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Abstract—EC funded STriTuVaD project aims to test, through
a phase IIb clinical trial, two of the most advanced therapeutic
vaccines against tuberculosis. In parallel, we have extended the
Universal Immune System Simulator to include all relevant
determinants of such clinical trial, to establish its predictive
accuracy against the individual patients recruited in the trial,
to use it to generate digital patients and predict their re-
sponse to the HRT being tested, and to combine them to
the observations made on physical patients using a new in
silico-augmented clinical trial approach that uses a Bayesian
adaptive design. This approach, where found effective could
drastically reduce the cost of innovation in this critical sector
of public healthcare. One of the most challenging task is
to develop a methodology to reproduce biological diversity
of the subjects that have to be simulated, i.e., provide an
appropriate strategy for the generation of libraries of digital
patients. This has been achieved through the the creation
of the initial immune system repertoire in a stochastic way,
and though the identification of a “vector of features” that
combines both biological and pathophysiological parameters
that personalize the digital patient to reproduce the physiology
and the pathophysiology of the subject.

1. Introduction

Tuberculosis (TB) represents one of the world’s deadliest
diseases: one third of the world’s population, mostly in
developing countries, is infected with TB. But TB is becom-
ing again very dangerous also for developed countries, due

to the increased mobility of the world population, and the
appearance of several new bacterial strains that are multi-
drug resistant (MDR). There is now a growing awareness
that TB can be effectively fought only working globally,
starting from countries like India, where the infection is
endemic.

Once a person presents the active disease the most
critical issue is the current duration of the therapy, because
of the high costs it involves, the increased chances of non-
compliance (which increase the probability of developing
an MDR strain), and the time the patient is still infectious
to others. One exciting possibility to shorten the duration
of the therapy is represented by new host-reaction therapies
(HRT) as a coadjuvant of the antibiotic therapy. The end-
points in the clinical trials for HRTs are time to sputum
culture conversion, and incidence of recurrence. While for
the first it is in some cases possible to have a statistically
powered evidence for efficacy in a phase II clinical trial,
recurrence almost always requires a phase III clinical trial
with thousands of patients involved, and huge costs.

In the STriTuVaD multidisciplinary consortium we are
going to test, through a phase IIb clinical trial, two of the
most advanced therapeutic vaccines against drug sensistive
tuberculosis (DS-TB) and multi-drug resistant tuberculosis
(MDR-TB) i.e., RUTI vaccine, provided by Archivel Farma
S.L (Spain) and ID93+GLA-SE vaccine, provided by Infec-
tious Disease Research Institute (US).

In parallel we extend the Universal Immune System Sim-
ulator to include all relevant determinants of such clinical
trial, establish its predictive accuracy against the individual



patients recruited in the trial, use it to generate digital
patients and predict their response to the HRT being tested,
and combine them to the observations made on physical
patients using a new in silico-augmented clinical trial ap-
proach that uses a Bayesian adaptive design. This approach,
where found effective could drastically reduce the cost of
innovation in this critical sector of public healthcare.

To reproduce biological diversity of the subjects that
have to be simulated, an appropriate strategy for the genera-
tion of libraries of digital patients has been developed. This
has been achieved through the identification of a “vector of
features” that combines both biological and pathophysiolog-
ical parameters that personalize the digital patient.

In this paper, after a brief recall about UISS and its
extension to tuberculosis (sect. 2), we sketch the strategy
we adopt to generate the cohort of digital patients(sect. 3),
and we show some preliminary results about the dynamics
of MTB on a subset of these patients. (sect. 4).

2. Extension of the UISS computational frame-
work to reproduce TB

We will briefly describe here the UISS computational
framwork and its extension to model tuberculosis, UISS-TB.
The interested reader can find more details about UISS-TB
in [1].

2.1. Introduction to the UISS modeling framwork

UISS is a multi-agent framework for the simulation
of the immune system dynamics that can be extended to
reproduce specific diseases and related treatments. Differ-
ently from classical top-down approaches, in which mean
behaviors are studied by means of differential equations as
presented in [2], [3], [4], in agent based models and multi-
agent systems entities are followed individually, and global
nonlinear behaviors arise as the sum of individual behaviors.
UISS has been developed as a multi-scale computer simu-
lator of the immune system, as it takes into account both
cellular and molecular entities and processes.

UISS has a long track record of successful stories that
include, among others, its use for modelling the effects of
a vaccine against the onset of mammary carcinoma [5], [6]
and consequent lung metastases [7], for the initial stages of
atherosclerosis [8], for melanoma [9], and more recently, for
the study of Multiple Sclerosis [10], [11] and for testing the
efficacy of citrus-derived adjuvants for influenza vaccines
and human papilloma virus [12], [13].

We then extended UISS to include all the MTB dynam-
ics along with the artificial immunity induced by vaccination
strategies as presented in [1].

Finally, to depict individual diversity, a vector of fea-
tures has been identified. It combines both biological and
pathophysiological parameters that personalize the digital
patient to reproduce the physiology and the pathophysiol-
ogy of the subject. In particular, the digital patient model
defines a specific patient through 26 features: Drug Sensitive

Feature Description Type and Range

Drug Sensitive status Y/N (MDR otherwise)
Bacterial load in the sputum [50-400] CFU (D)
MTB virulence [0-1] (Adimemsional) (C)
CD4 T cell type 1 approx.1370 cells/µL (D)
CD4 T cell type 2 approx.1370 cells/µL (D)
Specific IgG titers [2-8] IgG titer (C)
CD8 T cell approx.560 cells/µL (D)
Interleukin 1 [0-10000] pg/mL (C)
Interleukin 2 [50-1000] pg/mL (C)
Interleukin 10 [5-16] pg/mL (C)
Interleukin 12 [3-300] pg/mL (C)
Interleukin 17 [0-1000] pg/mL (C)
Interleukin 23 [0-1000] pg/mL (C)
Type 1 Interferon [0-11000] pg/mL (C)
Interferon-γ [ [6-19] pg/mL (C)
TNF-α [4-40] pg/mL (C)
TFG-β [2-8] pg/mL (C)
LXA4 [0-3] ng/mL (C)
PGE2 [0-2.2]ng/mL (C)
General chemokine [0-20] ng/mL (C)
Vitamin D [0-100] ng/mL (C)
HLA-class 1 [0− 2NBITSTR−1] (Adimemsional) (D)
HLA-class 2 [0− 2NBITSTR−1] (Adimemsional) (D)
FoxP3 cells approx.60 cells/µL (D)
Age [0-90] years (D)
Body Mass Index [16-41] Kg/m2 (C)

TABLE 1. VECTOR OF FEATURES AND RELATIVE RANGE USED TO
IDENTIFY AND DEFINE DIGITAL PATIENTS. (D) STANDS FOR DISCRETE

VARIABLE; (C) STANDS FOR CONTINUOUS VARIABLE.

(DS)/Multi-drug resistant (MDR); Bacteria Load (BL) in
the sputum; MTB strain; CD4 Th1; CD4 Th2; IgG titers;
CD8 T cells; IL-1; IL-2; IL-10; IL-12; IL-17; IL-23; IFN
Type I: IFNγ; TNFα; TGFβ; LXA4; PGE2; Chemokines;
Vitamin D; HLA-1; HLA-2; FoxP3; Age; BMI. The list of
parameters, together with the relative range, is presented in
table 1.

3. Generation of Digital Patients: a Bayesian
approach

3.1. The UISS-TB input vector

The UISS-TB model defines a specific patient through
a vector of 26 features as described in section ??:

In order to create an in silico patient, one needs to
provide a single value for each one of 1–26. These values
could be taken from individual physical patients; however,
if a cohort of digital patients is to be produced, one should
have a mechanism for producing as many different input
vectors as needed, that are biological/physiological plau-
sible. Formally, this requires the characterisation of the
joint distribution of the inputs in the population. We have
compiled typical values and standard deviations for each
feature, providing a way to generate plausible values for
each component at a time. Proceeding in this way would
neglect the biological correlations between features and thus



would not guarantee a physiologically plausible input vector.
Hence, we must take into account these correlations. Given
that we have 25 numerical input variables (DS/MDR is a
factor), we should specify 25 × 24/2 = 300 correlations.
Using relevant literature and expert opinion, we have quali-
fied these correlations, determining that all correlations are
positive, but the correlation of IL-10 with the rest of the
features.

3.2. Formalising in silico profile generation

In theory, one could elicit the joint distribution of the 25
features, i.e. describe mathematically how each feature relate
to each other in a space of 25 dimensions; but this would
be not only extremely difficult, but also time consuming
and data demanding. Our approach is to rely on current
mathematical biology consensus and use a Gaussian to rep-
resent the population distribution. The additional advantage
of using this approach will be discussed in the next section.

Formally, we say that the vector x = {x1, . . . , xd} fol-
lows a d-variate Gaussian distribution with joint probability
density function (pdf)

Nd(x | µ,Σ) = (2π)−d/2|Σ|−1/2 ×

exp

[
−1

2
(x− µ)

′
Σ−1(x− µ)

]
,

with mean µ = {µ1, . . . , µd} and covariance matrix,

Σ =


σ2
1 σ12 . . . σ1d

σ21 σ2
2 . . . σ2d

...
...

. . .
...

σd1 σd2 . . . σ2
d


where,

Cov(xi, xj) = σij

related to the correlations by

Cor(xi, xj) = ρij =
σij√
σ2
i σ

2
j

So, if we are able to elicit a measure of correlation between
two inputs, we can calculate their covariance.

The elements in the diagonal, σ2
i are the marginal

variances of each element, xi, and µi the corresponding
marginal mean. As mentioned above, we already have com-
piled a list with these values, so we have elicited values for
µ and the diagonal elements of Σ, σ2

i .

3.3. Cohort generation

Once µ and Σ have been elicited, generating an in silico
profile is a relatively trivial task: one must sample a point in
the25-dimensional space, consistent with Nd(x | µ,Σ). But
we can exploit the properties of the Gaussian distribution
to produce a cohort consistent with some specific charac-
teristics. Say, for instance, that our target population has a
particular range of BL, we would like then to produce digital

patients consistent with that specific profile. Formally, let
x1 represent BL and x−1 = {x2, . . . , x18}, the rest of the
features; we would like to sample from

Nd(x−1 | x1,µ,Σ)

i.e. the conditional distribution of the rest of the features,
given that BL has a specific value. This is a standard
procedure, which can be readily implemented. We can go
even further and sort the list of features according to either
their importance in determining the profile of a patient,
or to the precision of their elicited mean, variance and
covariance, and then proceed to sample from the conditional
distributions, one at a time.

4. Preliminary results

To test the approach presented in sect. 3 we created an
R script for the generation of digital patents. In table 2 we
report 30 generated digital patients using the aforementioned
approach. All the patients have been then simulated using
UISS-TB.

In the following figures we show the typical UISS-TB
simulation framework when applied to the sample set of
digital in silico patients depicted in table 2. We show, for
each biological entity, both the mean behavior (according to
the entities the color line may vary) and the +/- SD (blue
lines). We run a total of 30 simulations for untreated digital
in silico patients. In figure 1 it is depicted the dynamics of
alveolar macrophages during two phases. The first one is
during the active TB phase where both necrotic and MTB-
infected populations increase. After the active phase, a latent
phase is established, and necrotic alveolar macrophages
contribute to typical granuloma formation.

5. Conclusions and future work

The set up an “in silico” trial requires that the involved
computational model is able to coherently reproduce the
disease dynamics on different individuals. As a consequence
of that, it is important to establish a rigorous strategy for
the definition of a credible cohort of digital patients. To this
end, we presented an approach for creating a set of digital
patients whose features can be in line with those of the real
population.

Preliminary results about the execution of UISS-TB on
the cohort of digital patients show that the simulator is able
to capture the dynamics of this pathology.

The next step will be focused on the generation of ref-
erence digital populations to be used as part of the technical
validation of UISS-TB. Once the data from the clinical trials
will be available, we will regenerate the digital cohorts, and
we will use a Bayesian statistical model approach to explore
specific use cases, such as that of in silico-augmented clini-
cal trials, where digital and physical patients are combined.



N.Ag strain Th1 Th2 IgG TC IL1 IL2 IL10 IL12 IL17 IL23 IFN1 IFNG TNF TGFB LXA4 PGE2 Chem VD MHC1 MHC2 Treg Age BMI

189 0.7064 43 46 4.53 50 5061.45 555.26 14.4 166.02 534.23 516.91 5534.17 21.86 13.02 7.53 2.96 0.89 9.15 47.43 2029 2077 57 39 30.72
249 0.4037 49 52 4.91 52 5074.84 532.75 14.95 186.13 515.34 510.78 5443.04 18.69 17.89 3.82 2.61 0.82 11.88 55.15 2047 2061 56 46 32.57
187 0.5344 63 53 7.09 51 4993.29 514.32 15.59 158.93 510.4 522.28 5499.65 20.16 19.5 6.83 2.92 748 11.78 51.74 2067 2036 51 47 32.34
253 0.1497 54 62 4.72 44 4986.72 515.62 18.74 138.36 524.74 512.97 5445.44 20.26 10.84 8.1 1.98 0.3 7.01 50.09 2021 2014 47 47 28.52
175 0.2359 51 43 4.74 51 4925.43 509.98 18.89 140.16 500.57 475.85 5514.87 20.29 11.76 5.66 2.45 0.41 12.16 43.49 2077 2047 50 47 27.82
229 0.8574 56 43 6.64 48 4954.02 538.34 17.48 151.19 495.06 484.93 5484.89 21.54 13.91 3.02 2.27 0.34 8.61 49.42 2072 2044 46 47 27.29
221 0.7262 51 54 4.92 46 4975.01 507.1 16.17 154.19 512.23 485.33 5477.36 18.61 15.8 5.49 2.41 0.35 8.4 48.88 2034 1990 42 49 29.29
199 0.2529 47 56 3.67 54 5019.55 515.44 17.39 150.84 502.38 460.19 5458.05 19.5 9.6 5.44 2.37 1.07 10.53 45 2069 2029 46 36 30.09
158 0.341 44 53 4.05 59 5007.74 542.11 20.79 145.03 498.41 479.92 5460.33 20.79 12.38 6.77 2.68 0.71 9.75 51.58 2066 1992 52 42 29.61
191 0.2069 40 45 3.64 43 4981.71 519.91 18.01 138.63 494.85 503.23 5395.49 21.54 7.92 5.73 2 0.64 8.36 41.33 2024 2076 37 41 26.83
328 0.56 48 40 4.32 50 5018.13 513.28 17.84 144.18 501.32 505.75 5519.12 20.22 12.06 5.87 2.24 0.53 7.9 58.25 2033 2065 40 46 25.81
252 0.5409 35 53 5.44 43 4973.13 496.53 18.62 143.75 478.83 500.98 5493.01 21.74 12.08 6.12 2.09 0.9 8.26 52.65 1991 2041 49 38 29.29
261 0.496 54 56 6.2 56 4946.85 525.38 17.88 153.03 502.42 502.62 5587.85 22.67 13.08 4.13 3.22 1.03 9.73 59.39 2077 2109 51 55 29.8
273 0.8468 52 49 7.31 54 5035.47 550.42 16.67 173.35 505.56 504.44 5510.07 21.51 13.46 6.78 3.05 1.4 12.71 51.72 2103 2107 59 54 32.99
300 0.7984 42 47 6.02 50 4956.64 500.79 16.64 146.57 508.83 507.02 5487.82 21.76 12.29 1.78 3.09 1.08 11.7 46.76 2036 2037 55 44 25.03
245 0.3408 49 43 5.74 50 4916.78 522.15 21.1 134.55 481.55 497.47 5430.43 20.29 15.08 6.08 2.94 1.03 8.74 57.86 2031 2057 38 42 31.76
221 0.6764 53 50 6.75 45 4958.18 484.49 18.45 153.83 487.77 476.68 5491.86 21.47 13.64 3.73 2.33 1.02 8.93 53.04 2059 2032 51 36 29.9
122 0.8234 54 45 6.14 51 4911.57 520.65 17.55 163.81 499.58 504.62 5599.99 22.12 14.77 2.50 2.24 987 9.99 44.99 2039 2064 53 38 27.25
242 0.816 42 51 4.21 51 4983.22 527.73 17.32 147.31 494.85 491.66 5440.64 19.32 12.34 5.17 2.62 0.78 9.300 53.42 2041 2088 48 47 30.6
313 0.5595 43 51 6.19 55 5001.22 514.22 17.19 155.13 499.22 488.78 5537.17 20.38 12.86 3.14 2.27 0.33 5.61 57.84 2071 1992 47 42 27.05
179 2.63E-2 42 44 6.79 43 5070.49 520.66 21.95 170.17 525.5 525.2 5458.13 19.68 13.22 2.63 2.17 1.110 11.05 45.17 2020 2020 50 36 32.617
345 0.3713 52 44 6.2 48 4975.01 541.12 17.48 155.88 507.21 502.65 5467.4 21.17 13.29 6.82 2.76 0.87 14.8 49.63 2024 2112 55 56 34.29
245 0.6411 51 52 5.82 57 4992.59 551.01 15.56 173.09 518.22 514.61 5569.51 22.26 13.26 8.31 2.65 1.15 13 51.33 2064 2059 54 49 29.1
251 0.5810 51 51 2.99 49 4988.39 521.97 20.7 127.72 489.56 484.17 5438.56 18.89 12.88 3.99 2.46 0.19 5.27 53.35 2054 2069 42 38 24.82
234 0.2243 46 42 4.40 57 5003.68 551.15 20.72 154.75 501.44 519.77 5515.5 20.75 14.23 4.11 2.2 0.49 10.25 44.46 2021 2017 45 44 26.95
186 0.4632 50 47 4.36 47 4869.57 551.46 20.02 138.66 496.34 500.4 5476.01 20.67 12.43 4.49 3.1 0.74 6.99 47.49 2080 2045 56 45 30.6
154 0.3493 54 49 6.01 44 5014.58 515.5 18.26 152.16 502.53 482.3 5576.32 20.55 13.9 5.67 2.68 0.99 10.35 56.32 2011 2028 54 41 27.18
239 0.7161 58 56 6.29 48 4961.32 548.38 17.89 141.16 520.83 487.15 5519.7 20.38 12.25 3.23 2.44 1.17 12.23 45.65 2057 2048 54 45 28.06
208 0.498 46 54 4.65 52 5064.60 539.2 19.04 160.08 494.1 520.26 5638.14 21.84 14.05 4.08 2.86 0.96 6.37 56.91 2062 2026 45 51 26.84
209 0.5812 47 57 3.77 53 5118.04 530.24 17.28 149.22 501.75 492.45 5513.76 21.82 11.72 7.06 2.69 0.4 8.76 47.44 2043 2043 51 44 32.81

TABLE 2. VECTOR OF FEATURES FOR 30 DIGITAL PATIENTS GENERATED ACCORDING THE APPROACH DESCRIBED IN SECTION 3. THE COLUMN FOR
DS/MDR STATUS IS NOT REPORTED IN TABLE.
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Figure 1. Total (red lines), Dead (yellow lines) Infected (green lines) and Necrotic (dark green lines) Alveolar Macrophages mean behavior for a simulation
time of 2 years computed over the 30 random digital patients in table 2 absence of treatment. Blue lines represent mean +/- SD.


