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Abstract: In the context of electric vehicle (EV) development and positive energy districts with the
growing penetration of non-programmable sources, this paper provides a method to predict and
manage the aggregate power flows of charging stations to optimize the self-consumption and load
profiles. The prediction method analyzes each charging event belonging to the EV population, and it
considers the main factors that influence a charging process, namely the EV’s characteristics, charging
ratings, and driver behavior. EV’s characteristics and charging ratings are obtained from the EV
model’s and charging stations’ specifications, respectively. The statistical analysis of driver behavior
is performed to calculate the daily consumptions and the charging energy request. Then, a model to
estimate the parking time of each vehicle is extrapolated from the real collected data of the arrival
and departure times in parking lots. A case study was carried out to evaluate the proposed method.
This consisted of an industrial area with renewable sources and electrical loads. The obtained results
show how EV charging can negatively impact system power flows, causing load peaks and high
energy demand. Therefore, a charging management system (CMS) able to operate in the smart
charging mode was introduced. Finally, it was demonstrated that the proposed method provides
better EV integration and improved performance.

Keywords: electric vehicles; electric vehicle charging; smart charging; energy districts; renewable
energy sources; self-consumption; forecasting; peak shaving; load shifting; photovoltaics

1. Introduction

Energy systems are experiencing an evolution towards new planning and management paradigms,
among which the integration into energy networks (electrical grid, heat, gas, and transportation
networks) will play a key role in guaranteeing an energy future and sustainable urbanization from an
economic, environmental, and social point of view. This transformation process concerns an increase
in the overall energy conversion efficiency and a simultaneous reduction in pollutants (CO;, SO,
NOx, particulates, etc.). An essential role in the global energy transition is attributed to the so-called
positive energy districts (PEDs). From the reference framework [1], the definition for PED is as
follows: “PEDs are energy-efficient and energy-flexible urban areas or groups of connected buildings
which produce net-zero greenhouse gas emissions and actively manage an annual local or regional
surplus production of renewable energy”. According to the strategic energy technology (SET)-plan [2],
European strategies aim to support the planning, deployment, and replication of 100 PEDs by 2025 for
sustainable urbanization.

In this context, electric vehicles (EVs) play an important role in PED development and growth.
With the transition from internal combustion engine (ICE) to electric drive, a large amount of energy
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destined for the mobility of people and goods, which was previously generally obtained from fossil
fuels, can now be produced from renewable energy sources (RES) such as solar, wind and hydropower
plants. In addition to the possibility of being supplied by a primary renewable source, EVs do not
produce all those pollutants caused by internal combustion. Furthermore, the energy for the Electric
(E)-mobility could also be generated within the district through distributed power plants, such as
photovoltaic (PV) systems, limiting the energy import from external sources and increasing the PED’s
self-consumption. For these reasons, unlike ICE vehicles, EVs will be able to contribute positively to the
district’s energy balance and its decarbonization, especially in urban contexts. However, EV integration
with PED’s energy sources might not be straightforward. Indeed, the share of the electric fleet is
quickly growing [3,4], and together with it, the energy required to cover the EVs’ daily consumption is
increasing. Based on the percentage of EV penetration, the electric system and energy districts must be
able to manage the increase in energy and power demand required by the EVs charging, avoiding
detrimental effects on the system performance, internal power balances, and power quality [5-7].

These concerns are even stressed considering the mismatch between the EV load profile and
non-programmable internal power sources (e.g., PV generation). Indeed, EVs charging may take place
in the evening [7-9]; meanwhile, PV generation occurs during daytime hours. Therefore, the district’s
loads must be supplied by the electric grid (external power sources) at the expense of self-consumption.
A possibility of solving the previous challenge is to adopt programmable power sources (cogeneration
systems and thermal power plants) within the district. This solution improves self-consumption when
needed; however, it increases pollution (in contrast with the PED aims [1]).

Then, to overcome these issues, energy storage systems (ESSs) can be adopted in order to provide
a buffer between non-programmable power sources and electrical loads. They help the system’s power
balance at both the PED and grid level, acquiring an important role in RES and PED development.
Indeed, the higher the share of the system’s generation based on distributed RES becomes, the higher
the cost, and the effort made by the transmission system operators (TSOs) to keep the grid stability
should be [10]. The ESS aims to modulate the output RES power by absorbing or supplying energy
following better the load demand profile [11]. Thanks to ESS’s integration, a renewable power plant can
modulate its power for a limited period, which depends on the storage capacity. As a result, the RES
could provide ancillary services such as frequency control [12,13], and participate in the dispatching
services market [14,15].

Since full electric vehicles consist of highly specific capacity batteries parked for most of their
lifetime, EVs can be considered as a distributed battery ESS (BESS). If properly controlled, the aggregate
clusters of EVs could operate as a centralized and “quasi-stationary” ESS. Therefore, both distributed
RES plants and EVs’ batteries can be considered as virtual power plants (VPPs) and virtual storage
systems that can provide all services which are generally reserved for traditional power plants
(e.g., thermoelectric systems) [16-18].

Finally, it is an indisputable fact that EVs, storage systems, and distributed RES should be
coordinated intelligently with the rest of the grid in order to maximize the use of renewable sources [19]
and provide flexibility to the whole electrical system. In recent years, research interest in these topics,
as well as the deployment of pilot projects, have increased [20-24]. Regarding the integration of EVs
into electric systems, the reference literature, apart from the classical charging mode, the so-called
grid-to-vehicle (G2V), distinguishes two principal operating modes. The first one is known as
smart charging (SC) and it happens when the charging station is capable of monitoring, managing,
and restricting the use of charging devices to optimize the energy consumption and charging cost [25,26].
Therefore, the SC may result in EVs’ load shifting and shaving [27,28]. The second one is the so-called
vehicle-to-grid (V2G), in which the aggregate of the EV’s battery is managed to provide ancillary
services based on TSO’s dispatching orders and the grid’s requirements. This mode may present or
not a bi-directionality of power flows, V2G or vehicle-one-grid (V1G), respectively [29-32].

In order to implement algorithms capable of managing the EVs’ charging power and operate
in smart charging mode, it is necessary to predict the EVs power demand. In the literature, such



Energies 2020, 13, 5003 3 of 25

as in [20], the EVs’ charging is modeled as a constant power load, but the variation of the charging
load over time is not considered. Other works, such as the method proposed in [27], consider the
variation of the charging power as a function of the charging time. However, the dependence of
the charging profile on the charging rate (C-rate) is not considered. The reference [33] shows the
implementation of the smart charging in an aggregate residential building, which aims to improve
the self-consumption by the integration of photovoltaic and EVs. On the other hand, [34] presents
an optimization strategy of power flows among the PV system, the grid, and EVs in a workplace.
However, these works do not consider a large aggregate population of EVs, to which different models
with different specifications and characteristics belong (such as vehicle battery sizes, maximum AC
and DC charging ratings, and specific consumptions). Finally, to the best of the authors” knowledge,
no article presents an EV’s load forecasting algorithm capable of taking into account parameters like
the variegated vehicle (different EV models) multitude, the actual parking time pattern, the charging
facility power availability, and the power profile dependence from both the EVs’ state of charge (SOC)
and the actual C-rate. Moreover, in order to handle the PED’s power flows, the proposed smart
charging algorithm considers the internal RES and the load variability of a real case study, which
presents the possibility to forecast the EV drivers’ behavior of a large EVs population.

This paper aimed to evaluate the impact of EV charging in PED’s power flows and energy balances.
The charging energy depends on several different conditions, such as the users’ behavior, the charging
infrastructure, and the EV model. For these reasons, this work provides an accurate prediction method
to calculate the daily EV charging power, which extrapolates the users’ behavior from actual collected
data. Although this article is based on workplace parking lots, the algorithm can be extended to any
other type of scenario by modifying the input data. Furthermore, by extrapolating statistical functions,
it is possible to extend the model to populations with a different penetration and number of EVs.
Subsequently, a charging management system (CMS), which aims to optimize the self-consumption
by operating in smart charging mode, is presented. Finally, the prediction method and the CMS are
applied to a real case study. Obtained results are discussed and a comparative analysis with and
without the smart charging is performed.

The paper is structured as follow: Section 2 shows the method to predict an EV’s aggregate power
flow; Section 3 explains the CMS, its target, and logic; Section 4 describes the case study and shows the
impacts of aggregate EVs charging on the system power flows; Section 5 presents the smart charging
results on power flows and system’s consumptions; finally, Section 6 concludes the paper.

2. EVs Power Flows Forecasting Methods

To better understand the PED’s structure, Figure 1 shows its schematic model. Referring only to
the electrical aspect, a PED or, in general, an energy district (ED) might be composed of a cluster made
out of [35,36]:

e  Electrical loads, for example, householder consumers, buildings, offices, and industries that absorb
the power Py, from either the grid or the power sources inside the PED;

e Internal power sources, which generate the power P; from a non-programmable source such as
wind and sun, or controllable plants such as cogeneration, biogas, and hydropower plants;

e Energy storage systems (ESS), such as battery ESS (BESS) which can consist of a centralized system
or many decentralized power storage units. Storage units exchange power Ps with loads and
the grid;

e One or more points of grid connection, through which it is possible to absorb/inject the power
Ppcc from/to the grid.
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Figure 1. Scheme of an energy district with the charging management system (CMS) that can implement
the electric vehicles” (EVs) charging control. All elements of the energy district (ED) are coupled to the
grid through the point of common coupling (PCC).

If the EVs charging is not managed, electric vehicles behave as non-controlled loads for the district.
For transforming EVs into active elements for the district’s energy balance, it is necessary to manage
the EVs’ charging power. The purpose of this paper is to introduce a charging management system
that is capable of controlling the power flows of the distributed charging stations in a centralized way.
Figure 1 shows the PED’s power flow’s exchanges among the grid, the loads, the internal generation,
and the stationary energy storage. The figure also shows the possibility of using both AC and DC
chargers for treating EVs as controlled loads and distributed battery storage.

Equation (1) of the ED’s power balance shows the relationship between the total power exchanged
with the grid, Ppcc and the total EVs” power, Prys. By managing Peys, the CMS could control the
power flows exchanged between the ED and the grid.

Ppcc = Pi, — Pg £ P + Prys 1)

The storage power can be both positive (discharging) and negative (charging) based on the battery
charging or discharging. In the same way, the DC chargers could be capable of supplying power
from the EVs’ battery to the grid and loads. This mode of operation is generally called V2G and
vehicle-to-X (V2X) [29], and it considers the bi-directional power flows of the charger. However, the AC
charger, which can only absorb power from the grid and internal power sources, might be capable
of modulating absorption to help the grid and the district for power balancing and other services.
This mode of operation, which considers the unidirectional power flow of the charger, concerns both
the V1G [31,32] and the SC mode [26]. The CMS could manage the EVs’ power flows for achieving
optimization goals such as:

e  Optimizing self-consumption to minimize the charging cost and maximize the charging from
internal RES (SC);

e EV owners and TSO (VIG and V2G) could maximize profits providing ancillary services to
the grid.
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The CMS’s logics for smart charging mode is better described in Section 3. CMS control for being
implemented needs both load and production power measurements. Furthermore, to implement
grid power-sharing, the data of the power that the ED exchange with the grid are required as well.
The load and the generation of daily power flows are extracted from annual data measurements.
A similar procedure is done for the point of common coupling (PCC) power profile. On the other
hand, EVs’ daily power flows are more challenging to be extrapolated because of the difficulties in
finding data and the statistically weak number of electric vehicles. However, EV penetration is quickly
growing [4], and the current data are expected to strongly increase in the next years. For these reasons,
current measurement data are not sufficient to extrapolate the EV charging power profile. As shown
in Equation (2), instant by instant, the EV charging power is given by the aggregation of N charging
power of each EV; within the ED (Pry;):

N
Prys(t) = Z Pryi(t) )
i=1

where N is the total number of EVs within the ED, and EVi is a generic electric vehicle belonging to the
district. To evaluate the Pgy;(t) for each vehicle, it is necessary to analyze all the factors that affect
the EV’s charging power. The daily charging power profile of an electric vehicle may depend on the
following variables [37]:

1.  The maximum available power which is provided by the charging station (CS) Pcs [kW];

2. The maximum power that the vehicle batteries can absorb P, [kW]. This power depends on the
constant current—constant voltage (CC—CV) stage and can change during the charging process;

3.  The maximum energy that the vehicle’s battery can store. It is the maximum available capacity of
the battery Cyux [KWh];

4. The initial state of charge (SOCy), i.e., the SOC value that corresponds to the start of the
charging moment;

5. The time of arrival (f4,) and departure (tdep) of the vehicle at/from the parking lot. Utilizing t,;
and t4,y; of the i-th vehicle, one could obtain daily parking time (T};) as in Equation (3):

Tpi = tdepi — tarri 3)

All these variables could be different for each vehicle, resulting in a multitude of various charging
events. Aiming to fetch variables from an aggregate population of EVs, this paper proposes different
analyses on the basis of the Italian EV fleet, drivers’ behavior, charging infrastructure, and on the
parking and charging times.

2.1. Charging Infrastructure Analysis

This Section investigates the maximum available power of EV charging stations within the energy
district. From the European alternative fuels observatory (EAFO) data [3], the number of public CSs
in Italy is quickly increasing. In 2019, the newly installed stations were about +170% compared to
the previous year. As Figure 2 shows, the number of “normal” CSs (Pcs < 22 kW) is much higher
than the “fast” CSs (Pcs > 22 kW). Furthermore, it seems that the trend of the infrastructure service
providers is, in this phase, to increase the number of AC stations with “normal” power. In fact, the total
number of “normal” CSs is increased by almost 200% compared to the 2018 data. Meanwhile, “fast”
CSs only increased by 50% from 2018 to 2019. Referring to the CS’s population of 2019, 90% of the
public charging points are AC stations, and 88% provides a maximum power that is equal or less than
22 kW. However, most of the new public installations have a 3-phase connection, with the Type-2
connector and a 22 kW rating. On the other hand, the DC “fast” CSs are 10% of the total CS population.
Many of these have the combined charging system (CCS) “combo 2” and “ChaDeMo” connectors and
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provide a maximum power of almost 100 kW. Meanwhile, Tesla SuperChargers are also widespread,
which provide a maximum power of up to 150 kW.

AC <=22 kW 10000 m <22kW
267| |268| m ACType2>22kw 162 262 9000 ——
329 S 8000
o 3% 3% Ccs 149 5% 7%
4% P B ChaDeMo 49 7000
\X M TeslaS. Charger ° 6000
k6 5000
0 129
2% 4000
2019 49, 2018 o
- j
88% 80% .
2019 2018
(a) (b)

Figure 2. Charging station (CS) data, Italian population: (a) number and percentage of “normal” and
“fast” CSs in 2018 and 2019; (b) the total number of CSs in 2018 and 2019.

2.2. Electric Car Fleet Analysis

In order to evaluate the charging power, the batteries’ capacity and the daily consumption for
each vehicle belonging to a wide EV population, the Italian electric fleet has been considered and
analyzed. Table 1 shows the EV data, referring to the vehicles registered in 2019 [38]. The table shows
the battery capacity, the estimated consumption (referred to the world harmonized light-duty vehicles
test procedure—WLTP) declared by manufacturers [39], and the max AC and DC charging power for
each vehicle model. Some of these models have different options for battery capacity and engine size
(such as Zoe ZE40 and Zoe ZE50, which have batteries of 44 kWh and 55 kWh). To simplify the analysis
in this paper, the characteristics of the most popular models for each brand are only considered.

Table 1. Data of the EVs registered in Italy in 2019, source Italian association of foreign carmakers
(UNRAE) [38], and the vehicles” manufacturers [39].

Car Model N° % of the Battery Consumptions Max AC Max DC
Registered Total EVs Capacity [kWh]  [kWh/100km]  Charging [kW]  Charging [kW]

Smart Fortwo 2359 23.51 17.6 16.1 4.6 -
Renault ZOE 2180 21.73 441 17.5 22 46
Tesla Model 3 1942 19.35 50 14.9 11 170
Nissan Leaf 1266 12.62 40 17.1 6.6 50

Smart Forfour 613 6.11 17.6 16.5 4.6 -
BMW i3 483 4.81 422 14.6 11 50
Hyundai Kona 470 4.68 39 15 11 50
Tesla Model S 258 2.57 100 19 16.5 200
Tesla Model X 249 2.48 100 22.6 16.5 200
Jaguar I-Pace 211 2.10 90 27.5 7 100

Figure 3 shows an elaboration of the table’s data. From the data in Table 1, the weighted average
capacity of the EV batteries is 40.31 kWh. Figure 3a shows that the majority of EVs (63.2%) have a
battery capacity between 40 kWh and 50 kWh. Only 7.1% of EVs have a capacity greater than 90 kWh.
However, a good part of EVs have a capacity of about 20 kWh, which refers to the high number of
Smart cars (29.6%) registered in Italy in 2019. Figure 3b shows the EVs specific consumptions in the
WLTP driving cycle compared to the percentage of registered models.



Energies 2020, 13, 5003 7 of 25

0 30 25
70 632% < RenaultZOE i ° .
60 NissanlLeaf e 25 ° 20
2 50 Smart Hyundai Kona E 20 o
] % Tesla Model 3 = iE &) 15 ©
= 40 BMW i3 = o
° 29.6% I £ 10 &
2 30 - 3 10 5
S o = x
x 20 ° Tesla Model X S 5 5
Tesla Model S —»7.1% =
e ® ) Pl ~ 0 0
° oe aguar l-Place [ &> E > 2ON &

0 I IS IS
NOONLOITONOLOTONOOITONOOSTON ST §<<o’\$ S O © X
AHNAONOTIPDNOORNRORONDO £ @ f‘? S l\\b’bfg\é\

. P o NS SN &
Battery capacity [kWh] SEEE SELe
(a) (b)

Figure 3. Data of EV batteries and consumption referred to the vehicles registered in Italy in 2019:
(a) the percentage of the batteries” capacity; and (b) the specific consumption for each EV model
compared to the percentage of registered models.

Table 1 shows the maximum AC charging power P,;.ac of each EV model, which depends
on the onboard converter. The weighted average of the maximum AC charging power is 11.13 kW.
The charging power depends on both the onboard charger and the AC charging stations, and it is
equal to the minimum power between the Pcgyqx and Pyacac (€.g., because of the onboard converter’s
size limit, the max AC charging power of the Nissan Leaf is 6.6 kW even if it charges through a 22 kW
station). By analyzing the data, only 21.73% of EVs (Renault ZOE) can exploit all the maximum
available power from the 22 kW AC stations, 55.62% of EVs for the 11 kW AC stations and 57.72% for
the 7 kW stations. However, almost all EVs (70.34%) can exploit all the available power from the 5 kW
AC stations.

The daily charging power’s profile of each EV; depends, as well as on the onboard converter and
charging stations, on the CC-CV charging algorithms, then on the SOC’s value during charging;:

Pevi = f(Pcsmax ir Pmaxir SOC;) 4)

The standard charging protocol consists of two phases. During the CC phase, the battery is charged
by a constant current and a quasi-constant power. As a result, the SOC linearly increases, and the power
assumes a constant profile in the plot “charging power [kW]” versus “SOC (%)”, whose value depends
on both Pcgyay i and Pp,yi. When the battery voltage reaches the cut-off value, the voltage is kept
constant and the current consequently decreases (CV phase). As a result, the power decreases following
the current profile, and the SOC increases slowly. Considering the same battery, the SOC’s value that
coincides with the start of the CV phase depends on the charging rate, and therefore on the charging
power. Different charging powers provide different profiles as a function of the SOC. Figure 4 shows
the characteristics of a 40 kWh battery during charging through three levels of power: 50, 22 and 7 kW
that correspond to a C-rate of about 1.25 C, 0.55 C, and 0.18 C, respectively. The data were extrapolated
by battery characteristics and the charging behavior of the Nissan Leaf [39]. Figure 4a shows that the
charging of 7 kW (<0.2 C) is less affected by the CV phase limitation. However, as the charging power
increases, the CV phase is more pronounced. This paper analyzes this kind of dependence for each EV
models’ battery.
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Figure 4. Charging of an EV battery of 40 kWh capacity by using three levels of power: 50, 22, and 7
kW. The charging process starts at state of charge (SOC) = 20% and stops when SOC = 95%: (a) shows
the relation between the charging power and the SOC value; (b) shows the power profile (top) and the
SOC value (bottom) as a function of time.

2.3. Analysis of Drivers’ Behavior and Consumptions

For evaluating the charging time for each EV, it is necessary to know the vehicle’s SOC value at
the beginning of the charging process (SOCy;). For this reason, this Section analyzes the daily energy
consumption of the aggregated EV population. The energy consumed during the k-th day (dj) by the i-th
vehicle EV; is called Ec;(dy)[kWh]. Ec;(dy) depends on the specific consumption Csp; [kWh /100 km]
and on the daily travailed distance D;(dy) [km]:

Eci(di) = Di(dk)% ®)

The specific consumption of each EV (in WLTP rating) is shown in Table 1. Figure 3b shows the
Csp for each EV model compared to the percentage of the registered model. The weighted average
Csp for the EV population under investigation is 16.67 kWh/100 km. To extract the data of the daily
distance traveled, it is necessary to investigate the driver’s behavior.

From the statistics in the report [40], the average distance traveled by a vehicle in a year is
12,240 km. Therefore, the average distance traveled per day is about 33 km. The statistics in the
document [41] report an overview of the mobility and drivers” behavior in terms of the number
and length of daily travels. From the extrapolation of the report’s data, Table 2 shows, with good
approximation, the percentage of daily distance traveled, categorized by length groups: close distance,
short distance, medium distance, and long distance.

Table 2. Daily distance traveled. Percentage of drivers’ population categorized by distance groups.

Distance Group Distance [km] % of Drivers’ Population
Close 0-8 10
Short 840 60
Medium 40-180 27
Long >180 3

Through analyzing Table 1, and according to [42], the probabilistic distribution that better estimates
the daily distance travel of vehicles is the Weibull function. Figure 5a shows the Weibull distribution
with A = 37.5 and k = 1.7. This distribution provides a reasonable estimation of the drivers’ behavior,
especially for close and short distances, which represent 70% of total travel. It can be seen in the
cumulative curve (at the bottom of Figure 5a) that 10% of vehicles travel below 8 km per day, 60% of
them between 8 and 40 km, and the remaining 30% travels more than 40 km per day. Figure 5b shows
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the daily distance D;(dy) traveled by each driver belonging to a population of 100 vehicles, during the
k-th day. The data were obtained by applying the Weibull function. It can be seen in Figure 5b that the
average traveled distance is about 33 km per day.
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Figure 5. Probabilistic distribution of the daily traveled distance: (a) the top plot is the Weibull
distribution, and the bottom plot is its cumulated function; and (b) the daily distances traveled by each
vehicle belonging to a car fleet of 100 elements and their average (red line).

Knowing the specific consumption and the daily distance traveled by each vehicle, using
Equation (5) it is possible to calculate the energy consumed by the i-th vehicle in the k-th day.
To calculate the SOC;(dy) (%), which is the initial SOC of the i-th EV at the k-th day, this paper proposes
the following hypotheses: dj is the day the EV/; has the last total charging, in which SOCy; (do)= SOCigx,
then the SOCy;(dy) is given by Equation (6):

k-1 ECi(d]’)

SOC;(dy) = SOCy;(dp) — 100 6)

=0 Cmaxi

k-1
where }, Ec,(d j) is the energy consumption referred to the days before the day d;. For example,
j=0

the SOCy;(d3) considers the consumption of the previous three days, Ec;(dy), Ec;i(d1), and Ec;(dy),
starting from the initial SOC’s value of the last full charging day (dy). For each vehicle, the energy
consumed in d; depends on the distance D(d j). This distance could be or not the same each day.
For instance, the distances traveled by EV; during three days could be D;(dy) = 20 km, D;(d;) = 24 km
and D;(dy) = 8 km. However, every day, the average value (33 km per day) and distribution (Weibull)
of the traveled distances must be the same for the total vehicles” population, according to Table 2
and Figure 5. These concepts will be better explained in Section 4 using data from a real vehicle
population’s scenario.

2.4. Parking Time Analysis

To evaluate the charging time, it is necessary to know the time that each vehicle spends plugged
to the charging station absorbing power. For each vehicle EV, this paper considers the daily charging
time (referred to the day dy) as the period between the initial time of charging t,0;(dy) that is the instant
in which EV; is plugged in, and the final time of charging f,;(dy) :

Teni(di) = tanfi(di) — tonoi(di) ?)

where T (dy) is the charging time of EV; referring to di. The t,5;(dy) is the instant where EV; ceases
to absorb power from the CS and it may depend on two conditions:
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1. The vehicle is plugged, but the SOC reaches the maximum value, the charging stops,
and SOC(tenf)=SOCax;

2. The vehicle is unplugged because the users left the parking lot even if the charging is incomplete,
SOCi(tens )< SOCpay.

The hypothesis introduced is that the instant of arrival in the parking lot coincides with the
beginning of the charging, as shown in Equation (8). On the other hand, the final charging instant
could coincide or not with the departure time of the vehicle from the parking lot, as in Equation (9):

teno = tarr, Soc(tch0> = SOCO (8)
tonf < tagps  SOC(tans) = SOCinax )
fehs = taep,  SOC(tens) < SOCimax

The arrival and departure times of each vehicle and all of them together with the parking time
were obtained by monitoring the users” access to the parking lots. The data were collected considering
private and public parking lots. Data refer to several typologies of parking scenarios: mall, station,
airport, city center, municipal parking, office building, working place, and companies’ parking lots.
The distribution and numbers of data can be very different for each scenario, as well as the parking
times. By analyzing each vehicle’s access (in and out), it is possible to extrapolate the users’ behavior
and the parking time distribution for each different scenario. This paper focuses on the working place
parking scenario (companies, office building, etc.), as extensively shown below.

The scenario under consideration concerns a population of 160 vehicles, and the input data are
tarr and tg,p. The arrival and departure times were subsequently sampled every 15 min. Figure 6a
shows the input data; for each vehicle (y axis), the arrival and departure times (x axis) are registered.
By processing these input data, it is possible to extrapolate Figure 6b, which shows the number of
arrivals (top-frame) and departures (bottom-frame) within each 15 min interval of the day. It can be
seen in the figure that the vehicle arrivals can be divided into two major sub-groups: first arrivals,
which are the events within the time interval [00:00-12:00] and concern about 80% of users; and the
second arrivals, that refer to the time interval [12:00-24:00] covering the remaining 20% of vehicles.
In the same way, departure events can be divided into two sub-groups: first departures that cover
30% of users and are registered before 14:00; and second departures, which belong to the interval
[14:00-24:00] and concern 70% of vehicles. For each group, the probabilistic distribution that better
simulates the users’ behavior is extrapolated. In this way, it will be possible to extend this kind of
behavior as well for a population of a larger or smaller number of vehicles. Table 3 shows in detail the
probabilistic distribution obtained for each sub-group of events. The total distribution of arrivals and
departures is given by the sum of its two respective sub-groups. As shown in Figure 6b and Table 3,
the distribution of the total arrival is provided by the sum of two normal functions (NFs). On the
other hand, the overall departures distribution consists of two Weibull functions (WFs) with different
parameters. By using these data, the number of vehicles that are present in the parking lot in each
15 min interval is calculated.

Figure 6¢ shows the number of presences in the parking lot. It can be seen that the probabilistic
function of presences (blue line), which is obtained by using the parameters in Table 3, matches well
with the real data curve (red line). Figure 6d shows the parking times of each vehicle, which are
calculated by Equation (3). The average parking time, referring to real data, is about 5 h (4 h and
57 min); on the other hand, the average parking time obtained by the probabilistic distribution is 5 h
and 3 min. Besides, the figure shows the parking time error for each vehicle, which is obtained by the
difference between the probabilistic and actual data. The average error is 7 min which corresponds to
less than 3% of the average value of the real data, while the root mean square error (RMSE) is 7%. As can
be seen in the figure, since the actual and probabilistic data are sampled in 15 min intervals, the error
has been quantized every 15 min as well. The maximum error value is 45 min, which corresponds to a
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15% error and concerns only 8% of the population. Most of the population has an error that is less than
15 min (5% error referred to the average), and 30% of the population has 0% error. These parameters
further confirm the good overlay between the real and the stochastic behavior.
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Figure 6. Arrival and departure data referring to a working place parking scenario: (a) arrival and
departure times for each vehicle; (b) top-frame, number of arrivals versus time and its probabilistic
function, bottom-frame, the number of departures versus time and its probabilistic function; (¢) number
of total parked vehicles (presences) in each 15 min time intervals. Real data delineate the red plot,
and the blue plot is the probabilistic functions; and (d) actual and probabilistic data of each vehicle
parking time and the resulting error (red data on the top) depicted using the same scale factor.
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Table 3. Arrivals and departures: data and distribution parameters.

1st Group 2nd Group Total Population
Arrivals events
Time interval [00:00-12:00] [12:00-24:00] [00:00-24:00]
Vehicle number 126 34 160
% of total population 79% 21% 100%
Distr. function NF1 NEF2 NF1 + NF2
p=0%1502=1h  pu=1445¢>=1h

Distr. parameters 30/ 15’

Departures events

Time interval [00:00-14:00] [14:00-24:00] [00:00-24:00]
Vehicle number 51 109 160
% of total population 32% 68% 100%
Distr. function WF1 WE2 WF1 + WE2
Distr. parameters A=1215k=2h45 A =1745k=3h15

2.5. EVs’” Power Flow Calculation Algorithms

This Section explains the logic and methods that allow calculating the daily EV power flows for
different scenarios and populations. Once the population’s number of vehicles, their characteristics,
and the parking lot scenario are all identified, this algorithm is capable of forecasting and calculating
the power that each EV requires for charging in each time interval of the day. Furthermore, it can
forecast the total EVs’ charging power, which could be related to the aggregate group of vehicles that
belongs to the single parking lot or the entire energy district. According to Section 2.4, the sample
time of the algorithm is set to 15 min, then the generic day dj consists of 96 intervals of 15 min each.
The algorithm’s input data are obtained by the previous analyses done in Section 2.1, Section 2.2,
Section 2.3, and Section 2.4.

As mentioned above, the scenario under investigation is the working place parking lot, where
N is the number of total EVs that used the parking during the day. Through the Section 2.2 analysis,
it is possible to define an N-sized array, named ID. The ID array contains information about the EVs’
model and is made using the percentages of registered EVs that are reported in Table 1. For example,
if N =100, the ID vector would consist of 100 elements of which 22 correspond to Renault ZOE, 19 to
Tesla Model 3, 13 to Nissan Leaf, and so on. In the same way, from Table 1 it is possible to define the
N-size array of the batteries’ capacities (Cmax [kWh]), of the max on-board charger powers (Pmax [kW]),
and the specific consumptions (Csp [kWh/100km]). By the Oanalysis in Section 2.3, the N-size array
of the distances traveled in dy is defined and named D(dy) (km). Finally, the array of the maximum
powers that are available on the charging stations (P¢s [kW]) is defined. The elements of each vectors’
row refer to the vehicle which is present in the corresponding row of the ID array. For example,
Equation (10) shows that the i-th vehicle (n° ID = i) is a Tesla Model 3 that traveled 70 km during dj
(Dj = 70). The i-row of all other vectors refers to the Tesla Mod. 3’s parameters. The Pcg array depends
on the charging infrastructure, however, the i-row of Pcg refers to the charging station plugged into
the i-th vehicle (in this case, by Tesla M.3).

Model ID = Cmax= Pmax= Csp= D(dy)= Pcs=

Smart 1 17.6 4.6 16.1 11 22

Leaf 2 40 6.6 17.1 23 22

ZOE 3 441 22 17.5 40 22 10
r ... 1rr...1r...1 [...17T [...1 [...1 [...1 (10)

Tes.M3 i 50 11 14.9 70 22

ZOE N 441 22 17.5 8 22
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By Section 2.4 analysis, it is possible to define the matrix of the vehicle presences in the parking lot
(PK), which contains information about the arrivals, departures, and parking times of each EV in the
day di. The matrix is shown in Equation (11) and is calculated using the arrival (blue) and departure
(red) times for each vehicle. The time range within ¢4, and t4ep represents the parking time (Tp).

0 0 1 1 1 1 0 0 01
0 0 0 1 1 1 1 0 0f 2
S T S T T A
e e G
000 1 . 1 .. 10 0 OfN-1
Lo 0 11 . 1 . 1 10 ow
1 2 3 4 .. j .. 9394959 1)

PK is calculated at each time interval At, and since At = 15 min, considering a population of N
vehicles and a period of 24 h, PK results in an N X 96 matrix. Generally, if the time step resolution is
higher (At < 15 min), the number of the matrix’s columns is higher than 96. Following the order of
the ID array, each row corresponds to a vehicle, while each column corresponds to a time interval
of dy. As shown in Equation (11), the value of the matrix elements is 1 only if the vehicle is parked;
otherwise, it is 0. For each interval At; (which refers to time [(j — 1) - At] to time [j- At]) and each EV;,
the following conditions apply:

1, |tarmi < Atj < tdepi
At > tgep i \Vi At <tapi

PK[j,i] = { 0 (12)

7

where j is the PK column, and i is the PK row. By Equation (12), for each PK row, the first non-zero
element corresponds to the arrival times. On the other hand, the last non-zero element corresponds to
the time interval preceding the departure time, and all the elements within this time-range are equal
to one. If N = 160, the sum of the row-elements for each column ( ) PK[j,i] ) provides the plot in

Figure 6¢, as well as the sum of the elements only relating to ¢, and t;ep, which provides the plots in
Figure 6b.

For describing the forecasting algorithm, this Section focuses on calculating the daily power flow
referring to a single EV, Pgy;(t). The algorithm’s output must be an N x 96 matrix which contains the
charging power value [kW] of each vehicle for each time interval, this output matrix is called Pgy and
Pgy[j,i] € Pgy. Then, from Equation (2), the total parking charging power, for each time interval At jis
a row-vector (96-sized) named PEVs and is given by

N
PEVs[jl=)_ Pevljil (13)

i=1

The forecasting logics are shown in the flow chart in Figure 7. The model starts calculating at the
beginning of dy, considering the first-time interval (j = 1, which time belongs to [00:00-00:15]). As long
as PK|j, i] remains equal to zero, the output Pgy|j, i] is zero because the vehicle is not in the parking
lot and cannot be plugged on the charging station. As soon as the vehicle arrives in the parking lot,
PK{j, i] switches to one and keeps this value while the vehicle is parked. By Equation (8), the charging
starts at the arrival times, and the initial charging power Pgyltgy, 1] is set to the minimum value
between Pcgli] and Py [i]. After that, the initial value of the power is multiplied by a scale-factor
kc. The scale factor considers the variation of power during charging which depends on the CC-CV
phases. Therefore, as shown by Equation (4) and Figure 4a, the power could decrease during the
charging process depending on the SOC value. Using a lookup table, which depends on each vehicle’s
battery capacity, k. is calculated as a function of the SOC and the initial charging power value for each
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time interval At;. In fact, k. represents the value of the charging power in per-units (p.u.), which is
reported to the rated power in the CC phase. Therefore, the scale factor is about k.=1 during the CC
phase and decreases during the CV phase to reach zero as soon as the charging ends, kc(tch f,) =0.

Csp[i] D(d[i]

- input END cccv
emulator

> output ; Eq.(6)

ke (SOC, Py, .
7 1 />< SOC[" S0Gyi]
| e
kelj,i] 4 q \ +
20 7967« &
time x 5 i -
j=j 5, i s
increment [/ =/ 1 Hey, 7 "7 soc
Pl S PKY, 1] x Pey [, ]
A

time
initialization

[1/0tPa] 454

[1f1o0sv

Pgy [teno, i] E.lji]

Prax [i] '» mm(u) 4— Pcs [i]

Cmax [1']

Figure 7. EV charging power flows algorithm. The flow chart shows the logics that allow forecasting
the daily power required by an EV, which is a user of the parking.

From Figure 7, the algorithm’s input (black input arrows) and output data (green output arrow)
can be observed. On the other hand, the red signals consider the logics of start and stop charging.
As previously explained in Equations (8) and (9), the charging can end (Pgy[j, 1] = 0) if the vehicle
leaves the parking (PK switches from 1 to 0) or if the battery reaches the maximum SOC value (k.
reaches zero). Therefore, the scale factor (blue signal) is used for both calculating the end charging
instant, and to calculate the EV charging power in each time interval through Equation (14):

PEV[j/i]=PEV[tchOIi]'kC[jli]'PK[jri] (14)

Finally, according to the objective of calculating the daily charging power of the single-day dj,
the forecasting process ends when j = 96 (time step [23:45-24:00]). Once the matrix Pgy is determined,
Equation (13) calculates the total daily power profile of the parking lot (PEVs).

3. The Charging Management System: Logic and Aims

The objective of the CMS is to manage the EV charging power flows to follow and to reach specific
optimizations targets. The targets are set according to environmental policies (such as decarbonization
in urban contexts and the development of PED [2,36]), but especially to minimize the charging cost.
According to Figure 1, the CMS has the role of managing the Pgy; (consequently, it can also modify
the Ppcc) following the specific logics and operating criteria. The incoming data of this management
system can come either from the generation sources and electrical loads that are inside the energy
district or from the external grid as well. For example, the aggregated system of EVs can participate
in the dispatching services market [16,20,32], by modulating the charging power according to the
TSO’s requests. Furthermore, the PEDs or micro-grids, which have non-controllable loads and a
relevant penetration of non-programmable generation sources, may use the EV batteries to modulate
the Ppcc profile [14] following the dispatching orders. This would not be possible without the
storage system behaving as a buffer between the generation and load (as in Equation (1)). Moreover,
in return, the dispatching users (in this case, the EVs” owners or the charging infrastructure providers)
receive financial compensation for their services. This practice, generally called V1G/V2G [29-32] can
ultimately result in a decrease in the charging cost. Moreover, since the price of energy depends on the
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energy market and can vary during the day, the CMS can shift charging when absorbing energy from
the grid is more convenient following the same optimization target [10,43-45]. However, these logics,
which receive external input such as dispatching orders and energy prices, are not treated in the
current article.

This paper focuses on a CMS that aimed to optimize the charging cost by the maximization of
the PED’s self-consumption. Since the inputs of this control system only come from measurements
inside the district, this control topology can be called stand-alone CMS (SA-CMS). By introducing an
SA-CMS in PED it is possible to operate in Smart Charging mode, i.e., the aggregate charging power,
which is given by Equation (2), is controlled to follow the daily power profile of the internal generation
sources. This can result in an EV’s load shifting during the hours of more internal generation or
may involve a decrease in each EV’s charging power to smooth the EV’s load profile during peak
hours [24-27]. Of course, this operating mode aims to minimize the power that the system absorbs
from the grid, by prioritizing the internal and non-programmable RESs, which present a lower energy
price. Thus, the improvement of self-consumption results in a reduction in charging costs.

The CMS consists of hardware (HW) and software (SW) systems. The HW system collects all
the elements necessary to implement the power flows that are managed by the SW central system.
In detail, HW consists of power electronics converters, measurement sensors, and other elements that
are necessary for communicating and receiving signals from the central control system. In the case of
DC-charging (off-board charger), it is the CS that directly manages the charging power following the
power reference from the control system (within the vehicle’s battery limits). On the other hand, in the
case of AC-charging (on-board charger), it is the on-board charger that provides power to the batteries.
The AC-CS operation consists in communicating to the vehicle the maximum current (and therefore
the maximum power) that the charging station can provide in that instant. For the CMS with AC-CS,
it is necessary to have a communication system between the charging station and the on-board charger.
For example, it could be provided by the Type-2 connector that communicates with the vehicle through
a PWM signal (control pilot “CP” in [46]). In particular, by managing the duty cycle of this PMW
voltage signal, it is possible to control the maximum current (and the power as well) that the vehicle
can absorb from the CS so that it can follow the reference signal. The SW system receives in input the
data shown in Table 4 and returns as output the reference charging power (Py,,.) for each CS; on which
is plugged the EV; with a reference time resolution (such as 15 min). The effects and how the CMS
operates on power flows will be better shown in Section 5.

Table 4. The input of the CMS and data structure.

Bundle Parameter Unit Resolution = Data Type Example
Identification code - - String xx21
Charging mode - - String AC
Connector topology - - String Type 2
EV CS Max rating kW - Float 22
Power kW 1-15 min Float 12/05/2019, 10:45, 16.5
N° of plugged EVs - 1-15 min Integer 12/05/2019, 10:45, 45
Total CMS-CS - - Integer 100
Topology - - String Non-programmable
Power Source Name - - String PV plant
Power kW 1-15 min Float 12/05/2019, 10:45, 247.7
POD code String xxx3
PCC Load Power KW 1-15 min Float 12/05/2019, 10:45, 341.8

4. Reference Scenario and Results of the EVs Power Flows’ Calculation Method

In order to test the EVs’ power demand prediction method and to evaluate the CMS’s effect on these
power flows, this Section takes into account the reference scenario shown in Figure 8. The reference
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scenario consists of a metalworking company with two main parking areas, each having a capacity of
100 stands. The company also has a PV plant of 500 kWp. Figure 8a shows the main building of the
company and the nearby PV plant. The hypothesis is that the parking lot n° 2 provides a charging
point for each vehicle. The charging infrastructure consists of 50 AC-CSs having two 22 kW charging
ports each. The parking users are the company employees, and their behavior, in terms of arrival and
departure times, belongs to the scenario that is analyzed in Section 2 (the working place parking lots).
Figure 8b shows the daily profile of the electrical load and PV generation of the company. The data
refer to the daily measurements across the year 2019.
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Figure 8. Reference scenario: (a) the layout of the building, parking area, and the PV plant. The red
marker refers to an EV parking place; (b) the daily power flows of the electrical load (brown) and the
PV plant (yellow), and their annual average (dark blue and red, respectively).

The following figures show the results of the forecasting method and the algorithm that are
reported in Section 2. Input data are adapted to the reference scenario. Figure 9a shows the SOCy
values of each EV, which are calculated and analyzed in Section 2.3 concerning the consumptions of
dr = [1,3;7]. Therefore, d also allows evaluating the EVs’ charging load based on the users’ behavior.
For example, d;, = 3 means that the charging takes place once every three days. Consequently, the initial
value of the SOC, together with the total power flows and the entire energy, changes depending on
dy. Figure 9b shows the total power flows (Pgys) of the reference EVs’ population for more dj values.
From the figure, the peak value of Prys can drastically change and under the worst conditions, might
even double the electrical load request of the plant for a few hours.
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Figure 9. Results of the forecasting method: (a) the input value of SOCy referred to dy = [1; 3; 7] for
each vehicle and their average value; (b) the total EVs’ power flows referred to dj = [1+7] and their
peak value.

For evaluating CMS performances, the self-consumption parameter (nsc) is introduced by
Equation (15). The nsc is 100% if the internal generation (in this case the PV plant) manages to supply
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all the energy required by the charging; on the other hand, nsc is 0% if the charging energy is entirely
provided by the grid (external power source):

fdk min(Pgys, Pg)dt
fdk Prydt

nsc = (15)

Since the PV power, as shown in Figure 8b, has variable profiles (depending on the daily
and seasonal irradiation), to evaluate the nsc, three different PV profiles are taken into account to
simulate three operating conditions: the “worst condition” refers to a low-production winter day;
the “mean-condition” is the power profile which refers to the equivalent sun hours (ESH) energy of the
plant, and it is obtained by the annual average of daily production (red signal in Figure 8b); the “best
condition” refers to a high production spring day. Figure 10 compares the self-consumption energy
(colored area) considering the Pgy;, of dy = [1; 3; 7] under the three aforementioned PV conditions:
worst (left), mean (center), and best (right), respectively. The 1sc values are shown on the top-right of
each plot.
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Figure 10. Comparison of the self-consumptions: the red curves are the PV power, the blue curves are
the Ppys with dy, =[1,3;7], and the percentage value in the legend shows the 1j5¢ in: worst condition (blue
areas, left plot); mean condition (green areas, center plot); best condition (orange areas, right plot).

Below, for evaluating the EVs’ effect on the absorbed power from the grid, utilizing Equation (1),
the PCC power is calculated and shown in Figure 11. The red curve is the Ppcc without EVs charging
and is obtained considering the average load profile (dark blue signal in Figure 8b) and the three PV
generation conditions (worst, mean, best). On the other hand, the blue curves show the PCC load
profile considering the EVs’ charging. As mentioned above, the power required by the system depends
on the PV generation and the EVs charging rate, therefore, it can drastically change based on the daily
request, seasonal RES availability, and the users’ charging behavior. The figure reports the percentage
value of the peak load (APpcc [%]) referred to the maximum value without EVs charging (red line) for
the different conditions.

In worse cases, the Ppcc profile might assume relevant peak values and high ramp-rates, causing
breaches in the operative limits, increasing losses, congestion, simultaneous loads issues, failure
probability, and negative impact on the power quality [5]. Finally, to compare the charging performances,
Table 5 was introduced. The parameter ngcpqy is the maximum value of the self-consumption that can
be reached through the available PV energy, while E, is the daily energy required for charging and
Epy is the daily PV energy, both expressed in (kWh per day).
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Figure 11. The PCC power profiles calculated without EVs (red) and with EVs charging (blue)
according to the different values of the initial SOC. The PV generation changes according to the worst
condition (left), the mean condition (center), and the best condition (right), as well as the APpcc values.

Table 5. Performance parameters (No CMS).

PV Cond. Worst Mean Best
Epy [kWh] 590 2090 3527
K Eg [kWh] 1sc Nscmax  APpcc fsc Nscmax  APpcc 1sc Nscmax  APpcc
1 375 60% 100% +7% 100% 100% +1% 100% 100% +0%
3 1510 32% 39% +30% 77% 100% +23% 94% 100% +17%
7 2855 22% 22% +56% 62% 79% +47% 78% 100% +37%

Asshown in Table 5, in worse conditions with low Epy and high E, (red cells), the self-consumption
coincides with its maximum value and it is not possible to increase it by load shifting (although it may
be possible to act on Ppcc by peak shaving). On the other hand, on favorable days with higher PV
energy and lower EV load request (green cells), the nsc reaches its maximum value without smart
charging. However, under the average conditions (fuzzy color) of production and consumption, it
may be necessary to manage the EVs’ power flow to optimize nsc and APpcc. To quantify the share of
the highly favorable days, unfavorable days, and middle days, this analysis is extended to the data
belonging to a period of one year. Thus, Figure 12 is introduced. The figure shows the values of
nsc and APpcc. Figure 12a depicts the self-consumption parameters (blue markers) and their respective
maximum values (black markers) that can be reached in each day. The EVs’ power is maintained the
same and refers to dj = 3, while the PV production changes based on the daily irradiance availability.
The same figure also shows the maximum increment that ngc could reach in case of self-consumption
optimization, which is given by the difference between 1s5cyr and nsc. According to the color-scale
in Table 5, the histogram shows the max performance improvements that could be obtained starting
on unfavorable days (nsc < 30%), highly favorable days (1sc > 90%), and the intermediate values
(nsc € [30-90%]). The figure shows that in the great majority of the days it is possible to increase the
self-consumption reaching 1sc = 100%. The average improvement that could be obtained through
flows optimization, is of about 20% in spring, summer, and autumn, while dips to 12% in winter.
However, it is shown that extreme PV conditions, such “worst condition” and “best condition.”, when it
is not possible to employ self-consumption consistently, involve very few days of the year (red and
dark green columns).
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Figure 12. The nsc and APpcc comparison considering one year OF data of the load and PV generation:
(a) nsc values referred to dy = 3; and (b) percentage peak value (columns) as a function of seasonality
(bottom x axis) and in ascending order (dot lines) as a function of working days (top x axis).

On the other hand, Figure 12b shows APpcc considering the load, and the PV power of each
working day (288 days). Unlike Figure 12a, APpcc is calculated basing on the different values of SOCy,
with reference to di = [1; 3; 7]. Concerning to dj = 1, it is shown that the maximum value of APpcc
is about + 20% and half of the days are not affected by PCC peak increments. However, the peak
could reach even + 40% (d; = 3) and + 100% (dj. = 7) in the worst conditions, of which the half of the
days have a APpcc > + 20% with dy = 3, and APpcc > + 40% with dy. = 7. The next Section shows the
possibility to improve performances by introducing the smart charging mode.

5. CMS Effects on Power Flow: Smart Charging Mode

The SA-CMS, which manages the reference scenario’s power flows, measures the PV power and
collects information about the N = 100 vehicles during charging (from the CSs). The CMS makes
sure that the total EVs” power remains below the PV generation by modulating the charge of each
vehicle. The system detects the number of EVs (N,) that are charging within each time interval and
modulates (decreases) the maximum reference power that vehicles can absorb from the charging station,
according to the PV power and N,. Since the EV may be connected to the CS without absorbing power
(see Section 2.4), N, could be different from the number of plugged vehicles. The higher the N, is,
the lower the Pgy; is during charging (P}, « PV/N,). On the other hand, if the PV power increases,
the CMS increases the charging power of each vehicle. Figure 13a shows as an example of the values of
N, with d = 3 and with a PV mean condition. The reference profile P(¢ for each charging station is
shown in Figure 13b. It can be seen how the CMS reference power (black) departs from the standard
value (No-CMS, red dotted-line) to follow the PV profile.
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Figure 13. Input and output CMS (SA) parameters: (a) the PV power measurement (red) and the
number of EVs charging (blue); (b) the output reference power for each charging station.
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Each EVs’ charging power also depends on the on-board charger rating and battery SOC
(see Equation (4) and Figure 7), however, the CMS is able to control Pry; utilizing the reference
signal P, (within the on-board charger limits). Figure 14a shows the charging power of each EV
considering no smart charging action. On the other hand, Figure 14b shows the charging power of
the vehicles under CMS control allowing smart charging. Different values of Pgy; can be seen in the
plot. They depend on the maximum on-board charger rating, on the battery capacity and on the SOC
variation during the charging process. As a result, the CMS allows the load shaving during peak hours
and energy shifting towards hours of more significant internal generation.
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Figure 14. Charging powers of each vehicle which belongs to the reference scenario: (a) standard
(No-CMS) charging; and (b) stand-alone CMS (SA-CMS) charging.

To evaluate the CMS effect on the total power flows, the aggregated EVs’ load was calculated and
compared with the results that were previously obtained in Section 4. Figure 15 shows the total EVs
load under the same initial and boundary conditions: di = [1; 3; 7] and the PV generation conditions
(worst, mean, and best condition). The figure shows that the smart charging allows the load shifting
following the PV profile. The EVs’ power remains below the PV profile, thus leading to an increase in
the system’s self-consumption. As before, colored areas in the figure show the self-consumption energy.
In all simulated scenarios, the entire EV charging energy is provided by internal sources, consequently,
the nsc reaches 100%. Of course, this kind of control decreases the daily energy provided for charging
services on the base of PV availability (the denominator in Equation (15)). For this reason, the ngc may
result in 100% even in the negative conditions (where it previously exceeded its maximum value).
Thus, to evaluate the effectiveness of the CMS on the management of power flows, it is also necessary
to measure the variation of the daily charge energy.
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Figure 15. Comparison of the total power flows with SA-CMS. The red curves are the PV power,
the blue curves are Prys with di = [1,3;7], while the dotted blue curves are the standard (No-CMS) EV
load profiles. The colorized areas show the self-consumption energy according to the PV generation
conditions: worst condition (left), the mean condition (center), and the best condition (right).
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Figure 16 shows the CMS effect on PCC power flows. It is readily clear from the picture that
the system’s load is much more balanced. The CMS acts on the load peak that previously occurred
during the morning hours (around 10:00 a.m.). Moreover, as well as the peak shaving, this shifts
the load energy towards the middle of the day and evening hours. The results show that the peak
values do not exceed +10% more than in scenarios without EVs. Smart charging allows reaching peak
reductions, even up to —50% compared to no-CMS results (see Figure 11). However, it is essential to
note that, even in worst peak case APpcc = 10%, the PCC power remains within the power limits of
the plant’s electrical load, and at most, if the PV energy is totally used for vehicle charging, the PCC
power coincides with the load power (Ppcc = P) shown in Figure 8b. This means that the system
should already be correctly dimensioned and also designed to provide aggregate EVs charging.
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Figure 16. PCC power profiles calculated without EVs (red) and with EVs charging (blue) in SA-CMS
mode, according to the different values of the initial SOC. The PV generation changes according to
the worst conditions (left), the mean conditions (center), and the best conditions (right), as well as the
APpcc values.

6. Discussion

The proposed CMS aims to maximize the EVs’ charging self-consumption by modulating each
EV’s power during the charging process and operates in smart charging mode. The logic is to make
the EVs charging load controllable in order to provide the greatest overlap between the daily demand
curve and the RES generation profile (in this case, a PV source). However, the PV power, which is
non-programmable, depends on the solar daily and the seasonal availability. Meanwhile, the charging
energy demand depends on the users” behavior and EV characteristics, such as the battery capacity and
the specific consumption (as Section 2 shows). For these reasons, the power flows could be strongly
different based both on the PV generation and the energy request. For providing the possible cases’
overview, three different conditions for both the daily PV power and EVs’ charging power, have been
considered. Consequently, the proposed conditions are given by the combination of the “worst”,
the “mean”, and the “best” PV conditions with the “high demand” (dy = 7), the “medium demand” (dj
= 3), and the “low demand” (dy = 1) of the EVs’ daily load. For each condition, the simulation results
have been collected considering the operation in the standard mode (no-CMS) and smart charging
mode (CMS). To evaluate the effects of the smart charging on the self-consumptions and power flows,
Table 6 and Equations (16)—(18) are introduced. Table 6 shows the CMS effects on the performance
parameters through a comparison with their values in the case of a no-smart charging mode (no-CMS):

Asc = et = ™ (16)

APy = APSHE — APIEMS (17)
(ECMS EnoCMS)

AEgy = —— (18)

EnoCMS
ch
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where Ansc compares the self-consumption, APy compares the PCC peak load and AE, evaluates
the difference in the charge energy between the CMS and no-CMS mode. Based on the initial conditions,
the parameters show scenarios in which the self-consumption presents a relevant improvement (up to
+ 70%) and the PCC load peak a drastic reduction (about —50%), as shown in green cells in Table 6, at
the expense of the daily energy provided to the vehicles (up to about 80% less). On the other hand,
the results also show conditions in which the CMS does not improve charging performances, such as
the cell (d; = 1, best condition), red cells in Table 6.

Table 6. Performance parameters’ comparison between the CMS and standard charging.

PV Worst Mean Best Worst Mean Best Worst Mean Best
dy ATISC APpeak AEy,
+41% 0% 0% —4% —1% 0% -11% 0% 0%
3 +68% +24% +6% —24% —14% -10% —61% -9% —4%
+70% +38% +23% —-52% —37% —27% —78% —27% -11%

However, under average conditions, Table 6, in reference to the yellow and fuzzy color cells,
the growth of the self-consumption can reach a reasonable compromise with the reduction of E, and
with the peak shaving values. Considering the PV mean condition and the SOCy(dy = 3), where the
average of the initial EVs” SOC is about 50 %, the self-consumption reaches 100% (Ansc = +24%),
and the PCC peak power is only about + 10% (APpe = —14%). Furthermore, the CMS decreases the
EV charging energy by only 9%. Moreover, as shown in Figure 12a, this type of scenario (average
conditions) occurs in the vast majority of the days of the year. Therefore, the results just presented
(Ansc = +24%, APpex ~ —14%, AEy, ~ 9%), in terms of performance improvement, might be the most
relevant results.

7. Conclusions

This paper provides a methodology to predict aggregate power flows of EVs charging in positive
energy districts and a smart charging system to optimize the self-consumption from distributed
renewable energy sources. The forecasting method takes into account the main factors and parameters
that influence the charging process. Both the characteristics of EVs and CS infrastructures were
considered to evaluate the daily power flow of an EV’s population. In addition to the CSs and EVs
chargers’ power rating, each charging event was calculated by also considering the power variation
due to the vehicles’ battery characteristics, which depend on the SOC and C-rate. In this respect,
the initial values of SOC for each vehicle were obtained by a statistical analysis of daily consumptions.
The charging duration and the initial and final time of each charging event depend on the drivers’
behavior. For these reasons, in this work, the data on arrivals and departures time in working place
parking lots were collected and processed. Then, it was possible to extrapolate a probabilistic function
that emulates the users’ behavior in terms of parking times. Through that, it is possible to extend this
behavior to any population with a different number of vehicles. Thus, the prediction algorithm has
been tested on a population of 100 EVs.

The reference scenario, on which the simulations were run, consisted of an industrial area having
one charging point for every parking place. The case study presented a non-programmable generation
source (PV plant) and a non-modulable electrical load that absorbs energy from the grid. Aggregated
EV load and its impact on the daily plant power profile were evaluated considering several conditions
of PV profile and EV drivers’ behavior.

Then, performance parameters such as the charging self-consumption and the peak percentage
value were introduced. Initial conditions greatly influence the results obtained. However, considering
the average conditions, the results have shown that the charge self-consumption does not reach its
maximum value, remaining less than 80%. On the other hand, for most of the analyzed days, peaks
increase by more than 20%.
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To improve these performance parameters, a charging management system was then introduced.
The CMS regulates the power that each CS provides to the vehicle intending to operate in smart charging
mode. The results show the smart charging effects on power flows: the CMS shifts the EVs’ energy
request towards hours when internal sources are more available. Therefore, it is demonstrated that
smart charging applies the peak shaving and shifting of the EV’s load that results in improved system
charging performance. The self-consumption was increased by about 20% + 40% (reaching 100%) in
comparison with the case without the CMS, and the peak load value reduced by 10% =+ 30%. Therefore,
the proposed CMS can be considered for enhancing performances in positive energy districts.

Future works could investigate the aggregate EV power flow of other parking scenarios, such
as malls, municipal parking, stations, airports, and city center parking lots. Moreover, a CMS able
to operate in V1G/V2G mode (following the TSO’s dispatching orders) or capable of following the
price of the energy during the charging (energy—price tracking) may be implemented in the future.
Finally, by processing the parking time and drivers’ behavior data, it may be possible to identify the
best scenario for all operating modes (SC, V1G/V2G, and energy-price tracking mode) and/or the best
mode for each scenario.
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