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Abstract

The paper tackles the problem of characterizing cyclist typologies using a data set of GPS traces. The data is

crowdsourced and consists of 29,431 traces recorded in the city of Bologna, Italy during the morning rush

hours from 7am to  10am  of  work-days and  during  the  months  from  April through September  2017.

Different criteria to group the heterogenous behavior of cyclists into separate categories have already been

described in literature, where studies are generally based on stated preference interviews or on observing a

small sample of the population. The novelty of this study is clustering a data set based on GPS traces from

2,135  cyclists, which is the equivalent to a revealed survey. Furthermore, refined pre-processing of the GPS

traces allows the determination of dynamic attributes, a comparison of the chosen path respect to the

shortest path and the evaluation of other specific trip attributes, which are either difficult or impossible to

assess by a classical interview. The applied clusterization process leads to 3 main cyclist typologies, where

each type is characterized by different trip attributes and behaviors involving safety, riskiness, precaution,

inexperience,  knowledge,  fear  and  hastiness:  Risky  &  Hasty,  Inexperienced  &  Inefficient  and  Smart  &

Informed.

Keywords

Cyclist typology, Cluster analysis, GPS trace, Big data

Highlights

• Crowdsourced big data of GPS traces for the characterization of cyclist typologies

• Cluster analysis  with more than 50 trip characterizing attributes.

• Three cyclist typologies: Risky & Hasty, Inexperienced & Inefficient and Smart & Informed

1. Introduction

1.1 Motivation and scope

The availability of a big set of GPS traces from cyclists, together with a range of instruments and tools able

to deeply analyze GPS data has led to the idea of identifying different types of cyclists using a cluster

analysis method, which is the core of the present work. The motivation behind this approach is to replace

interview-based surveys  with  a  large  quantity  of  revealed  data in  order  to  obtain  a  more  objective

classification of cyclists. The knowledge of the type of cyclist is relevant for the link-cost and route-choice

modeling of cyclists.
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1.2 Literature review and State of the art

In  order  to properly  plan bicycle  infrastructure, it  is  crucial  to  know  and  characterize  the  current

transportation demand. However, data collection for the purpose of demand modeling is a challenge faced

by many cities. Most municipalities do not systematically monitor cycling activities.

Cyclists are heterogeneous and show different riding behavior. The differentiation between individual user

groups by targeting more accurately the needs and requirements of different types of users aims to better

conduct bicycle infrastructure planning, model cyclist behaviors, identify critical points and reduce barriers

for cycling. Planning a network adapted to different cyclist types could be an effective strategy to increase

cycling mode share and frequency among the various groups (Damant-Sirois et al., 2014).

Many studies are based on survey data to group them according to different aspects of their riding behavior.

The main cyclist typology factors found as trip purpose (e.g., Kroesen and Handy, 2014), comfort/perception

of safety (Geller, 2006) as well as motivational (e.g., Gatersleben and Haddad, 2010; Damant-Sirois et al.,

2014) and social factors such as identification as a cyclist (Damant-Sirois et al., 2014). Kroesen and Handy

(2014) considered non cyclists and cyclists for work and non-work purposes and used a latent transition

model for clustering people into four groups: non-cyclists, non-work cyclists, all-around cyclists (for work

and non-work purposes) and commuter cyclists. Gatersleben and Haddad (2010), using the results of a

survey conducted amongst 244 cyclists and non-cyclists in England, distinguished four different bicyclist

types  based  on  behavior,  motivation  and  characteristics  of  the  typical  bicyclist:  responsible,  lifestyle,

commuter and day-to-day. These types differed between bicyclists and non-bicyclists.

Geller (2006) identified four types of cyclists, subjectively developed on the basis on his expert knowledge:

strong and fearless, enthused and confident, interested but concerned, and no way no how. This typology is

based  on  perceived  safety  (comfort  level  on  different  types of  bikeways  and  fear  of  people  driving

automobiles) and on people’s interest in cycling more. This classification, referred to all adults regardless of

their current cycling behavior, was subsequently formalized in a method and validated by Dill and McNeil by

a random phone survey in a sample of adults in the 50 largest metro regions in the U.S. (Dill and McNeil,

2013; 2016). Damant-Sirois et al. (2014), using data from an online survey aimed only at cyclists, propose a

multidimensional cyclist  typology based on seven factors including weather conditions and effort,  time

efficiency, street design, bicycle facilities, personal identity toward cycling and past cycling history. They

distinguished four distinct cyclist types: dedicated cyclists, path-using cyclists, fairweather utilitarian and

leisure cyclists. More recently, Cabral and Kim (2020) question the classic Four Types of Cyclists proposed by

Geller, particularly with respect to perceived comfort. They used an online survey and video clips to classify

people  into  three categories:  Uncomfortable  or Uninterested,  Cautious Majority,  and Very Comfortable

Cyclists. Their empirical segmentation is based on variables of comfort, cycling intent, and cycling in the

previous summer.

Francke et al. (2020) propose a multidimensional typology of cyclists which includes the influence factors of

already existing studies complemented by motivational factors. They use an empirical approach through a

Germany-wide online survey (10,294 responses) on cycling behavior in order to distinguish four distinct

types of cyclists: ambitious, functional, pragmatic, and passionate cyclists.

The use of recorded GPS data instead of interviews may be the way forward as GPS data represent objective

information about the chosen route and motion of each cyclist. A large number of GPS traces are usually

available from bike-tracing campaigns. In recent years, many studies on cycling mobility have made use of

GPS data, which is often available at low cost and allows to gain a broad range of information, such as the

spatial distribution of cyclists on the city’s road network. Such information allows to calibrate the cyclist

route choice model, see (Lu et al., 2018; Rupi et al., 2019; Rupi and Schweizer, 2018; Pritchard et al., 2019;

Pritchard , 2018; Griffin and Jiao, 2015; Charlton et al., 2011; Dill, 2009; Menghini et al., 2010; Hood et al.,
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2011; Broach et al., 2012; Zimmermann et al., 2017; Bernardi et al., 2018; Schweizer et al., 2020; Chen et

al., 2018). Other studies use GPS traces to obtain information on cyclist speeds (Manum et al., 2018, Flügel

et al., 2017, Strauss et al., 2017), speed profiles (Strauss and Miranda-Moreno, 2017; Clarry et al., 2019;

Laranjeiro et al., 2019) and waiting times at intersections (Watkins and LeDantec, 2016; Rupi et al. 2020).

1.3 Research contribution

The present study explores a new method to identify and characterize different types of cyclists based on

GPS traces and some additional attributes of cyclists. The method is applied to the GPS traces recorded in

the city of Bologna, Italy. The novelty is the use of GPS traces and derived quantities (such as trip-length,

speeds,  waiting  times,  deviation  from  shortest  path,  etc.)  instead  of  interviews  for  the  purpose  of

identifying types of cyclist, which is equivalent to a revealed preference survey – hence the GPS traces are

expected to be more reliable than classical surveys, where interviewees declare their behavior. In addition,

GPS traces are often available in large quantities. The described method requires a refined pre-processing of

the GPS traces: The traces are matched to a road network extracted from Open Street Map (OSM) and

elaborated in order to create a rich database that describes the experience, the performance, choices and

behavior of each cyclist as detailed in Rupi et al., 2020. 

The main focus of the paper is  on the successive cluster analysis which uses the results from the pre-

processing step with the scope of clustering the data set in groups of cyclists characterized by similar habits.

Section 2 describes the applied clustering method and section 3 presents the Bologna GPS data set and

briefly explains the data pre-processing. The results in section 4 present the 3 types of cyclists and illustrate

their respective characteristics.

2. Cluster analysis

The goal of cluster analysis is  to find homogeneous groups of units within the data,  i.e.  homogeneous

groups of cyclists based on their habits. There are many clustering techniques in the statistical literature

(see Everitt 2011 for examples), among them model based clustering techniques are popular. Model-based

clustering assumes that a population is a convex combination of a finite number of density functions. The

multivariate Gaussian distribution is  one of the most popular for its  simplicity  (McLachlan and Basford

1988): each cluster has only two parameters, the mean vector that determines the position of the cluster in

the space, and the covariance matrix.

Figure 1 (a) shows an example of a two-dimensional data set with 3 clusters that follow a bivariate Gaussian

distribution. In cluster one (black circles) the variables have unitary variance and no correlation, in cluster

two (red triangles) the variables have variance equal to 2 and no correlation, and in cluster three (green

plues) the variables have unitary variance and correlation equal to 0.6.

Formally,  a p-dimensional random vector  X follows a finite mixture of distributions if,  for all  x⊂ X ,  its

density can be written as:  f ( x|ϑ )=∑
g=1

G

π g f ( x|θg ) , where  G  is the number of clusters,  πg>0,  such that

∑
g=1

G

π g=1,  is  the  gth  mixing  proportion,  f (x|θg ) is  the  gth  component  density,  and

ϑ=(π1 ,…, πG , θ1 ,…,θG ) is the vector of parameters. One of the advantages of model-based clustering is

that, besides the partition in clusters,  the method produces an estimate of the parameters  θg of each

cluster that can be used for interpretation.  

A variety of distributions have been used to model the density functions; McNicholas 2016 contains a good

review of them. Among these distributions,  the generalized hyperbolic  distribution (GHD) (Browne and
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McNicholas  2015)  has  the  advantage  of  being  extremely  flexible.  The  GHD  is  characterized by  five

parameters –  mean vector, scale matrix, skewness vector, concentration, and index parameters - and can

identify clusters of a different shape. Moreover, many other distributions - like the Gaussian distribution,

the multivariate Student t, or the skewed Student t distribution - can be obtained as a special or a limiting

case of the GHD, i.e. it can detect clusters that are for example normally distributed. Tortora et al. 2019

proposed a flexible extension of the GHD - the coalesced GHD (CGHD)- that adds even more flexibility and

can model non-convex clusters. Figure 1 (b) shows an example of a two-dimensional data set with 3 clusters

that follow a bivariate  CGHD. The Bayesian information criterion (BIC)  is  recommended to choose  the

number of clusters for mixtures of CGHD.

 

(a)                                                                  (b)

Fig.1 Two dimensional data sets where each cluster was generated from a Gaussian distribution (a) or from

a CGHD (b). 

3. The Bologna data set

The city of Bologna, Italy, hosted in 2017 - from April 1st to September 30th - the ‘Bella Mossa’ initiative

(BM),  funded by the  EU and Bologna’s  local  Government. The  initiative had the  objective  to  promote

sustainable mobility by rewarding people (with coupons for local shops) for recording their GPS traces of

sustainable trips - meaning trips done by transit, bike or walking . The smartphone application ‘Betterpoints’

(Betterpoints,  2020) has  been  used  to  record  and  collect  the  data.  The  full  data  sample  contains

approximately 270,000 bike GPS traces,  which consist  of more than 62 million points:  the smartphone

application records one GPS point every 5 seconds when the bike is in motion. When the bike stops, for

example at intersections, the recording stops also. The present study focuses only on bikes GPS traces

recorded during the morning peak of work days -  from 7am to 10am - because of computational time

problems, but also trying to englobe especially working trips during the morning peak hour and avoid as

much as possible trips for other purposes.

The following data processing steps have been implemented using the SUMOPy environment (Schweizer,

2020), an open source extension of the software SUMO (Eclipse SUMO, 2020). In a first step, the open

street map (OSM) network covering the urban area of Bologna (OpenStreetMap, 2020) has been imported

into SUMO. This SUMO network is attribute-rich and contains information on road width, road access (e.g.

reserved bikeways,  shared access,  with pedestrians,  etc.) and speed-limits.  From these basic  attributes

SUMO derives a road priority (1-10), where low priority roads are taken values from 1 to 7. Successively the

network has been manually improved in order to eliminate errors due to an imperfect OSM representation

as well as conversion errors. Next, unrealistic GPS traces have been deleted: trips outside the study area and

traces which have probably not been recorded while riding a bike. (See Fig.2). Valid traces must also satisfy

criteria  such as  a  certain total  distance,  a  minimum number of  points,  and a minimum and maximum
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distance between successive points. This trace filtering step does ensure the GPS traces can be successfully

matched to the road network by the map-matching process. During the map-matching the most likely route

(as sequence of network links) can be identified for each GPS trace (Schweizer et al., 2020).

 

Fig.2 Evaluating cyclist attributes starting from GPS traces registered with Smartphones.

After a further filter that ensures the quality of the map-matching process, the shortest route connecting

same link of origin and destination as the matched route has been identified for each trip. Subsequently,

the matched routes have been analyzed - also from a dynamic point of view (see Rupi et al., 2020) - and

compared with the respective shortest routes. There has been a further filtering of GPS traces that are

suitable for the dynamic analysis. Finally, the attributes related to all the trips carried out from the same

users have been aggregated in 5 different ways: mean, mean weighted by trips distances, median, standard

deviation and mean absolute difference. These averaged attributes describe the experience of each user.

After carrying out all the aforementioned pre-processing step the cyclist population is composed of 2,135

users (see tab.1), recording a total of 16,168 trips. This cyclist population belongs mainly to the firsts two

age groups - 16-44 years - based on the phases of life described by Wittwer et al., 2014.

N users N trips Male 16→29 30→44 45→54 55→65 >65

2135 16168 46.50% 43.90% 34.90% 12.20% 8.30% 0.60%

Tab.1 Sample characterization in terms of size, gender and age - based on the phases of life described by

Wittwer.

The following aggregate attributes have been obtained from the GPS trace analysis: trip length, trip duration

and average speed; number of road priority changes per km; share of trip inside the center area, in roads

reserved for  cyclists,  in mixed roads -  shared with taxi,  bus or pedestrians -  and in low-priority roads;

number of passed nodes, left turns, right turns and crossing - both in total and only in presence of a traffic

light system (TLS) -  per km; average numbers of maneuvers in the traveled intersections; all  the route-

attributes minus the same attributes referred to the shortest route;  share of the shortest route length

respect to the matched route; average in-motion speed; waiting time, as well as the registered waiting time

minus the expected waiting time - based on the waiting times registered by the other users - at nodes, left

turns, right turns, crossings - both in total and only in presence of a TLS - and at edges, per km. In addition

to these attributes, the Bellamossa database contains additional information on the users such as: age,

gender and number of recorded traces by each participant.

Tab.2 shows a statistical description of all the trip attributes aggregated for each cyclist as the median of the

attributes related to their recorded trips. The table highlights also the dispersion of the various attributes

referred to all cyclists. This suggests that cyclists have different habits and there might be the possibility of

grouping the data set in some cyclist clusters. In particular, the average speed in motion is 4.85 ± 1.04 m/s,

the average speed is 3.77 ± 1.11 m/s and the waiting time represents on average 14.6 % of the whole trip
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duration; these results are very similar to the dynamic results presented in (Rupi et al. 2020), where a

different set of GPS-traces from Bologna, Italy, has been analyzed.

Attribute Unit Aver. St.Dev. Min 1stQu. 2ndQu. 3rdQu. Max

Average length m 2864 1607 189 1721 2505 3603 13650

Share of trip in the center area % 42.57 35.51 0.00 0.00 40.92 71.62 100.00

Average speed m/s 3.58 0.91 1.14 2.98 3.52 4.10 10.14

Number of priority changes 1/km 0.75 0.84 0.00 0.06 0.54 1.06 6.59

Share of reserved cycleway % 23.79 20.10 0.00 6.98 20.07 36.47 100.00

Share of mixed road % 30.52 18.43 0.00 16.84 27.91 41.27 100.00

Share of low-priority roads % 69.91 22.70 0.00 54.37 72.59 89.08 100.00

Number of nodes 1/km 16.60 3.01 3.73 14.78 16.57 18.39 32.15

Number of left turns 1/km 2.11 0.98 0.00 1.45 2.02 2.68 6.97

Number of right turns 1/km 2.37 1.08 0.00 1.68 2.30 2.97 15.91

Number of crossings 1/km 11.36 2.81 0.00 9.45 11.25 13.18 28.37

Number of TLS nodes 1/km 2.82 1.60 0.00 1.70 2.76 3.73 10.92

Number of TLS left turns 1/km 0.39 0.45 0.00 0.00 0.31 0.60 4.14

Number of TLS right turns 1/km 0.38 0.38 0.00 0.00 0.34 0.60 3.07

Number of TLS crossings 1/km 1.89 1.21 0.00 0.98 1.82 2.68 8.32

Average number of maneuvers per node / 10.30 1.19 6.00 9.64 10.22 10.82 22.25

Share shortest length % 84.73 7.83 32.58 80.60 85.84 90.30 100.00

Number of priority changes* 1/km -0.09 0.95 -6.18 -0.33 0.00 0.32 4.64

Share of reserved cycleway* % 4.03 14.98 -59.80 -1.27 0.00 9.06 85.06

Share of mixed road* % -1.86 12.50 -72.05 -6.87 -0.31 4.16 52.28

Share of low-priority roads* % 4.05 16.64 -63.12 -2.83 1.36 9.98 77.68

Number of nodes* 1/km -0.73 2.33 -19.60 -1.75 -0.50 0.49 10.77

Number of left turns* 1/km 0.37 0.88 -5.74 -0.09 0.36 0.83 4.27

Number of right turns* 1/km 0.45 0.98 -5.17 -0.08 0.45 0.97 7.01

Number of crossings* 1/km -1.59 2.33 -14.14 -2.70 -1.39 -0.27 10.11

Number of TLS nodes* 1/km 0.02 0.96 -5.13 -0.40 -0.04 0.43 7.50

Number of TLS left turns* 1/km 0.11 0.39 -2.73 -0.02 0.00 0.24 4.14

Number of TLS right turns* 1/km 0.11 0.36 -1.98 -0.01 0.00 0.28 2.66

Number of TLS crossings* 1/km -0.22 0.81 -4.15 -0.57 -0.13 0.07 3.54

Average number of maneuvers per node* / 0.08 0.87 -3.49 -0.31 0.04 0.39 5.64

Average in motion speed m/s 4.70 0.92 1.54 4.13 4.63 5.19 11.11

Share of waiting time whole trip % 14.71 9.96 0.00 7.56 13.13 19.88 71.74

Average waiting time per node s 1.70 1.77 0.00 0.55 1.24 2.27 17.31

Average waiting time per left turn s 1.94 4.67 0.00 0.00 0.00 1.88 67.00

Average waiting time per right turn s 1.35 3.44 0.00 0.00 0.00 1.21 54.00

Average waiting time per crossing s 1.61 2.11 0.00 0.33 1.00 2.15 35.73

Average waiting time per TLS node s 4.12 6.32 0.00 0.00 2.25 5.70 96.30

Average waiting time per TLS left turn s 3.22 8.95 0.00 0.00 0.00 1.00 85.00

Average waiting time per TLS right turn s 2.82 9.29 0.00 0.00 0.00 0.00 122.00

Average waiting time per TLS crossing s 4.44 8.20 0.00 0.00 1.71 6.00 147.17

Average waiting time per edge s/km 13.17 25.75 0.00 0.69 5.34 14.34 334.25

Average waiting time per edge** s/km - 22.77 -67.66 -7.65 -4.01 0.92 316.39

Average waiting time per node** s/km - 30.62 -76.55 -13.16 -3.97 9.44 521.03
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Average waiting time per left turn** s/km - 15.20 -57.42 -7.80 -2.59 3.49 242.91

Average waiting time per right turn** s/km - 8.94 -45.64 -2.73 -0.84 0.00 187.51

Average waiting time per crossing** s/km - 12.83 -34.14 -2.07 -0.71 0.00 472.56

Average waiting time per TLS node** s/km - 20.96 -65.45 -9.43 -3.28 4.01 239.87

Average waiting time per TLS left turn** s/km - 7.47 -25.23 -2.13 -0.33 0.00 187.51

Average waiting time per TLS right turn** s/km - 6.90 -32.55 -1.57 -0.44 0.00 115.30

Average waiting time per TLS crossing** s/km - 12.17 -49.67 -5.55 -1.94 1.54 213.77

Average waiting time whole trip** s/km - 39.48 -97.21 -16.49 -5.07 9.73 428.71

* Value referred to the matched trip minus the value referred to the shortest trip

** real minus expected waiting time, based on the average waiting times of other cyclists that passed the same 
elements of the netwrork

Tab.2  Descriptive  statistics of  cyclist attributes  considered  as  the  median of  values  referred  to  their

performed trips.

From a first graphical analysis the Bologna cyclist data set does not clearly show spherical, symmetric, or

convex clusters, therefore, a flexible distribution, like the CGHD, is preferred for the cyclist clusterization.

The CGHD can capture differently shaped clusters, as well as, symmetric or spherical clusters.

4. Results

4.1 Data Analysis

Since the goal of the analysis is to find homogeneous groups of cyclists based on their cycling habits, the

demographic variables have only been used for interpretation of the clusters after the analysis. 

The total number of variables used for the analysis is 41 and the missing values have been imputed using

multivariate imputation by chained equations (MICE) (Buuren and Groothuis-Oudshoorn 2010), i.e. each

missing value has been imputed 5 times, obtaining 5 different complete data sets; the same analysis has

been therefore performed on the 5 data sets, and the adjusted Rand Index (ARI) (Huber and Arabie 1985)

has been used as a measure of pairwise cluster agreement in order to assess the robustness of the models,

i.e. if all the partitions are similar, then the analysis is robust. The ARI is equal to 1 when there is perfect

agreement between two partitions and the expected value is 0 for random classification: in the case study,

the ARI was between 0.71 and 0.76, indicating a good level of robustness. The reported results refer to one

of the data sets.

The analysis has been run using the software R (R Core team, 2020) by varying the number of clusters

between 2 and 5, the BIC selected three clusters. The algorithm was initialized using a robust clustering

technique called k-medoids (Kaufman and Rousseeuw 1990), and the package MixGHD (Tortora et al. 2019)

has been used for the cluster analysis.

4.2 Cluster analysis results

The three clusters  of  cyclists  present  similar  ages,  but  different  trip  attributes  and cyclist  choices  and

behaviors. The cyclist groups are composed of 806, 749 and 580 cyclists, with respectively 51%, 63% and

46% of women.  According to the cluster's attributes,  the three cyclist categories  have been named as

follow:

1. Risky & Hasty cyclists (RHC): they prefer going straight along the shortest path, traveling on

unsafe roads and also large roads. This type of cyclist accepts also roads without reserved

cycleway and a high density of intersections. The RHC is in average fast when in motion,

but he/she loses time encountering many traffic lights, even if the average waiting time at

intersections is fairly low, indicating that the RHC does often ignore the red signal.
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• Keywords: no deviations from the shortest path - low waiting times - fast

2. Inexperienced & Inefficient  cyclists  (IIC):  they travel  at  a  low speed and they  showed

considerably higher waiting times respect to the other cyclists in all infrastructure elements

(roads,  intersections,  traffic  lights),  probably  because  they  are  precautionary,  but  also

afraid and not completely convinced to use a bike. They make deviations from the shortest

path like the SIC group, but not to travel on safer roads with more exclusive cycleways, less

traffic and fewer intersections.

• Keywords: considerable waiting times - low speeds

3. Smart & Informed cyclists (SIC): they know how to make deviations from the shortest path

in an efficient way, searching frequently for roads with more reserved cycleways, fewer

traffic and fewer intersections, thus gaining on both, safety and speed. They showed fairly

low waiting times at intersections - like the RHC group - because they encounter less traffic

lights and they probably pass also with the red signal (supposedly when it is safe). 

• Keywords: smart deviations from the shortest path for safer or faster roads - low waiting

times - fast

The radar graphs show the differences in terms of behavior (Fig.3) and trip characteristics (Fig.4) for the

three different types of cyclists. The graphs contain the normal standardization of the first, second and third

quartiles  of  the  attributes referred  to  the  cyclists  of  three  clusters, -  of  which  cyclist  attributes  are

considered as  the median value of the attributes referred to their  recorded traces -  in  order to better

visualize the differences in the same scale, while Tab.3 shows a descriptive analysis of the same attributes.
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Fig.3 Behavioral differences of the three cyclist types - RHC in purple, IIC in blue and SIC in orange. The

dotted lines  represent  the  first  and third quartiles,  while  the solid  line represent  the  median of  cyclist

attributes considered as the median of values referred to their  performed trips. * Value referred to the

matched trip minus the value referred to the shortest trip.

The RHC type - who prefers to go straight on the shortest route - travel mainly on unsafe roads while

encountering many intersections –  of which most are with traffic lights –  in particular in central areas of

Bologna.  The  IIC  type characterized  by  considerably  high waiting  times  and  low  speed,  indicating  an

insecure and cautious behavior. The other trips characteristics correspond to average values with respect

the other cyclist types. The SIC type smartly deviates from the shortest route, often travels longer distances

and changes frequently the priority of the road: his deviations contain safer roads with reserved cycleways,

low priority roads and fewer intersections. The SIC also prefers to travel outside the center.

 

Fig.4 Differences in terms of trip characteristics of the three cyclist types - RHC in purple, IIC in blue and SIC

in orange. The dotted lines represent the first and third quartiles, while the solid line represent the median

of cyclist attributes considered as the median of values referred to their performed trips.

Attributes 1st Quartile 2nd Quartile 3rd Quartile

Name Unit RCU IIC SIC RCU IIC SIC RCU IIC SIC

Share of reserved cycleway* % -1.2 -1.8 -0.7 0 0 4.1 3.8 9 17.3

Share of mixed road* % -7.9 -7.9 -5.2 -0.8 -0.5 0.6 2.5 4.2 7

Share of low-priority roads* % -4.9 -4.2 0 0.8 0.2 6.7 6 7.2 22

Average speed m/s 3.2 2.6 3.4 3.6 3.1 3.9 4.2 3.6 4.5
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Average in motion speed m/s 4.3 3.9 4.3 4.7 4.4 4.8 5.2 4.9 5.4

Number of nodes* 1/km -1.3 -1.7 -2.4 -0.4 -0.5 -0.8 0.5 0.4 0.5

Number of TLS nodes* 1/km -0.2 -0.4 -0.7 0.1 0 -0.2 0.6 0.4 0

Share shortest length % 82.8 79.7 79 87.4 84.9 84.5 91.7 89.4 89

Share of waiting time whole trip % 5.8 14.6 5.1 10.6 20.2 9.1 16.2 27.2 13.3

Average waiting time per edge s 0 2.9 0.8 3.4 10 4.3 9.6 23.9 11.1

Average waiting time per node s 0.4 1.5 0.3 1 2.5 0.7 1.7 3.6 1.3

Average waiting time per TLS node s 0 2.1 0 1.5 6.1 0.9 3.4 10.3 3.3

Real vs expected waiting time s/km -22.9 -3.7 -17 -12.1 10.8 -7.7 -0.8 33.3 -0.6

Age - 13 15 16 30 31 35 39 43 45

Number of nodes 1/km 15.5 14.7 13.8 17.2 16.5 15.7 18.9 18.4 17.5

Number of TLS nodes 1/km 2.8 1.6 0.9 3.5 2.5 1.8 4.5 3.4 2.8

Share of mixed road % 19.2 16.5 15 31.9 26.1 26 45.6 39.4 38.5

Share of trip in the center area % 31 0 0 56.3 42.6 13.3 82.6 77.8 41.5

Share of low-priority roads % 41.3 61.3 72.5 56.7 77.4 85.2 72.7 91 95.4

Share of reserved cycleway % 2.9 8.1 15.5 12.3 21 28.9 28.5 37.3 43.6

Number of priority changes 1/km 0 0.2 0.4 0.3 0.6 0.8 0.7 1.1 1.4

Average length m 1680 1612 2075 2346 2286 3325 3318 3038 4990

* Value referred to the matched trip minus the value referred to the shortest trip

Tab.3 Descriptive analysis of the clusters with cyclist attributes considered as the median of values referred

to their performed trips.

5. Conclusions

The present study identified three types of cyclists by applying a cluster analysis to attributes calculated

from GPS traces. The data set is composed of 16,168 GPS traces recorded between 7-10 am on work days

from April to September 2017. Based on the results of the cluster analysis, the types have been named

Risky & Hasty cyclists (RHC), Inexperienced & Inefficient cyclists (IIC) and Smart & Informed cyclists (SIC).

The novelty of the present study, is the use of crowdsourced GPS data that allows to analyze a large data

sample as objective, revealed survey data. The pre-processing of the GPS traces has produced a large and

variegate set of attributes which characterize the cyclist experience, leading to a meticulous description of

the different types of cyclists. The most significant attributes in the cyclist clusterization are: the amount of

trip deviation made for improving the cyclist experience in terms of both safety and speed as well as the

waiting times detected in various parts of the road network.

Rather than providing threshold values to split other cyclist database into the three groups, a model-based

approach has been used. Each cluster is modeled using a CGHD distribution with different parameters. The

model can be used to find the belonging probability to each cluster of cyclists in the same area not included

in the original sample.

The proposed paper presents on what these groups differ and how much, thus presenting the differences in

terms of experience, performances, choices and behavior of each group of cyclists for design both new

surveys and infrastructures in the city - adapted to each group of cyclists - as well as initiatives that can

allow to  improve  the  trip  experience  of  certain  cyclists,  making  it  safer  and more efficient  as  well  as

reducing barriers for cycling.

One current limitation of the data set is that it may not be representative. In future research it is possible to

attribute more weight to the data of underrepresented parts of the population.
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