}\right), 69.15\left(\mathrm{CH}_{2}\right), 69.10\left(\mathrm{CH}_{2}\right), 68.96\left(\mathrm{CH}_{2}\right), 68.71\left(\mathrm{CH}_{2}\right), 68.69\left(\mathrm{CH}_{2}\right), 68.41\left(\mathrm{CH}_{2}\right), 68.18$ $\left(\mathrm{CH}_{2}\right), 68.00\left(\mathrm{CH}_{2}\right), 66.26\left(\mathrm{CH}_{2}\right), 63.59\left(\mathrm{CH}_{2}\right), 61.83\left(\mathrm{CH}_{2}\right), 61.16\left(\mathrm{CH}_{2}\right), 54.15\left(\mathrm{CH}_{2}\right), 52.24\left(\mathrm{CH}_{2}\right), 47.82$ $\left(\mathrm{CH}_{3}\right)$ ppm. HRMS-ESI (m/z): calcd. $\left[\mathrm{C}_{103} \mathrm{H}_{114} \mathrm{~N}_{36} \mathrm{O}_{24} \mathrm{~F}_{12} \mathrm{P}_{2}\right]^{+2}$: 1264.4039, found 1264.4003; calcd. [$\left.\mathrm{C}_{103} \mathrm{H}_{114} \mathrm{~N}_{36} \mathrm{O}_{24} \mathrm{~F}_{6} \mathrm{P}\right]^{+3}$: 794.6144, found 794.6138.

Figure S1 UV-VIS Titration data of $\mathbf{1} \cdot 4 \mathrm{PF}_{6}$ with increasing amounts of $\mathrm{CB}[8]$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$.

Figure S2 UV-VIS Representation of titration $1.4 \mathrm{PF}_{6}$ and $\mathrm{CB}[8]$ at $\lambda_{\text {obs }}=261 \mathrm{~nm}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$.

Figure S3 Fitting of titration of $1 \cdot 4 \mathrm{PF}_{6}$ and $\mathrm{CB}[8]$ at $\lambda_{\text {obs }}=261 \mathrm{~nm}$ using supramolecular.org in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$.

x1: Guest concentration / M	x2:Host concentration / M	x3: H/G equivalent total	$\mathbf{y} 1: \mathbf{2 6 1} \mathbf{n m}$
0.000014	0	0	0.51585
0.000014	0.0000014	0.1	0.51422
0.000014	0.0000028	0.2	0.51189
0.000014	0.0000042	0.3	0.50946
0.000014	0.000007	0.4	0.50663
0.000014	0.0000084	0.5	0.50377
0.000014	0.0000098	0.6	0.49849
0.000014	0.0000112	0.7	0.49584
0.000014	0.0000126	0.8	0.49319
0.000014	0.000014	0.9	0.49303
0.000014	0.0000154	1	0.49403
0.000014	0.0000168	1.1	0.49509
0.000014	0.0000196	1.2	0.49571
0.000014	0.0000224	1.4	0.49705
0.000014	0.000028	1.6	0.49851
0.000014	$3.30103 \mathrm{E}-05$	2	0.49949
0.000014	$3.76667 \mathrm{E}-05$	2.4	0.5012
0.000014		2.7	0.50163

$\mathrm{K}_{\mathbf{1 1}}$	$\mathrm{K}_{\mathbf{2 1}}$	$\mathrm{K}_{\mathbf{1 1}}$ error (\%)	$\mathrm{K}_{\mathbf{2 1}}$ error $\mathbf{(\%)}$	SSR	Datapoints fitted	Params fitted
197160.507	35726.9294	-10.5280012	0.14815273	$1.5125 \mathrm{E}-05$		

H coeffs	HG coeffs	H2G coeffs	Raw coeffs $\mathbf{1}$	Raw coeffs $\mathbf{2}$	Raw coeffs $\mathbf{3}$
36846.4286	35955.7143	37620.1208	36846.4286	35955.7143	37620.1208

Figure S4 UV-visible spectrum of $\mathbf{2} \cdot 4 \mathrm{PF}_{6}$ and $2 \subset \mathrm{CB}[8]$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$ before and after addition of an excess of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ under N_{2} atmosphere.

Figure S5 UV-visible spectrum of $2 \cdot 4 \mathrm{PF}_{6}$ and $2 \mathrm{CCB}[8](5 \mathrm{mM})$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2 \mathrm{v} / \mathrm{v})$ showing the increasing of the absorbance because of the charge-transfer band.

Figure $\mathbf{S 6}$ Room temperature EPR spectrum of a $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3 / 2, \mathrm{v} / \mathrm{v})$ solution containing compound 3^{4+} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$. The asterisk indicates the signal due to $\mathrm{SO}_{2}{ }^{\bullet-}$ radical anion.
$-1+\mathrm{CB8}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$
$-1+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$

Figure $\mathbf{S 7}$ EPR spectroscopy of $\mathbf{1} \cdot 4 \mathrm{PF}_{6}$ and $1 \subset C B[8]$ after addition of an excess of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ under N_{2} atmosphere.

Figure S8 EPR spectroscopy of $\mathbf{2} \cdot 4 \mathrm{PF}_{6}$ and $\mathbf{2} \subset C B[8]$ after addition of an excess of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ under N_{2} atmosphere.

Figure S9 EPR spectroscopy of $\mathbf{2} \cdot 4 \mathrm{PF}_{6}$ and $\mathbf{2} \subset C B[8]$ after addition of an excess of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ under N_{2} atmosphere.

Figure S12 Cyclic voltammetric response on a glassy carbon electrode of $1.0 \mathrm{mM} 1 \cdot 4 \mathrm{PF}_{6}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3: 2, \mathrm{v} / \mathrm{v})$. Supporting electrolyte: 0.1 M KCl . Scan rate: $50 \mathrm{mV} / \mathrm{s}$.

Figure $\mathbf{S 1 3}$ Cyclic voltammetric response on a glassy carbon electrode of $1.0 \mathrm{mM} \mathbf{2} \cdot 4 \mathrm{PF}_{6}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3: 2, \mathrm{v} / \mathrm{v})$. Supporting electrolyte: 0.1 M KCl . Scan rate: $50 \mathrm{mV} / \mathrm{s}$.

Figure S14 Cyclic voltammetric response on a glassy carbon electrode of $1.0 \mathrm{mM} \mathrm{3} \cdot 4 \mathrm{PF}_{6}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3: 2, \mathrm{v} / \mathrm{v})$. Supporting electrolyte: 0.1 M KCl . Scan rate: $50 \mathrm{mV} / \mathrm{s}$.
$2^{4+} \subset \mathrm{CB}[8]$

Figure S15 Cyclic voltammetric response on a glassy carbon electrode of $1.0 \mathrm{mM} \mathbf{2}^{4+} \subset \mathbf{C B}[8]$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3: 2, \mathrm{v} / \mathrm{v})$ at different scan rate. Supporting electrolyte: 0.1 M KCl .
Figure S16 Cyclic voltammetric response on a glassy carbon electrode of $1.0 \mathrm{mM} \mathbf{3}^{4+} \mathrm{CB}[8]$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(3: 2, \mathrm{v} / \mathrm{v})$ at different scan rate. Supporting electrolyte: 0.1 M KCl .
NMR spectra

Figure $\mathrm{SIT}^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 4 .

Figure S43 $\mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of $\mathbf{1} \cdot 4 \mathrm{PF}_{6}$.

Figure $\mathrm{S53}^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of $\mathbf{2 \cdot 4} \mathrm{PF}_{6}$.

Figure $\mathbf{S 5 7} \mathrm{HSQC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of 2.4 PF_{6}.

Figure $\mathbf{S 5 8} \mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of 2.4PF ${ }_{6}$.

62700-

Figure $\mathrm{S} 65{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of $15 \cdot 2 \mathrm{PF}_{6}$.

Figure $\mathbf{S 6 8}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) spectrum of $\mathbf{3} \cdot 4 \mathrm{PF}_{6}$.

Figure S73 HMBC ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) spectrum of $\mathbf{3} \cdot 4 \mathrm{PF}_{6}$.

Figure $\mathrm{S} 78 \mathrm{HSQC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of $1 \subset \mathrm{CB}[8]$.

(midd) it

Figure $\mathbf{S 8 4} \mathrm{HSQC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of $2 \subset \mathrm{CB}[8]$.
Figure $\mathbf{S 8 5} \mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of $\mathbf{2 C C B}[8]$.

で・62－

89＇$\angle 0$ I－ ＋8．8IT $\frac{\left\llcorner S^{\prime}+\mathrm{tI}\right.}{6 \mathrm{I}^{\prime} 9 \mathrm{IT}}$ 6I．9ZI
Lく＇9ZI 0「・くてI ع9•LZI
$8 L^{\circ} \angle Z I$ カー・8てI 68．82I SG＇6てI 9と＇0とI
Oて＇sとા
てT「6とI
 くと＇9bl ع9．9ちI 89＇9ちI 69＇8ヤI 68．8もI 8 b $^{\circ} 6$ t I 80．95I

Figure $\mathbf{S 9 1} \mathrm{HMBC}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of $3 \subset \mathrm{CB}[8]$.

[^0]: ${ }^{1}$ J. M. Weber, M. T. Rawls, V. J. MacKenzie, B. R. Limoges, C. M. Elliott, J. Am. Chem. Soc. 2007, 129, 313.
 ${ }^{2}$ S. Yi and A. E. Kaifer, J. Org. Chem. 2011, 76, 10275.

[^1]: ${ }^{3}$ D. Bongard, M. Möller, S. Nagaraja Rao, D. Corr, and L. Walder, Helv. Chim. Acta, 2005, 88, 3200-3209.

