
 

www.aging-us.com 24057 AGING 

www.aging-us.com AGING 2020, Vol. 12, No. 23 

Research Paper 

Age-related DNA methylation changes are sex-specific: a 
comprehensive assessment 
 

Igor Yusipov1,2,*, Maria Giulia Bacalini3,*, Alena Kalyakulina1,*, Mikhail Krivonosov1, Chiara 
Pirazzini3, Noémie Gensous4, Francesco Ravaioli4, Maddalena Milazzo4, Cristina Giuliani5,6, Maria 
Vedunova7, Giovanni Fiorito8,9, Amedeo Gagliardi10,11, Silvia Polidoro9,10,11, Paolo 
Garagnani4,12,13,14, Mikhail Ivanchenko1,2,#, Claudio Franceschi1,# 
 
1Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, 
Russia 
2Mathematics of Future Technologies Center, Lobachevsky University, Nizhniy Novgorod, Russia 
3IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy 
4Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum – University of 
Bologna, Bologna, Italy 
5Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology 
and Centre for Genome Biology, University of Bologna, Bologna, Italy 
6School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK 
7Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhni 
Novgorod, Russia 
8Department of Biomedical Sciences, University of Sassari, Italy 
9Department of Epidemiology and Public Health, MRC/HPA Centre for Environment and Health, School of Public 
Health, Imperial College London, Norfolk Place, London W2 1PG, UK 
10Italian Institute for Genomic Medicine (IIGM), Candiolo 10060, Italy 
11Candiolo Cancer Institute, FPO-IRCCS, Candiolo 10060, Italy 
12Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, 
Stockholm, Sweden 
13Applied Biomedical Research Center (CRBA), Policlinico S.Orsola-Malpighi Polyclinic, Bologna, Italy 
14CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy 
*Co-first authorship 
#Co-senior authorship 
 

Correspondence to: Maria Giulia Bacalini; email: mariagiulia.bacalini@ausl.bologna.it  
Keywords: methylation, sex, meta-analysis, whole blood, variability 
Abbreviations: sDMPs: sex-associated differentially methylated positions; aDMPs: age-associated differentially methylated 
positions; saDMPs: sex- and age-associated differentially methylated positions; snaDMPs: sex- but not age-associated differentially 
methylated positions; saVMPs: sex-specific age-associated variably methylated positions. 
Received: July 30, 2020 Accepted: October 19, 2020  Published: December 3, 2020 
 

Copyright: © 2020 Yusipov et al.  This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 
 

ABSTRACT 
 

The existence of a sex gap in human health and longevity has been widely documented. Autosomal DNA 
methylation differences between males and females have been reported, but so far, few studies have 
investigated if DNA methylation is differently affected by aging in males and females. We performed a meta-
analysis of 4 large whole blood datasets, comparing 4 aspects of epigenetic age-dependent remodeling  
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between the two sexes: differential methylation, variability, epimutations and entropy. We reported that a 
large fraction (43%) of sex-associated probes undergoes age-associated DNA methylation changes, and that a 
limited number of probes show age-by-sex interaction. We experimentally validated 2 regions mapping in FIGN 
and PRR4 genes and showed sex-specific deviations of their methylation patterns in models of decelerated 
(centenarians) and accelerated (Down syndrome) aging. While we did not find sex differences in the age-
associated increase in epimutations and entropy, we showed that the number of probes having an age-related 
increase in methylation variability is 15 times higher in males compared to females. Our results can offer new 
epigenetic tools to study the interaction between aging and sex and can pave the way to the identification of 
molecular triggers of sex differences in longevity and age-related diseases prevalence. 
 

INTRODUCTION 
 

A profound and multifaceted remodeling of DNA 

methylation patterns occurs during human aging [1–3]. 

DNA methylation profiles tend to diverge among 

individuals during life course [4–6], shaped by an 

intricate combination of environmental exposures, 

random events and genetically-driven mechanisms. 

Several epigenome-wide association studies (EWAS) 

have shown that a subset of the about 28 million CpG 

sites of the genome undergoes age-associated 

normative changes, i.e. reproducible hypermethylation 

or hypomethylation events that normally occur in all 

individuals during physiological, healthy aging 

(normative aging) [7, 8]. Despite some controversial 

results [9, 10], at least a fraction of normative 

epigenetic changes is tissue-specific, indicating that 

the cellular microenvironment affects the activity of 

the molecular writers of DNA methylation patterns 

during aging. In the last 10 years an increasing number 

of studies identified age-associated DNA methylation 

changes at the level of single CpG sites, paving the 

way for the development of models, termed 

“epigenetic clocks”, that predict age starting from the 

epigenetic profile [11]. Epigenetic clocks are an 

appealing resource for chronological age estimation in 

forensic applications, but they have risen to the 

limelight particularly because multiple reports have 

shown that they are sensitive to health status and are 

thus informative of the biological age of an individual. 

Although a conclusive association between epigenetic 

clock predictions and risk of age-related diseases is 

still missing [12], several independent studies showed 

that epigenetic age acceleration (i.e., predicted 

epigenetic age higher than effective chronological age) 

is associated with age-related diseases like cancer, 

cardiovascular disease and neurodegenerative 

conditions and to all-cause mortality [13]. On the  

other side, epigenetic age deceleration was reported to 

be associated with successful aging and longevity  

[14, 15]. 

 

Surprisingly, the research on the DNA methylation 

changes occurring during aging has largely neglected 

one of the hot topics in aging research, i.e. the sex 

differences in lifespan and health span.  

 

According to Global Health Observatory (GHO) data 

[16], global life expectancy at birth in 2016 was 74.2 

years for females and 69.8 years for males and, 

although with a different extent, this sex gap in 

longevity is worldwide [17]. At the same time, 

epidemiological data indicate that women live longer 

than men but experience a worse quality of life in 

advanced age [18]. Sex disparity exists for several 

diseases: cardiovascular disease, cancer and Parkinson’s 

disease have higher mortality rates in males than in 

females at a given age, while females are at higher risk 

of Alzheimer’s disease and show an increased 

prevalence of disabling conditions like bone and joint 

problems and autoimmune diseases. The reasons for 

these differences are still unclear, but they likely result 

from a strict interplay between nature (for example, 

differences in hormone levels, asymmetries in genetic 

inheritance, sexual dimorphism) and nurture (for 

example, different vulnerability to environmental 

hazards, sexual selection) [19]. Notably, sex-specific 

longevity loci have been recently identified [20], further 

pointing out the contribution of sex on aging 

trajectories.   

 

Independent studies reported DNA methylation 

differences between males and females in various 

tissues [21–23], involving CpG sites widespread across 

the autosomal chromosomes. These differences mirror 

the diversity in transcriptomic and proteomic profiles 

between the two sexes that have been recently reported 

[24, 25]. However, few studies have investigated 

whether DNA methylation differences exist between 

males and females during aging and whether they 

contribute to the sex gap in aging and longevity. 

According to Horvath’s clock, males have an 

acceleration in epigenetic age compared to females  

[26–28]. Masser et al. analyzed genome-wide DNA 

methylation in mouse hippocampus and human frontal 
cortex and reported CpG sites that show different DNA 

methylation levels between males and females lifelong 

(referred as sex differences) and CpG sites that are 
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differently affected by aging in males and females 

(referred as sex divergence) [29]. The vast majority of 

EWAS studies on aging have been performed in whole 

blood, but sex has usually been exiled as a confounding 

factor and used to adjust DNA methylation data. 

 

In the present work we specifically investigated sex 

differences in whole blood DNA methylation changes 

during aging. We provide the results of a 

comprehensive study of 4 large whole blood datasets 

considering different aspects of age-associated 

epigenetic remodeling that can, either individually or in 

combination, contribute to the sex-specificity of human 

aging and longevity. In particular we focused on: 1) 

age-related changes in DNA methylation levels [8, 30]; 

2) age-related increase in DNA methylation variability, 

as described by Slieker et al. [6]; 3) age-related increase 

in epimutations, i.e. rare or stochastic changes in DNA 

methylation levels that are not shared among subjects, 

as defined by Gentilini et al. [5] 4) age-related increase 

in entropy in DNA methylation profiles, as previously 

described by Hannum et al. [31]. Furthermore, we 

investigated a subset of the loci emerged from these 

analyses in human models of successful and 

unsuccessful aging. Our results are compared with the 

only study that, to the best of our knowledge, recently 

investigated age-by-sex DNA methylation differences 

in whole blood of a single population, i.e. a large 

Scottish cohort [32]. 

 

RESULTS 

 

Identification of sex- and age-associated 

differentially methylated positions  

 

We performed a meta-analysis of 4 large datasets on 

whole blood (Materials and Methods) to identify CpG 

sites with differential methylation between males and 

females (sex-associated differentially methylated 

positions, sDMPs). We identified 38100 sDMPs 

(Bonferroni corrected p-values resulting from meta-

analysis <0.01), 53% of which were hypermethylated in 

females compared to males. We used the same datasets 

to identify age-associated differentially methylated 

positions (aDMPs) and we selected a list of 87581 

probes (Bonferroni corrected p-values resulting from 

meta-analysis <0.01), 52% of which underwent 

hypermethylation with aging. We then asked how many 

sDMPs underwent DNA methylation changes with age, 

i.e. were also aDMPs. The intersection between sDMPs 

and aDMPs lists returned 16526 probes, that we defined 

sex- and age-associated differentially methylated 

positions (saDMPs); we defined the remaining probes 

(21574) sex- but not age-associated differentially 

methylated positions (snaDMPs). Figure 1A reports a 

graphical representation of the procedure used to 

identify saDMPs and snaDMPs. The proportion of sex-

associated probes showing age-associated changes 

(16526 out 38100) was higher then expected, 

considering the proportion of age-associated probes in 

the genome (87581 out 327905; Fisher’s exact test p-

value < 2*10-16, odds ratio 2.35). We found that most 

of the saDMPs undergoing hypomethylation with age 

were more methylated in males compared to females, 

while most of the age-hypermethylated saDMPs were 

more methylated in females compared to males (Figure 

1B). Four examples of saDMPs are depicted in Figure 

1C. The lists of saDMPs and snaDMPs are reported in 

Supplementary File 1.  

 

When compared to previously published studies, we 

found that a total of 1121 saDMPs and 2163 snaDMPs 

were reported to have sex-dependent methylation 

(independently from age) in previous reports [21–23], 

also when newborns were considered [23] 

(Supplementary File 1). 

 

We then investigated the possible functional role of 

saDMPs and snaDMPs. First of all, we explored 

whether the selected probes were enriched in specific 

genomic regions (Supplementary Figure 1), and we 

found that both saDMPs and snaDMPs were 

significantly enriched in Shore regions. The list of 

saDMPs, but not of snaDMPs, was significantly 

depleted in imprinted regions (p-value = 0.04, odds 

ratio: 0.64), as defined by Court et al. [33]. We also 

checked for the presence of sex hormone-related genes, 

as suggested by [22], in the lists of saDMPs and 

snaDMPs. saDMPs and snaDMPs mapped in 6610 and 

8367 genes respectively. 2899 genes were shared 

between the two lists, indicating that the same gene can 

include multiple CpG sites with DNA methylation 

differences between males and females, only a subset of 

which shows also age-associated changes. The list of 

saDMPs included a higher proportion of hormone-

related genes (28/6610 genes for saDMPs; 29/8367 for 

snaDMPs), but the enrichment was not statistically 

significant (p-value: 0.08; odds ratio: 1.6). Then, we 

analyzed the two lists for their enrichment in gene 

ontologies according to the GO database. While the list 

of snaDMPs was not enriched in any biological process 

(FDR corrected p-value<0.01), saDMPs were enriched 

in multiple ontologies related to neuronal and 

developmental functions and to cell-cell interactions 

(Supplementary File 2). 

 

Finally, we evaluated age-by-sex interactions in the 4 

datasets. Meta-analysis resulted in 8 CpG probes whose 

methylation showed different aging trajectories 

according to sex (Supplementary File 3). Two of these 

CpG sites were previously identified as having age-by-

sex interaction in whole blood [32], and the most 
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significant CpG site (cg18834375) mapped within the 

FIGN gene, that was the top ranker also in the list of 

saDMPs and included multiple CpG sites showing sex- 

and age-dependent methylation (cg01620164, 

cg19156483, cg10864319, cg18834375, cg15259986 

and cg03878133).  

 

Validation of saDMPs 

 

A subset of the above-identified saDMPs was 

experimentally validated using the EpiTYPER assay, a 

high throughput approach for target DNA methylation 

analysis. Target regions were chosen within FIGN and 

PRR4. We analyzed whole blood from 198 males from 

15 to 98 years old and 221 females from 23 to 98 years 

old.  

 

The FIGN target region included 13 CpG sites; of these, 

7 were measurable by the assay, grouped in 5 CpG 

units. CpG unit 3.4.5 included the microarray probe 

cg01620164. We found that this group of CpG sites 

showed a sex-specific DNA hypomethylation trajectory 

comparable to what observed in the microarray 

(Supplementary Figure 2); also, the adjacent CpG sites 

showed a similar profile (Supplementary Figure 2), in 

particular CpG unit 9 (Figure 2A). This result indicates 

that the CpG sites located in this genomic region of at 

least 250bp are concordantly regulated in whole blood 

during aging according to sex. 

 

The PRR4 target region included 5 CpG sites, all 

assessable by EpiTYPER and all corresponding to an 

Infinium450k probe; CpG units 3 and 4, corresponding 

to the Infinium450k probes cg23256579 and 

cg27615582, had the same mass and returned the same 

methylation value in the EpiTYPER assay. While CpG 

units 1 and 2 did not show age-dependent changes nor 

sex specificity (Supplementary Figure 3), CpG units 3 

and 4 showed sex-dependent trajectories with aging 

(Figure 2B). Although less evident, also CpG 5 showed 

sex-related differences in age-associated methylation 

changes (Supplementary Figure 3). 

 

 
 

Figure 1. Identification of sex- and age-associated differentially methylated positions (saDMPs). (A) The procedure used to 
identify saDMPs and snaDMPs. (B) Scheme of the number of sDMPs, aDMPs and saDMPs, divided according to the direction of 
methylation changes respect to sex (hyper- or hypo-methylated in males compared to females) and age (hyper- or hypo-methylated 
with increasing age). (C) Scatter plots of a selection of saDMPs: cg01620164 is hypomethylated in males and undergoes age-associated 
hypomethylation; cg03890691 is hypomethylated in males and undergoes age-associated hypermethylation; cg07128102 is 
hypermethylated in males and undergoes age-associated hypomethylation; cg04628369 is hypermethylated in males and undergoes 
age-associated hypermethylation. 
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We used the EpiTYPER assay to investigate the two 

validated loci in samples from additional cohorts 

available in our laboratory: persons affected by Down 

syndrome, that we previously demonstrated to have an 

acceleration in epigenetic age [34, 35]; and centenarians 

and their offspring, as a model of successful aging 

experiencing a deceleration in epigenetic age [14]. 

Interestingly, we found sex-dependent patterns of FIGN 

and PRR4 methylation also in these models. Compared 

to aged controls (>80 years old), centenarian males 

displayed highly variable DNA methylation profiles  

for FIGN amplicon, with about half of the subjects 

showing a female-like DNA methylation level (Figure 

2A, 2C, Supplementary Figure 4); the differences in 

variance between control and centenarians' males (but 

not females) reached statistical significance for CpG 

unit 9 (F-test p-value: 0.02). No specific trends were 

found for PRR4 amplicon in the centenarians' cohort 

(Supplementary Figure 5). Centenarians’ offspring 

showed DNA methylation patterns comparable to  

age-matched controls for both the amplicons 

(Supplementary Figures 4 and 5). Persons affected by 

Down syndrome showed DNA methylation profiles 

similar to age-matched controls in FIGN locus 

(Supplementary Figure 4). On the contrary, females 

affected by Down syndrome showed lower values of 

CpG unit 3 in PRR4 amplicon compared to sex- and 

age-matched healthy controls (ANOVA p-value 

correcting for age: 6.2*10-5), while no significant 

differences were found between males affected by 

Down syndrome compared to sex- and age-matched 

controls (Figure 2B and 2D, Supplementary Figure 5). 

The results of the statistical analyses performed on the 

centenarians', centenarians' offspring and Down 

syndrome cohorts are summarized in Supplementary 

File 4. 

 

Identification of sex-specific age-associated variably 

methylated positions (saVMPs) 

 

An increase in inter-individual DNA methylation 

variability has been described during aging, but possible

 

 
 

Figure 2. Validation of FIGN and PRR4 loci by EpiTYPER. (A) Methylation of CpG unit 9 in FIGN amplicon vs age. (B) Methylation of CpG 
unit 3 in PRR4 amplicon vs age. (A and B) For each CpG unit, DNA methylation in controls (general population), centenarians, centenarian's 
offspring and persons with Down syndrome is reported vs the age of the subjects. Males are in blue, females are in red. Linear regression 
between DNA methylation and age was calculated separately for males and females in control subjects and was reported in each plot. (C) 
Boxplots of DNA methylation of CpG unit 9 in FIGN amplicon in aged controls and centenarians. (D) Boxplots of DNA methylation of CpG unit 
3 in PRR4 amplicon in healthy controls and persons with Down syndrome. 
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sex-specific effects have not been investigated so far. 

To have a general view of the sex-dependent trends in 

age-related increase in DNA methylation variability, we 

plotted the density distributions of standard deviation 

values, calculated in the GSE87571 dataset (the one 

with the most homogeneous distribution of ages) in 3 

age-ranges (14-39 years; 40-59 years; 60-94 years) 

considering the whole cohort (Figure 3A) or separating 

males and females (Figure 3B). A clear increase in 

standard deviation across the 3 age ranges was evident 

when considering the entire cohort. No clear differences 

between males and females were evident in the first 2 

age ranges, while we found a trend towards higher 

variability in males in the oldest group. 

 

To identify probes having sex-specific differences in 

age-dependent variability (sex-specific age-associated 

variably methylated positions, saVMPs), we applied the 

approach described in Materials and Methods and 

reported in Figure 4A. We identified 809 and 12178 

saVMPs specific for females and males respectively 

(Supplementary File 5). All the female-specific saVMPs 

displayed increased variability with age, and similarly 

only for 5 out of 12178 male-specific saVMPs 

variability decreased with age. No probes with opposite 

trends in the two sexes were identified. Some examples 

of female- and male-specific saVMPs are reported in 

Figures 4B–4E. 

 

While female-specific saVMPs were enriched in 

Islands, male-specific saVMPs were enriched in Shore 

regions (Supplementary Figure 6). We also found that 

male-specific saVMPs were enriched in imprinted 

regions and mapped in 20 hormone-related genes, 

although this enrichment was not significant (p-value: 

0.09; odds ratio: 1.66). Both female- and male-specific 

saVMPs were enriched in several gene ontologies 

related to neuronal and developmental processes, with 

some ontologies shared between the two lists 

(Supplementary File 6). 

 

Epimutations and entropy analysis 

 

Epimutations were calculated in each dataset as 

previously described [5]. As shown in Figure 5A, we 

confirmed an increase in the number of epimutations with 

age both in males and females (p-value <0.01 in all the 

datasets), but no sex-specific trends were found according 

to ANCOVA model (Supplementary Table 1). 

 

The dependence of Shannon entropy on age for the 4 

datasets is shown in Figure 5B. Entropy showed a 

significant increase with age (p-value <0.01) in the 

GSE87571, EPIC and GSE55763 datasets 

(Supplementary Table 1), while it differed between the 

two sexes only in the EPIC dataset. EPIC dataset. These 

results suggest that there were no robust differences 

between sexes in Shannon entropy age-dependent 

increase. 

 

DISCUSSION 

 

Males and females experience different aging 

trajectories for several phenotypic traits [36, 37]. Sex-

specificity is established and maintained by differential 

genomic regulation, as evidenced by the profound 

transcriptomic, epigenomic and proteomic differences 

between males and females. However, how these 

differences in genome regulation evolve during life 

course has been poorly investigated, thus leaving a gap 

in our understanding of sexual dimorphism in aging and 

of its consequences in terms of morbidity and mortality. 

 

 
 

Figure 3. Probability density function (PDF) of standard deviation values calculated in the GSE87571 dataset for 3 age classes, considering 

males and females together (A) or separated (B). 
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In the present study we aimed at filling this gap by 

exploiting 4 large EWAS on human whole blood, 

including men and women of different ages and 

populations, in which we analyzed the sex specificity of 

age-associated normative changes, variability, 

epimutations and entropy.  

 

The main findings we will discuss are the following: i) a 

large fraction of probes with sex-specific DNA 

methylation undergoes also hyper- or hypo-methylation 

during aging, and a small number of probes show 

significant age-by-sex interaction; ii) the methylation of 

2 selected saDMPs, mapping in FIGN and PRR4 genes, 

is differently modulated in centenarians and Down 

syndrome persons, assumed as human models of 

successful and unsuccessful aging [14, 34, 35]; iii) 

males display a higher number of saVMPs respect to 

females, the vast majority of which show an age-

associated increase in methylation variability; iv) males 

and females do not differ for the age-associated increase 

in epimutations and entropy. 

 

saDMPs in healthy subjects of different ages and 

populations. 

 

We reported that 43% of probes showing sex-associated 

DNA methylation differences in whole blood display 

also age-associated changes (saDMPs). This result 

suggests that CpG sites with blood DNA methylation 

differences between males and females are particularly 

prone to undergo epigenetic changes during aging. 

Interestingly we found that while saDMPs were 

enriched in gene ontologies related to neuronal and 

developmental functions, snaDMPs were not enriched 

in any particular biological process. When considering 

autosomal differences in DNA methylation between 

men and women (correcting for age), Singmann et al. 

found an enrichment in CpG island shores and in 

 

 
 

Figure 4. Identification of sex-specific age-associated variably methylated positions (saVMPs) (A) The approach used to identify saVMPs.  
(B–E) Some examples of saVMPs showing age-associated increase in variability in males (B, C), age-associated decrease in variability in males 
(D) or age-associated increase in variability in females (E). x axis corresponds to age of subjects, y axis to methylation levels. 
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imprinted genes, but they did not find an enrichment in 

sex hormone-related genes [22]. Our list of saDMPs 

was enriched in CpG island shores but depleted in 

imprinted genes. We did not find any significant 

enrichment in sex-hormone related genes, although 

saDMPs included a higher proportion of this class of 

genes compared to snaDMPs. Finally, we searched  

for those probes displaying different DNA methylation 

trajectories in males and females during aging. We 

identified 8 probes having age-by-sex interaction, 2  

of which were recently reported by McCartney et al.  

in an independent dataset [32]. In particular we  

found that FIGN gene included both probes from the 

saDMPs list and probes displaying an age-by-sex 

interaction. 

 

It is difficult to speculate on the mechanisms that 

regulate saDMPs and on the functional consequences of 

this differential methylation in blood. By way of 

example, we considered the genes in which the 5 top 

ranker saDMPs map and we evaluated their tissue-

specific gene expression profiles in the GTEx portal 

(https://www.gtexportal.org/home/). FIGN gene 

encodes for Fidgetin protein, an ATP-dependent 

microtubule severing enzyme that catalyses internal 

breaks in microtubules and is involved in different 

cellular processes, including cell division and 

neurogenesis [38]. The gene is poorly expressed in 

whole blood, while it is expressed at higher levels in 

arteries and female reproductive organs. DOC2A 

(Double C2 Domain Alpha) is mainly expressed in 

testis and brain, where it acts as a Ca2+ sensor and 

regulates asynchronous neurotransmitter release [39]. 

PEX10 (Peroxisomal Biogenesis Factor 10) encodes for 

a protein localized to the peroxisomal membrane and 

involved in the import of peroxisomal matrix proteins. 

The gene is highly expressed in testis, and a meta-

analysis suggests that PEX10 polymorphisms are 

associated with male infertility, especially with non-

obstructive azoospermia susceptibility [40]. PRR4 gene 

encodes for Proline-rich protein 4, a poorly 

characterized protein with very low expression in most 

human tissues, except for tear fluid [41]. It is worth of 

note that several of these genes are expressed in 

reproductive organs, and we cannot exclude that the 

observed epigenetic changes in whole blood are a proxy 

of what happens in these tissues. None of these genes 

was differentially expressed in PBMCs from 

nonagenarians with respect to young controls 

(GSE65219), or when males and females from the same 

cohort were compared [42]. Notwithstanding, using the 

“Ominer” tool in the Signaling Pathways Project [43] 

website (https://www.signalingpathways.org/ominer/ 

query.jsf), we found that all the 4 genes are regulated in 

cellular models (mainly epithelial cells) treated with 

bioactive small molecules that bind to estrogen and 

androgen receptors (Supplementary File 7). Future 

studies would clarify whether sex- and age-dependent 

methylation of these genes occurs also in tissues 

different from blood, whether this affects their 

expression and whether hormones directly regulate 

them across the lifespan. 

 

saDMPs in centenarians and Down syndrome 

persons. 

 

Another question is whether the saDMPs that we 

identified are modulated according to biological age. To 

this aim, we exploited two cohorts available in our lab, 

in which we measured whole blood DNA methylation 

by the targeted EpiTYPER assay: subjects affected by 

Down syndrome, as a model of premature/accelerated 

aging [34, 35], and centenarians, as a model of 

successful/decelerated aging [14]. The results are 

intriguing, as both models showed a peculiar sex 

specific alteration in FIGN and PRR4 epigenetic 

 

 
 

Figure 5. (A) Number of epimutations (log scale) in dependence on age in females (red) and males (blue). (B) Shannon entropy for 4 
considered datasets: GSE40279, GSE87571, EPIC, GSE55763. 

https://www.gtexportal.org/home/
https://www.signalingpathways.org/ominer/query.jsf
https://www.signalingpathways.org/ominer/query.jsf
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patterns. In particular, a subset of centenarian males 

showed a “feminization” of FIGN methylation values, 

while females with Down syndrome showed a 

“masculinization” of PRR4 methylation values. No 

differences were found in the centenarians’ offspring 

group, despite we and others previously showed an 

epigenetic age deceleration effect in these subjects 

[14]. Interestingly, the “feminization” of centenarians 

methylation profiles at FIGN locus is reminiscent of 

the gene expression shift towards female patterns 

observed after caloric restriction [44, 45]. Further 

studies should deepen these results and identify other 

changes in saDMPs that are associated with age-

related diseases or longevity. 

 

saVMPs in healthy subjects of different ages and 

populations.  
 

An increase in epigenetic variability has been reported 

during aging [6], in line with what observed for other 

molecular layers [46–48]. In the GSE87571 cohort we 

showed a global increase in DNA methylation variance 

during aging, and we further reported a trend towards 

higher variance in males compared to females at older 

ages. This result mimics what was observed for gene 

expression in the hippocampus of male and female 

mice at different ages [49], thus suggesting that the 

loss of epigenetic and transcriptional control that 

occurs during aging is more marked in males than in 

females. Accordingly, a more specific search for 

saVMPs showed that in males the number of probes 

displaying age-related changes in methylation 

variability is 15 times higher than in females and that 

the vast majority of these probes undergo an increase 

in age-related variability, as previously reported [6]. 

Interestingly, this list was significantly enriched in 

imprinted regions. An increase in variability at these 

loci can be related to the phenomenon of loss of 

imprinting, which has been largely reported in cancer 

and demonstrated to occur during aging [50–52].  

 

Epimutations and entropy   

 

While variable probes are defined at the level of 

population, epimutations are rare methylation changes 

that are specific for one or few individuals within a 

certain population. As such, variable probes and 

epimutations represent distinct aspects of epigenetic 

instability, that can be differently triggered during 

aging and that can differently affect aging trajectories. 

Accumulation of epimutations has been reported in 

cancer [53], and we and others demonstrated that the 

number of epimutations increases with age [5, 54]. 

Recently, Wang and colleagues showed that the 

number of epimutations in whole blood tends to be 

higher in females compared to males [54]. On the 

contrary, we failed to detect differences in the age-

related increase in epimutations between the two 

sexes. This discrepancy can be due to the different 

analytical approaches and/or to cohort-specific effects, 

as Wang et al investigated monozygotic and dizygotic 

twins longitudinally assessed. A recent paper assessed 

epimutations in 3 large cohorts and did not find 

significant differences between males and females 

[55]. Similarly, we did not find sex-related differences 

in age-related changes in Shannon entropy, another 

measure of epigenetic drift. 

 

Strengths and Limitations  

 

The main strengths of our work are: i) we compared 

the two sexes not only for age-associated hyper- or 

hypo-methylation changes, but also for other types of 

epigenetic remodeling (variability, epimutations, 

entropy) that, although less characterized, are likely to 

affect aging and be involved in the sex gap in 

longevity; ii) the analysis was performed in 4 distinct 

datasets including subjects recruited in different 

geographic area (United States, Sweden, Italy, United 

Kingdom) and belonging to different ethnic groups 

(European, Hispanic, Indian Asian). Population 

epigenetics is an emerging field. Some studies 

reported that epigenetic clock estimations can differ 

between ethnic groups, and that sex-dependent 

differences can be specific for some populations [26, 

27]. Our meta-analysis of datasets deriving from 

different populations and ethnic groups allowed us to 

disentangle the effects of sex from those of potentially 

confounding factors, like genetic background and 

socio-cultural aspects related to gender definition; iii) 

beside  healthy individuals representative of 

physiological aging, we evaluated also extreme 

phenotypes (persons with Down Syndrome, 

centenarians and their offspring) that provide a first 

descriptive insight on the possible contribution of sex-

specific methylation in the sex gap in aging and 

longevity. 

 

At the same time, our study has some limitations. The 

analyzed datasets differ in terms of size, age-range and 

data pre-processing procedures (in particular the 

GSE40279 dataset). It is therefore likely that our 

selection excluded additional CpG sites displaying a 

sex-specificity in their age-associated methylation 

trends, but not evident in all the datasets due to the 

above-mentioned differences between them. 

Furthermore, although some ethnic groups are 

included, many are missing, and the study of 

additional populations will be necessary to distinguish 

the effects of sex and gender in shaping age-related 

methylation changes. Finally, the first step of our 

pipeline (the identification of sDMPs) prevented us to 



 

www.aging-us.com 24066 AGING 

include in the analysis sex chromosomes, similarly to 

[22]. The analysis of sex- and age-dependent DNA 

methylation on sex chromosomes poses peculiar 

technical difficulties, due to the different number of X 

chromosomes in females and males and to the X-

chromosome inactivation (XCI) process in females. By 

normalizing raw methylation data in males and females 

separately (an approach not applicable to GSE40279 

and GSE55763 datasets included in our study, as raw 

data were not available in GEO), Li  

et al. recently reported a small number of CpG sites on 

X chromosome having sex-specific age-dependent 

changes in relation to XCI [56]. Similarly, Lund et al. 

evaluated the changes in Y chromosome methylation 

during aging [57]. Future studies based on alternative 

approaches, like allele-specific analysis of bisulfite-

sequencing data, will help in disentangling the 

dynamics of sex chromosomes methylation with aging, 

taking into account also possible age-dependent 

changes in XCI. 

 

CONCLUSIONS AND  

FUTURE PERSPECTIVES 
 

In conclusion, we provided a comprehensive 

description of sex-differences in DNA methylation 

changes with aging in whole blood. Our results suggest 

that a large fraction of CpG sites with sex-specific 

DNA methylation patterns are also modulated during 

aging, and that sex can affect some aspects of age-

related epigenetic remodeling, like an increase in 

variability in DNA methylation patterns. Future studies 

should investigate the tissue-specificity of these 

patterns and their relationship with gene expression 

differences between males and females, in particular 

for those probes that show age-by-sex interactions, to 

identify possible molecular triggers of sex gap in aging 

and longevity. Importantly, here we reported also a list 

of sex- but not age-associated probes, and we cannot 

exclude that also these sites can contribute to the 

dimorphism in aging phenotypes between males and 

females. 

 

Our results pave the way for the development of a new 

generation of sex-specific epigenetic clocks that, 

compared to the “unisex” clocks currently available, 

are likely to be more informative of the peculiar 

trajectories that males and females experience during 

aging. 

 

MATERIALS AND METHODS 

 

Datasets 

 

The Gene Expression Omnibus (GEO) Datasets 

repository [58] was interrogated using “GPL13534” 

(the accession code of the platform 

HumanMethylation450 BeadChip, Illumina) and 

“blood” as search terms, setting “tissue”, “age”, 

“gender” and “sex” as attributes and sorting the results 

by Number of Samples (High to Low). Only datasets 

including healthy subjects were considered. Based on 

these criteria, as to June 1st 2019 we selected the 3 

datasets including the highest number of samples: 

GSE40279 [31], GSE87571 [59] and GSE55763 [60]. 

Furthermore, we analyzed a fourth dataset not uploaded 

in GEO that is part of the EPIC Italy study [61]. The 

total number of subjects included in each dataset, as 

well as the number of males and females, are reported 

in Supplementary Table 2. Supplementary Figure 7 

reports, for each dataset, the number of males and 

females according to age. 

 

For the EPIC dataset, raw data were normalized using 

an in-house software written for the R environment and 

extensively described in [62]. For the datasets 

downloaded from GEO, raw data (.idat files) were 

available only for GSE87571. We extracted .idat files 

using minfi Bioconductor package and normalized 

them using the preprocessFunnorm function 

implemented in the same package [63]. For the 

remaining datasets, the analyses were performed on 

pre-processed beta value matrixes available in GEO: 

according to authors’ indications, the GSE55763 data 

were the result of a quantile normalization of intensity 

values, while GSE40279 beta values were not 

normalized but adjusted for internal controls by the 

Illumina's Genome Studio software. 

 

Probes mapping on sex chromosomes and probes with 

internal SNPs, with non-unique mapping to the 

bisulfite-converted genome and with off-target 

hybridization according to [64] were excluded from 

each dataset, leaving 414505 probes for GSE40279, 

414950 probes for GSE87571, 349534 probes for EPIC 

and 382458 probes for GSE55763. 327905 probes were 

common to the four datasets and were considered in the 

analyses described below. 

 
In each dataset, blood cell proportions were estimated 

from methylation data using Horvath’s calculator [65].  

 
Identification of age-associated probes having sex-

specific DNA methylation patterns 

 

To identify CpG sites showing DNA methylation 

differences between the two sexes and age-associated 

changes in DNA methylation (sex- and age-associated 

differentially methylated positions, saDMPs), we 
proceeded as follows (Figure 1A): 1) We meta-

analyzed the 4 datasets to identify probes with sex-

dependent DNA methylation patterns (sDMPs). As 
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previously described [22], in each dataset we calculated 

the p-value of Pearson’s correlation between sex and 

methylation beta-values, previously adjusted for age 

and blood cell proportions (CD8T cells, CD4T cells, 

NK cells, B cells and granulocytes, estimated as 

described above). METAL [66] was used to perform 

sample-size weighted meta-analysis on the 4 lists of 

Benjamini-Hochberg corrected p-values. 2) We meta-

analyzed the 4 datasets to identify probes with age-

dependent DNA methylation patterns (aDMPs). In each 

dataset, we calculated the p-value of Pearson’s 

correlation between age and methylation beta-values, 

previously adjusted for sex and blood cell proportions 

(CD8T cells, CD4T cells, NK cells, B cells and 

granulocytes, estimated as described above). As 

described above, METAL [66] was used to perform a 

sample-size weighted meta-analysis on the 4 lists of 

Benjamini-Hochberg p-values. 3) The meta-analyzed p-

values were corrected using Bonferroni procedure and 

a significance threshold of 0.01 was considered. 

Furthermore, only probes with a concordant trend in all 

the 4 datasets (for sDMPs: hypermethylated or 

hypomethylated in males respect to females in all the 

datasets; for aDMPs: hypermethylated of 

hypomethylated with age in all the datasets) were 

considered, returning a list of 38100 sDMPs and a list 

of 87581 aDMPs. 4) Finally, to identify saDMPs, we 

intersected the list of sDMPs and the list of aDMPs, 

resulting in a list of 16526 probes. 

 

Identification of probes having sex-specific trends in 

age-associated methylation variability 

 

To identify probes having sex-specific differences in 

age-dependent variability of methylation (sex-specific 

age-associated variably methylated positions, 

ssaVMPs) we proceeded as follows (Figure 3B): 1) We 

first regressed out the estimates of CD8T cells, CD4T 

cells, NK cells, B cells and granulocytes from beta 

values in each dataset; 2) To check for 

heteroscedasticity respect to age, we applied the 

Breusch-Pagan for males and females separately in 

each dataset [67, 68]. 3) Heteroscedasticity p-values 

were analyzed with sample-size weighted meta-

analysis using METAL [66] for males and females 

separately. The meta-analyzed p-values were corrected 

using Bonferroni procedure and a significance 

threshold of 0.01 was considered. 4) We defined 3 

possible scenarios of sex-specific differences in age-

dependent variability of methylation: a) Probes 

heteroscedastic in females and homoscedastic in males, 

that is probes with a meta-analyzed and Bonferroni-

corrected p-value less than 0.01 in females and higher 

than 0.05 in males. b) Probes homoscedastic in females 

and heteroscedastic in males, that is probes with a 

meta-analyzed and Bonferroni-corrected p-value less 

than 0.01 in males and higher than 0.05 in females. c) 

Probes heteroscedastic in both females and males, but 

with opposite directions of change in variability 

(variability increases in females and decreases in males 

or variability decreases in females and increases in 

males).  

 

Identification of epimutations and Shannon entropy 

analysis 

 

To identify epimutations (i.e., CpG probes for which 

one or few individuals show extremely different 

methylation levels compared to the rest of the cohort), 

for each probe we calculated the interquartile ranges of 

beta values; we then selected the probes having one or 

more subjects (epimutated subjects) having a beta value 

exceeding three times interquartile ranges (Q1 – 

(3×IQR) and Q3 + (3×IQR)), as reported in [5]. 

 

To calculate Shannon entropy, we applied the 

following procedure, according to [69]: 1) we obtained 

residuals by filtering out the dependence of beta-values 

on blood cells proportions; 2) we recalculated beta-

values according to the formula: 

 

, , ( )adj

i j i j iresiduals mean b    

 

where mean(i) is the average methylation level for i
th

 

CpG site, i is the index of CpG and j is the index of 

subject. Then, we calculated Shannon entropy using the 

following formula, as indicated in [31]: 

 

1/ log(1/ 2) [ log( )

(1 )·log(1 )]

adj adj

i i i

adj adj

i i

Entropy N  

 

    

 
 

 
where i

adj
 is the recalculated methylation level for i

th
 

CpG site and N is the number of CpG sites. 

 
For both epimutations and Shannon entropy, an 

ANCOVA model was calculated and adjusted for the 

interaction term between age and sex.  

 
Gene-targeted DNA methylation analysis 

 
The EpiTYPER assay (Agena) was used to measure 

DNA methylation of FIGN and PRR4 in whole blood 

from 560 subjects belonging to 4 groups: 419 healthy 

controls of different ages, 49 centenarians, 48 

centenarians’ offspring and 44 persons with Down 

Syndrome. Age range and sex distribution of the 4 

cohorts are reported in Supplementary Table 3. All the 

subjects were recruited following the approval by the 

Ethical Committee of Sant’Orsola-Malpighi University 

Hospital (Bologna, Italy). 
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Genomic DNA was extracted using the QIAamp 96 

DNA Blood Kit (Qiagen) and 500 ng were bisulphite 

converted using EZ-96 DNA Methylation Kit (Zymo 

Research Corporation). Ten ng of bisulphite-converted 

DNA were amplified using the following bisulphite-

specific primers, containing tag sequences for the 

EpiTYPER protocol: FIGN forward 

aggaagagagTTTTTTGAAAAGAGAGAAAGAAGGA

; FIGN reverse cagtaatacgactcactatagggagaaggct 

ATAAACAATCAAACCATCCAATTTCTA; PRR4 
forward aggaagagagTTTGTGTTTTGAGTTGAGTTT 

AGAG; PRR4 reverse cagtaatacgactcactatagggagaa 

ggctCCTAAAAATAAAACTTCTATCATCCA. 

Primers for FIGN and PRR4 amplified 

chr2:164,589,883-164,590,418 and chr12:11, 

001,978-11,002,636 (GRCh37/hg19 genome 

assembly) respectively. 

 

Enrichment analyses 

 

Enrichment of genomic regions, imprinted genes and 

sex hormone-related genes was calculated using Fisher 

exact test, as implemented in the fisher.test function in 

the stats R package. The lists of imprinted genomic 

regions [33] and of sex hormone-related genes used as 

background are reported in Supplementary File 8. 

Enrichment of GO annotations was calculated using 

the methylgometh function implemented in the 

methylGSA R package, using default settings [70]. 
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Supplementary Figures 

 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Enrichment (odds ratio) of genomic localizations for saDMPs (A) and snaDMPs (B). 
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Supplementary Figure 2. Validation of FIGN locus by EpiTYPER. For each of the CpG units returned by the EpiTYPER assay, DNA 

methylation in controls (general population), centenarians, centenarian's offspring and persons with Down syndrome is reported vs the age 
of the subjects. Males are in blue, females are in red. Linear regression between DNA methylation and age was calculated separately for 
males and females in control subjects and was reported in each plot. 
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Supplementary Figure 3. Validation of PRR4 locus by EpiTYPER. For each of the 5 CpG units returned by the EpiTYPER assay, DNA 

methylation in controls (general population), centenarians, centenarian's offspring and persons with Down syndrome is reported vs the age 
of the subjects. Males are in blue, females are in red. Linear regression between DNA methylation and age was calculated separately for 
males and females in control subjects and was reported in each plot. 
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Supplementary Figure 4. Boxplots of DNA methylation for each CpG unit in FIGN amplicon in centenarians, centenarians' 
offspring and Down syndrome cohorts. Left panels: for each CpG unit in FIGN locus, boxplots of DNA methylation in male and female 

centenarians, compared to male and female controls (>80, < 100 years). Middle panels: for each CpG unit in FIGN locus, boxplots of DNA 
methylation in male and females centenarians' offspring, compared to age-matched male and female controls (>54, < 90 years). Right panels: 
for each CpG unit in FIGN locus, boxplots of DNA methylation in male and female Down syndrome persons, compared to age-matched male 
and female controls (>18, < 67 years). 
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Supplementary Figure 5. Boxplots of DNA methylation for each CpG unit in PRR4 amplicon in centenarians, centenarians' 
offspring and Down syndrome cohorts. Left panels: for each CpG unit in PRR4 locus, boxplots of DNA methylation in male and female 

centenarians, compared to male and female controls (>80, < 100 years). Middle panels: for each CpG unit in PRR4 locus, boxplots of DNA 
methylation in male and females centenarians' offspring, compared to age-matched male and female controls (>54, < 90 years). Right panels: 
for each CpG unit in PRR4 locus, boxplots of DNA methylation in male and female Down syndrome persons, compared to age-matched male 
and female controls (>18, < 67 years). 
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Supplementary Figure 6. Enrichment (odds ratio) of genomic localizations for ssaVMPs calculated from beta values (A) or residuals (B). 

 

 

 

 

 

Supplementary Figure 7. Histograms of the number of females (red) and males (blue) according to age in GSE40279, 
GSE87571, EPIC and GSE55763 datasets. 
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Supplementary Tables 
 

 

Supplementary Table 1. Age-by-sex interaction in the number of epimutations and in the values of Shannon entropy. 
ANCOVA p-values are reported for age, sex and age-by-sex interaction effects. 

 Epimutations Entropy 

age sex age:sex age sex age:sex 

GSE40279 6.8093E-08 4.8010E-01 5.1342E-01 7.7160E-01 7.7393E-02 3.6785E-01 

GSE87571 9.1517E-20 9.4685E-01 7.2585E-01 1.4711E-17 1.3101E-01 4.7210E-01 

EPIC 1.6369E-08 5.8827E-02 8.0821E-02 1.3407E-04 4.8294E-05 1.0310E-04 

GSE55763 1.0350E-15 4.9039E-02 2.6199E-02 3.4323E-09 3.2372E-01 1.9585E-01 

 

 

 

 

Supplementary Table 2. Characteristics of the Infinium450k datasets investigated in the present study. 

 GSE40279 GSE87571 EPIC GSE55763 

Number of subjects 656 729 1803 2670 

Number of females 338 388 1114 860 

Number of males 318 341 689 1810 

Age range 19–101 14–94 34–74 35–75 

Ethnic group (Country) 
European and 

Hispanic (USA) 
European (Sweden) European (Italy) 

Indian Asian and 

European (UK) 

 

 

Supplementary Table 3. Characteristics of the samples analyzed by the EpiTYPER assay. 

 Healthy controls  

n=419 

Centenarians  

n=49 

Centenarians’ offspring  

n=48 

Down syndrome  

n=44 

Males n=198  

25-98 years 

n=15  

100-105 years 

n=15  

58-84 years 

n=25  

22-63 years 

Females n=221 

23-98 years 

n=34 

100-112 years 

n=33 

55-89 years 

n=19  

19-66 years 
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Supplementary Files 
 

Supplementary File 1. Lists of sex- and age-associated differentially methylated positions (saDMPs) and of sex- but 
not age-associated differentially methylated positions (snaDMPs) resulting from the meta-analysis. 

Supplementary File 2. Gene Ontology enrichment of saDMPs and snaDMPs lists.  

Supplementary File 3. Probes with significant age-by-sex interaction resulting from the meta-analysis.  

Supplementary File 4. Results of the statistical analyses performed on EpiTYPER data on centenarians', centenarians' 
offspring and Down syndrome cohorts.  

Supplementary File 5. Lists of sex-specific age-associated variably methylated positions (saVMPs).  

Supplementary File 6. Gene Ontology enrichment of saVMPs lists. 

Supplementary File 7. Results of “Ominer” tool for FIGN, DOC2A, PEX10 and PRR4 genes.  

Supplementary File 8. Imprinted regions and sex hormones-related genes considered for enrichment analysis. 

 


