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Abstract: Subcellular spatial location is an essential descriptor of molecules biological function.
Presently, super-resolution microscopy techniques enable quantification of subcellular objects distri-
bution in fluorescence images, but they rely on instrumentation, tools and expertise not constituting
a default for most of laboratories. We propose a method that allows resolving subcellular structures
location by reinforcing each single pixel position with the information from surroundings. Although
designed for entry-level laboratory equipment with common resolution powers, our method is inde-
pendent from imaging device resolution, and thus can benefit also super-resolution microscopy. The
approach permits to generate density distribution maps (DDMs) informative of both objects” absolute
location and self-relative displacement, thus practically reducing location uncertainty and increasing
the accuracy of signal mapping. This work proves the capability of the DDMs to: (a) improve the
informativeness of spatial distributions; (b) empower subcellular molecules distributions analysis; (c)
extend their applicability beyond mere spatial object mapping. Finally, the possibility of enhancing
or even disclosing latent distributions can concretely speed-up routine, large-scale and follow-up
experiments, besides representing a benefit for all spatial distribution studies, independently of the
image acquisition resolution. DDMaker, a Software endowed with a user-friendly Graphical User
Interface (GUI), is also provided to support users in DDMs creation.

Keywords: distribution density maps; subcellular mapping; data visualization; microscopy;
fluorescence; image processing; computer-assisted; tumor cells; cultured

1. Introduction

Living cells are functionally defined by their anisotropy, as they rely on molecules
distribution and compartmentalization to efficiently perform and control the biochemical
reactions necessary for their life. Accordingly, abundance and especially molecules sub-
cellular location are essential descriptors of their own behavior and function [1]. In fact,
subcellular mislocation of many proteins [2,3] and RNAs classes [4,5] is associated to a
variety of diseases, including cancer. Although most of studies focus on proteins, any other
kind of targetable molecule can be virtually addressed, such as specific drugs [6], organelles
markers [7] or other bioactive species [8]. These studies commonly rely on fluorescence
imaging techniques for selective molecules visualization [2,3,5-9], but too often they limit
themselves at visual annotation of targets location [10-13], which is mainly qualitative,
subjective and prone to bias investigation [14].
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Precise quantification of subcellular distribution of fluorescently marked molecules
can be achieved by single-molecule localization microscopy (SMLM) techniques [15,16],
which super-resolve via software the image beyond the physical limitation of optical
resolution [17-21]. Despite its relevance, SMLM for routine and large-scale experiments
is still restricted to large laboratories, due to technical and technological burdens. In
fact, besides the high costs, the complexity of system calibration, image acquisition and
computational reconstruction tasks [22,23] preclude SMLM technologies to most users [24]
and thwart their adoption rate [25].

On the other hand, image-based techniques with proper algorithms can often com-
pensate for insufficient instrumentations. In fact, image processing has become an integral
tool in the daily activity of most laboratories, where it mainly serves the automation of
procedures that have been manual for many years, thus providing fast, quantitative and
repeatable measurements of imaged structures descriptors, such as object’s dimension
and shape [26]. As a main example, preclinical in vitro studies, which typically assay
drug efficacy and effectiveness by mean of commercial kits or user-validated protocols,
have been profitably integrated with microscopy imaging as a further tool to complete the
preclinical evaluation of antitumoral effects of the treatment investigated [27,28].

Regarding spatial distributions, image analysis permits to capture phenomena hidden
from visual inspection [29], to measure molecules dispersion and its variations [30], and to
construct 2D and 3D pseudo-color quantitative maps [31], which graphically describe the
observed patterns in a highly intuitive and interpretable manner [2]. Even when working
at non-super resolution, information conveyed by subcellular distribution can be preserved
through image processing. As a main example, local image analysis permits to report
pixel saliency as a function not only of the pixel itself, but also of its surroundings [32],
thus permitting to reconstruct local geometric interactions, neither quantifiable, not even
perceivable, in the native intensity images, which require proper post-processing. To
this purpose, investigating pixel connectivity is a simple yet powerful tool to go beyond
intensity analyses and access local image structures [33], as showed by popular applications
as semantic segmentation [34] and image encoding and encrypting [35]. However, it may
happen that after image pre-processing and thresholding the structural information of the
“objects” of interest can be partly lost, yet more in case of structures whose size is close to
system resolution.

In this work, we relax the connectivity constraint, introducing the novel concept
of local density to semantically weigh the reference pixel by its neighboring information.
This approach is quite robust against different resolutions, besides permitting to keep
information also when classical connectivity analysis fails. This new concept also conveys
three main innovations. The first is the local density index (LDI), representing pixel local
density as the number of pixels, normalized by a unit area. LDI brings new knowledge
regarding objects density, integrating distributions analysis with novel information. The
second consists in the intrinsic property of local analysis to preserve the informativeness
of spatial distributions, even in images with a reduced resolution. Third, the application
of the method enables the simple and fast creation of density distribution maps (DDMs).
Besides quantitatively describing the objects absolute and self-relative location, DDMs
offer a pictorial view of the density distribution of the whole imaged sample, representing
an unprecedented support to detect possible subpopulations.

The effectiveness of DDMs is exemplified through their application to four image sets
acquired with confocal fluorescence microscopy and micro computed tomography (CT),
which demonstrates how local neighbor analysis can enhance information confidence even
in the absence of high-resolution technologies, and how DDMs extend their applicability
outside the mere spatial distribution analysis. Efficiency and simplicity in building DDMs
also permit continuous assessment of marker distribution in fluorescence images, thus
enabling on-going monitoring and adjustment of experimental conditions. In conclusion,
DDMs can concretely improve the outcome of experiments, independently of the resolution
of the acquisition system.
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Finally, we provide a software program, DDMaker, endowed with a user-friendly
GUIJ, to support researchers in building the DDMs for their own experiments.

2. Materials and Methods

Five datasets are considered in this study: COL7, MG-63, A549 sh/p53, HeLa, micro-
CT. As the first step, we aim at showing the greater informative content conveyed by
the DDM in structure identification and how it changes with their application to the
same dataset sampled at a different resolution. To this purpose, the images of COL7 are
downsampled, thus deriving a sixth dataset at a halved resolution (COL7-h). In this way,
COLY7 can be used as the benchmark for the analysis performed with COL7-h. Secondly, we
apply DDMs at three different subcellular distribution studies in MG-63, A549 sh/p53 and
HeLa cells, imaged in homonymous datasets. Finally, we show the usefulness of DDMs in
a mere technical context, to segment mice bone structures from micro-CT images.

Images of COL7 were downloaded free of charge from the public repository “The
Image Cell Library” (CIL-CCDB) (http:/ /www.cellimagelibrary.org) [36]. Images of A549
sh/p53 and HeLa cells were acquired for another study we are conducting to assess the
effect of different stress conditions on RNA:DNA hybrids subcellular distribution, and
are not public. The images of MG-63 and micro-CT were provided by the laboratories
mentioned in the Acknowledgment Section and are not public.

2.1. Cell Culture and Image Acquisition

(1) Images of monkey kidney fibroblast COL7 cells (The Cell Image Library [36],
CIL:13701) were acquired with a confocal fluorescence laser scanning microscope LSM 510
or LSM 710 (Carl Zeiss, Inc., Oberkochen, Germany, equipped with a Plan-Apochromat
63 x /NA 1.4 objective in multitrack mode. COL7 cells were indirectly immunolabeled
against the wild-type and the W164S mutant of the vasopressin V2 receptor (V2R) with
anti-myc antibody (Ab), and against endosomes with anti—transferrin Ab [37]. (2) Images
of human osteosarcoma MG-63 cells, exposed or not to paclitaxel-loaded nanoparticles
(PTX-Ceb6@ker,g), were acquired with a confocal fluorescence laser scanning microscope
Ti-E A1R (Nikon, Amsterdam, The Netherlands) equipped with a 60x /NA 1.4 oil Plan-
Fluo. MG-63 cells were indirectly immunostained against MTs with anti-f-tubulin Ab
and incubated with Phalloidin-FITC for actin staining and with Hoechst for nuclei stain-
ing [38]. (3) Human lung adenocarcinoma A549 cells (ATCC, Manassas, VA, USA) were
cultured in F12K (ATCC) supplemented with 10% FBS (Euroclone, Milan, Italy), 1% peni-
cillin/streptomycin (GE Healthcare, Milan, Italy) and 2% amphotericin B (Euroclone, Milan,
Italy), then plated at the density of 30,000 cells/well and infected with lentivirus LV-THM-
sh-p53 at MOI = 10 TU/cell, as previously described [39]. Cells were seeded on a glass
coverslip at the density of 30,000 cells/slide and underwent one-fraction 2-Gy gamma
irradiation [40]. After 72 h cells were fixed and permeabilized with ice-cold methanol for
10 min and acetone for 1 min on ice, blocked with 2% BSA, stained with 1 pg/mL 4 6-
diamidino-2-phenylindole (DAPI) and immunostained for RNA:DNA hybrids (primary
anti-59.6 Ab (1:100 dilution, Kerafast, Boston, MA, USA), secondary goat anti-mouse Alexa
Fluor 568 (1:250; Life Technologies, Carlsbad, CA, USA)). A549 sh/p53 cells were imaged
with inverted confocal laser scanning microscope Eclipse Ti (Nikon Corporation, Tokyo,
Japan) equipped with NIS-Elements Ar software. 12-bit images were acquired with a Plan
Apo 60x /1.4 oil objective with lateral resolution of 0.1 um/pixels and axial resolution
of 0.2 um/pixels. (4) Human cervix adenocarcinoma HeLa cells (ATCC, Manassas, VA,
USA) were cultured in EMEM (ATCC) supplemented with 10% FBS (Euroclone, Milan,
Italy), 1% penicillin/streptomycin (GE Healthcare, Milan, Italy) and 2% amphotericin
B (Euroclone, Milano, Italy). Hyperbaric Oxygen Therapy (HBOT) was applied at 1.9
absolute atmosphere (ATA) in a hyperbaric chamber for 1 h. After 72 h, cells were fixed and
permeabilized with ice-cold methanol for 10 min and acetone for 1 min on ice, blocked with
2% BSA, stained with 1 ug/mL 4’,6-diamidino-2-phenylindole (DAPI) and immunostained
for RNA:DNA hybrids (primary anti-59.6 Ab (1:100 dilution, Kerafast, Boston, MA, USA),
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secondary goat anti-mouse Alexa Fluor 568 (1:250; Life Technologies, Carlsbad, CA, USA)).
HelLa cells were imaged with inverted confocal laser scanning microscope Eclipse Ti2-e
(Nikon Corporation, Tokyo, Japan) equipped with NIS-Elements Ar software. 12-bit images
were acquired with a Plan Apo 60x /1.4 oil objective with lateral and axial resolution of
0.1 um/pixels. (5) Images of harvested mice tibiae were scanned with a micro-CT using
a microfocus X-ray tube KEVEX PXS510-65W (Thermo Scientific Co., Waltham, MA, USA;
70 kV, 0.035 mA) and captured with a VHR1:1 CCD camera (Photonic Science Ltd., East
Sussex, UK; 4008 x 2672 pixels, 9 um pixel size). Final voxel size (2x magnification) was
isometric 4.5 um3.

2.2. Image Segmentation

All the image processing procedures are implemented in MATLAB® (R2019a v.9.6.0,
The MathWorks, Natick, MA, USA). (1) Marked V2R structures in COL7 and COL7-h cells
are first segmented by grey level top hat filtering with disk-shaped structuring elements
(SE) of fixed size (in pm), then thresholded at the 95th percentile. (2) MTs in MG-63 cells
are segmented by ISODATA thresholding of single optical sections. (3) RNA:DNA hybrids
in A549 sh/p53 cells are segmented as follows: (i) MIPs denoising by 8-bit quantization, (ii)
nuclear region delineation by maximum entropy thresholding of DAPI signal, (iii) grey
level top-hat enhancement with disk-shaped SE of fixed size (in pm) in cytoplasm, (iv)
ISODATA thresholding in cell nucleus and cytoplasm, separately. (4) RNA:DNA hybrids
in HeLa cells were segmented by ISODATA thresholding of MIPs’ positive values. (5)
Tibial metaphyseal trabeculae in micro-CT images are segmented by (i) first performing an
image denoising through 8-bit conversion, (ii) followed by an image contrast adjustment
by adaptive histogram equalization, (iii) then thresholding the local intensity peaks by
top-hat, and (iv) finally by applying our method to retain only densely distributed peaks,
corresponding to metaphyseal trabeculae.

2.3. Local Distribution Analysis, LDI and DDM

DDMs creation is a two-step procedure (Figure 1).

DDM

Binary mask

0
ROI Local density
segmentation > > analysis >
Binary mask LDl computation Label image RGB image

Univocal
—>» | number-to-colour —>»
assignment

LDl assignment
—>» | bycounting |—»
FG pixels

Repetition of
—>»| LDI computation
over all pixels

Figure 1. Flowchart of a DDM creation pipeline. (a) The acquired image is segmented in a binary mask. Then, the

mask connectivity is explored by local density analysis to create the DDM in pseudo-colors. (b) Details of local density

analysis: after setting the search (moving) window size, each foreground (FG) pixel of the binary mask is assigned a number
representing the amount of FG pixels in its locality (i.e., LDI), this constituting the input to build the pseudo-color DDM.

First, a 2D-image (input) is segmented to achieve the foreground (binary) mask of
the object(s) of interest (Figure 1a, left and center). Second, local distribution analysis
(Figure 1b) is performed on the binary mask by assigning to each foreground pixel a value
corresponding to the number of the foreground pixels in its neighborhood, defined by a
rectangular (2n + 1) X (2m + 1) search window, with n and m being the half-sides along
X and Y directions, respectively. As an example, without losing generality, in case of a
3 x 3 window, possible values for the reference pixel range from 0 for isolated pixels, to
8 for full-connected ones. In practice, the value assigned to each pixel represents its LDI.
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The image containing the set of LDI is a DDM, which can also be visually represented in
pseudo-colors. Therefore, each DDM'’s pixel is suggestive of the amount of information in
its own neighborhood. It is worth noting that the method can be applied to any distribution
study, only requiring a binary input image, independently of the imaging technique and
the acquisition system resolution.

The most important implication of DDM can be seen when created with a5 x 5 (or
larger) search window, as illustrated in Figure 2.

DDM

(a)

Figure 2. DDM mask creation. The acquired COL7 image is firstly segmented and the DDM (a) is
then created with a 5 x 5 search window;, that is the minimal window size that allows discriminating
single pixels based on their locality (b) Pixels semantics: (1) isolated red pixels, with LDI = 0; (2)
green pixels, isolated, but not alone in their 5 x 5 neighborhood, with LDI > 2; (3) either isolated or
“end-point” purple pixels, with LDI = 1; (4) connected white pixels, with LDI > 2. Scale bar: 5 um.

Starting from a grey level input image from COL7 dataset and after an independent
binarization procedure, the DDM is created (Figure 2a). Figure 2b shows how differently
single and isolated pixels are semantically treated. Here, red isolated pixels are those
having LDI = 0, while green isolated pixels have LDI = 2 or greater, as well as the white
ones. Finally, purple pixels, with LDI = 1 may be either isolated or “end-point” towards
no-density space. Isolated red pixels have no connections with any object in their 5 x 5
neighbors and are the best candidate to be removed since they do not apparently retain
any information. On the contrary, it can be seen that green pixels are isolated, but not
alone, suggestive to belong to structured though fragmented objects that should hence
be kept. This is an example of semantic membership assignment of pixels based on their
neighbor’s information. As LDI is function of single pixels, the objects can be composed of
pixels with different LDI = 1, as it happens for all the white pixels. However, witha 5 x 5
window, aggregates of two pixels can be subject to an uneven behavior. In fact, depending
on whether the aggregate is nearby a structured object or not, they can have one or both
pixels with LDI = 1, respectively. Nevertheless, if undesirable this behavior can be modified
with ad-hoc assumptions.
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2.4. DDM’s Search Windows for the Analyzed Datasets

For COLY? dataset, a 5 x 5 search window is chosen for local distribution analysis
in the imaged cells, this also permitting to have in COL7-h a halved-size search window
(3 x 3) to perform the same analysis. For MG-63, A549 sh/p53 and HelLa datasets,a 3 x 3
search window is employed for local distribution analysis, since the objects of interest are in
the range of few pixels and the smallest window is suited for detection and discrimination
of single particles from small aggregation events. For micro-CT images, a search window
of 29 x 159 pixels, approximating the real size of the imaged tibial metaphysis [41], is
selected.

2.5. Assessment of Results

Identifying objects for either object counting, or to know their position, represents one
of the most grounding steps in biological quantitative imaging. Therefore, we choose object
counting to evaluate the ability of our method to identify single structures and, conse-
quently, the effectiveness in characterizing their spatial distribution. Counting is carried out
in COL7 segmented images, after a preliminary step needed to remove foreground pixels
expectedly due to “noise” arising from sample preparation and/or acquisition process.
Commonly, the denoising methods rely on area-based or connectivity-based thresholding.
While the former aims at removing too small (or too big) aggregates, the latter also encodes
neighboring information aiming at preserving connected pixels. Differently, we use our
DDMs for a density-based thresholding and compare our counting with those achieved
by area-based and connectivity-based thresholding that is, respectively, after removing
1-pixel (i.e., isolated) objects, or keeping pixels with 4-, diagonal- or full-connectivity by
sequential image opening and closing with same 3 x 3 SE. From here on, objects are defined
as 8-connected. The outcome is assessed through statistical measures derived from the
contingency table (see Appendix A for details). In addition, to assess the robustness of
the DDM to varying image quality, we compare the informativeness conveyed by DDMs
applied to COL7 and to COL7-h, having a halved resolution, by performing a pattern
matching using the normalized cross correlation (NCC).

The MG-63, A549 sh/p53 and HeLa datasets are used to exemplify the different
benefits of applying DDMs in subcellular distribution analysis, aiming at identifying a
discriminant feature (descriptor) of different cell conditions. A visual inspection of DDMs
in all datasets suggests us that the LDI percentage (i.e., the ratio between the number of
pixels with given LDI and the number of all analyzed pixels) could be a suitable descriptor.
Nevertheless, in the HeLa dataset, the number of objects (or better, blobs) composing each
density level (weighted by cell area) was also considered, in order to refine the assessment
of the spatial gathering of pixels sharing a same LDI.

Finally, the micro-CT dataset is used to exemplify the applicability of the method
beyond the pure molecular distribution analysis, by using DDM to integrate the image
segmentation procedure of tibial metaphyseal trabeculae.

2.6. Statistical Analysis

Statistical analyses are performed in MATLAB®. Data deviation from normality is
early verified by histogram inspection, followed by the Shapiro-Wilk test, based on which
the discriminatory power of descriptors is assessed by either two-tail Student’s t-test or
Wilcoxon rank-sum test. p-values < 0.05 were considered for statistical significance.

3. Results and Discussion
3.1. DDMs Are Effective and Robust to Quantify Spatial Distributions
The DDM'’s capability to increase confidence in spatial distribution measurement is

assessed by its application to object counting, in comparison with area- and connectivity-
based thresholding (Figure 3a).
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(a)

(b)

Table 1. Contingency table for object counting with density-, area- and connectivity-based approach.

Image ! TP EN TPR FNR SDR (%) Overlap
(%) (%) 1:1 >1:2 (%)
DDMm 1089 649 63 37 100 0 95
Im1 614 1124 35 65 100 0 92
Im2 170 1612 10 93 76 24 53
Im3 139 1625 8 93 82 18 51
Im4 94 1666 5 96 78 22 42

1 Ground truth Im No. of objects = 1738. Abbreviation list: Table S7.

connectivity-based denoising

Loecr?sli ty area-based E
analysis denoising

Grey level DDM

NCC

coL7

COL7h

Figure 3. DDMs are effective and robust to quantify spatial distributions. (a) After signal binarize Table 1. removed), area-
(Im1, 1-pixel object removal) or connectivity-based denoising (Im2, Im3 and Im4, 4-, diagonal- and full- connectivity-based
denoising, respectively). (b) The signal accuracy reduction caused by resolution halving of COL7 to COL7-h is better
resisted by our method application, as quantified by a maximum NCC coefficient of 0.79 for COL7 and COL7-h DDMs. The
colorbar indicates the normalized function values. Scale bars: 5 um.

Specifically, starting from a binarized COL7 image (Im): (1) DDM is created and
binarized after that isolated pixels (LDI = 0) are removed (DDMm); (2) area-based denoising
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is performed by removing isolated pixels (Im1); (3) 4- (Im2), diagonal- (Im3) and full-
(Im4) connectivity-based denoising are carried out by morphological opening and closing
(Figure 3a, the squares with the reference central red pixel).

As reported in Table 1, DDMm is the image that better approximates the object
counting in the original binarized image Im. Indeed, it shows by far the highest TPR = 63%,
and the lowest FNR = 37%, accordingly. The non-complementarity of TP and FN in Im2,
Im3 and Im4 hints at a fragmentation of Im objects induced by the connectivity-based
denoising, as suggested by the 24%, 18% and 22% of objects that are detected with an
incorrect (i.e., >1:2) stoichiometric detection rate (SDR) in these images, respectively (see
Appendix A for details). On the contrary, neither the area-based nor our method fragment
the objects. Finally, DDMm shows the highest Overlap (i.e., the best match) with Im, this
suggesting a better accuracy in estimating position and object extension. It is worth noting
that the overlap difference between DDMm and Im1 is attributable to the 1-pixel objects
that, being isolated but not alone, are discarded in the latter, but not in the former.

Finally, we used the NCC to perform a pattern matching between each analyzed image
and its half-resolved counterpart (Figure 3b and Table 2). While the best result is in the
presence of downsampling only (NCC = 0.96, that is, 4% information loss), DDMm retains
the highest correlation between results achieved at full and half resolution (NCC = 0.79),
meaning that it shows the highest robustness against resolution reduction.

Table 2. Comparison between COL7 and COL7-h.

Image ! NCC
Im 0.96

DDMm 0.79
Im1 0.75
Im2 0.73
Im3 0.75
Im4 0.71

1 Abbreviation list: Table S7.

For all these reasons, DDMm represents the best option for object detection, and
consequently for distribution analysis, as it minimizes FN, maximizes TP and the object
detection with correct stoichiometry. Therefore, our method can be preliminary considered
also as an effective denoising procedure in itself, that besides retaining objects on the basis
of their connectivity, can even keep the most informative ones on the grounds of their
local density. More importantly, this reinforcement of each pixel position by exploiting
information from surroundings, makes our method to be the most robust to resolution
variation. This means that, independently of the resolution of the acquisition device, our
method can effectively improve the informativeness of the distribution analysis.

3.2. DDMs Disclose Hidden Distribution Properties

This example shows how to use local density information to strengthen ordinary
analyses. Figure 4 addresses the MTs resolving in confocal images of MG-63 cells exposed
to Paclitaxel-loaded nanoparticles (PTX-Ce6@kerag) (Figure 4a) [38].

As Paclitaxel (PTX) is expected to suppress MTs dynamic instability [42], the MTs
signal is investigated through the optical sections. For visualization purposes, confocal
sections are summarized in MIPs (Figure 4a, top color images). By comparing untreated
control (left) and PTX-treated (right) cells, a different subcellular location and intensity
of MTs (red) can be noticed. This visual consideration still holds for single optical sec-
tions (grey level images, bottom left) and it is supported by MTs intensity quantification
(Figure 4b: median intensity in treated cells greater than 126%, p < 10~°, Supplementary
Table S1. Coefficient of variation (CV) through sections: 0.55 (CTR), 0.44 (PTX)). However,
local density analysis of MTs in single sections discloses a hidden aspect of the distribution.
Indeed, the line plots of LDI percentage in CTR (Figure 4c) show a marked presence of
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Grey level

CTR

the highest LDI = 8 and a reduced presence of LDI between 0 and 7, which are also more
stable through the optical sections (average CV: 0.70). After PTX delivery (Figure 4d),
the presence of all LDI becomes constant through sections (average CV: 0.15) and, most
important, LDI = 8 becomes nearly exclusive and the remaining LDIs almost disappear,
since the former significantly increases (+69%, p < 10~°), while the latter decrease (—68%
on average, always p < 10~3, Supplementary Table S2). The predominant LDI = 8 presence
could be ascribed to the dense and crystallized MTs appearance induced by high PTX con-
centration [43]. Together with LDI = 8 constant presence throughout optical sections, this
finding suggests that Ce6@kerag-mediated PTX delivery is probably even more efficient
than what reported by the authors themselves, hence highlighting the prominence of such
a delivery system for clinical application.

(a)

PTX-Ce6@ker., MTs intensity

W cTr
IPTX-Cebaker,,

MIPs
(b)

Median (a. u.)

Grey level DDM Optical section (a. u.)

CTR MTs LDI

(c)

Median (%)

Optical section (a. u.)

PTX-Ce6@ker.; MTs LDI

B

(d)

Median (%)

Optical section (a. u.)

LDI .n 1 2 1.4.5.5.7.3

Figure 4. DDMs disclose hidden distribution properties. (a) Top: RGB MIPs of MG-63 untreated (left) or exposed to
PTX-Ce6@kerag nanoparticles (right) cells, stained for DNA (blue) and actin (green), and immunolabeled against and

B-tubulin (red). Bottom: exemplificative optical sections (left) and DDMs (right) of B-tubulin signal distribution along
Z-axis. Line plots of MTs median intensity (b) and percentage LDI distribution in CTR (c) and PTX-treated cells (d) along
the Z-axis. In PTX presence, MTs are brighter (+126% on average, p < 10~°), denser (+69%, on average, p < 10~°) and more

present at a high density through the sections (average CV through sections for LDI = 8:0.02). Scale bars: 10 pm.

3.3. DDMs Can Capture Relevant Spatial Distributions Blind to Visual Inspection

This example is probably the most effective one to show how the hidden information
disclosed and quantified by DDMs can provide added knowledge. Figure 5 reports A549
sh/p53 cells untreated (CTR) or subject to gamma irradiation (2 Gy), marked against
RNA:DNA hybrids to assess how their subcellular distribution varies in response to
treatment.
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CTR

2Gy

Grey level

DDM Nuclear boundary

Nucleus

LDI percentage (%)

a
LDI

Cytoplasm

LDI percentage (%)

4
LDI

(a) (b)

Figure 5. DDMs can capture relevant spatial distributions blind to visual inspection. (a) Grey level images of untreated and
2-Gy irradiated A549 sh/p53 cells are used to compute DDMs for immunostained RNA:DNA hybrids. DDMs highlight a
perinuclear hybrids crowding inside the nucleus of 2-Gy irradiated cells. (b) Bar graphs of LDI percentages in the main cell
compartments. A549 sh/p53 2-Gy irradiation induces hybrids de-condensation in both nucleus and cytoplasm, although
with a slightly different magnitude. * p < 0.05; ** p < 0.01; *** p < 0.001. Scale bars: 10 pm.

An earlier image comparison between irradiated and non-irradiated cells (Figure 5a,
left) suggests that hybrids differently redistribute in cytoplasm and nucleus after cell
irradiation, displaying the emptying of nucleus and a pan-cytoplasmic dispersion of
hybrids. However, DDMs computation (Figure 5a, center) unveils that what appeared
as an uninteresting cytoplasmic redistribution unexpectedly consists of an accumulation
of hybrids in what looks like a cytoplasmic perinuclear ring, that after nuclear boundary
segmentation results to lie inside (Figure 5a, magnification, right). DDMs analysis allows
quantifying a significant increase in both cell nucleus and cytoplasm of low LDI percentages
(LDI = {0,1,2,3}, p < 10~%), coupled with a symmetric decrease in high LDI percentages
(LDI = {5,7}, p < 0.006 in cytoplasm and LDI = 8, p = 0.012 in nucleus) (Supplementary
Table S3). This means that 2-Gy irradiation leads to a hybrids de-condensation in both
compartments, more heavily in cell nucleus, where the decrease involves higher density
levels. Although this evidence would seem to disagree with the clear perinuclear hybrids
crowding at 2 Gy, the de-condensation regards the whole cellular compartments, while
the hybrid accumulation occurs at the sub-regional level. Notably, we can conclude that,
despite the significant changes in LDI percentages, a 2 Gy irradiation can be said to
peculiarly affects hybrids subcellular location, rather than aggregation state and density,
accordingly. This finding highlights the need of local processing and the importance of
DDMs to convey both quantitative and visual information, which have to be considered
together to assist researchers in capturing the complexity of phenomena.

3.4. DDMs Can Detect and Quantify Sample Heterogeneity

This example shows how DDMs can be used to disclose and discriminate subsam-
ples by the local density distribution of marked structures. Figure 6 reports HeLa cells
exposed (HBO 1.9 ATA) or not (CTR) to hyperbaric oxygen conditions and marked against
RNA:DNA hybrids to assess their subcellular distribution variation in response to such
stressing condition.



Sensors 2021, 21, 1009

11 of 18

Grey level DDM

LDI percentage (pxI"')

LDl (a.u.)

. CTR . Cortical . Intermediate . Scattered
30

X

3

e

[

2

£

3

c

o

<]

@
LDl {a.u.)
(b)

Figure 6. DDMs can detect and quantify sample heterogeneity. (a) Grey level images and DDMs of untreated (CTR) and
1.9 ATA HBO-treated HeLa cells marked against RNA:DNA hybrids. DDMs separate three cell groups of cortical (blue),
scattered (red) and intermediate (green) hybrids distributions among HBO-treated cells. (b) Bar graphs of LDI percentages

and derived blob number in HeLa cells. * p < 0.05 for statistical comparison of the three groups with the untreated control.

Scale bars: 10 um.

Visual inspection of acquired images (Figure 6a) suggests a difference in hybrids signal
intensity and distribution between treated and untreated cells. This difference is confirmed
and stressed by DDMs, which moreover disclose a heterogeneous hybrids subcellular
distribution among HBO-treated cells, identifying three cell subgroups characterized by
a cortical, scattered, and intermediate distribution, respectively (Figure 6a, colored an-
notations). DDMs creation permits to differentiate the three distributions by both LDI
percentage and number of blobs (Figure 6b, Supplementary Tables S4 and S5), where the
latter varies more than the former, meaning that the groups are not so much characterized
by different densities as they differ in the way the densities are spatially distributed. When
grouping all HBO-treated cells together, this heterogeneity results in a higher variance
in spite of the increased number of samples (Supplementary Table S6), with consequent
weakening of statistical comparison between treated and control group [44]. In conclusion,
in this case DDMs provide some unprecedent information. First, they indicate that the
sample may be not large enough to account for the heterogeneity of the entire population,
and that a careful outliers detection and removal is needed before data analysis. Second,
DDMs reveal that cells of a same subgroup are spatially gathered, thus raising doubts on
the homogeneity of the created hyperoxic environment and suggesting new experiments,
under strictly controlled conditions, also aiming at investigating the dependence of hy-
brids distribution on the oxygen concentration. At the end, independently of the sample
heterogeneity, DDMs already reveal that hyperbaric conditions induce a redistribution of
hybrids and a change in their condensation state.

3.5. DDMs Can Apply Beyond Distribution Analysis

In the previous paragraphs, we showed how DDMs can reinforce, supplement or
disclose distribution information. However, applicability of DDMs extends beyond distri-
bution analysis in microscopy cell imaging, for instance, to improve image segmentation
procedures. Figure 7 describes the main steps of the automated segmentation of metaphy-
seal trabeculae from a Mus musculus tibiae in micro-CT images (Figure 7a), that involves
local density analysis.
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Figure 7. DDMs application to image segmentation. DDMs can applicate beyond distribution analysis in microscopy

imaging: here, the segmentation of metaphyseal trabeculae in micro-CT (coronal) images of Mus musculus tibiae. The

acquired image (a) is 8-bit converted for denoising purposes (b), contrast-enhanced by local adaptive histogram equalization

(c) and top hat-filtered for the segmentation of local intensity peaks (d). This procedure well detects metaphyseal trabeculae,

but also includes less dense signal from other bone structures. DDMs (e) permit to discriminate metaphyseal trabeculae as

the denser local peaks in the image, and accordingly to segment them based on their local density (f). Scale bar: 200 pm.

First, the image contrast is enhanced by 8-bit conversion (Figure 7b) and adaptive
histogram equalization (Figure 7c). Then, a top hat filtering of the image (Figure 7d)
with proper SE (i.e., with dimension comparable to that of trabeculae to be segmented)
permits to retain local intensity peaks (corresponding to more mineralized structures), while
disregarding irrelevant pixels with low values (corresponding to bone cavities). As this
procedure well identifies metaphyseal trabeculae, it also includes unwanted information
from other bone structures. To isolate metaphyseal trabeculae, local density analysis can be
used with denoising purpose, when selecting an appropriate local window size (i.e., with
dimension comparable to that of metaphysis to be segmented). This way, the resulting
DDM (Figure 7e) permits to distinguish metaphysis trabeculae as the denser mineralized
structures, and to exploit this information to segment them (Figure 7f).

3.6. GUI for DDMs Creation

To allow users, even with basic skills, to build DDMs we supply DDMaker (Figure Al),
a software program endowed with a user-friendly GUI, created with MATLAB® App
Designer, which does not require any training or expertise before using. In few steps,
the software permits to customize the search window size and to create the DDMs either
directly, starting from binary images, or indirectly, from RGB or grey level images, thanks
to a dedicated module for adaptive image binarization. Moreover, DDMaker allows
visualizing the DDM-derived colormaps and to perform an original DDM’s density-based
thresholding, useful for the automated image segmentation. The software builds DDMs
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and save all data from few seconds to minutes on entry-level computers (e.g., a dataset
of one hundred grey level images is fully processed in a little more than one minute on
a PC endowed with Intel i3-4005U, 1.70 GHz processor, and 8 GB RAM). The simplicity
in creating and interpreting DDMs, jointly with their effectiveness, make DDMaker a
valuable tool for fast assessment of target distributions. All considered, DDMs could
serve as a crucial check-point for long-lasting experiments, as well as for follow-up and
large-scale studies, that can be monitored on-line and corrected in progress, or even
stopped, based on the continuous feedback by DDMs. It is worth noting that this allows
optimizing time and costs by adjusting or rapidly restarting experiments that would
otherwise have been discarded, just after ending. A detailed description of functionalities
and tasks of DDMaker is provided in Appendix B. DDMaker is available as a public
open-source software written in MATLAB® and as a 64-bit stand-alone application (
https:/ /sourceforge.net/projects/ DDMaker).

4. Conclusions

In this paper, we introduce an innovative method for subcellular distribution analysis,
able to semantically quantify the local density of pixels, summarized as the Local Density
Index, finally exploited to build a Density Distribution Map in pseudo-colors to prompt
visual survey of the distributions. Using DDMs lead to a more accurate estimation of
molecules position, and increased robustness to resolution variations, if compared with
the standard approaches. This allows DDMs to characterize and quantify both evident
and hidden subcellular distribution, thus opening to the formulation of new biological
considerations. As such, DDMs appear as an innovative tool to supplement intensity
analysis even for visual assessment, besides quantification of signal distribution. DDMs
can also be integrated in a standard image processing pipeline. In fact, the method shows
its effectiveness to perform a smart denoising, which selectively addresses single pixels
based on their neighborhood’s structural information. In addition, our method can be
used for density-driven segmentation, which allows a good identification of small and thin
morphological structures, like in the micro-CT images, that otherwise would have been
merged. Finally, it is worth noting that as a resolution-independent technique enhancing
the detection of native information DDMs can also benefit high-resolution technologies.
DDMs computation is within every user’s reach with the DDMaker software we provide.
The immediacy of DDMs creation, besides the exemplifying applications herein considered,
allows DDMs to be employed in continuous monitoring routine and large-scale experi-
ments, planning and progression of explorative investigations as for example in the study of
cancer cell biology. In particular, DDMs analysis permits to detect heterogeneous responses
to treatment in cell sub-populations, improving clinical drug development and with the
potential to impact decisively on medicine in general and on oncology in particular.

As regards the limitations, the first is that DDMs can be applied to binary images only,
although this is intrinsically due to the design of the method itself. The second limitation
is that, for this reason, DDMs require that previous image acquisition and segmentation
steps have been properly carried on. For this reason, DDMaker is also endowed with a
segmentation module.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-8
220/21/3/1009/s1, Table S1: Median MTs intensity for MG-63 cells, Table S2: Statistical analysis
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Table S4: Statistical analysis for HeLa cells LDI percentage, Table S5: Statistical analysis for HeLa cells
number of blobs, Table S6: Variance for HeLa cells number of blobs, Table S7: List of abbreviations.
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Appendix A
Statistical Measures for DDMs Effectiveness in Object Detection

To test the effectiveness of DDMs in object detection, we compare object counting after
denoising carried out by density-based, area-based or connectivity-based thresholding, and
assess the outcome through statistical metrics, most of all derived from the contingency
table. The effect of all these methods is removing pixels from the original image. The object
counting performed in the original binarized image (Im, Figure 3) is used as true reference
condition, where condition positives are represented by the number of present 8-connected
objects, whereas condition negatives, in particular the true negatives (TNs), in most de-
tection problems as ours cannot be univocally defined. The object countings performed
after density-, area- and connectivity-based processing (DDMm and Im1-Im4, Figure 3)
represent the predicted conditions, that in comparison procedure with the reference image
allow distinguishing:

—  True Positives (TPs), i.e., the number of detected objects that are also in Im (hits)

—  False Positives (FPs), i.e., the number of detected objects that are not in Im (Type I
errors)

—  False Negatives (FNs), i.e., the number of objects in Im that are not detected after
processing (miss, Type II errors).

Besides TNs that cannot be estimated, also FPs are not detectable, given the subtractive

nature of the processing methods being considered. Then, only TPs and FNs are reported,
both in absolute (TP and FN) and percentage (TPR and FNR) form (Table 1), computed as:

P
TPR (True Positive Rate) = 1
(True Positive Rate) number of objects in the reference image (i.e., 1738) X100
. FN
FNR (False NegativeRate) = x 100

number of objects in the reference image (i.e., 1738)

To compare the number of surviving objects in the processed images with the original
number in Im, we check the overlap between the object’s mask in denoised image and the
original mask in Im through the logical “AND” operator. The overlap by at least one pixel is
enough to detect the object as a TP, otherwise it is considered missed (FN). Therefore, only
a partial erosion ensures the overlap, and a greater overlap hints at a more conservative
method, that preserves more object properties. Therefore, the overlap computed as:

number of preserved pixels after processing y

1
number of FG pixels in the reference image 00

Overlap =
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becomes itself a quality index suggestive of the efficacy of the method. However, it may
happen that the erosion keeps the object, but does not keep its integrity and fragments it.
This leads the object to be counted as TP as many times as its number of fragments, yielding
a consequent non-complementarity between TPR and FNR (i.e., TPR + FNR > 100), that
is in fact encountered in Im2, Im3 and Im4. From the need to quantify such phenomenon
we introduce the Stoichiometric Detection Rate (SDR) that, given a 1:n stoichiometric rate,
is the percentage of Im detected objects (i.e., 1738-FN) that at least partly overlap with n
objects in the processed image. In practice, n represents the number of fragments, with
n =1 pointing out an object kept integer. These rates, condensed in Table A1 for simplicity,
are here extensively reported:

Table A1. Stoichiometric detection rate for object counting with density-, area- and connectivity-based approach.

Image ! Denoising 1738-FN SDR (%)
Principle 1:1 1:2 1:3 1:4 1:5
DDMm pixel density 1089 1089 (100) - - - -
Im1 object area 614 614 (100) - - - -
Im2 4-conn 126 96 (76) 19 (15) 8 (6) 3(3) -
Im3 D-conn 113 93 (82) 16 (14) 3(3) - 1(1)
Im4 8-conn 72 57 (79) 10 (14) 3(5) 2(3) -

! Ground truth Im No. of objects = 1738. Abbreviations: Im, Image mask, DDMm, Density Distribution Map mask; Im1, area-based
denoised Im; Im2, 4-connectivity-based denoised Im; Im3, diagonal connectivity-based denoised Im; Im4, full connectivity-based denoised
Im; FN, False Negative; SDR, Stoichiometric Detection Rate.

In conclusion, the behavior of the considered denoising methods can be summarized
as following in Table A2:

Table A2. Comparison of density-, area- and connectivity-based approach effects on objects erosion
during detection.

Can Causes Objects:

Denoising Principle

Complete Erosion

Partial Erosion (Removal) Fragmentation
Pixel density Yes Yes No
Object area No Yes No
Pixel connectivity Yes Yes Yes

Appendix B
DDMaker: GUI Description

To enable users in building customizable DDMs, we realized DDMaker (Figure Al), a
software program endowed with a user-friendly GUI created with MATLAB App Designer.

First, the user is required to select the folder where the input images to be processed
are located. The folder can either contain RGB color, grey level or binary images in
the MATLAB-supported formats [45], including uncompressed “TIFF”. In the first two
cases, the user can binarize the images by choosing among ISODATA, Otsu or Triangle
thresholding methods, excluding or not background values (i.e., zero-value pixels) from
threshold calculation. The basic assumption regarding input images is that they are
properly acquired, corrected for eventual vignetting distortion [46], and minimally affected
by photobleaching degradation [47]. The resulting binary masks serve as the input for
building DDMs. However, if users already have their own binary masks to be provided
as the input, the segmentation step is skipped and DDMs are directly created starting
from user’s masks. The default search window defining the locality of the analysisis a 3
pixels-sided square, chosen assuming that the target structures of interest in the images
are of few pixels, thus enabling the detection of small aggregation events and single
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particles as well. However, users can customize the search window size, besides the
colorbar for his own DDMs visualization. Finally, the resulting DDMs can be binarized by
percentile thresholding, thus also permitting a local density-based thresholding. For user’s
convenience, DDMaker also displays the last input image, the corresponding binary mask,
and the derived DDM and DDM’s mask. The user can finally save all the intermediate
analysis as well as the outputs as uncompressed images and portable csv and excel files, as
detailed in the software documentation.

4
Input

Images

Path CARCC4_MTs BROWSE CLEAR
Binarization DDM
Thresholding Method Window Radius Colorbar
Background
#) ISODATA subtraction x| 1 e |
—a— arula
Otsu Yes No Y[ 1 Esv
Triangle
Threshold 90
BINARIZE Percentile DDM
Output
|
‘ SAVE
QUTPUTS

Figure A1l. Main GUI of DDMaker. The main window is divided into four sections: Input: to
select the input images’ folder; Binarization: to select the thresholding method, choosing whether
considering zero-values subtraction before threshold calculation and performing image binarization;
DDM: to select the half-sides of the search window for locality analysis and, to allow user creating
and binarizing DDMs after setting, the colorbar for DDMs visualization in pseudo-color and the
percentile for DDMs thresholding; Output: to visualize and save intermediates and outputs. From
left to right, top to bottom: grey level input image, binary mask, pseudo-color DDM, binarized DDM.
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