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PIRCON KERNELS AND UP-DOWN SYMMETRY

FABRIZIO CASELLI AND MARIO MARIETTI

Abstract. We show that a symmetry property that we call the up-down symmetry implies that the
Kazhdan–Lusztig R

x-polynomials of a pircon P are a P -kernel, and we show that this property holds
in the classical cases. Then, we enhance and extend to this context a duality of Deodhar in parabolic
Kazhdan–Lusztig theory.

1. Introduction

Kazhdan–Lusztig R-polynomials of pircons were introduced in [17] in order to provide a com-
binatorial generalization not only of Kazhdan–Lusztig R-polynomials of Coxeter groups but also,
as instances, of Deodhar’s parabolic Kazhdan–Lusztig R-polynomials and Kazhdan–Lusztig–Vogan
R-polynomials and Q-polynomials for the action of Sp(2n,C) on the flag variety of SL(2n,C).
After introducing the Kazhdan–Lusztig R-polynomials of a pircon, the following step is to search

for the analog of the Kazhdan–Lusztig P -polynomials in this general context. A natural pick is to
look at the theory of Kazhdan–Lusztig–Stanley polynomials, introduced by Stanley in [18]. Indeed,
Kazhdan–Lusztig–Stanley polynomials specialize to many interesting objects (see [18, Sections 6 and
7]). As an example, the Kazhdan–Lusztig R-polynomials of a Coxeter group W form a W -kernel
whose Kazhdan–Lusztig–Stanley polynomials are the Kazhdan–Lusztig P -polynomials of W . More
generally, for H ⊆ S and x ∈ {q,−1}, the parabolic Kazhdan–Lusztig RH,x-polynomials of WH

form a WH-kernel whose Kazhdan–Lusztig–Stanley polynomials are the parabolic Kazhdan–Lusztig
PH,x-polynomials of WH (see [10, Lemma 2.8 (iv) and Proposition 3.1]).
Unfortunately, as shown in [17, Example 7.2], the Kazhdan–Lusztig Rx-polynomials of a pircon P

need not to be a P -kernel. Therefore, in general, there are no Kazhdan–Lusztig–Stanley polynomials
associated with them.

In this work, we provide a sufficient condition for the Kazhdan–Lusztig Rx-polynomials of a pircon
P to be a P -kernel, which we call up-down symmetry : this roughly says that the R-polynomials satisfy
a recursive property that is invariant under a flip of P and may have interest in its own right. We
show that Kazhdan–Lusztig–Vogan R-polynomials and Q-polynomials for the action of Sp(2n,C)
on the flag variety of SL(2n,C) and parabolic Kazhdan–Lusztig RH,x-polynomials associated with
any Coxeter group satisfy the up-down symmetry. This implies a result by Brenti [5] on parabolic
Kazhdan–Lusztig RH,x-polynomials of finite Coxeter groups.
The Hecke algebra H of a Coxeter group W also plays a fundamental role in Kazhdan–Lusztig

theory. In [10], Deodhar introduces two H-modules, one for x = −1 and one for x = q, from
which he defines the two families of parabolic Kazhdan–Lusztig Rx-polynomials and the two families
of parabolic Kazhdan–Lusztig P x-polynomials. The aim of a subsequent work, [11], is to provide a
duality between these two modules and then between the two set ups. Extending Deodhar’s duality to
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2 FABRIZIO CASELLI AND MARIO MARIETTI

the setting of pircons, we introduce two HP -modules (where HP is a natural Hecke algebra associated
with the pircon P ) and involutions ιx of these modules by means of the up-down symmetry. We
then define corresponding Kazhdan–Lusztig bases. We also construct a twisted isomorphism between
the two HP -modules, which was missing and desired in Deodhar’s paper (see Section 4 for further
details), and relates the two Kazhdan–Lusztig bases of such modules. We conclude the paper by
using these results to find combinatorial recursions to compute the two families of Kazhdan–Lusztig
bases and the two families of Kazhdan–Lusztig P x-polynomials.

2. Notation and preliminaries

This section reviews the background material that is needed in the rest of this work.

2.1. Special partial matchings and pircons. Let P be a partially ordered set (poset for short).
An element y ∈ P covers x ∈ P if the interval [x, y] coincides with {x, y}; in this case, we write x✁ y
as well as y ✄ x. If P has a minimum (respectively, a maximum), we denote it by 0̂P (respectively,
1̂P ). An order ideal of P is a subset I of P such that if y ∈ I and x ≤ y, then x ∈ I. The poset
P is graded if P has a minimum and there is a function ρ : P → N (the rank function of P ) such
that ρ(0̂P ) = 0 and ρ(y) = ρ(x) + 1 for all x, y ∈ P with x ✁ y. We let ρ(x, y) = ρ(x) − ρ(y),
for all x, y ∈ P . The Hasse diagram of P is any drawing of the graph having P as vertex set and
{{x, y} ∈

(
P
2

)
: either x✁ y or y ✁ x} as edge set, with the convention that, if x✁ y, then the edge

{x, y} goes upward from x to y. When no confusion arises, we make no distinction between the Hasse
diagram and its underlying graph.

The following definitions are taken from [2], and [1], respectively. Given a poset P and x ∈ P , we
set P≤x = {y ∈ P | y ≤ x}.

Definition 2.1. Let P be a finite poset with 1̂P . A special partial matching of P is an involution
M : P → P such that

• M(1̂P )✁ 1̂P ,
• for all x ∈ P , we have M(x)✁ x, M(x) = x, or M(x)✄ x, and
• if x✁ y and M(x) 6= y, then M(x) < M(y).

Definition 2.2. A poset P is a pircon provided that, for every non-minimal element x ∈ P , the
order ideal P≤x is finite and admits a special partial matching.

The terminology comes from the fact that a special partial matching without fixed points is
precisely a special matching (see [6], [15], and [16] for a definition and for its application to the
problem of the combinatorial invariance of classical and parabolic Kazhdan–Lusztig polynomials)
and the fact that pircons relate to special partial matchings in the same way as zircons (see [14])
relate to special matchings. Connected pircons are graded posets (the argument for the zircons in
[12, Proposition 2.3] applies also to pircons). From now on, when we consider a pircon, we implicitly
suppose that it is connected.

Given a poset P and w ∈ P , we say that M is a matching of w if M is a matching of P≤w, and we
denote by SPMw the set of all special partial matchings of w. Hence, if P is a pircon then SPMw 6= ∅
for all w ∈ P \ {0̂P}. In pictures, we visualize a special partial matching M of a poset P by taking
the Hasse diagram of P and coloring in the same way, for all x ∈ P , either the edge {x,M(x)} if
M(x) 6= x, or a circle around x if M(x) = x. Figure 1 shows two special partial matchings of a
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poset, one colored with black thick lines which fixes only the bottom element 0̂P , and one colored
with dashed lines which also fixes only one element.

Figure 1. The thick black special partial matching M and the dashed special partial
matching N form a dihedral orbit O of rank 3 (top-left) and a chain-like orbit O′ of
rank 2 (bottom-right). We have m(O) = m(O′) = 3.

2.2. Coxeter groups. We follow [3] for undefined terminology concerning Coxeter groups. We fix
our notation on a Coxeter system (W,S) in the following list:

m(s, t) the entry of the Coxeter matrix of (W,S) in position (s, t) ∈ S × S,

e identity of W,

ℓ the length function of (W,S),

DR(w) = {s ∈ S : ℓ(ws) < ℓ(w)}, the right descent set of w ∈ W,

DL(w) = {s ∈ S : ℓ(sw) < ℓ(w)}, the left descent set of w ∈ W,

WH the parabolic subgroup of W generated by H ⊆ S,

WH = {w ∈ W : DR(w) ⊆ S \H}, the set of minimal left coset representatives,

≤ Bruhat order on W (as well as any other order on a poset P ),

[u, v] = {w ∈ W : u ≤ w ≤ v}, the (Bruhat) interval generated by u, v ∈ W,

[u, v]H = {z ∈ WH : u ≤ z ≤ v}, the parabolic (Bruhat) interval generated by u, v ∈ WH .

The Hecke algebra of W, denoted H(W ), is the Z[q
1
2 , q−

1
2 ]-algebra generated by {Ts : s ∈ S}

subject to the braid relations

· · ·TsTrTs︸ ︷︷ ︸
m(s, r) terms

= · · ·TrTsTr︸ ︷︷ ︸
m(s, r) terms

for all s, r ∈ S

and the quadratic relations

T 2
s = (q − 1)Ts + q for all s ∈ S.
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For w ∈ W , denote by Tw the product Ts1Ts2 · · ·Tsk , where s1s2 · · · sk is a reduced expression for
w. The element Tw is independent from the chosen reduced expression. The Hecke algebra H(W )

is a free Z[q
1
2 , q−

1
2 ]-module having the set {Tw : w ∈ W} as a basis and multiplication uniquely

determined by

TsTw =

{
Tsw, if sw > w,

qTsw + (q − 1)Tw, if sw < w,

for all w ∈ W and s ∈ S.
For any w ∈ W , the element Tw is invertible; for example, if s ∈ S then T−1

s = q−1Ts + (q−1 − 1).
We denote by ι the involution defined by ι(

∑
aw Tw) =

∑
aw T−1

w−1 , where a 7→ a is the involution of

the ring Z[q
1
2 , q−

1
2 ] sending q

1
2 to q−

1
2 .

2.3. Kazhdan–Lusztig R-polynomials for pircons. In this subsection, we recall the results from
[17] that are needed later. Some of them are valid (with the same proof) not only for the special
partial matchings but also for the larger class of quasi special partial matchings, that we introduce
here. Since we actually need these results for this larger class, we state them directly in this more
generalized form.

Definition 2.3. Let P be a poset. A quasi special partial matching of P is an involution M : P → P
such that

• for all x ∈ P , we have M(x)✁ x, M(x) = x, or M(x)✄ x, and
• if x✁ y and M(x) 6= y, then M(x) < M(y).

So, a quasi special partial matching M of a finite poset P with 1̂P is a special partial matching if
and only if M(1̂P ) ✁ 1̂P . Notice that in the definition of a quasi special partial matching the poset
P needs not be finite.
For the proof of the following result (in the case of special partial matchings), see [1, Lemma 5.2].

Lemma 2.4 (Lifting property for quasi special partial matchings). Let M be a quasi special partial
matching of a poset P . If x, y ∈ P with x < y and M(y) ≤ y, then

(i) M(x) ≤ y,
(ii) M(x) ≤ x =⇒ M(x) < M(y), and
(iii) M(x) ≥ x =⇒ x ≤ M(y).

Lemma 2.4 implies the following.

Lemma 2.5. Let M be a quasi special partial matching of a poset P , and x, y ∈ P , with x ≤ y. If
M(y) ≤ y and M(x) ≥ x, then M restricts to a quasi special partial matching of the interval [x, y].

We say that an interval [u, v] in a poset P is dihedral if it is isomorphic to an interval in a Coxeter
group with two Coxeter generators, ordered by Bruhat order (see Figure 2).

Given a pircon P and two quasi special partial matchings M and N of P , we denote by 〈M,N〉
the group of permutations of P generated by M and N . Furthermore, we denote by 〈M,N〉(u) the
orbit of an element u ∈ P under the action of 〈M,N〉.

We say that an orbit O of the action of 〈M,N〉 is

• dihedral, if O is isomorphic to a dihedral interval and u /∈ {M(u), N(u)} for all u ∈ O (see
Figure 1, top-left),
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Figure 2. Dihedral intervals of rank 1,2,3,4

• chain-like, if O is isomorphic to a chain, 0̂O ∈ {M(0̂O), N(0̂O)}, and 1̂O ∈ {M(1̂O), N(1̂O)}
(see Figure 1, bottom-right).

Note that an orbit with two elements w and N(w) = M(w) 6= w is dihedral, whereas an orbit with
two elements w = N(w) and M(w) = NM(w) 6= w is chain-like (see Figure 3). This is the only case
when a dihedral orbit and a chain-like orbit are isomorphic as posets.

Figure 3. A dihedral orbit of rank 1 (left) and a chain-like orbit of rank 1 (right).

Lemma 2.6. Fix a pircon P . Let M and N be two quasi special partial matchings of an element w
in P . Every orbit O of 〈M,N〉 is either dihedral or chain-like. Moreover, O is an interval in P , i.e.
O = [0̂O, 1̂O].

Recall that, given a pircon P and w ∈ P , we denote by SPMw the set of all special partial matchings
of w. Notice that, ifM,N ∈ SPMw, then the orbit 〈M,N〉(w) is dihedral by the definition of a special
partial matching and Lemma 2.6. The following definition is a generalization of [7, Definition 3.1].
Given two quasi special partial matchings M and N and a finite orbit O of 〈M,N〉, we let (see
Figure 1)

m(O) =

{
the rank of O, if O is dihedral,

the rank of O + 1, if O is chain-like.

Definition 2.7. Let P be a pircon and w ∈ P . We say that two quasi special partial matchings
M,N of w are strictly coherent provided that

m(O) is a divisor of m(〈M,N〉(w))
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for every orbit O of 〈M,N〉. Moreover, we say that two special partial matchings M,N of w are
coherent provided there exists a sequence M0,M1, ...,Mk of special partial matchings of w such that
M0 = M , Mk = N , and Mi and Mi+1 are strictly coherent for all i = 0, 1, ..., k − 1.

Notice that, while the definition of coherent is given for special partial matchings, the definition
of strictly coherent is valid more generally for quasi special partial matchings.
By the definition of a pircon, we can fix one special partial matching of v for each v ∈ P \ {0̂P}.

If M is the set of such fixed special partial matchings, then we call the pair (P,M) a refined pircon
and M a refinement of P .

Definition 2.8. Let x ∈ {q,−1}. Let (P,M) be a refined pircon, where M = {Mv ∈ SPMv :
v ∈ P \ {0̂}}. The family of Kazhdan–Lusztig Rx-polynomials {Rx

u,w}u,w∈P ⊆ Z[q] of (P,M) (or
Rx-polynomials for short) is the unique family of polynomials satisfying the following properties:

• if u 6≤ w then Rx
u,w(q) = 0,

• Rx
w,w(q) = 1 for all w ∈ P ,

• if u ≤ w then

(2.1) Rx
u,w(q) =





Rx
Mw(u),Mw(w)(q), if Mw(u)✁ u,

(q − 1)Rx
u,Mw(w)(q) + qRx

Mw(u),Mw(w)(q), if Mw(u)✄ u,

(q − 1− x)Rx
u,Mw(w)(q), if Mw(u) = u.

Example 2.9. If P is a chain and M is any refinement of P , then the Rx-polynomials of (P,M)
are

Rx
u,v(q) = (q − 1)(q − 1− x)ρ(u,v)−1

for all u, v ∈ P with u < v.

In general, the Kazhdan–Lusztig Rx-polynomials of a refined pircon (P,M) depend on the refine-
ment M (see [17, Remark 5.3]).

The two families of R-polynomials satisfy the following properties.

Proposition 2.10. Let (P,M) be a refined pircon with rank function ρ. If u, w ∈ P with u ≤ w,
then

(1) degR−1
u,w(q) = ρ(u, w),

(2) Rq
u,w(0) = (−1)ρ(u,w),

(3) Rx
u,w(q) = (−q)ρ(u,w) Rz

u,w(q
−1), where {x, z} = {q,−1}

Let (P,M) be a refined pircon and w ∈ P . Mimicking [15, Subsection 4.1], we say that a special
partial matching M of w calculates the Kazhdan–Lusztig Rx-polynomials of (P,M) (or is calculating,
for short) provided that, for all u ∈ P , u ≤ w, the following holds:

(2.2) Rx
u,w(q) =





Rx
M(u),M(w)(q), if M(u)✁ u,

(q − 1)Rx
u,M(w)(q) + qRx

M(u),M(w)(q), if M(u)✄ u,

(q − 1− x)Rx
u,M(w)(q), if M(u) = u.

Thus the matchings of M are calculating by definition.

Definition 2.11. Let (P,M) be a refined pircon. We say that a quasi special partial matching M of
an order ideal I of P is strongly calculating provided that the restriction of M to P≤z is calculating
for all z ∈ I such that M(z)✁ z.
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Notice that Eq. (2.2) holds also if u 6≤ w, since in this case all terms are zero by Lemma 2.4 and
Definition 2.8. Notice also that, by Lemma 2.5, the restriction of a quasi special partial matching M
to P≤z is indeed a special partial matching for all z ∈ P such that M(z)✁ z.
The following definition slightly differs from [17, Definition 5.6] but is more suitable for our pur-

poses.

Definition 2.12. We say that (P, S) is a pircon system provided that

(1) P is a pircon,
(2) S is a set of quasi special partial matchings of order ideals of P ,
(3) for all w ∈ P \ {0̂P}, there exists M ∈ S such that M(w) is defined and M(w)✁ w,
(4) for all w ∈ P and all M,N ∈ S such that M(w) and N(w) are defined and satisfy M(w)✁w

and N(w)✁ w, the restrictions of M and N to P≤w are coherent.

Although our definition of pircon system is different from that of [17], the proof of the following
result is equal to the proof of [17, Corollary 5.7].

Theorem 2.13. Let (P, S) be a pircon system and x ∈ {q,−1}. All refinements M of P , with
M ⊆ S, yields the same family of Kazhdan–Lusztig Rx-polynomials (for which, all matchings in S
are strongly calculating).

Definition 2.14. A pircon D is a dircon provided that any two special partial matchings M,N ∈
SPMw are coherent, for all w ∈ D.

In other words, a pircon D is a dircon if and only if (D,
⋃

w∈P\{0̂P } SPMw) is a pircon system.
By Theorem 2.13, for both x = q and x = −1, a dircon has a unique family of Kazhdan–Lusztig
Rx-polynomials. The terminology comes from the fact that dircons relate to pircons in the same way
as diamonds relate to zircons (see [7, Definition 3.2]).

2.4. Stanley’s kernels. Let us briefly recall from [18] the definition of P -kernel and Kazhdan–
Lusztig–Stanley polynomials.

Let P be a locally finite graded poset, with rank function ρ. The incidence algebra of P over
the polynomial ring R[q], denoted I(P ), is the associative algebra of functions f assigning to each
nonempty interval [u, v] an element fu,v(q) ∈ R[q] (denoted also simply by fu,v when no confu-
sion arises) with usual sum and convolution product: (f + g)u,v = fu,v + gu,v and (f · g)u,v =∑

z:u≤z≤v fu,z gz,v, for all f, g ∈ I(P ) and all u, v ∈ P with u ≤ v. The identity element of I(P ) is

the delta function δ, defined by δu,v =

{
1 if u = v,

0 if u < v.

If f ∈ I(P ), we also let fu,v = 0 whenever u 6≤ v, and so (f · g)u,v =
∑

z∈P fu,z gz,v, for all
f, g ∈ I(P ). An element f ∈ I(P ) is invertible if and only if fu,u ∈ R \ {0} for all u ∈ P . We say
that f ∈ I(P ) is unitary if fu,u = 1, for all u ∈ P . Let

• I ′(P ) = {f ∈ I(P ) : deg fu,v ≤ ρ(u, v)), for all u, v ∈ P with u ≤ v},
• I 1

2
(P ) = {f ∈ I ′(P ) unitary : deg fu,v <

1
2
ρ(u, v), for all u, v ∈ P with u < v}.

Note that I ′(P ) is a subalgebra of I(P ), closed under taking inverse. Given f ∈ I ′(P ), we denote by

f̃ the element of I ′(P ) such that f̃u,v(q) = qρ(u,v)fu,v(q
−1), for all u, v ∈ P with u ≤ v. Notice that

the map ˜ is an involution on I ′(P ).
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A unitary element K ∈ I(P ) is a P -kernel if there exists an invertible element f ∈ I(P ) such that

K · f = f̃ . Such an element f ∈ I(P ) is called invertible K-totally acceptable function in [18]. See
[18, Theorem 6.5, Proposition 6.3, Corollary 6.7] for a proof of the next result.

Theorem 2.15. Let P be a locally finite graded poset.

(1) A unitary K ∈ I ′(P ) is a P -kernel if and only if K · K̃ = δ.
(2) There is a bijection from the set of P -kernels of I ′(P ) to I 1

2
(P ) that assigns to K an invertible

K-totally acceptable function.

Let K ∈ I ′(P ) be a P -kernel. Following [4], we refer to the unique invertible K-totally acceptable
function of I 1

2
(P ) as the Kazhdan–Lusztig–Stanley polynomials of K.

3. Up-down symmetry and P -polynomials of pircons

In this section, we introduce and study the concept of up-down symmetry. In particular, we relate
it to Stanley’s kernels and to the existence of the P -polynomials of a pircon. Notice that, in general,
the family {Rx

u,v(q)}u,v∈P of Rx-polynomials needs not be a P -kernel (see [17, Example 7.2]).

Recall that we write q for q−1 and, for a polynomial f , we write f for f(q). Recall also the three
instances of the recursive formula for a strongly calculating quasi special partial matching M : for all
u and w such that M(u) and M(w) are defined and M(w)✁ w, we have

Rx
u,w(q) =





Rx
M(u),M(w)(q), if M(u)✁ u, (a)

(q − 1)Rx
u,M(w)(q) + qRx

M(u),M(w)(q), if M(u)✄ u, (b)

(q − 1− x)Rx
u,M(w)(q), if M(u) = u. (c)

(3.1)

The next definition involves analogous formulas obtained by exchanging the roles of the elements u
and w.

Definition 3.1. Let x ∈ {q,−1}. The family of Kazhdan–Lusztig Rx-polynomials of a pircon system
(P, S) satisfies the up-down symmetry if, for all M ∈ S and for all u, w ∈ P such that M(u) and
M(w) are defined and M(u)✄ u, we have

Rx
u,w(q) =





Rx
M(u),M(w)(q), if M(w)✄ w, (a′)

(q − 1)Rx
M(u),w(q) + qRx

M(u),M(w)(q), if M(w)✁ w, (b′)

(q − 1− x)Rx
M(u),w(q), if M(w) = w. (c′)

(3.2)

Lemma 3.2. Let x ∈ {q,−1}. The family of Kazhdan–Lusztig Rx-polynomials of a pircon system
(P, S) satisfies the up-down symmetry if and only if, for all M ∈ S and all u, w ∈ P such that
M(u)✄ u and M(w) = w, we have

(3.3) Rx
u,w = (q − 1− x)Rx

M(u),w.

Proof. It is a trivial check that the two properties (a′) and (b′) in Eq. (3.2) follow by the two properties
(a) and (b) in Eq. (3.1). The result follows. �

Theorem 3.3. Let (P, S) be a pircon system and x ∈ {q,−1}. If the family {Rx
u,v(q)}u,v∈P of

Rx-polynomials satisfies the up-down symmetry, then it defines a P -kernel.



PIRCON KERNELS AND UP-DOWN SYMMETRY 9

Proof. By Theorem 2.15, we have to show that

∑

z∈P

Rx
u,z q

ρ(z,v) Rx
z,v = 0

holds for all u, v ∈ P with u < v. We proceed by induction on ρ(v). The case ρ(v) = 1 is trivial.
Suppose ρ(v) > 1. Moreover, we may suppose also ρ(u, v) > 1 since the case ρ(u, v) = 1 is trivial as
well. We fix a quasi special partial matching M ∈ S such that M(v) is defined and M(v) ✁ v. For
notational convenience, for all u and v, we let

• ∆=(u, v) =
∑

z:M(z)=z

Rx
u,z q

ρ(z,v) Rx
z,v,

• ∆✁(u, v) =
∑

z:M(z)✁z

Rx
u,z q

ρ(z,v) Rx
z,v,

• ∆✄(u, v) =
∑

z:M(z)✄z

Rx
u,z q

ρ(z,v) Rx
z,v,

• ∆(u, v) = ∆=(u, v) + ∆✁(u, v) + ∆✄(u, v).

We need to prove that ∆(u, v) = 0, for all u, v ∈ P with u < v.
We split the proof into three cases depending on whether M(u)✁ u, M(u)✄ u, or M(u) = u.
Suppose M(u)✁ u. We have

∆✁(u, v) =
∑

z:M(z)✁z

Rx
M(u),M(z) q

ρ(z,v) Rx
M(z),M(v) =

∑

w:M(w)✄w

Rx
M(u),w qρ(M(w),v) Rx

w,M(v)(3.4)

=
∑

w:M(w)✄w

Rx
M(u),w qρ(w,M(v)) Rx

w,M(v) = ∆✄(M(u),M(v))

= −∆✁(M(u),M(v))−∆=(M(u),M(v))

using the induction hypothesis on the interval [M(u),M(v)]. We also have

∆✁(M(u),M(v)) =
∑

z:M(z)✁z

Rx
M(u),z q

ρ(z,M(v)) Rx
z,M(v)

(3.5)

=
∑

z:M(z)✁z

(
(q − 1)Rx

M(u),M(z) + qRx
u,M(z)

)
qρ(z,M(v)) Rx

z,M(v)

=
∑

z:M(z)✁z

(q − 1)Rx
u,z q

ρ(z,M(v)) Rx
z,M(v) +

∑

w:M(w)✄w

qRx
u,w qρ(M(w),M(v)) Rx

M(w),M(v)

= (q − 1)∆✁(u,M(v)) + q
∑

w:M(w)✄w

Rx
u,w qρ(M(w),M(v)) Rx

M(w),M(v).
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On the other hand

∆✄(u, v) =
∑

z:M(z)✄z

Rx
u,z q

ρ(z,v) Rx
z,v(3.6)

=
∑

z:M(z)✄z

Rx
u,z q

ρ(z,v)
(
(q − 1) Rx

z,M(v) + qRx
M(z),M(v)

)

=
∑

z:M(z)✄z

(1− q)Rx
u,z q

ρ(z,M(v)) Rx
z,M(v) +

∑

z:M(z)✄z

qRx
u,z q

ρ(M(z),M(v)) Rx
M(z),M(v)

= (1− q)∆✄(u,M(v)) + q
∑

z:M(z)✄z

Rx
u,z q

ρ(M(z),M(v)) Rx
M(z),M(v).

We also observe
(3.7)

∆=(u, v) =
∑

z:M(z)=z

Rx
u,z q

ρ(z,v) (q − 1− x)Rx
z,M(v) = (q − 1− x) q ∆=(u,M(v)) = −x∆=(u,M(v))

and, using the up-down symmetry,

∆=(M(u),M(v)) =
∑

z:M(z)=z

Rx
M(u),zq

ρ(z,M(v)) Rx
z,M(v)(3.8)

= (q − 1− x)
∑

z:M(z)=z

Rx
u,z q

ρ(z,M(v)) Rx
z,M(v)

= (q − 1− x) ∆=(u,M(v)).

Eqs. (3.4), (3.5), (3.6), (3.7) and (3.8) imply

∆(u, v) = ∆✁(u, v) + ∆✄(u, v) + ∆=(u, v)

= −(q − 1)∆✁(u,M(v))−∆=(M(u),M(v)) + (1− q)∆✄(u,M(v))− x∆=(u,M(v))

= (1− q)∆(u,M(v)),

and the result follows by induction hypothesis since u 6= M(v).
Now suppose M(u)✄ u. We have

∆✁(u, v) =
∑

z:M(z)✁z

Rx
u,z q

ρ(z,v) Rx
z,v

=
∑

z:M(z)✁z

(
(q − 1)Rx

u,M(z) + qRx
M(u),M(z)

)
qρ(z,v) Rx

M(z),M(v)

= (q − 1)∆✄(u,M(v)) + q∆✄(M(u),M(v)).
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Furthermore

∆✄(u, v) =
∑

z:M(z)✄z

Rx
u,z q

ρ(z,v) Rx
z,v

=
∑

z:M(z)✄z

Rx
u,z q

ρ(z,v) ((q − 1)Rx
z,M(v) + qRx

M(z),M(v))

= (1− q)∆✄(u,M(v)) + q∆✁(M(u),M(v))

and (by the up-down symmetry)

∆=(u, v) =
∑

z:M(z)=z

Rx
u,z q

ρ(z,v) Rx
z,v

= q
∑

z:M(z)=z

Rx
u,z q

ρ(z,M(v)) (q − 1− x)Rx
z,M(v)

= q
∑

z:M(z)=z

Rx
M(u),z q

ρ(z,M(v)) Rx
z,M(v)

= q∆=(M(u),M(v)).

Hence ∆(u, v) = q∆(M(u),M(v)), and the result follows by the induction hypothesis since M(u) 6=
M(v).

Finally, we suppose M(u) = u. We have

∆✁(u, v) =
∑

z:M(z)✁z

Rx
u,z q

ρ(z,v) Rx
z,v

=
∑

z:M(z)✁z

(q − 1− x)Rx
u,M(z) q

ρ(M(z),M(v)) Rx
M(z),M(v)

= (q − 1− x)∆✄(u,M(v))

and

∆✄(u, v) =
∑

z:M(z)✄z

Rx
u,z q

ρ(z,v) Rx
z,v

=
∑

z:M(z)✄z

Rx
u,z q

ρ(z,v) ((q − 1)Rx
z,M(v) + qRx

M(z),M(v))

= (1− q)∆✄(u,M(v)) +
∑

z:M(z)✄z

(q − 1− x)Rx
u,M(z) q

ρ(M(z),M(v))+2 qRx
M(z),M(v)

= (1− q)∆✄(u,M(v))− x∆✁(u,M(v))
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and

∆=(u, v) =
∑

z:M(z)=z

Rx
u,z q

ρ(z,v) Rx
z,v

=
∑

z:M(z)=z

Rx
u,z q

ρ(z,v) (q − 1− x)Rx
z,M(v)

= q(q − 1− x)∆=(u,M(v))

= −x∆=(u,M(v)).

Hence ∆(u, v) = −x∆(u,M(v)), and the result follows by induction hypothesis since u 6= M(v). �

If the family {Rx
u,v(q)}u,v∈P of Rx-polynomials defines a P -kernel, then we denote the corresponding

Kazhdan–Lusztig–Stanley polynomials by {P x
u,v(q)}u,v∈P . Recall that P

x
u,v(q) is zero unless u ≤ v.

Note that, by Theorem 3.3, the Kazhdan–Lusztig–Stanley polynomials P x
u,v are defined if the

Rx-polynomials satisfy the up-down symmetry.
The following lemma gives a tool to prove the up-down symmetry.

Lemma 3.4. Let (P, S) be a pircon system. Suppose that, for all M ∈ S and z ∈ P \ {0̂P} such
that M(z) = z, there exists N ∈ S such that N(z) ✁ z and the restrictions of M and N to P≤z are
strictly coherent. Then the family of Kazhdan–Lusztig Rx-polynomials of (P, S) satisfies the up-down
symmetry.

Proof. By Lemma 3.2, we need to show that, for all M ∈ S and z ∈ P such that M(z) = z, the
equation

Rx
u,z = (q − 1− x)Rx

M(u),z

holds for all u ∈ P with u ≤ z and M(u)✄ u.
Denote by M

M the free Z[q]-module with {mv : M(v) is defined} as a basis: M
M =

⊕
v Z[q]mv.

Consider the endomorphism TM of MM given by

TM(mv) =





mM(v), if M(v)✁ v,

q mM(v) + (q − 1)mv, if M(v)✄ v,

(q − 1− x)mv, if M(v) = v,

Given f =
∑

v fv(q)mv ∈ M
M and w ∈ P , we denote the polynomial

∑
v fv(q)R

x
v,w(q) ∈ Z[q] by

fw. In this notation, the property of M being strongly calculating reads

mw
v = (TM(mv))

M(w)

for all v, w ∈ P such that M(v) and M(w) are defined, and M(w) ✁ w. It follows, that for all
f ∈ M

M and all w such that M(w)✁ w, the equation

(3.9) fw = (TM(f))M(w)

holds. Since q
−x

= q − 1− x, we need to prove

(TM(mu))
z = (q − 1− x)mz

u
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for all u ≤ z such that M(u)✄ u. We actually show the (a priori stronger but indeed equivalent)
property

(3.10) (TM(f))z = (q − 1− x)f z

for all f ∈ M
M ; let us proceed by induction on ρ(z).

Since (TM(mv))
z = (q−1−x)mz

v = 0 whenever v 6≤ z, we may suppose f ∈ M
≤z =

⊕
v∈P≤z

Z[q]mv.

Fix N ∈ S such that N(z)✁ z and the restrictions of M and N to P≤z are strictly coherent.
LetO be the orbit of z under the action of 〈M,N〉, which is a chain of rankm(O)−1 by Lemma 2.6.
By [17, Theorem 4.3], the following braid relation

(3.11) · · ·TMTNTM︸ ︷︷ ︸
m(O)

(f) = · · ·TNTMTN︸ ︷︷ ︸
m(O)

(f)

holds for all f ∈ M
≤z.

If the bottom element of O is the bottom element of P , then P≤z is a chain by Lemma 2.6 and
the result follows by Example 2.9. We can therefore suppose that the bottom elements of O and of
P do not coincide.

Since N(z)✁ z, MN(z)✁N(z), NMN(z)✁MN(z) and so on until we reach the bottom element
. . . NMN︸ ︷︷ ︸

m(O)−1

(z) of the chain-like orbit O, we have

(TM(f))z = (TNTM(f))N(z) = (TMTNTM(f))MN(z) = · · · = (· · ·TMTNTM︸ ︷︷ ︸
m(O)

(f))

···NMN︸ ︷︷ ︸
m(O)−1

(z)

by Eq. (3.9) applied repeatedly to both M and N .
Let

L =

{
M, if m(O) is even,

N, if m(O) is odd.

The element · · ·NMN︸ ︷︷ ︸
m(O)−1

(z) is fixed by L and · · ·TNTMTN︸ ︷︷ ︸
m(O)−1

(f) ∈ M
L. By the induction hypothesis, we

have

(· · ·TMTNTM︸ ︷︷ ︸
m(O)

(f))

···NMN︸ ︷︷ ︸
m(O)−1

(z)

= (TL(· · ·TNTMTN︸ ︷︷ ︸
m(O)−1

(f)))

···NMN︸ ︷︷ ︸
m(O)−1

(z)

= (q − 1− x) (· · ·TNTMTN︸ ︷︷ ︸
m(O)−1

(f))

···NMN︸ ︷︷ ︸
m(O)−1

(z)

= (q − 1− x) f z

where the last equality follows by Eq. (3.9). Hence Eq. (3.10) follows. �

We show next that Lemma 3.4 implies that two interesting examples of Rx polynomials such as
the Kazhdan–Lusztig–Vogan polynomials associated with the action of Sp(2n,C) on the flag variety
of SL(2n,C) and the parabolic Kazhdan–Lusztig polynomials introduced by Deodhar [10] satisfy the
up-down symmetry.
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The orbits of the action of Sp(2n,C) on the flag variety of SL(2n,C) are parametrized by the set
ι of the twisted identities of the symmetric group S2n, which is the set {θ(w−1)w : w ∈ S2n}, where
θ is the involutive automorphism of S2n sending the transposition si = (i, i+ 1) to the transposition
s2n−i = (2n − i, 2n − i + 1), for all i ∈ [1, n] (we refer the reader to [2] for more details on this
subject). The associated Kazhdan–Lusztig–Vogan R-polynomials and Q-polynomials are indexed by
pairs of elements in ι. In [17, Theorem 6.2], it is shown that ι, with the order induced by Bruhat
order, is a dircon, and that the Kazhdan–Lusztig–Vogan R-polynomials and Q-polynomials for the
action of Sp(2n,C) on the flag variety of SL(2n,C) coincide, respectively, with the Kazhdan–Lusztig
Rq-polynomials and R−1-polynomials of ι as a dircon. Since ι is a dircon, all special partial matchings
are strongly calculating. The map u 7→ u ∗ si given by u ∗ si = θ(si)usi is a special partial matching
on ι: following [2], we refer to a special partial matching of this form as a conjugation matching.

Theorem 3.5. The families of Kazhdan–Lusztig–Vogan R-polynomials {Ru,v}u,v∈ι and Q-polynomials
{Qu,v}u,v∈ι for the action of Sp(2n,C) on the flag variety of SL(2n,C) satisfy the up-down symmetry.

Proof. We use Lemma 3.4. Let z ∈ ι\{e}, and M be a special partial matching such that M(z) = z.
Since M has fixed points, [2, Proposition 4.8] implies that M is a conjugation matching, say M(v) =
v ∗ si for all v ∈ ι with v ≤ w. Since M(z) = z, [2, Theorem 4.3] implies si /∈ DR(z). Hence, since
z 6= e, there exists j with j 6= i such that sj ∈ DR(z) and let N be the corresponding conjugation
special partial matching of z.
Notice that m(O) is a divisor of m(si, sj), for any orbit O of 〈M,N〉. The orbit 〈M,N〉(z) is

chain-like and

m(〈M,N〉(z)) =

{
3, if |i− j| = 1,

2, if |i− j| > 1.

The orbit 〈M,N〉(u) is either chain-like or dihedral and

m(〈M,N〉(u)) =

{
3 or 1, if |i− j| = 1,

2 or 1, if |i− j| > 1.

Hence, we may conclude by Lemma 3.4. �

Remark 3.6. The fact that Kazhdan–Lusztig–Vogan R-polynomials {Ru,v}u,v∈ι and Q-polynomials
{Qu,v}u,v∈ι for the action of Sp(2n,C) on the flag variety of SL(2n,C) are ι-kernels is an immediate
consequence of Theorems 3.3 and 3.5. The Kazhdan–Lusztig–Stanley polynomials of the Kazhdan–
Lusztig–Vogan Q-polynomials are the Kazhdan–Lusztig–Vogan P -polynomials (see [2, Eq. (2)]).

We fix an arbitrary Coxeter system (W,S). Recall that, given w ∈ W , we say that M is a matching
of w if M is a matching of the lower Bruhat interval [e, w]. For each s ∈ DL(w), we have a special
matching λs of w defined by λs(u) = su, for all u ∈ [e, w] (see [8] and [9] for more details concerning
special matchings of Coxeter systems). We call these matchings left multiplication matchings.

Let H be an arbitrary subset of S. Let w ∈ WH . As in [15, 16], we say that a special matching
of [e, w] is H-special provided that

u ≤ w, u ∈ WH , M(u)✁ u ⇒ M(u) ∈ WH .

Note that a ∅-special matching is a special matching and that a left multiplication matching is
H-special for all H ⊆ S.



PIRCON KERNELS AND UP-DOWN SYMMETRY 15

By [1, Theorem 7.7], the parabolic quotient WH is a pircon. Recall from [17] that an H-special
matching M of [e, w] gives rise to a special partial matching MH of [e, w]H , which is defined as
follows:

(3.12) MH(u) =

{
M(u), if M(u) ∈ WH ,

u, if M(u) /∈ WH ,

for all u ∈ [e, w]H . We call left multiplication partial matchings the special partial matchings coming
from left multiplication matchings.

Let SPMH be the set of all special partial matchings of elements in WH that are obtained from
H-special matchings by the recipe of Eq. (3.12):

SPMH = {MH ∈ SPMw : M is an H-special matching of some w ∈ WH \ {e}}.

The following result is needed in the proof of Theorem 3.8.

Lemma 3.7. Let z ∈ WH and s, r ∈ S. If rz ✁ z, sz ✄ z and sz /∈ WH , then r, s ∈ DL(sz) and
m(s, r) < ∞.

Proof. Since z ∈ WH and z ✁ sz /∈ WH , we have sz = zh for a certain h ∈ H. So r, s ∈ DL(sz)
which, by well known facts, implies m(s, r) < ∞. �

Theorem 3.8. Let (W,S) be any Coxeter system, and H ⊆ S. Let SH be the set of left multiplication
partial matchings of WH . Then

• (WH ,SH) is a pircon system,
• the families of Kazhdan–Lusztig Rx-polynomials of (WH ,SH) satisfy the up-down symmetry.

Proof. The properties of a pircon system in Definition 2.12 are easy to check except the fourth
one: let us prove it. Let u, w ∈ WH with u ≤ w, and M,N ∈ SH such that M(w) ✁ w and
N(w) ✁ w. Let s, r ∈ S be such that M = λH

s and N = λH
r . The orbit 〈M,N〉(w) is dihedral

with m(〈M,N〉(w)) = m(s, r), and the orbit 〈M,N〉(u) is dihedral, chain-like or a singleton, with
m(〈M,N〉(u)) ∈ {1,m(s, r)} by [17, Lemma 6.8]. Hence m(〈M,N〉(u)) is a divisor of m(〈M,N〉(w)).
In order to prove the second statement, we apply Lemmas 3.4.
Let s ∈ S and z ∈ WH \ {e} such that λH

s (z) = z. Since λH
s (z) = z, clearly s /∈ DL(z). Hence,

since z 6= e, there exists r ∈ S with r 6= s such that r ∈ DL(z). Lemma 3.7 implies m(s, r) < ∞.
The orbit 〈λH

s , λ
H
r 〉(z) is chain-like with m(〈λH

s , λ
H
r 〉(z)) = m(s, r) by [17, Lemma 6.8]. The orbit

〈λH
s , λ

H
r 〉(u) is either chain-like or dihedral and, in both cases, m(〈λH

s , λ
H
r 〉(u)) = m(s, r). Hence, we

may conclude by Lemma 3.4.
�

The following result was shown by Brenti [5, Corollary 4.2] for finite Coxeter groups with a complete
different proof (which is based on the existence of a longest element in finite Coxeter groups). We
prove it for all Coxeter groups as a direct consequence of the results in this section.
Let M be any refinement of the pircon WH with matchings in SPMH . By [16, Theorem 1.5],

Deodhar’s parabolic Kazhdan–Lusztig Rx,H-polynomials {Rx,H
u,v }u,v∈WH coincide with the Kazhdan–

Lusztig Rx,H-polynomials of the refined pircon (WH ,M), and, in particular, with the Kazhdan–
Lusztig Rx-polynomials of the pircon system (WH ,SH), where SH is the set of left multiplication
partial matchings of WH .
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Corollary 3.9. Let (W,S) be any Coxeter system, and H ⊆ S. The families of Deodhar’s parabolic
Kazhdan–Lusztig Rx,H-polynomials {Rx,H

u,v }u,v∈WH satisfy

Rx,H
u,w = (q − 1− x)Rx,H

su,w

for all s ∈ S and all u, w ∈ WH such that u✁ su ∈ WH and w ✁ sw /∈ WH .

4. Deodhar’s Duality (revisited)

The purpose of this section is to revisit the results in [11] where Deodhar studies the relation-
ship between the two Hecke algebra modules introduced in [10] and used to define the parabolic
Kazhdan–Lusztig Rq-polynomials and R−1-polynomials. Not only we generalize Deodhar’s results
to the setting of pircons, but, using the up-down symmetry, we also shed new light on the case of
parabolic Kazhdan–Lusztig polynomials and, in particular, we find the missing involution that was
desired in Deodhar’s approach (see [11, Remark 2.5]).

Throughout this section and the next one, we fix a pircon system (P, S) with the property that S
consists of quasi special partial matchings of the whole pircon P , and whose Rx-polynomials satisfy
the up-down symmetry. We consider the free Z[q1/2, q−1/2]-module MP given by

MP =
⊕

u∈P

Z[q1/2, q−1/2]mu.

Let (WP , S) be the Coxeter system given by m(M,N) = min({k > 0 : (MN)k(u) = u for all u ∈
P} ∪ {+∞}), for all M,N ∈ S with M 6= N (i.e., m(M,N) is the order of MN as a permutation of
P ). We denote by HP the Hecke algebra of WP .
The action of WP on P can be extended to an action of the Hecke algebra HP on MP in the two

following ways.

Theorem 4.1. Let x ∈ {q,−1}. The maps

TM x©mu =





mM(u), if M(u)✄ u,

q mM(u) + (q − 1)mu, if M(u)✁ u,

xmu, if M(u) = u,

for all M ∈ S, provide a structure of HP -module on MP .

Proof. Since the relations of the Hecke algebra HP involve at most two special partial matchings, it is
enough to prove the thesis for the set S of cardinality at most 2. Hence the proof is similar to that of
[16, Theorem 4.3]. In the proof of [17, Theorem 4.3], the hypothesis that is used is that the cardinality
of every orbit of 〈M,N〉 divides m(M,N): here this holds by the definition of m(M,N). �

As analogues of the map ι of an Hecke algebra (see subsection 2.2), we have the following two
maps of MP .

Definition 4.2. We let ιx be the Z-linear endomorphism of MP given by

ιx(mv) = q ρ(v)
∑

u∈P

(−1)ρ(u,v)Rx
u,v mu

and
ιx(

∑

v∈P

fv mv) =
∑

v∈P

fv ι
x(mv).
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Notice that ιx(mv) = q ρ(v)
∑

u:u≤v(−1)ρ(u,v)Rx
u,v mu holds, since Rx

u,v = 0 unless u ≤ v.

Proposition 4.3. The map ιx is an involution.

Proof. Indeed

ιx(ιx(mv)) = ιx(q ρ(v)
∑

z∈P

(−1)ρ(z,v)Rx
z,v mz)

= qρ(v)
∑

z∈P

(−1)ρ(z,v)Rx
z,v q

ρ(z)
∑

u∈P

(−1)ρ(u,z)Rx
u,z mu

=
∑

u∈P

(∑

z∈P

Rx
u,zq

ρ(z,v)Rx
z,v)

)
(−1)ρ(u,v)mu,

and the assertion follows by Theorems 3.3 and 2.15 since the Rx-polynomials satisfy the up-down
symmetry. �

The crucial property that we want to show is the following.

Theorem 4.4. For all h ∈ HP and m ∈ MP , we have

ιx(h x©m) = ι(h) x© (ιx(m)).

Proof. It is enough to show the statement for h = TM , with M ∈ S, and m = mv. We split
the proof into three cases depending on the action of M on v. For notational convenience, we let
εu,v = (−1)ρ(u,v) for all u, v ∈ P .
If M(v)✁ v then, by Theorem 4.1, Definition 4.2 and Eq. (2.1),

qρ(v)ιx(TM x©mv) = qρ(v)ιx
(
qmM(v) + (q − 1)mv

)

= −
∑

u∈P

εu,vR
x
u,M(v)mu + (q − 1)

∑

u∈P

εu,vR
x
u,vmu

= −
∑

u:M(u)✄u

εu,vR
x
M(u),vmu −

∑

u:M(u)✁u

εu,vq
(
Rx

M(u),v − (q − 1)Rx
u,v

)
mu

−
∑

u:M(u)=u

εu,vR
x
u,M(v)mu + (q − 1)

∑

u∈P

εu,vR
x
u,vmu.

Therefore

qρ(v)ιx(TM x©mv) =
∑

u:M(u)=u

εu,v(−Rx
u,M(v) + (q − 1)Rx

u,v)mu +
∑

u:M(u)✄u

εu,v
(
−Rx

M(u),v + (q − 1)Rx
u,v

)
mu

+
∑

u:M(u)✁u

εu,v
(
− qRx

M(u),v − (q − 1)Rx
u,v + (q − 1)Rx

u,v

)
mu

=
∑

u:M(u)=u

εu,v
(
− (q − 1− x)Rx

u,v + (q − 1)Rx
u,v

)
mu

+
∑

u:M(u)✄u

εu,v
(
−Rx

M(u),v + (q − 1)Rx
u,v

)
mu −

∑

u:M(u)✁u

εu,vqR
x
M(u),vmu

=
∑

u:M(u)=u

εu,vxR
x
u,vmu −

∑

u:M(u)✄u

εu,v
(
Rx

M(u),v + (1− q)Rx
u,v

)
mu −

∑

u:M(u)✁u

εu,vqR
x
M(u),vmu.
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Similarly, if M(v)✄ v then

qρ(v)ιx(TM x©mv) = qρ(v)ιx(mM(v)) = −q
∑

u∈P

εu,vR
x
u,M(v) mu,

and if M(v) = v then

qρ(v)ιx(TM x©mv) = qρ(v)ιx(xmv) = x
∑

u∈P

εu,vR
x
u,v mu.

On the other hand, independently from the action of M on v, we have

qρ(v)ι(TM) x© (ιx(mv)) = (qTM − (1− q)) x©

(∑

u∈P

εu,vR
x
u,v mu

)

= q
∑

u:M(u)✁u

εu,vR
x
u,v

(
q mM(u) + (q − 1)mu

)
+ q

∑

u:M(u)✄u

εu,vR
x
u,v mM(u)

+ q
∑

u:M(u)=u

εu,vR
x
u,v xmu − (1− q)

∑

u∈P

εu,vR
x
u,v mu

= q
∑

u:M(u)✄u

−εu,v qR
x
M(u),v mu + q

∑

u:M(u)✁u

εu,v(q − 1)Rx
u,v mu

+ q
∑

u:M(u)✁u

−εu,vR
x
M(u),v mu + q

∑

u:M(u)=u

εu,vR
x
u,v xmu − (1− q)

∑

u∈P

εu,vR
x
u,v mu

=
∑

u:M(u)✄u

−εu,v
(
Rx

M(u),v + (1− q)Rx
u,v

)
mu

+
∑

u:M(u)✁u

εu,v
(
(1− q)Rx

u,v − qRx
M(u),v − (1− q)Rx

u,v

)
mu +

∑

u:M(u)=u

εu,v
(
q x− 1 + q

)
Rx

u,v mu

=
∑

u:M(u)✄u

−εu,v
(
Rx

M(u),v + (1− q)Rx
u,v

)
mu +

∑

u:M(u)✁u

−εu,vqR
x
M(u),v mu +

∑

u:M(u)=u

εu,vxR
x
u,v mu,

where the last equality follows since qx − 1 + q = x holds whenever x ∈ {q,−1}. In particular
ι(TM) x© (ιx(mv)) = ιx(TM x©mv) when M(v)✁ v.

If M(v)✄ v, then we use recursion Eq. (2.1) to obtain

qρ(v)ι(TM) x© (ιx(mv)) =
∑

u:M(u)✄u

−εu,v
(
q(Rx

u,M(v) − (q − 1)Rx
u,v) + (1− q)Rx

u,v

)
mu

+
∑

u:M(u)✁u

−εu,vqR
x
u,M(v) mu +

∑

u:M(u)=u

εu,vx(q − 1− x)Rx
u,M(v) mu

= −q
∑

u

εu,vR
x
u,M(v) mu,

where the last equality follows since x(q − 1− x) = −q. Hence the assertion follows in this case.
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If M(v) = v, then we use recursion Eq. (2.1) and the up-down symmetry to obtain

qρ(v)ι(TM) x© (ιx(mv)) =
∑

u:M(u)✄u

−εu,v
(
(q − 1− x)Rx

u,v + (1− q)Rx
u,v

)
mu

+
∑

u:M(u)✁u

−εu,vq(q − 1− x)Rx
u,v mu +

∑

u:M(u)=u

εu,vxR
x
u,v mu

= x
∑

u

εu,vR
x
u,v mu.

Hence the assertion follows also in this last case. �

Since the family ofRx-polynomials satisfy the up-down symmetry, we can define the P x-polynomials
by Theorem 3.3, and consider the following definition, which generalizes the one of the Kazhdan–
Lusztig elements {Cw}w∈W and {C ′

w}w∈W of the Hecke algebra of a Coxeter group. From now on,
we let x ∈ {q,−1} and z be such that {x, z} = {q,−1}.

Definition 4.5. We let
Cx

w = q
ρ(w)
2

∑

v∈P

(−1)ρ(v,w) q ρ(v) P x
v,w mv

and
C ′x

w = q
ρ(w)
2

∑

v∈P

P z
v,w mv.

Note that the element C ′x
w is defined using z-Kazhdan–Lusztig polynomials. By triangularity, both

{Cx
w}w∈P and {C ′x

w }w∈P are bases of MP . Following what is customary in the classical setting of the
Hecke algebras, we call the Cx

w and the C ′x
w the Kazhdan–Lusztig elements.

In [13], Kazhdan and Lusztig define an involution jH on the Hecke algebra H of any Coxeter group
W in the following way:

jH(aTw) = a (−q)ρ(w) Tw

for all w ∈ W and a ∈ Z[q
1
2 , q−

1
2 ]. Kazhdan and Lusztig prove jH◦ι = ι◦jH and jH(Cw) = (−1)ℓ(w)C ′

w,
for all w ∈ W . In [11, Remark 2.5], Deodhar says that “one does not have an analogue of j for the
parabolic situation since the only possible candidate is not a morphism and does not commute with
ι”. This is correct, although we show that the right generalization of j to the parabolic setting (and
more generally to the setting of pircons) should

• not be an equivariant morphism from (MP , x© ) to (MP , x© ) but, instead, a jH-twisted
equivariant morphism from (MP , x© ) to (MP , z© ) (in the sense of (1) of Theorem 4.6),

• not commute with ιx, for a fixed x, but instead satisfy (2) of Theorem 4.6, i.e. ιx and ιz are
conjugated by it.

Furthermore, it is worth noticing that Deodhar expected the map j to relate the basis element Cx
w

with C ′x
w while, instead, it relates Cx

w with C ′z
w (see Proposition 4.7).

So we let jP : MP → MP be the Z-linear map given by

jP (amw) = a (−q)ρ(w) mw

for all a ∈ Z[q
1
2 , q−

1
2 ] and all w ∈ P . Note that jP is an involution.

Theorem 4.6. The following hold:



20 FABRIZIO CASELLI AND MARIO MARIETTI

(1)

jP (h x©m) = jH(h) z© jP (m)

for all h ∈ HP and m ∈ MP ,
(2)

ιx ◦ jP = jP ◦ ιz.

Proof. In order to prove (1), it is enough to prove the statement for h = TM and m = mv by
Theorem 4.1. Since

jP (TM x©mv) =





jP (mM(v)) = (−q)ρ(v)+1 mM(v), if M(v)✄ v,

jP (q mM(v) + (q − 1)mv) = q (−q)ρ(v)−1 mM(v) + (q − 1)(−q)ρ(v) mv, if M(v)✁ v,

jP (xmv) = x(−q)ρ(v) mv, if M(v) = v,

and

jH(TM) z© jP (mv) = −q TM z© (−q)ρ(v) mv =





(−q) ρ(v)+1 mM(v), if M(v)✄ v,

(−q)ρ(v)+1 [q mM(v) + (q − 1)mv], if M(v)✁ v,

(−q)ρ(v)+1 z mv, if M(v) = v,

the assertion follows since x = −q z.
Let us prove (2). For all a ∈ Z[q

1
2 , q−

1
2 ] and all w ∈ P , we have

ιx(jP (a mw)) = ιx(a (−q)ρ(w) mw) = a (−q)ρ(w) (q)ρ(w)
∑

v∈P

(−1)ρ(v,w) Rx
v,w mv

= a
∑

v∈P

(−1)ρ(v) Rx
v,w mv

and

jP (ι
z(a mw)) = jP

(
a (q)ρ(w)

∑

v∈P

(−1)ρ(v,w) Rz
v,w mv

)
= a qρ(w)

∑

v∈P

(−1)ρ(v,w) Rz
v,w (−q)ρ(v) mv

= a
∑

v∈P

(−1)ρ(v) Rx
v,w mv

where we used the identity (−q)ρ(v,w) Rz
v,w = Rx

v,w of Proposition 2.10. Hence (2) follows. �

The following proposition provides some properties of the Kazhdan–Lusztig bases of the pircon
system (P, S). Notice that Property (1) is new also for the parabolic Kazhdan–Lusztig bases.

Proposition 4.7. The following holds:

(1) jP (C
x
w) = (−1)ρ(w) C ′z

w ,
(2) ιx(C ′x

w ) = C ′x
w ,

(3) ιx(Cx
w) = Cx

w.
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Proof. Let us check (1). We have

jP (C
x
w) = jP

(
q

ρ(w)
2

∑

v∈P

(−1)ρ(v,w) q ρ(v) P x
v,w mv

)

= q
ρ(w)
2

∑

v∈P

(−1)ρ(v,w) qρ(v) P x
v,w (−q)ρ(v)mv

= q
ρ(w)
2

∑

v∈P

(−1)ρ(w) P x
v,w mv

= (−1)ρ(w) C ′z
w .

Furthermore

ιx(C ′x
w ) = ιx

(
q

ρ(w)
2

∑

v∈P

P z
v,w mv

)

= q
ρ(w)
2

∑

v∈P

P z
v,w

∑

u∈P

q ρ(v)(−1)ρ(u,v) Rx
u,v mu

= q
ρ(w)
2

∑

v∈P

P z
v,w

∑

u∈P

q ρ(v) (−1)ρ(u,v) (−q)ρ(u,v) Rz
u,v mu

= q
ρ(w)
2

∑

u∈P

q ρ(u)
(∑

v∈P

Rz
u,v P

z
v,w

)
mu

= q
ρ(w)
2

∑

u∈P

q ρ(u) qρ(u,w) P z
u,w mu

= C ′x
w ,

where the third equality follows by Proposition 2.10 (3) and the fifth equality follows by the fact
that the P z-polynomials are the Kazhdan–Lusztig–Stanley polynomials of the Rz-polynomilas (see
subsection 2.4). This proves (2).

Part (2) of Theorem 4.6 with (1), (2), and the fact that jP is an involution imply (3). �

5. Characterization and Recursion for Kazhdan–Lusztig elements

In this section, we briefly present both a characterization for Kazhdan–Lusztig elements and a
recursion for Kazhdan–Lusztig elements and polynomials.

Recall from Section 4 our assumptions on the pircon system (P, S) and in particular that the
family of Rx-polynomials satisfy the up-down symmetry.

Proposition 5.1 (Characterization). Let D ∈ MP and w ∈ P be such that

(1) ιx(D) = D,

(2) D = q
ρ(w)
2

∑
v∈P Qv,wmv, with Qv,w ∈ Z[q], Qw,w = 1 and degQv,w < ρ(v,w)

2
.

Then Qv,w = P z
v,w for all v ≤ w, i.e. D = C ′x

w .

Proof. Applying ιx to both sides of (2), we obtain

D = q
ρ(w)
2

∑

v∈P

Qv,w q ρ(v)
∑

u∈P

(−1)ρ(u,v)Rx
u,vmu.
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Equating the coefficients of mu on both sides, by Proposition 2.10 (3), we obtain

Qu,wq
ρ(w) =

∑

v∈P

Qv,w q ρ(v)(−1)ρ(u,v)Rx
u,v

= q ρ(u)
∑

v∈P

Rz
u,v Qv,w

for all u such that u ≤ w. The result follows by the definition of the polynomials P z
u,w. �

Proposition 5.2. Let v, w ∈ P with v ≤ w, M ∈ S with M(w) ✁ w, v′ = min{v,M(v)}, and

v′′ = max{v,M(v)}. Let C ′
M = q

1
2 (TM + 1) be the Kazhdan–Lusztig element of HP associated with

M . Then
C ′x

w = C ′
M x©C ′x

M(w) −
∑

u:M(u)≤u, if x = q
u:M(u)<u, if x = −1

µ(u,M(w))C ′x
u ,

and
P z
v,w = P z

v′,M(w) + xvP
z
v′′,M(w) −

∑

u:M(u)≤u, if x = q
u:M(u)<u, if x = −1

µ(u,M(w))q
ρ(u,w)

2 P z
v,u,

where

xv =

{
x if M(v) = v

q otherwise.

Proof. We use the characterization of the elements C ′x
w of Proposition 5.1. For short, let Ex

w denotes
the element

C ′
M x©C ′x

M(w) −
∑

u:M(u)≤u, if x = q
u:M(u)<u, if x = −1

µ(u,M(w))C ′x
u .

Since ι(C ′
M) = C ′

M , we have ιx(Ex
w) = Ex

w, by Theorem 4.4 and Proposition 4.7. Let us expand Ex
w

as a linear combination of the elements mv. Since

C ′
M x©C ′x

M(w) = q
1
2 (1 + TM) x©

(
q

ρ(w)−1
2

∑

v∈P

P z
v,M(w)mv

)

= q
ρ(w)
2

(∑

v∈P

P z
v,M(w)mv +

∑

v:M(v)✄v

P z
v,M(w)mM(v)

+
∑

v:M(v)✁v

P z
v,M(w)(qmM(v) + (q − 1)mv) +

∑

v:M(v)=v

xP z
v,M(w)mv

)
,

the coefficient of mv in the expansion of Ex
w is q−

ρ(w)
2 times the following polynomial:

P z
v,M(w) + χM(v)✁vP

z
M(v),M(w) + χM(v)✄vqP

z
M(v),M(w) + χM(v)✁v(q − 1)P z

v,M(w)

+χM(v)=vxP
z
v,M(w) −

∑

u:M(u)≤u, if x = q
u:M(u)<u, if x = −1

µ(u,M(w))q
ρ(u,w)

2 P z
v,u

where

χF =

{
1 if F is true

0 if F is false.
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The assertion follows by checking that this polynomial coincides with

P z
v′,M(w) + xvP

z
v′′,M(w) −

∑

u:M(u)≤u, if x = q
u:M(u)<u, if x = −1

µ(u,M(w))q
ρ(u,w)

2 P z
v,u

and has degree smaller than ρ(v,w)
2

. �
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