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Team Equivalences for Finite-State Machines
with Silent Moves

Roberto Gorrieri∗

Dipartimento di Informatica - Scienza e Ingegneria
Università di Bologna,

Mura A. Zamboni 7, 41027 Bologna, Italy

Abstract

Finite-state machines, a simple class of finite Petri nets, were equipped in [16] with
an efficiently decidable, truly concurrent, bisimulation-based, behavioral equivalence,
called team equivalence, which conservatively extends classic bisimulation equiva-
lence on labeled transition systems and which is checked in a distributed manner, with-
out necessarily building a global model of the overall behavior. This paper addresses the
problem of defining variants of this equivalence which are insensitive to silent moves.
We define (rooted) weak team equivalence and (rooted) branching team equivalence as
natural transposition to finite-state machines of Milner’s weak bisimilarity [25] and of
van Glabbeek and Weijland’s branching bisimilarity [12] on labeled transition systems.
The process algebra CFM [15] is expressive enough to represent all and only the finite-
state machines, up to net isomorphism. Here we first prove that the rooted versions of
these equivalences are congruences for the operators of CFM, then we show some al-
gebraic properties, and, finally, we provide finite, sound and complete, axiomatizations
for rooted weak team equivalence and rooted branching team equivalence over CFM.

Keywords: Petri nets, finite-state machines, truly-concurrent semantics, weak
bisimulation, branching bisimulation, equivalence checking, axiomatization.

1. Introduction

By finite-state machine (FSM, for short) we mean a simple type of finite Petri net
[15, 29, 33] whose transitions have singleton pre-set and singleton, or empty, post-set.
The name originates from the fact that a net of this kind is isomorphic to a nondeter-
ministic finite automaton (NFA), usually called a finite-state machine as well. However,
semantically, our FSMs are richer than NFAs because, as their initial marking may be
not a singleton, these nets can also exhibit concurrent behavior, while NFAs are strictly
sequential. FSMs are also very similar to finite-state, labeled transition systems (LTSs,
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for short) [22], a class of models that are suitable for describing sequential, nondeter-
ministic systems, and are also widely used as a semantic model for process algebras
(see, e.g., [14]). On this class of models, there is widespread agreement that a very
natural and convenient equivalence relation is bisimulation equivalence [28, 25]. If the
LTS contains silent transitions, i.e., transitions labeled by the invisible action τ , then
Milner proposed weak bisimulation equivalence [25] as a natural extension of bisimu-
lation equivalence to this setting. However, van Glabbeek and Weijland in [12] argued
that weak bisimilarity does not completely respect the branching structure of processes
and so they proposed branching bisimulation equivalence as a suitable equivalence in
the presence of silent moves.

In [16] we defined a new truly-concurrent equivalence relation over FSMs (without
silent moves), called team equivalence, that can be computed in a distributed manner,
without resorting to a global model of the overall behavior of the analyzed marked net.
Since an FSM is so similar to an LTS, the basic idea we started with was to define
bisimulation equivalence directly over the set of places of the unmarked net. The ad-
vantage is that bisimulation equivalence is a relation on places, rather than on markings
(as it is customary for Petri nets), and so much more easily computable; more precisely,
if m is the number of net transitions and n is the number of places, checking whether
two places are bisimilar can be done in O(m log (n+1)) time, by adapting the optimal
algorithm in [30] for standard bisimulation on LTSs. After the bisimulation equivalence
over the set of places has been computed, we can define, in a purely structural way, that
two markings m1 and m2 are team equivalent if they have the same cardinality, say
|m1|= k = |m2|, and there is a bisimulation-preserving, bijective mapping between the
two markings, so that each of the k pairs of places (s1,s2), with s1 ∈ m1 and s2 ∈ m2,
is such that s1 and s2 are bisimilar. Team equivalence is a truly concurrent behavioral
equivalence as it is sensitive to the size of the distributed state; as a matter of fact, it re-
lates markings of the same size, only. The name team equivalence reminds us that two
distributed systems, composed of a team of non-cooperating, sequential processes, are
equivalent if it is possible to match each sequential component of the first system with
one bisimulation-equivalent, sequential component of the other one, as in any sports
where two competing (distributed) teams have the same number of (sequential) play-
ers. Once bisimilarity on places has been computed, checking whether two markings
of size k are team equivalent can be computed in O(k2) time (or O(n), cf. Remark 1).

Note that to check whether two markings are team equivalent we need not to con-
struct an LTS describing the global behavior of the whole system, but only to find a
suitable, bisimulation-preserving match among the local, sequential states (i.e., the ele-
ments of the markings). Nonetheless, we proved that team equivalence is coherent with
the global behavior of the net. More precisely, we showed in [16] that team equivalence
is finer than interleaving bisimilarity, actually it coincides with strong place bisimilarity
[1] and so it respects the causal semantics of nets.

The main goal of this paper is to extend our previous definition of (strong) bisimula-
tion on places (and of team equivalence) to FSMs with silent moves, taking inspiration
from Milner’s weak bisimulation [25, 14] and van Glabbeek and Weijland’s branching
bisimulation [12, 14]. Therefore, we first define weak bisimulation on places and its
associated weak team equivalence, together with the variants requiring the so-called
rootedness condition (i.e., an initial silent move can be matched only by a nonempty
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sequence of silent moves, as in rooted weak bisimilarity [25, 14]). Then, we define
branching bisimulation on places and its associated branching team equivalence, to-
gether with the variants requiring the rootedness condition (i.e., the first move is to be
matched strongly, as in rooted branching bisimilarity [12, 14]). The originality of our
proposal is not in the technical definition of (rooted) weak/branching bisimulations on
places (which are, indeed, almost identical to the original ones on LTSs), rather on the
fact that these relations are defined over the places of an unmarked net, rather than on
the reachable markings of a marked net. Moreover, the main originality of our proposal
is in the definition of (rooted) weak/branching team equivalences; these equivalences
are all computed in a structural way, without building a model of the global behav-
ior. Nonetheless, we will prove that these are coherent with the global behavior; in
particular, they are finer than the corresponding (rooted) weak/branching interleaving
bisimulation equivalences over FSMs (see Section 2 for details), which are equiva-
lences relations defined over the net markings. The key feature common to all the new
team equivalences we present in this paper, is that, contrary to the weak/branching in-
terleaving bisimulation equivalences, to a silent move of a single sequential component
of the marking m1, the marking m2 may reply only with a (possibly empty) sequence
of silent transitions which are local to one of its sequential components.

In [15] we proved that the class of FSMs can be “alphabetized” by means of the
process algebra CFM: not only the net semantics of each CFM term is an FSM, but
also, given a FSM N, we can single out a CFM term pN such that its net semantics is
an FSM isomorphic to N. This means that we can define team equivalences also over
CFM process terms. CFM is a simple process algebra: it is actually a slight extension
to finite-state CCS [25] and a subcalculus of both regular CCS and BPP [14].

Based on our previous work [17], where we provided a sound and complete ax-
iomatization for (strong) team equivalence over CFM, the goals of the second part of
this paper are three: we want (i) to prove that rooted weak/branching team equivalence
is a congruence for the CFM operators, (ii) to study the algebraic properties of these
equivalences and, finally, (iii) to provide them with a sound and complete, finite axiom-
atization for CFM. These axiomatizations are not too surprising: it is enough to add to
(a slighty revised version of) the finite axiomatization of rooted weak/branching bisim-
ulation equivalence for finite-state CCS [26, 11], three axioms for parallel composition
stating that it is associative, commutative and with 0 as neutral element. However, the
technical treatment is different (and somehow simpler) than [26, 11], as we base our
axiomatization on guarded process constants (e.g., C .

= a.C) rather than on the recur-
sion construct (with possible unguarded variables; e.g., µXa.X +X). To the best of our
knowledge, these are the first axiomatizations of a truly concurrent behavioral equiva-
lence in the presence of silent moves.

The paper is organized as follows. Section 2 introduces the basic definitions about
finite-state machines and some well-known behavioral equivalences on them: (rooted)
weak interleaving bisimilarity and (rooted) branching interleaving bisimilarity. Section
3 copes with the distributed equivalence checking problem for (rooted) weak equiv-
alence; first, (rooted) weak bisimulation over places of an unmarked net is defined;
then, (rooted) weak team equivalence is introduced and some examples are presented,
together with a proof that it is finer than (rooted) weak interleaving bisimilarity; more-
over, the minimization of an FSM w.r.t. weak bisimilarity on places is defined. Section
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4 copes with the similar distributed equivalence checking problem for (rooted) branch-
ing bisimilarity: we define first (rooted) branching bisimilarity on places, then (rooted)
branching team equivalence and its minimized net. Section 5 introduces the process
algebra CFM, its syntax, its net semantics and recalls the so-called representability
theorem from [15]. Section 6 shows that rooted weak/branching team equivalences
are congruences for the CFM operators and studies their algebraic properties. Section
7 presents the finite axiomatizations of rooted weak/branching team equivalences for
CFM, proving that they are sound and complete. Finally, Section 8 discusses some
related literature and future research.

2. Basic Definitions and Behavioral Equivalences

Definition 1. (Multiset) Let N be the set of natural numbers. Given a finite set S,
a multiset over S is a function m : S→ N. The support set dom(m) of m is the set
{s ∈ S

∣∣ m(s) 6= 0}. The set of all multisets over S, denoted by M (S), is ranged over
by m, possibly indexed. We write s ∈ m if m(s)> 0. The multiplicity of s in m is given
by the number m(s). The size of m, denoted by |m|, is the number ∑s∈S m(s), i.e., the
total number of its elements. A multiset m such that dom(m) = /0 is called empty and is
denoted by θ . We write m⊆ m′ if m(s)≤ m′(s) for all s ∈ S.

Multiset union ⊕ is defined as follows: (m⊕m′)(s) = m(s)+m′(s); the operation
⊕ is commutative, associative and has θ as neutral element. Multiset difference 	
is defined as follows: (m1	m2)(s) = max{m1(s)−m2(s),0}. The scalar product of a
number j with m is the multiset j ·m defined as ( j ·m)(s) = j · (m(s)).

By si we also denote the multiset with si as its only element. Hence, a multiset m
over S = {s1, . . . ,sn} can be represented as k1 · s1⊕ k2 · s2⊕ . . .⊕ kn · sn, where k j =
m(s j)≥ 0 for j = 1, . . . ,n. 2

Definition 2. (Finite-state machine) A labeled finite-state machine (FSM, for short)
is a tuple N = (S,A,T ), where

• S is the finite set of places, ranged over by s (possibly indexed),

• A is the finite set of labels, ranged over by ` (possibly indexed), and

• T ⊆ S×A× (S∪{θ}) is the finite set of transitions, ranged over by t (possibly
indexed).

Given a transition t = (s, `,m), we use the notation: •t to denote its pre-set s (which
is a single place) of tokens to be consumed; l(t) for its label `, and t• to denote its
post-set m (which is a place or the empty multiset θ ) of tokens to be produced. Hence,

transition t can be also represented as •t
l(t)−→ t•. 2

Our definition of T as a set of triples ensures that the net is transition simple, i.e.,
for each t1, t2 ∈ T , if •t1 =

•t2 and t•1 = t•2 and l(t1) = l(t2), then t1 = t2. Graphically, a
place is represented by a little circle, a transition by a little box, which is connected by
a directed arc from the place in its pre-set and to the place in its post-set, if any.
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Definition 3. (Marking, FSM net system) A marking is a multiset over S. Given a
marking m and a place s, we say that the place s contains m(s) tokens, graphically
represented by m(s) bullets inside place s. An FSM net system N(m0) is a tuple (S,A,T,
m0), where (S,A,T ) is an FSM and m0 is a marking over S, called the initial marking.
We also say that N(m0) is a marked net. An FSM net system N(m0) = (S,A,T, m0) is
sequential if m0 is a singleton, i.e., |m0|= 1; while it is concurrent if m0 is arbitrary. 2

Definition 4. (Token game, firing sequence, transition sequence, reachable mark-
ings) Given an FSM N = (S,A,T ), a transition t is enabled at marking m, denoted
by m[t〉, if •t ⊆ m. The execution (or firing) of t enabled at m produces the marking
m′ = (m	 •t)⊕ t•. This is written as m[t〉m′. This procedure is called the token game.
A firing sequence starting at m is defined inductively as follows:

• m[ε〉m is a firing sequence (where ε denotes an empty transition sequence) and

• if m[σ〉m′ is a firing sequence and m′[t〉m′′, then m[σt〉m′′ is a firing sequence.

If σ = t1 . . . tn (for n≥ 0) and m[σ〉m′ is a firing sequence, then there exist m1, . . . ,mn+1
such that m = m1[t1〉m2[t2〉 . . .mn[tn〉mn+1 = m′, and σ = t1 . . . tn is called a transition
sequence starting at m and ending at m′. The set of reachable markings from m is
reach(m) = {m′

∣∣ ∃σ .m[σ〉m′}.
The labeling function can be extended to transition sequences by juxtaposition;

formally: l(ε) = ε (i.e., the label of an empty transition sequence is the empty word on
A, both represented by the same symbol ε with abuse of notation) and l(tσ) = l(t)l(σ).

The definition of pre-set and post-set can be extended to transition sequences as
follows: •ε = θ , •(tσ) = •t⊕ (•σ 	 t•), ε• = θ , (tσ)• = σ•⊕ (t•	 •σ). A transition
sequence σ is sequential if |•σ | ≤ 1. 2

Definition 5. (Dynamically reduced) An FSM net system N(m0) = (S,A,T,m0) is
dynamically reduced if ∀s∈ S∃m∈ reach(m0).m(s)≥ 1 and ∀t ∈ T ∃m,m′ ∈ reach(m0)
such that m[t〉m′. 2

Example 1. Figure 1 shows in (a) a sequential FSM, which performs a, possibly empty,
sequence of a’s and b’s, until it performs one c and then stops successfully (the token
disappears in the end). Note that a sequential FSM is safe (or 1-bounded): each place
in any reachable marking can hold one token at most. In (b), a concurrent FSM is de-
picted: it can perform a forever, interleaved with two occurrences of b, only: the two
tokens in s4 will eventually reach s5, which is a place representing unsuccessful termi-
nation (deadlock). Note that a concurrent FSM is k-bounded, where k is the size of the
initial marking: each place in any reachable marking can hold k tokens at most. Finally,
note that for each FSM and each place s ∈ S, the set reach(s) is a subset of S∪{θ}. 2

Definition 6. (Interleaving Bisimulation) Let N = (S,A,T ) be an FSM. An interleav-
ing bisimulation is a relation R⊆M (S)×M (S) such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′1, ∃t2 such that m2[t2〉m′2 with l(t1)= l(t2) and (m′1,m
′
2)∈R,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that m1[t1〉m′1 with l(t1)= l(t2) and (m′1,m
′
2)∈R.
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s1

a c

s2

b

a)

s3 s4

a b

s5

b)

Figure 1: A sequential finite-state machine in (a), and a concurrent finite-state machine in (b)

a)

s1

a τ

s2 s3

τ a

s4

b)

s5 s6

a τ

s7 s8

Figure 2: Two interleaving bisimilar FSMs

Two markings m1 and m2 are interleaving bisimilar, denoted by m1 ∼int m2, if there
exists an interleaving bisimulation R such that (m1,m2) ∈ R. 2

Interleaving bisimilarity ∼int , which is defined as the union of all the interleaving
bisimulations, is the largest interleaving bisimulation and also an equivalence relation.

Example 2. Consider the net in Figure 2. It is not difficult to realize that R = {(s1,s5⊕
s6),(s2,s6⊕ s7),(s3,s5⊕ s8),(s4,s7⊕ s8)} is an interleaving bisimulation. 2

We now introduce some marking-based relations for FSMs with silent moves. Some
auxiliary notation is necessary. Let N = (S,A,T ) be an FSM. By Aτ = A\{τ}, where τ

is the only invisible action, we denote the set of observable actions. Given a transition
sequence σ , its observable label o(σ) is computed inductively as follows.

o(ε) = ε

o(tσ) =

{
l(t)o(σ) if l(t) 6= τ

o(σ) otherwise.
We also define the auxiliary function oτ(σ) as follows: In case o(σ) 6= ε or σ is empty,
then oτ(σ) = o(σ); in case o(σ) = ε and σ is not empty, then oτ(σ) = τ .

Definition 7. (Weak Interleaving Bisimulation) Let N = (S,A,T ) be an FSM with
silent moves. A weak interleaving bisimulation is a relation R ⊆M (S)×M (S) such
that if (m1,m2) ∈ R then
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a)

s1

a τ

s2 s3

τ a

s4

b)

s5 s6

τ τ

s7

a

Figure 3: Two weak interleaving bisimilar FSMs

• ∀t1 such that l(t1) 6= τ and m1[t1〉m′1, ∃σ2 such that m2[σ2〉m′2 with l(t1) = o(σ2)
and (m′1,m

′
2) ∈ R,

• ∀t1 such that l(t1) = τ and m1[t1〉m′1, ∃σ2 such that m2[σ2〉m′2 with o(σ2) = ε and
(m′1,m

′
2) ∈ R,

and symmetrically if m2 moves first.
Two markings m1 and m2 are weak interleaving bisimilar, denoted by m1 ≈int m2,

if there exists a weak interleaving bisimulation R such that (m1,m2) ∈ R. 2

Note that an invisible transition performed by one of the markings may be matched
by the other one also by idling, i.e., by performing an empty transition sequence. Weak
interleaving bisimilarity ≈int , defined as the union of all the weak interleaving bisimu-
lations, is the largest weak interleaving bisimulation and also an equivalence relation.

Example 3. Consider Figure 3. It is easy to realize that R = {(s1,s5⊕ s6),(s2,s5),(s3,
s5⊕ s7),(s4,s5)} is a weak interleaving bisimulation. And also R∪{(s3,s5⊕ s6)}. 2

Definition 8. (Rooted Weak Interleaving Bisimilarity) Let N = (S,A,T ) be an FSM
with silent moves. Two markings m1 and m2 are rooted weak interleaving bisimilar,
denoted by m1 ≈c

int m2, if

• ∀t1 such that m1[t1〉m′1, ∃σ2 s.t. m2[σ2〉m′2 with l(t1) = oτ(σ2) and m′1 ≈int m′2,

• ∀t2 such that m2[t2〉m′2, ∃σ1 s.t. m1[σ1〉m′1 with l(t2) = oτ(σ1) and m′1 ≈int m′2.2

Therefore, if two markings are rooted weak interleaving bisimilar, in case one of
the two initially performs an invisible transition (i.e., l(t1) = τ), then the other is able
to respond with a nonempty sequence of invisible transitions (i.e., oτ(σ2) = τ); since
the reached markings are simply weakly interleaving bisimilar (i.e., m′1 ≈int m′2), future
invisible transitions performed by one of the two can be matched by the other one also
by idling. Hence, ≈c

int is slightly finer than ≈int .

Example 4. Consider again the net in Figure 3. It is easy to realize that s1 ≈c
int s5⊕ s6,

while s3 6≈c
int s5⊕ s6, even if s3 ≈int s5⊕ s6. 2
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a)

s1

τ b

s2

a

s3

b)

s4

a b
τ

s6

a

s5

s7

Figure 4: Other two non-branching bisimilar FSMs

Definition 9. (Branching interleaving bisimulation) Let N = (S,A,T ) be an FSM
with τ-moves. A branching interleaving bisimulation is a relation R⊆M (S)×M (S)
such that if (m1,m2) ∈ R then

• ∀t1 such that m1[t1〉m′1,

– either l(t1) = τ and ∃σ2 such that o(σ2) = ε , m2[σ2〉m′2 with (m1,m′2) ∈ R
and (m′1,m

′
2) ∈ R,

– or ∃σ , t2 such that o(σ) = ε , l(t1) = l(t2), m2[σ〉m[t2〉m′2 with (m1,m) ∈ R
and (m′1,m

′
2) ∈ R,

• and, symmetrically, ∀t2 such that m2[t2〉m′2.

Two markings m1 and m2 are branching interleaving bisimilar (or branching in-
terleaving bisimulation equivalent), denoted m1 ≈bri m2, if there exists a branching
interleaving bisimulation R that relates them. 2

Note that a silent transition performed by one of the two markings may be matched
by the other one also by idling: this is due to the either case when σ2 = ε (or σ1 =
ε). Branching interleaving bisimilarity ≈bri, which is defined as the union of all the
branching interleaving bisimulations, is the largest branching interleaving bisimulation
and also an equivalence relation. Note that the markings s1 and s5⊕ s6 in Figure 3 are
branching interleaving bisimilar (but not rooted branching interleaving bisimilar, see
below). Branching interleaving bisimilarity is finer than weak interleaving bisimilarity,
because a branching interleaving bisimulation is also a weak interleaving bisimulation.

Example 5. Consider the nets in Figure 4. It is not difficult to see that s1 ≈int s4. How-
ever, s1 6≈bri s4, because to transition s4

a−→ s5, place s1 can only try to respond with
s1

τ−→ s2
a−→ s3, but not all the conditions required are satisfied; in particular, s2 6≈bri s4,

because only s4 can do b. 2

An important property hods for≈bri. Consider the either case: since (m1,m2)∈≈bri
by hypothesis, and m2[σ2〉m′2 with (m1,m′2) ∈≈bri and (m′1,m

′
2) ∈≈bri, it follows that
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(m2,m′2) ∈≈bri because ≈bri is an equivalence relation. This implies that all the mark-
ings in the silent path from m2 to m′2 are branching interleaving bisimilar (by the so-
called stuttering property, cf. Remark 2). Similarly for the or case. This condition is
not required by weak interleaving bisimilarity (cf. Example 5).

Definition 10. (Rooted branching interleaving bisimilarity) Let N = (S,A,T ) be
an FSM with τ-moves. Two markings m1 and m2 are rooted branching interleaving
bisimilar, denoted m1 ≈c

bri m2, if

• ∀t1 such that m1[t1〉m′1, ∃t2 such that l(t1) = l(t2), m2[t2〉m′2 and m′1 ≈bri m′2,

• ∀t2 such that m2[t2〉m′2, ∃t1 such that l(t1) = l(t2), m1[t1〉m′1 and m′1 ≈bri m′2. 2

Note that ≈c
bri is finer than ≈bri: if in the net in Figure 4 we delete the b-labeled

transitions, then s1 ≈bri s4 but s1 6≈c
bri s4, because only s4 can perform a initially.

3. A Distributed Approach to Weak Equivalence Checking

We recall the definition of (strong) bisimulation on places for unmarked FSMs,
originally introduced in [16], as it will be useful in the following. In this definition (and
in the following ones), the markings m1 and m2 can only be either the empty marking
θ or a single place, because of the shape of FSM transitions.

Definition 11. (Bisimulation on places) Let N = (S,A,T ) be an FSM. A bisimulation
on places is a relation R⊆ S×S such that if (s1,s2) ∈ R then for all ` ∈ A

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`−→m2 and either m1 = θ = m2 or
(m1,m2) ∈ R,

• ∀m2 such that s2
`−→m2, ∃m1 such that s1

`−→m1 and either m1 = θ = m2 or
(m1,m2) ∈ R.

Two places s and s′ are bisimilar (or bisimulation equivalent), denoted s ∼ s′, if there
exists a bisimulation R such that (s,s′) ∈ R. 2

We argued in [16] that, if m is the number of net transitions and n is the number of
places, checking whether two places of an FSM are (strong) bisimilar can be done in
O(m · log (n+1)) time, by adapting the algorithm in [30] for ordinary bisimulation on
LTSs. Moreover, bisimilarity on places enjoys the same properties of bisimulation on
LTSs, i.e., it is coinductive and equipped with a fixed-point characterization.

3.1. Weak Bisimulation on Places
In order to adapt the definition of weak bisimulation on LTSs [25, 14] for unmarked

FSMs, we need some auxiliary notation. We define relation ε
=⇒ ⊆ S× (S∪{θ}) as

the reflexive and transitive closure of the silent transition relation; formally, ∀s ∈ S,
s ε
=⇒ s, denoting that each place can silently reach itself with zero steps; moreover,

if s ε
=⇒ s′ and s′ τ−→m, then s ε

=⇒m. Note that s ε
=⇒m if and only if there exists a
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sequential transition sequence σ such that s[σ〉m and o(σ) = ε . If s ε
=⇒m and the

sequence of silent moves is not empty, we may also denote this by s τ
=⇒m, i.e., there

exists a nonempty, sequential transition sequence σ such that s[σ〉m and oτ(σ) = τ .

Finally, for any ` ∈ Aτ , we write s `
=⇒m if there exist two places s′ and s′′ such

that s ε
=⇒ s′ `−→ s′′ ε

=⇒m, or (in case s′′ = θ = m) if there exists one place s′ such
that s ε

=⇒ s′ `−→θ . Note that s `
=⇒m if and only if there exists a sequential transition

sequence σ such that s[σ〉m and o(σ) = `.

Definition 12. (Weak bisimulation on places) Let N = (S,A,T ) be an FSM with
silent moves. A weak bisimulation is a relation R⊆ S×S such that if (s1,s2) ∈ R then
for all ` ∈ Aτ

• ∀m1 such that s1
`−→m1, ∃m2 such that s2

`
=⇒m2 and either m1 = θ = m2 or

(m1,m2) ∈ R,

• ∀m1 such that s1
τ−→m1, ∃m2 such that s2

ε
=⇒m2 and either m1 = θ = m2 or

(m1,m2) ∈ R,

and symmetrically if m2 moves first.
Two places s and s′ are weakly bisimilar (or weak bisimulation equivalent), denoted

by s≈ s′, if there exists a weak bisimulation R such that (s,s′) ∈ R. 2

We now list some properties, whose proofs are rather similar to the corresponding
ones for weak bisimulation on LTSs (see, e.g., [25, 34, 14]) and so they are omitted.

Lemma 1. Let N = (S,A,T ) be an FSM and let R be a weak bisimulation such that
(s,s′) ∈ R. Then, the following hold:

(i) For all m such that s ε
=⇒m, there exists m′ such that s′ ε

=⇒m′ and either m = θ =
m′ or (m,m′) ∈ R;

(ii) For all m such that s `
=⇒m, there exists m′ such that s′ `

=⇒m′ and either m = θ =
m′ or (m,m′) ∈ R;

and symmetrically if s′ moves first.

PROOF. The proof is by induction on the length of the computation. 2

Proposition 1. For each FSM N = (S,A,T ), the following hold:

1. the identity relation I = {(s,s)
∣∣ s ∈ S} is a weak bisimulation;

2. the inverse relation R−1 = {(s′,s)
∣∣ (s,s′) ∈ R} of a weak bisimulation R is a

weak bisimulation;
3. the relational composition R1 ◦R2 = {(s,s′′)

∣∣ ∃s′.(s,s′) ∈ R1∧ (s′,s′′) ∈ R2} of
two weak bisimulations R1 and R2 is a weak bisimulation;

4. the union
⋃

i∈I Ri of weak bisimulations Ri is a weak bisimulation.

PROOF. Standard. For the proof of (3), it is necessary to use Lemma 1. 2
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Remember that s≈ s′ if there exists a weak bisimulation containing the pair (s,s′).
This means that ≈ is the union of all weak bisimulations, i.e.,

≈=
⋃
{R⊆ S×S

∣∣ R is a weak bisimulation}.

By Proposition 1(4), ≈ is also a weak bisimulation, hence the largest such relation.

Proposition 2. For each FSM N = (S,A,T ), relation ≈ ⊆ S× S is the largest weak
bisimulation relation. 2

Directly from Proposition 1(1-3), we deduce the following.

Proposition 3. For each FSM N = (S,A,T ), ≈⊆ S×S is an equivalence relation. 2

Let N = (S,A,T ) be an FSM. Its saturated net is N′ = (S,Aτ ∪{ε},T ′), where T ′ =

{(s,δ ,m)
∣∣ δ ∈ Aτ ∪{ε} and s δ

=⇒m}. The transitions of N′ are computed by means

of the (partial) reflexive/transitive closure δ
=⇒ of the transition relation → (with an

algorithm that can be based on, e.g., the Floyd-Warshall algorithm [8]).
It is possible to offer an alternative, yet equivalent, definition of weak bisimulation

on places over N as a strong bisimulation on places over its saturated net N′.

Proposition 4. Let N = (S,A,T ) be an FSM and let R⊆ S×S be a weak bisimulation.
It can be proved that if (s1,s2) ∈ R then for all δ ∈ Aτ ∪{ε}

• ∀m1 such that s1
δ

=⇒m1, there exists m2 such that s2
δ

=⇒m2 and m1 = θ = m2 or
(m1,m2) ∈ R,

• ∀m2 such that s2
δ

=⇒m2, there exists m1 such that s1
δ

=⇒m1 and m1 = θ = m2 or
(m1,m2) ∈ R.

PROOF. Since R is a weak bisimulation, if (s1,s2) ∈ R and s1
δ

=⇒m1, then, by Lemma

1, s2
δ

=⇒m2 and m1 = θ = m2 or (m1,m2) ∈ R; symmetrically, if s2 moves first. 2

A consequence of this alternative characterization is that, from a complexity point
of view, computing weak bisimulation equivalence is just a bit harder than computing
(strong) bisimulation equivalence on places: one has first to derive the transitions of
the saturated net, (which takes O((n+ 1)3), where n is the number of places, if the
Floyd-Warshall algorithm [8] is used),1 and then to check (strong) bisimulation equiv-
alence on the saturated net, which is in O(m log (n+1)) time (where m is the number
of transitions of the saturated net). Another consequence is that it is also possible to
characterize ≈ as the greatest fixed point of a suitable functional over binary relations,
as done for (strong) bisimulation over LTSs in [25, 34, 14]. Finally, if we use this al-
ternative definition of weak bisimulation (in strong style), the proof technique “strong
bisimulation up to ∼” can be used also in this context with the use of ≈ in place of
each occurrence of ∼ [35], as we will do in the proof of Proposition 27.

1By considering θ as an additional, dummy place, the total number of “places” is n+1. However, it is
possible to compute weak bisimilarity with more performant algorithms with complexity O(m ·n) [32].
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Figure 5: Some weakly bisimilar FSMs
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Figure 6: Some other (not) weakly bisimilar FSMs

Example 6. Consider Figure 5. Relation R1 = {(s1,s2), (s1,s3)} is a weak bisimu-
lation. In fact, (s1,s2) is a weak bisimulation pair as if s1

a−→ s1, then s2
a

=⇒ s2 and
(s1,s2) ∈ R1; conversely, if s2

τ−→ s3, then s1
ε

=⇒ s1 (i.e., it responds by idling) and
(s1,s3) ∈ R1. Similarly, we can prove that also (s1,s3) is a weak bisimulation pair.
Moreover, also R2 = {(s1,s4), (s1,s5)} and R3 = {(s1,s6), (s1,s7)} are weak bisimula-
tions. Actually, if S = {s1,s2,s3,s4,s5,s6,s7}, then ≈= S×S. 2

Example 7. Consider Figure 6. It is easy to realize that R1 = {(s1,s2),(s1,s3)} is a
weak bisimulation: if s2

τ−→ s3, then s1 responds by idling, and the reached places
are still in R1. Similarly, R2 = {(s1,s4)} is a weak bisimulation. This example shows
that deadlock (i.e., place s1) and divergence (i.e., place s4) are not distinguished by
≈. More intriguing is the net in d). Since the post-set of the τ-labeled transition is
θ , this apparently silent transition is actually observable. In fact, s2 6≈ s5: to transition
s2

τ−→ s3, place s5 can only try to respond with s5
τ−→θ , but s3 and θ are not weakly

bisimilar, as a place cannot be related to the empty marking by definition. In fact, weak
bisimulation equivalence is sensitive to the kind of termination of a process: even if s3 is
stuck, it is not equivalent to θ because the latter is the marking of a properly terminated
process, while s3 denotes a deadlock situation. However, s5 and s6 are weakly bisimilar,
as relation R3 = {(s5,s6),(s5,s7)} is a weak bisimulation. In fact, if s5

τ−→θ , then
s6

ε
=⇒θ ; instead, if s6

τ−→ s7, then s5 responds by idling and the pair (s5,s7) is in R3.
In other words, a τ-labeled transition may be unobservable only if it does not change
the number of tokens of the current marking, i.e., if its post-set is not empty. 2
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Figure 7: Two more complex weakly bisimilar FSMs

Example 8. Consider Figure 2. Note that s1 ≈ s5 as R = {(s1,s5),(s2,s7),(s3,s5),
(s4,s7)} is a weak bisimulation. On the contrary, s1 6≈ s6 as s6 cannot perform a. Now,
consider Figure 3. Note that s1 6≈ s6 as if s1

a−→ s2, then s6 can only try to respond with
s6

a
=⇒θ , but s2 6≈ θ , as a place is not weak bisimilar to the empty marking. 2

Example 9. Consider Figure 7. It is easy to realize that relation R = {(s1,s6),(s2,s6),
(s3,s7),(s4,s8),(s5,s8)} is a weak bisimulation. 2

Definition 13. (Rooted weak bisimulation on places) Let N = (S,A,T ) be an FSM.
Two places s1 and s2 are rooted weakly bisimilar, denoted s1 ≈c s2, if for all ` ∈ A

• for all m1 such that s1
`−→m1, there exists m2 such that s2

`
=⇒m2 and either

m1 = θ = m2 or m1 ≈ m2,

• for all m2 such that s2
`−→m2, there exists m1 such that s1

`
=⇒m1 and either

m1 = θ = m2 or m1 ≈ m2. 2

Note that if s1
τ−→m1, then s2 must be able to respond with a nonempty sequence

of silent moves: s2
τ

=⇒m2. However, after this initial step, the reached places are to
be related by weak bisimilarity, so that future silent moves of one of the two can be
matched by the other one also by idling. Therefore, the following holds.

Proposition 5. Let N = (S,A,T ) be an FSM. If s1 ≈c s2, then s1 ≈ s2. 2

Proposition 6. Let N = (S,A,T ) be an FSM with silent moves. Relation ≈c is an
equivalence.

PROOF. Trivial. Transitivity can be proved by exploting Lemma 1. 2

Example 10. Consider the nets in Figure 5. Even if s1 ≈ s2, we have that s1 6≈c s2

because s1 cannot reply to transition s2
τ−→ s3; similarly, s1 6≈c s4 and s1 6≈c s7. On the

contrary, s1 ≈c s3, s1 ≈c s5, s1 ≈c s6, as well as s2 ≈c s4 and s2 ≈c s7. 2

Example 11. Consider the nets in Figure 6. Even if s1 ≈ s2, we have that s1 6≈c s2

because s1 cannot reply to transition s2
τ−→ s3. On the contrary, s2 ≈c s4. Note also that

s5 6≈c s6; in fact, if s6
τ−→ s7, then s5 cannot reply because θ 6≈ s7. 2
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3.2. Additive Closure

In order to define the various equivalences on markings we are presenting in the
following, we need a technical, auxiliary definition.

Definition 14. (Additive closure) Given an FSM net N = (S,A,T ) and a place rela-
tion R⊆ S×S, we define a marking relation R⊕ ⊆ M (S)×M (S), called the additive
closure of R, as the least relation induced by the following axiom and rule.

(θ ,θ) ∈ R⊕
(s1,s2) ∈ R (m1,m2) ∈ R⊕

(s1⊕m1,s2⊕m2) ∈ R⊕
2

Note that, by definition, two markings are related by R⊕ only if they have the same
size; in fact, the axiom states that the empty marking is related to itself, while the rule,
assuming by induction that m1 and m2 have the same size, ensures that s1⊕m1 and
s2⊕m2 have the same size. An alternative way to define that two markings m1 and m2
are related by R⊕ is to state that m1 can be represented as s1⊕ s2⊕ . . .⊕ sk, m2 can be
represented as s′1⊕ s′2⊕ . . .⊕ s′k and (si,s′i) ∈ R for i = 1, . . . ,k.

Proposition 7. For each FSM net N = (S,A,T ) and each place relation R ⊆ S× S, if
(m1,m2) ∈ R⊕, then |m1|= |m2|. 2

Proposition 8. For each FSM net N = (S,A,T ) and each place relation R⊆ S×S, the
following hold:

1. If R is an equivalence relation, then R⊕ is an equivalence relation.
2. If R1 ⊆ R2, then R⊕1 ⊆ R⊕2 , i.e., the additive closure is monotone. 2

Another property of the additive closure R⊕ of a place relation R is that it is additive,
indeed; moreover, it is also subtractive when R is an equivalence relation.

Proposition 9. (Additivity/Subtractivity) Given a BPP net N = (S,A,T ) and a place
relation R, the following hold:

1. If (m1,m2) ∈ R⊕ and (m′1,m
′
2) ∈ R⊕, then (m1⊕m′1,m2⊕m′2) ∈ R⊕.

2. If R is an equivalence relation, (m1⊕m′1,m2⊕m′2)∈ R⊕ and (m1,m2)∈ R⊕, then
(m′1,m

′
2) ∈ R⊕.

PROOF. By induction on the size of m1. 2

Note that the requirement that R is an equivalence relation is strictly necessary
for Propositon 9(2). As a counterexample, consider R = {(s1,s3),(s1,s4),(s2,s4)}. We
have that (s1⊕ s2,s3⊕ s4) ∈ R⊕ and (s1,s4) ∈ R⊕, but (s2,s3) 6∈ R⊕.

Remark 1. (Complexity of R⊕) Given an equivalence place relation R, the complex-
ity of checking whether two markings m1 and m2 of equal size are related by R⊕ is very
low. In fact, if R is implemented as an adjacency matrix, then the complexity of check-
ing if two markings m1 and m2 (represented as an array of places with multiplicities)
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are related by R⊕ is O(k2), where k is the size of the markings, since the problem is
essentially that of finding for each element s1 of m1 a matching, R-related element s2
of m2. The details of the algorithm, which is correct only if R is an equivalence relation
(so that R⊕ is subtractive) are outlined in [16]. Moreover, if we want to check whether
other two markings of the same net are related by R⊕, we can reuse R, so that the time
complexity is again quadratic on the size of the two markings. However, note that the
time spent in creating the adjacency matrix for the equivalence relation R has not been
considered: since n is the number of places, O(n2) time is needed to implement this
matrix, so that the time spent for the first check is O(n2), while for subsequent checks
it is only O(k2), where k is the size of the markings.

The algorithm in [16] is not optimal. The algorithm in [23] simply scans the equiv-
alence classes of R and, for each class, it checks whether the number of tokens in the
places of m1 belonging to this class equals the number of tokens in the places of m2
in the same class; if this holds for all the equivalence classes, then (m1,m2) ∈ R⊕. Of
course, the complexity of this algorithm is O(n), even for the first check; hence, this
algorithm is usually more performant, even if, from the second check onwards, it may
be slower when applied to small markings; in fact, in case the number n of places is
greater than k2, then the original algorithm is better. 2

3.3. Weak Team Equivalence
Starting from weak bisimilarity over an unmarked FSM, we can define weak team

equivalence over its markings in a structural, distributed way, as the additive closure
of ≈, i.e., ≈⊕. Hence, by Proposition 7 weak team equivalent markings have the same
size: if m1 ≈⊕ m2, then |m1|= |m2|.

Proposition 10. For each FSM N = (S,A,T ), relation ≈⊕⊆ M (S)×M (S) is an
equivalence relation.

PROOF. Since ≈ is an equivalence relation, by Proposition 8, ≈⊕ is an equivalence
relation, too. 2

Note that, once ≈ has been computed (e.g., in O(m · (n+ 1)) by adapting the al-
gorithm in [32]), checking whether two markings of size k are weak team equivalent
takes only O(k2) time (or O(n) time). This equivalence checking can be done for any
pair of markings, hence reusing the already computed relation ≈.

The following theorem provides a characterization of≈⊕ as a suitable bisimulation-
like relation over markings, giving evidence of the fact that weak team equivalence does
respect the global behavior of the net. It is interesting to observe that this characteriza-
tion gives a dynamic interpretation of weak team equivalence as a relation on the global
model of the system under scrutiny, while Definition 14 gives a structural definition of
weak team equivalence ≈⊕ as the additive closure of the local relation ≈ on places.

Theorem 1. Let N = (S,A,T ) be an FSM. Two markings m1 and m2 are weak team
equivalent, m1 ≈⊕ m2, if and only if |m1|= |m2| and

1. ∀t1 such that l(t1) 6= τ and m1[t1〉m′1, ∃σ2 such that σ2 is sequential, •t1 ≈ •σ2,
l(t1) = o(σ2), t•1 ≈⊕ σ•2 , m2[σ2〉m′2 and m′1 ≈⊕ m′2,
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2. ∀t1 such that l(t1) = τ and m1[t1〉m′1, either ∃σ2 such that σ2 is nonempty and
sequential, •t1≈ •σ2, o(σ2)= ε , t•1 ≈⊕ σ•2 , m2[σ2〉m′2 and m′1≈⊕ m′2, or ∃s2 ∈m2
such that •t1 ≈ s2, t•1 ≈ s2 and m′1 ≈⊕ m2,

3. ∀t2 such that l(t2) 6= τ and m2[t2〉m′2, ∃σ1 such that σ1 is sequential, •σ1 ≈ •t2,
o(σ1) = l(t2), σ•1 ≈⊕ t•2 , m1[σ1〉m′1 and m′1 ≈⊕ m′2,

4. ∀t2 such that l(t2) = τ and m2[t2〉m′2, either ∃σ1 such that σ1 is nonempty and
sequential, •σ1 ≈ •t2, o(σ1) = ε , σ•1 ≈⊕ t•2 , m1[σ1〉m′1 and m′1 ≈⊕ m′2, or ∃s1 ∈
m1 such that s1 ≈ •t2, s1 ≈ t•2 and m1 ≈⊕ m′2.

PROOF. (⇒) If m1≈⊕ m2, then |m1|= |m2| by Proposition 7. Moreover, for any t1 such
that m1[t1〉m′1, we have that m1 = s1⊕m1, where s1 =

•t1. As m1 ≈⊕ m2, by Definition
14, it follows that there exist s2 and m2 such that m2 = s2⊕m2, s1 ≈ s2 and m1 ≈⊕ m2.
Since s1 ≈ s2, by Definition 12, we have to consider two cases for the shape of t1:

(i) if t1 = s1
`−→ p1, then there exists p2 such that s2

`
=⇒ p2 and either p1 = θ =

p2 or p1 ≈ p2. This means that for transition t1, there exists a sequential transition
sequence σ2 such that o(σ2) = ` = l(t1), •σ2 = s2, σ•2 = p2, hence with •t1 ≈ •σ2
and t•1 ≈⊕ σ•2 . We have to consider two subcases: either t•1 = θ = σ•2 or t•1 ≈ σ•2 . In
the former subcase, m′1 = m1 and m′2 = m2, and so m′1 ≈⊕ m′2 because m1 ≈⊕ m2 by
assumption. In the latter case, m′1 = t•1 ⊕m1 and m′2 = σ•2 ⊕m2, and so m′1 ≈⊕ m′2 by
Definition 14. Hence, this corresponds to item 1 of the bisimulation conditions.

(ii) if t1 = s1
τ−→ p1, then there exists p2 such that s2

ε
=⇒ p2 and either p1 = θ = p2

or p1 ≈ p2. This means that for transition t1, either there exists a nonempty sequential
transition sequence σ2 such that o(σ2) = ε , •σ2 = s2 and σ•2 = p2, hence with •t1 ≈ •σ2
and t•1 ≈⊕ σ•2 ; or s2 responds by idling, i.e., •t1 ≈ s2 and t•1 ≈ s2. The either case is
analogous to the previous one, and so omitted; this ensures the first part of item 2 of
the bisimulation conditions. The or case, instead, accounts for the second part of item
2: since m′1 = t•1 ⊕m1, m2 = s2⊕m2, m1 ≈⊕ m2 and t•1 ≈ s2, it follows that m′1 ≈⊕ m2.

The case when m2 moves first is symmetric, hence omitted. These cases accounts
for items 3 and 4 of the bisimulation conditions.

(⇐) Let us assume that |m1| = |m2| and that the four bisimulation-like conditions
hold; then, we prove that m1 ≈⊕ m2. First of all, assume that no transition t1 is enabled
at m1; in such a case, no observable transition is enabled at m2; in fact, if m2[t2〉m′2
with l(t2) 6= τ , then, by the third condition, a nonempty transition sequence σ1 must
be executable at m1, contradicting the assumption that no transition is enabled at m1.
However, m2 may enable silent transitions: by the fourth condition, m1 can reply by
idling. This means that each place in m1 is a deadlock, and similarly each place in m2
is weakly bisimilar to a deadlock; therefore, all the places in m1 and m2 are pairwise
weakly bisimilar; hence, the condition |m1|= |m2| is enough to ensure that m1 ≈⊕ m2.

Now, assume that m1[t1〉m′1 for some t1. If l(t1) 6= τ , then the first condition ensures
that there exists a sequential transition sequence σ2 such that •t1 ≈ •σ2, l(t1) = o(σ2),
t•1 ≈⊕ σ•2 , m2[σ2〉m′2 and m′1 ≈⊕ m′2. Note that t•1 ≈⊕ σ•2 holds if and only if either
t•1 = θ = σ•2 or t•1 ≈ σ•2 . In the former subcase, we have that m1 =

•t1⊕m′1and m2 =
•σ2⊕m′2, and so m1 ≈⊕ m2 by Definition 14. In the latter subcase, we have that m′1 =
t•1 ⊕m1, m′2 = σ•2 ⊕m2, m1 =

•t1⊕m1, m2 =
•σ2⊕m2. Since m′1 ≈⊕ m′2 and t•1 ≈ σ•2 ,

it follows that m1 ≈⊕ m2, and so m1 ≈⊕ m2, because •t1 ≈ •σ2. The second condition,
accounting for the case when l(t1) = τ , is analogous, and so omitted.
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Symmetrically, if we start from a transition t2 enabled at m2. 2

By the theorem above, it is clear that≈⊕ is a weak interleaving bisimulation; hence,
the following corollary follows trivially.

Corollary 1. (Weak team equivalence is finer than weak interleaving bisimilarity)
Let N = (S,A,T ) be an FSM. If m1 ≈⊕ m2, then m1 ≈int m2. 2

Example 12. Weak team equivalence is a truly concurrent equivalence, strictly finer
than weak interleaving bisimilarity. Consider the nets in Figure 2. Even if s1 is weak
bisimilar to s5, s1 is not weak team equivalent to s5⊕ s6, because the size of the two
markings is different. On the contrary, s1 is (weak) interleaving bisimilar to s5⊕ s6.
As another striking example, consider the CFM terms a.0 |b.0 and a.b.0+ b.a.0. The
nets of these two terms have initial markings a.0⊕b.0 and a.b.0+b.a.0, according to
the semantics in Section 5.2: as these two markings have different size, they cannot be
(weak) team equivalent, even if they are (weak) interleaving equivalent. 2

Example 13. If two markings m1 and m2 are weak interleaving bisimilar and have the
same size, then they may be not weak team equivalent. For instance, suppose to add an
isolated place s8 to the net in Figure 3. In such a case, s1⊕ s8 and s5⊕ s6 have the same
size, they are weak interleaving bisimilar, but they are not weak team equivalent. 2

Example 14. Continuing Example 7 about the nets in Figure 6, it is not difficult to see
that, e.g., s2⊕s3 ≈⊕ 2 ·s4 or that s1⊕s5 ≈⊕ s2⊕s6. On the contrary, s1⊕s2 6≈⊕ s4⊕s6,
because, even if s1 ≈ s4, the remaining tokens, s2 and s6, are not weakly bisimilar. 2

The examples above make clear that two markings m1 and m2 are not weak team
equivalent if either they have different size, or if we can single out a place s′i in m1
which has no matching weak bisimilar place in m2, i.e., there is no weak-bisimulation-
preserving bijection among the tokens of the two markings.

3.4. Rooted Weak Team Equivalence
We can also define rooted weak team equivalence as the additive closure of rooted

weak bisimilarity, i.e., ≈⊕c . Of course, by Proposition 7, rooted weak team equivalence
relates markings of the same size only; moreover, ≈⊕c is an equivalence relation, by
Proposition 8, as ≈c is an equivalence relation (by Proposition 6).

Proposition 11. (Rooted weak team equivalence is finer than weak team equiva-
lence) Let N = (S,A,T ) be an FSM. If m1 ≈⊕c m2, then m1 ≈⊕ m2.

PROOF. By Proposition 5, we have that≈c⊆≈. Since the additive closure is monotone
(by Proposition 8(2)), the thesis follows trivially. 2

The following theorem provides a characterization of rooted weak team equiva-
lence as a suitable bisimulation-like relation over markings, i.e., over a global model
of the overall behavior.

Theorem 2. Let N = (S,A,T ) be an FSM. If two markings m1 and m2 are rooted weak
team equivalent, m1 ≈⊕c m2, then |m1|= |m2| and
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1. ∀t1 such that m1[t1〉m′1, ∃σ2 such that σ2 is sequential, •t1 ≈c
•σ2, l(t1) = oτ(σ2),

t•1 ≈⊕ σ•2 , m2[σ2〉m′2 and m′1 ≈⊕ m′2,
2. ∀t2 such that m2[t2〉m′2, ∃σ1 such that σ1 is sequential, •σ1 ≈c

•t2, oτ(σ1) = l(t2),
σ•1 ≈⊕ t•2 , m1[σ1〉m′1 and m′1 ≈⊕ m′2.

PROOF. If m1 ≈⊕c m2, then |m1|= |m2| by Proposition 7. Moreover, for any t1 such that
m1[t1〉m′1, we have that m1 = s1⊕m1, where s1 =

•t1. As m1 ≈⊕c m2, by Definition 14, it
follows that there exist s2 and m2 such that m2 = s2⊕m2, s1 ≈c s2 and m1 ≈⊕c m2. Since

s1 ≈c s2, by Definition 13, we have that for transition t1 = s1
`−→ p1, there must exist p2

such that s2
`

=⇒ p2 and either p1 = θ = p2 or p1 ≈ p2. This means that for transition t1,
there exists a sequential transition sequence σ2 such that oτ(σ2) = `= l(t1), •σ2 = s2,
σ•2 = p2, hence with •t1 ≈c

•σ2 and t•1 ≈⊕ σ•2 . We have to consider two subcases:
either t•1 = θ = σ•2 or t•1 ≈ σ•2 . In the former subcase, m′1 = m1 and m′2 = m2; since
m1≈⊕c m2 by assumption, we also have m1≈⊕ m2 by Proposition 11, and so m′1≈⊕ m′2,
as required. In the latter case, m′1 = t•1 ⊕m1 and m′2 = σ•2 ⊕m2, and so m′1 ≈⊕ m′2 by
Definition 14.

The case when m2 moves first is symmetric, hence omitted. 2

Note that, contrary to Theorem 1, we do not have an if-and-only-if condition. As a
matter of fact, it is not true that if two markings m1 and m2 of the same size are such
that they satisfy the two bisimulation conditions of Theorem 2, then they are rooted
weak team equivalent. As a counterexample, consider the net in Figure 5 and the two
markings 2 · s1⊕ s2 and s1⊕ 2 · s2, which are clearly weak team equivalent. However,
since s1 cannot perform any silent transition, we have that s1 6≈c s2 and so 2 ·s1⊕s2 6≈⊕c
s1⊕2 ·s2. Nonetheless, the two bisimulation conditions are satisfied for these markings.
In one direction, to transition 2 · s1⊕ s2

a−→2 · s1⊕ s2, the other marking can reply with
s1⊕ 2 · s2

a−→ s1⊕ 2 · s2 with s1 ≈c s1; similarly, to transition 2 · s1⊕ s2
τ−→2 · s1⊕ s3,

the other marking can reply with s1⊕2 · s2
τ−→ s1⊕ s2⊕ s3 with s2 ≈c s2, s3 ≈ s3 and

2 · s1⊕ s3 ≈⊕ s1⊕ s2⊕ s3. Symmetrically, if s1⊕2 · s2 moves first.

Corollary 2. (Rooted weak team equivalence is finer than rooted weak interleav-
ing bisimilarity) Let N = (S,A,T ) be an FSM. If m1 ≈⊕c m2, then m1 ≈c

int m2.

PROOF. We want to prove that if m1 ≈⊕c m2, then

• ∀t1 such that m1[t1〉m′1, ∃σ2 s.t. m2[σ2〉m′2 with l(t1) = oτ(σ2) and m′1 ≈int m′2,

• ∀t2 such that m2[t2〉m′2, ∃σ1 s.t. m1[σ1〉m′1 with oτ(σ1) = l(t2) and m′1 ≈int m′2,

so that m1 ≈c
int m2 follows directly by Definition 8. However, this implication is obvi-

ous, due to Theorem 2 and Corollary 1. 2

Not surprisingly, rooted weak team equivalence is strictly finer than rooted weak
interleaving bisimilarity. Consider Figure 2. Even if s1 ≈c

int s5⊕ s6, s1 is not rooted
weak team equivalent to s5⊕ s6, because the size of the two markings is different.
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3.5. Minimizing Nets

In [16], we showed how to compute, for a given FSM N, its reduced net N∼, i.e.,
the minimized net according to bisimulation ∼ on places (cf. Definition 11), where the
places of N∼ are equivalence classes of the places of N. We proved that this reduction is
correct and we argued that N∼ is really the net with the least number of places exhibit-
ing the same team behavior as N. By means of Proposition 4, we observed that weak
bisimilarity on the places of N can be equivalently characterized as (strong) bisimula-
tion on the places of the saturated net N′. Therefore, it is possible to minimize the net N
w.r.t. the weak bisimulation equivalence≈ over places by minimizing the saturated net
N′ w.r.t.∼. Since N and its saturated net N′ have the same set of places, the equivalence
classes computed over N′ w.r.t. ∼ are the same equivalence classes over N w.r.t. ≈.

Example 15. Consider the net in Figure 7(a). By saturating the net (this saturation is
not described in the picture), the equivalence classes w.r.t. ∼ are {s1,s2}, {s3} and
{s4,s5}. Hence, the reduced net has only three places and is actually isomorphic to (the
saturated net originating from) the net in (b). If the initial marking of the original net is
s1⊕ s2⊕ s3⊕ s4⊕ s5, then the initial marking of the reduced net is 2 · s6⊕ s7⊕2 · s8. 2

A direct construction of the reduced net w.r.t. ≈, which minimizes the number of
places and transitions, can be also obtained by adapting, mutatis mutandis, the con-
struction in Section 4.4 for the reduced net w.r.t. branching bisimilarity on places ≈br.

4. A Distributed Approach to Branching Equivalence Checking

In [12], van Glabbeek and Weijland argued that weak bisimilarity ≈ is not com-
pletely respecting the timing of choices (the so-called branching structure of sys-
tems). For instance, consider the two nets in Figure 8. A weak bisimulation is R =
{(s1,s4),(s2,s5), (s3,s6),(s3,s7)}, hence s1 ≈ s4 (actually, s1 ≈c s4). However, in the
net in (a), in each computation the choice between b and c is made after the a-labeled
transition, while in the net in (b) there is a computation where c is already discarded
by performing a. Hence, it may be argued that the two nets should not be equivalent. A
finer notion of equivalence that distinguishes between these two systems is as follows.

4.1. Branching Bisimulation on Places

Definition 15. (Branching bisimulation on places) Let N = (S,A,T ) be an FSM. A
branching bisimulation is a relation R⊆ S×S such that if (s1,s2) ∈ R then for all ` ∈ A

• ∀m1 such that s1
`−→m1,

– either `= τ and ∃m2 such that s2
ε

=⇒m2 with (s1,m2)∈R and (m1,m2)∈R,

– or ∃m,m2 such that s2
ε

=⇒m `−→m2 with (s1,m) ∈ R and either m1 = θ =
m2 or (m1,m2) ∈ R,

• and, symmetrically, ∀m2 such that s2
`−→m2.
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Figure 8: Two weakly bisimilar FSMs, which are not branching bisimilar

Two places s and s′ are branching bisimilar (or branching bisimulation equivalent),
denoted by s≈br s′, if there exists a branching bisimulation R such that (s,s′) ∈ R. 2

This definition is not a rephrasing of the original definition on LTS in [12], rather
of a slight variant called semi-branching bisimulation [12, 4, 14], which gives rise
to the same equivalence relation as the original definition but has better mathemati-
cal properties; in particular it ensures [4] that the relational composition of branching
bisimulation on places is a branching bisimulation on places (see Proposition 13(3)).

Example 16. Considering Figure 8, note that s1 6≈br s4. In fact, to transition s4
a−→ s6,

place s1 can only try to respond with s1
a−→ s2, but s2 and s6 are clearly not equivalent,

because only s2 can do c. 2

Remark 2. (Stuttering Property) It is not difficult to prove that, given a τ-labeled
path s1

τ−→ s2
τ−→ . . .sn

τ−→ sn+1, if s1 ≈br sn+1, then si ≈br s j for all i, j = 1, . . .n+1.
This is sometimes called the stuttering property [12, 14].

This property justifies the following observation on the nature of branching bisim-
ilarity. As ≈br is a branching bisimulation (by Proposition 14), it satisfies the condi-
tions in Definition 15. Let us consider two branching bisimilar places s1 ≈br s2. Then,
suppose s1

τ−→m1 and that s2 responds by performing s2
ε

=⇒m2 with s1 ≈br m2 and
m1 ≈br m2. By transitivity of ≈br (by Proposition 15), we have that also s2 ≈br m2.
Hence, by the stuttering property, s1 is branching bisimilar to each place in the path
from s2 to m2, and so all the places traversed in the path from s2 to m2 are branching
bisimilar. Similarly, assume s1

`−→m1 (with ` that can be τ) and that s2 responds by
performing s2

ε
=⇒m `−→m2 with s1 ≈br m and m1 ≈br m2. By transitivity, s2 ≈br m,

hence, by the stuttering property, s1 is branching bisimilar to each place in the path
from s2 to m. These constraints are not required by weak bisimilarity: given s1 ≈ s2,
when matching a transition s1

`−→m1 with s2
ε

=⇒ s′2
µ−→m2

ε
=⇒m′2, weak bisimilarity

only requires that m1 ≈ m′2, but does not impose any condition on the intermediate
states; in particular, it is not required that s1 ≈ s′2, or that m1 ≈ m2. 2
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Proposition 12. Let N = (S,A,T ) be an FSM. If s1 ≈br s2, then s1 ≈ s2. 2

We now list some useful properties of branching bisimulations, whose proofs are
slight adaptation of the original ones for (semi-)branching bisimulation on LTSs [4, 12,
14], and so they are omitted.

Lemma 2. Let N = (S,A,T ) be an FSM and let R be a branching bisimulation such
that (s1,s2) ∈ R. Then, the following hold:

(i) For all m1 such that s1
ε

=⇒m1, there exists m2 such that s2
ε

=⇒m2 and either
m1 = θ = m2 or (m1,m2) ∈ R; and symmetrically,

(ii) For all m2 such that s2
ε

=⇒m2, there exists m1 such that s1
ε

=⇒m1 and either
m1 = θ = m2 or (m1,m2) ∈ R.

PROOF. The proof is by induction on the length of the computation. 2

Proposition 13. For each FSM N = (S,A,T ), the following hold:

1. the identity relation I = {(s,s)
∣∣ s ∈ S} is a branching bisimulation;

2. the inverse relation R−1 = {(s′,s)
∣∣ (s,s′) ∈ R} of a branching bisimulation R is

a branching bisimulation;
3. the relational composition R1 ◦R2 = {(s,s′′)

∣∣ ∃s′.(s,s′) ∈ R1∧ (s′,s′′) ∈ R2} of
two branching bisimulations R1 and R2 is a branching bisimulation;

4. the union
⋃

i∈I Ri of branching bisimulations Ri is a branching bisimulation.

PROOF. Standard. For proving case (3), it is necessary to use Lemma 2. 2

Remember that s≈br s′ if there exists a branching bisimulation containing the pair
(s,s′). This means that ≈br is the union of all branching bisimulations, i.e.,

≈br =
⋃
{R⊆ S×S

∣∣ R is a branching bisimulation}.

By Proposition 13(4), ≈br is also a branching bisimulation, hence the largest such
relation.

Proposition 14. For each FSM N =(S,A,T ), relation≈br ⊆ S×S is the largest branch-
ing bisimulation relation. 2

By Proposition 13(1-3) we deduce that ≈br is an equivalence relation.

Proposition 15. For each FSM N = (S,A,T ) with silent moves, relation ≈br ⊆ S× S
is an equivalence relation. 2

From a complexity point of view, branching bisimilarity is the easiest bisimulation-
based equivalence to decide. According to [18, 12], it can be checked on finite-state
LTSs with time complexity O(l + nm) and space complexity O(n+m), where l is the
number of labels, n the number of states and m the number of transitions. Recently, an
apparently optimal algorithm has been proposed in [19, 21], whose time complexity
is O(m · logn). Therefore, essentially the same complexity is necessary to compute
branching bisimilarity on places of an FSM, with the usual adaptation of counting the
empty marking as an additional, dummy place.
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Figure 9: Two branching bisimilar FSMs

Example 17. Consider Figure 4. It is easy to see that s1 ≈ s4. However, s1 6≈br s4, as
to transition s4

a−→ s5, place s1 can only try to respond with s1
τ−→ s2

a−→ s3, but not all
the conditions required are satisfied; in particular, s2 6≈br s4, as only s4 can do b. 2

Example 18. Consider Figure 9. It is easy to see that R = {(s1,s4),(s2,s5), (s3,s5)} is
a branching bisimulation. To move s2

τ−→ s3, place s5 responds by idling. Note that to
move s5

c−→θ , place s2 responds with s2
τ−→ s3

c−→θ and, indeed, by performing the
τ move, the system passes through branching bisimilar states only, i.e., s2 ≈br s3. 2

Definition 16. (Rooted branching bisimulation on places) Let N = (S,A,T ) be an
FSM. Two places s1 and s2 are rooted branching bisimilar, denoted s1 ≈brc s2, if ∀`∈ A

• for all m1 such that s1
`−→m1, there exists m2 such that s2

`−→m2 and either
m1 = θ = m2 or m1 ≈br m2,

• for all m2 such that s2
`−→m2, there exists m1 such that s1

`−→m1 and either
m1 = θ = m2 or m1 ≈br m2. 2

The peculiar feature of ≈brc is that initial moves are matched as in strong bisimu-
lation, while subsequent moves are matched as for branching bisimilarity. Therefore,
rooted branching bisimilarity is a slightly finer variant of branching bisimilarity.

Proposition 16. (Rooted branching bisimilarity is finer than branching bisimilar-
ity) Let N = (S,A,T ) be an FSM. If s1 ≈brc s2, then s1 ≈br s2. 2

Proposition 17. (Rooted branching bisimilarity is finer than rooted weak bisimi-
larity) Let N = (S,A,T ) be an FSM. If s1 ≈brc s2, then s1 ≈c s2.

PROOF. It follows directly by Proposition 12. 2

Proposition 18. Let N = (S,A,T ) be an FSM. Relation ≈brc is an equivalence.
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PROOF. Standard. It follows by the fact that ≈br is an equivalence relation. 2

Example 19. Considering again Figure 9, we have that s1 ≈brc s4 because s2 ≈br s5;
however, note that s2 6≈brc s5. 2

4.2. Branching Team Equivalence

We can also define branching team equivalence as the additive closure of branching
bisimilarity, i.e., ≈⊕br. Of course, by Proposition 7, branching team equivalence relates
markings of the same size only; moreover, ≈⊕br is an equivalence relation, by Proposi-
tion 8, as ≈br is an equivalence relation (by Proposition 15).

The following theorem provides a characterization of≈⊕br as a suitable bisimulation-
like relation over markings, i.e., over a global model of the overall behavior.

Theorem 3. Let N = (S,A,T ) be an FSM. Two markings m1 and m2 are branching
team equivalent, m1 ≈⊕br m2, if and only if |m1|= |m2| and

1. ∀t1 such that m1[t1〉m′1,

– either l(t1) = τ and

(i) either ∃σ2 nonempty and sequential, such that •t1 ≈br
•σ2, o(σ2) = ε ,

t•1 ≈br σ•2 , •t1 ≈br σ•2 , m2[σ2〉m′2 with m1 ≈⊕br m′2 and m′1 ≈
⊕
br m′2,

(ii) or ∃s2 ∈ m2 such that •t1 ≈br s2, t•1 ≈br s2, with m′1 ≈
⊕
br m2,

– or ∃σ , t2 such that σt2 is sequential, o(σ) = ε , l(t1) = l(t2), •t1 ≈br
•σt2,

•t1 ≈br
•t2, t•1 ≈

⊕
br t•2 , m2[σ〉m[t2〉m′2 with m1 ≈⊕br m and m′1 ≈

⊕
br m′2;

2. and, symmetrically, ∀t2 such that m2[t2〉m′2,

– either l(t2) = τ and

(i) either ∃σ1 nonempty and sequential, such that •σ1 ≈br
•t2, o(σ1) = ε ,

σ•1 ≈br t•2 , σ•1 ≈br
•t2, m1[σ1〉m′1 with m′1 ≈

⊕
br m2 and m′1 ≈

⊕
br m′2,

(ii) or ∃s1 ∈ m1 such that s1 ≈br
•t2, s1 ≈br t•2 , with m1 ≈⊕br m′2,

– or ∃σ , t1 such that σt1 is sequential, o(σ) = ε , l(t1) = l(t2), •σt1 ≈br
•t2,

•t1 ≈br
•t2, t•1 ≈

⊕
br t•2 , m1[σ〉m[t1〉m′1 with m≈⊕br m2 and m′1 ≈

⊕
br m′2.

PROOF. (⇒) If m1 ≈⊕br m2, then |m1| = |m2| by Proposition 7. Moreover, for any t1
such that m1[t1〉m′1, we have that m1 = s1 ⊕m1, where s1 = •t1. As m1 ≈⊕br m2, by
Definition 14, it follows that there exist s2 and m2 such that m2 = s2⊕m2, s1 ≈br s2

and m1 ≈⊕br m2. Since s1 ≈br s2, by Definition 15, if t1 = s1
`−→ p1, we have to consider

two cases:

(i) either `= τ and ∃p2 such that s2
ε

=⇒ p2 with s1 ≈br p2 and p1 ≈br p2,

(ii) or ∃p, p2 such that s2
ε

=⇒ p `−→ p2, with s1 ≈br p and either p1 ≈br p2 or p1 =
θ = p2.
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Case (i): We have to consider two subcases: (a) Either there exists a nonempty
sequential transition sequence σ2 such that o(σ2) = ε , •σ2 = s2, σ•2 = p2, hence with
•t1 ≈br

•σ2, •t1 ≈br σ•2 and t•1 ≈br σ•2 . (b) Or s2 replies by idling, i.e., p2 = s2; in such
a case, •t1 ≈br s2 and t•1 ≈

⊕
br s2.

In subcase (a), m′1 = t•1 ⊕m1 and m′2 = σ•2 ⊕m2, and so m′1 ≈
⊕
br m′2 by Definition

14. For the same reason, m1 ≈⊕br m′2, as •t1 ≈br σ•2 .
Similarly, in subcase (b), m′1 = t•1 ⊕m1, m2 = s2⊕m2 and so m′1 ≈

⊕
br m2.

Case (ii): This means that for transition t1, there exists a (possibly empty) sequential
transition sequence σ and a transition t2 such that •σt2 = s2, o(σ) = ε , l(t1) = l(t2),
•t2 = p= σ•, t•2 = p2, and so •t1 ≈br

•t2 = σ• and either t•1 = θ = t•2 or t•1 ≈br t•2 (hence,
t•1 ≈

⊕
br t•2 ). Now, m = p⊕m2 and so m1 ≈⊕br m by Definition 14. If t•1 = θ = t•2 , then

m′1 = m1 and m′2 = m2, hence m′1 ≈
⊕
br m′2 as we already know that m1 ≈⊕br m2. Instead,

if t•1 ≈br t•2 , then m′1 = t•1 ⊕m1 and m′2 = t•2 ⊕m2, and so m′1 ≈
⊕
br m′2 by Definition 14.

The case when m2 moves first is symmetric, hence omitted.
(⇐) Let us assume that |m1|= |m2| and that the bisimulation-like conditions hold;

then, we prove that m1 ≈⊕br m2. First of all, assume that no transition t1 is enabled at
m1; in such a case, no observable transition is enabled at m2; in fact, if m2[t2〉m′2 with
l(t2) 6= τ , then, by the (2-or) condition, a nonempty, sequential transition sequence σt1
must be executable at m1, contradicting the assumption that no transition is enabled
at m1. However, m2 may enable silent transitions: by the (2-either-(ii)) condition, m1
can reply by idling. This means that each place in m1 is a deadlock, and similarly each
place in m2 is branching bisimilar to a deadlock; therefore, all the places in m1 and m2
are pairwise branching bisimilar; hence, the condition |m1|= |m2| is enough to ensure
that m1 ≈⊕br m2.

Now, assume that m1[t1〉m′1 for some t1. Let us consider first the (1-either) condi-
tion, i.e., with l(t1) = τ . This case is actually composed of two subcases.

In subcase (i), we know that there exists a nonempty sequential transition sequence
σ2 such that •t1 ≈br

•σ2, o(σ2) = ε , t•1 ≈br σ•2 , m2[σ2〉m′2 and m′1 ≈
⊕
br m′2. Therefore, we

have that m′1 = t•1⊕m1, m′2 = σ•2 ⊕m2, m1 =
•t1⊕m1, m2 =

•σ2⊕m2. Since m′1 ≈
⊕
br m′2

and t•1 ≈br σ•2 , it follows that m1 ≈⊕br m2, and so m1 ≈⊕br m2, because •t1 ≈br
•σ2.

In subcase (ii), we have that ∃s2 ∈m2 such that •t1≈br s2, t•1 ≈br s2, with m′1≈
⊕
br m2.

Note that m′1 = t•1⊕m1, m1 =
•t1⊕m1 and m2 = s2⊕m2. Since m′1≈

⊕
br m2 and t•1 ≈br s2,

it follows that m1 ≈⊕br m2, and so m1 ≈⊕br m2, because •t1 ≈br s2.
Let us now consider the (1-or) condition. This means that ∃σ , t2 such that σt2 is

sequential, o(σ) = ε , l(t1) = l(t2), •t1 ≈br
•σt2, •t1 ≈br

•t2, t•1 ≈
⊕
br t•2 , m2[σ〉m[t2〉m′2

with m1 ≈⊕br m and m′1 ≈
⊕
br m′2. Note that m1 =

•t1⊕m1, m′1 = t•1 ⊕m1, m2 =
•σt2⊕m2

and m′2 = t•2 ⊕m2. We have to consider two subcases: t•1 ≈
⊕
br t•2 holds if either t•1 =

θ = t•2 or t•1 ≈br t•2 . In the former subcase, m′1 = m1 and m′2 = m2, and so m1 ≈⊕br m2
because •t1 ≈br

•t2. In the latter subcase, since m′1 ≈
⊕
br m′2 and t•1 ≈br t•2 , it follows that

m1 ≈⊕br m2; moreover, since •t1 ≈br
•σt2, it follows that m1 ≈⊕br m2.

Symmetrically, if we start from a transition t2 enabled at m2. 2

By the theorem above, it is clear that ≈⊕br is a branching interleaving bisimulation.
As a matter of fact, let us just consider the first either case: since •σ2 ≈br σ•2 , then not
only m2 ≈br m′2, but also all the intermediate markings in the path m2[σ2〉m′2 must be
branching team equivalent. Hence, the following corollary follows trivially.
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Corollary 3. (Branching team equivalence is finer than branching interleaving
bisimilarity) Let N = (S,A,T ) be an FSM. If m1 ≈⊕br m2, then m1 ≈bri m2. 2

Example 20. The containment in the above corollary is strict. Consider the nets in
Figure 3. Clearly, the markings s1 and s5⊕ s6 are branching interleaving bisimilar, but
not branching team equivalent, as the two markings have different size. 2

4.3. Rooted Branching Team Equivalence

We can also define rooted branching team equivalence as the additive closure of
rooted branching bisimilarity, i.e., ≈⊕brc. Of course, rooted branching team equivalence
relates markings of the same size only; moreover, ≈⊕brc is an equivalence relation, by
Proposition 8, as ≈brc is an equivalence relation (by Proposition 18).

Proposition 19. (Rooted branching team equivalence is finer than branching team
equivalence) Let N = (S,A,T ) be an FSM. If m1 ≈⊕brc m2, then m1 ≈⊕br m2.

PROOF. By Proposition 16, we have that ≈brc ⊆ ≈br. Since the additive closure is
monotone (by Proposition 8(4)), the thesis follows trivially. 2

The following theorem provides a characterization of rooted branching team equiv-
alence as a suitable bisimulation-like relation over markings, i.e., over a global model
of the overall behavior.

Theorem 4. Let N = (S,A,T ) be an FSM. If two markings m1 and m2 are rooted
branching team equivalent, m1 ≈⊕brc m2, then |m1|= |m2| and

1. ∀t1 such that m1[t1〉m′1, ∃t2 such that •t1 ≈brc
•t2, l(t1) = l(t2), t•1 ≈

⊕
br t•2 , m2[t2〉m′2

and m′1 ≈
⊕
br m′2,

2. ∀t2 such that m2[t2〉m′2, ∃t1 such that •t1 ≈brc
•t2, l(t1) = l(t2), t•1 ≈

⊕
br t•2 , m1[t1〉m′1

and m′1 ≈
⊕
br m′2.

PROOF. If m1 ≈⊕brc m2, then |m1| = |m2| by Proposition 7. Moreover, for any t1 such
that m1[t1〉m′1, we have that m1 = s1⊕m1, where s1 =

•t1. As m1 ≈⊕brc m2, by Definition
14, it follows that there exist s2 and m2 such that m2 = s2⊕m2, s1 ≈brc s2 and m1 ≈⊕brc

m2. Since s1 ≈brc s2, by Definition 16, we have that for transition t1 = s1
`−→ p1, there

must exist p2 such that s2
`−→ p2 and either p1 = θ = p2 or p1 ≈br p2. This means that

for transition t1, there exists a transition t2 such that l(t2) = `= l(t1), •t2 = s2, t•2 = p2,
hence with •t1 ≈brc

•t2 and t•1 ≈
⊕
br t•2 .

We have to consider two subcases: either t•1 = θ = t•2 or t•1 ≈br t•2 . In the former
subcase, m′1 = m1 and m′2 = m2; since m1 ≈⊕brc m2 by assumption, we have m1 ≈⊕br m2
by Proposition 19, and so m′1 ≈

⊕
br m′2, as required. In the latter case, m′1 = t•1 ⊕m1 and

m′2 = t•2 ⊕m2, and so m′1 ≈
⊕
br m′2 by Definition 14.

The case when m2 moves first is symmetric, hence omitted. 2

Note that, contrary to Theorem 3, we do not have an if-and-only-if condition: the
same example discussed after Theorem 2 explains, mutatis mutandis, this fact.
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Corollary 4. (Rooted branching team equivalence is finer than rooted branching
interleaving bisimilarity) Let N = (S,A,T ) be a finite-state machine. If m1 ≈⊕brc m2,
then m1 ≈c

bri m2.

PROOF. We want to prove that if m1 ≈⊕brc m2, then

• ∀t1 such that m1[t1〉m′1, ∃t2 s.t. m2[t2〉m′2 with l(t1) = l(t2) and m′1 ≈bri m′2,

• ∀t2 such that m2[t2〉m′2, ∃t1 s.t. m1[t1〉m′1 with l(t1) = l(t2) and m′1 ≈bri m′2,

so that m1 ≈c
bri m2 follows directly by Definition 8. However, this implication is obvi-

ous, due to Theorem 4 and Corollary 3. 2

Not surprisingly, ≈⊕brc is strictly finer than rooted branching interleaving bisimilar-
ity. Consider the nets in Figure 2. Even if s1 ≈c

bri s5⊕ s6, s1 is not rooted branching
team equivalent to s5⊕ s6, because the size of the two markings is different.

4.4. Minimization

Definition 17. (Reduced net) Let N = (S,A,T ) be an FSM and let ≈br be the branch-
ing bisimulation equivalence relation over its places. The reduced net Nbr =(Sbr,A,Tbr)
is defined as follows:

• Sbr = {[s]
∣∣ s ∈ S}, where [s] = {s′ ∈ S

∣∣ s≈br s′};

• Tbr = {([s], `, [m])
∣∣ (s, `,m)∈ T, ` 6= τ}∪{([s],τ, [m])

∣∣ (s,τ,m)∈ T, [s] 6= [m]},

where [m] is defined as: [θ ] = θ and [m1⊕m2] = [m1]⊕ [m2]. If N has initial marking
m0 = k1 · s1⊕ . . .⊕kn · sn, then Nbr has initial marking [m0] = k1 · [s1]⊕ . . .⊕kn · [sn]. 2

Lemma 3. Let N = (S,A,T ) be an FSM and let Nbr = (Sbr,A,Tbr) be its reduced net
w.r.t. ≈br. Relation R = {(s, [s])

∣∣ s ∈ S} is a branching bisimulation.

PROOF. If s `−→m with ` 6= τ , then also [s] `−→ [m] by definition of Tbr; if m = θ ,
then also [θ ] = θ and so the branching bisimulation condition is satisfied; otherwise, if
m = s′, then (s′, [s′]) ∈ R, as required. If s τ−→m and [s] = [m], then [s] replies by idling,
and (m, [s]) ∈ R, because [s] = [m]. Finally, if s τ−→m and [s] 6= [m], then [s] τ−→ [m]
by definition of Tbr; if m = θ , then also [θ ] = θ and so the branching bisimulation
condition is satisfied; otherwise, if m = s′, then (s′, [s′]) ∈ R, as required.

The case when [s] moves first is slightly more complex for the freedom in choosing

the representative in an equivalence class. Transition [s] `−→ [m] is possible, by Def-

inition of Tbr, if there exist s′ ∈ [s] and m′ ∈ [m] such that s′ `−→m′; as s ≈br s′ and

s′ `−→m′, then

– either `= τ and ∃p1 such that s ε
=⇒ p1 with p1 ≈br s′ and p1 ≈br m′,

– or there exist s,m1 such that s ε
=⇒ s `−→m1 with s≈br s′ and either m1 = θ = m′

or m1 ≈br m′.
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Summing up, if [s] `−→ [m], then

– either ` = τ and ∃p1 such that s ε
=⇒ p1 with p1 ∈ [s′] and p1 ∈ [m′] (i.e., with

(p1, [s]) ∈ R and (p1, [m]) ∈ R, because [s] = [s′] = [p1] = [m′] = [m]);

– or ∃s,m1 such that s ε
=⇒ s `−→m1 with s∈ [s′] (i.e., with (s, [s])∈R, as [s] = [s′] =

[s]) and m1 ∈ [m′] (i.e., with either m1 = θ = [m] or (m1, [m])∈R, as [m1] = [m′] =
[m]).

Hence, R = {(s, [s])
∣∣ s ∈ S} is a branching bisimulation. 2

Theorem 5. Let N = (S,A,T ) be an FSM and let Nbr = (Sbr,A,Tbr) be its reduced net
w.r.t. ≈br. For any m ∈M (S), we have that m≈⊕br [m].

PROOF. By induction on the size of m. If m = θ , then [m] = θ and the thesis follows
trivially. If m = s⊕m′, then [m] = [s]⊕ [m′]; by Lemma 3, s≈br [s] and, by induction,
m′ ≈⊕br [m

′]; therefore, by the rule in Definition 14, m≈⊕br [m]. 2

As a consequence of this theorem, we would like to point out that the reduced
net w.r.t. ≈br is indeed the least net offering the same branching team behavior as
the original net: no further fusion of places can be done, as there are not two places
in the reduced net which are branching bisimilar. Moreover, silent transitions relating
branching bisimilar places in the original net do not generate any silent transition in the
reduced net, so that the number of transitions is minimized, too.

As an example, consider the net in Figure 7(a). The equivalence classes w.r.t. ≈br
are {s1,s2}, {s3} and {s4,s5}. Hence, the reduced net has only three places and is ac-
tually isomorphic to the net in (b). Note that the transitions s1

τ−→ s2, s2
τ−→ s1 and

s4
τ−→ s5, which connect branching bisimilar places, do not originate any silent transi-

tion in the reduced net.

5. CFM: Syntax and Net Semantics

Now we define the process algebra CFM [15] (where CFM is the acronym of Con-
current Finite-state Machines) that truly represents FSMs.

5.1. Syntax
Let A be a finite set of observable actions, ranged over by a,b,c . . .. Let τ be the

invisible action. Let Act = A ∪{τ} be the finite set of actions, ranged over by µ , and
let C be a finite set of constants, disjoint from Act, ranged over by A,B,C, . . .. The size
of the sets Act and C is not important: we assume that they can be chosen are as large
as needed. The CFM terms are generated from actions and constants by the following
abstract syntax (using three syntactic categories):

s ::= 0 | µ.q | s+ s guarded processes
q ::= s | C sequential processes
p ::= q | p | p parallel processes
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dec(0) = θ dec(µ.p) = {µ.p}
dec(p+ p′) = {p+ p′} dec(C) = {C}

dec(p | p′) = dec(p)⊕dec(p′)

Table 1: Decomposition function

where 0 is the empty process, µ.q is a process where action µ prefixes the residual
q (µ.− is the action prefixing operator), s1 + s2 denotes the alternative composition
of s1 and s2 (−+− is the choice operator), p1 | p2 denotes the asynchronous parallel
composition of p1 and p2 and C is a constant. A constant C may be equipped with a
definition, but this must be a guarded process, i.e., C .

= s. A term p is a CFM process
if each constant in Const(p) (the set of constants used by p; see below for details) is
equipped with a defining equation (in category s). The set of CFM processes is denoted
by PCFM , the set of its sequential processes, i.e., those in syntactic category q, by
Pseq

CFM and the set of its guarded processes, i.e., those in syntactic category s, by Pgrd
CFM .

By Const(p) we denote the set of process constants δ (p, /0), where the auxiliary
function δ , which has, as an additional parameter, a set I of already known constants,
is defined as follows:

δ (0, I) = /0,
δ (µ.p, I) = δ (p, I),

δ (p1 + p2, I) = δ (p1, I)∪δ (p2, I),
δ (p1 | p2, I) = δ (p1, I)∪δ (p2, I),

δ (C, I) =


/0 C ∈ I,
{C} C 6∈ I∧C undefined,
{C}∪δ (p, I∪{C}) C 6∈ I∧C .

= p.

5.2. Net Semantics
The net for CFM, originally described in [15], has the set of the sequential CFM

processes (without 0) as the set SCFM of places, i.e., SCFM = Pseq
CFM \{0}. The decom-

position function, mapping process terms to markings, is dec : PCFM →M (SCFM),
defined in Table 1. An easy induction proves that for any p ∈PCFM , dec(p) is a finite
multiset of sequential processes. Note that, if C .

= 0, then θ = dec(0) 6= dec(C) = {C}.
Now we provide a construction of the net system JpK /0 associated with process

p, which is compositional and denotational in style. The details of the construction
are outlined in Table 2. The mapping is parametrized by a set of constants that have
already been found while scanning p; such a set is initially empty and it is used to avoid
looping on recursive constants. The definition is syntax driven and also the places of the
constructed net are syntactic objects, i.e., CFM sequential process terms. For instance,
the net system Ja.0K /0 is a net composed of one single marked place, namely term a.0,
and one single transition ({a.0},a,θ). A bit of care is needed in the rule for choice: in
order to include only strictly necessary places and transitions, the initial place p1 (or
p2) of the subnet Jp1KI (or Jp2KI) is to be kept in the net for p1 + p2 only if there exists
a transition reaching place p1 (or p2) in Jp1KI (or Jp2KI), otherwise p1 (or p2) can be
safely removed in the new net. Similarly, for the rule for constants.
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J0KI = ( /0, /0, /0,θ)
Jµ.pKI = (S,A,T,{µ.p}) given JpKI = (S′,A′,T ′,dec(p)) and where

S = {µ.p}∪S′, A = {µ}∪A′,
T = {({µ.p},µ,dec(p))}∪T ′

Jp1 + p2KI = (S,A,T,{p1 + p2}) given JpiKI = (Si,Ai,Ti,dec(pi)) for i = 1,2,
S = {p1 + p2}∪S′1∪S′2, with, for i = 1,2,

S′i =

{
Si ∃t ∈ Ti. t•(pi)> 0
Si \{pi} otherwise

A = A1∪A2, T = T ′∪T ′1 ∪T ′2 , with, for i = 1,2,

T ′i =

{
Ti if ∃t ∈ Ti . t•(pi)> 0
Ti \{t ∈ Ti

∣∣ •t(pi)> 0} otherwise
T ′ = {({p1 + p2},µ,m)

∣∣ ({pi},µ,m) ∈ Ti, i = 1,2}
JCKI = ({C}, /0, /0,{C}) if C ∈ I
JCKI = (S,A,T,{C}) if C 6∈ I, given C .

= p and JpKI∪{C} = (S′,A′,T ′,dec(p))
A = A′,S = {C}∪S′′, where

S′′ =

{
S′ ∃t ∈ T ′ . t•(p)> 0
S′ \{p} otherwise

T = {({C},µ,m)
∣∣ ({p},µ,m) ∈ T ′}∪T ′′ where

T ′′ =

{
T ′ if ∃t ∈ T ′ . t•(p)> 0
T ′ \{t ∈ T ′

∣∣ •t(p)> 0} otherwise
Jp1 | p2KI = (S,A,T,m0) given JpiKI = (Si,Ai,Ti,mi) for i = 1,2, and where

S = S1∪S2, A = A1∪A2, T = T1∪T2, m0 = m1⊕m2

Table 2: Denotational net semantics

Example 21. Consider constant B .
= b.A, where A .

= a.b.A. By using the definitions in
Table 2, JAK{A,B} = ({A}, /0, /0,{A}). Then, by action prefixing,

Jb.AK{A,B} = ({b.A,A},{b},{({b.A},b,{A})},{b.A}). Again, by action prefixing,
Ja.b.AK{A,B} =({a.b.A,b.A,A},{a,b},{({a.b.A},a,{b.A}),({b.A},b,{A})}, {a.b.A}).

Now, the rule for constants ensures that
JAK{B} = ({b.A,A},{a,b},{({A},a,{b.A}), ({b.A},b,{A})},{A}).

Note that place a.b.A has been removed, as no transition in Ja.b.AK{A,B} reaches that
place. By action prefixing,

Jb.AK{B} = ({b.A,A},{a,b},{({A},a,{b.A}),({b.A},b,{A})},{b.A}),
i.e., this operation changes only the initial marking, but does not affect the underlying
net! Finally,
JBK /0 = ({B,b.A,A},{a,b},{({B},b,{A}),({A},a,{b.A}),({b.A},b,{A})},{B}).
Note that place b.A has been kept, because there is a transition in the net Jb.AK{B} that
reaches that place. 2



5 CFM: SYNTAX AND NET SEMANTICS 30

A

a b

b.A

b B C

a

Figure 10: The concurrent finite-state machine for B |b.A |C |C of Example 22

Example 22. Consider the CFM process B |b.A |C |C, where B .
= b.A, A .

= a.b.A and
C .
= a.C. The nets for the processes b.A and B are described in Example 21. The con-

current FSM associated with B |b.A is
JB |b.AK /0 =
= ({B,b.A,A},{a,b},{({B},b,{A}),({A},a,{b.A}),({b.A},b,{A})},{B,b.A}),

where the only addition to the net for B is one token in place b.A. The sequential FSM
for C is JCK /0 = ({C},{a},{({C},a,{C})},{C}).
The concurrent FSM for C |C is JC |CK /0 = ({C},{a},{({C},a,{C})},{C,C}).
And the whole net for B |b.A |C |C is JB |b.A |C |CK /0 = (S,A,T,m0), where

S = {B,b.A,A,C},
A = {a,b},
T = {({B},b,{A}),({A},a,{b.A}),({b.A},b,{A}),({C},a,{C})},

m0 = {B,b.A,C,C}.
The resulting net is depicted in Figure 10. 2

We now list some properties of the semantics, whose proofs are in [15], which state
that CFM really represents the class of FSMs.

Theorem 6. (Only Concurrent FSMs) For each CFM process p, JpK /0 is a concurrent
finite-state machine. 2

Definition 18. (Translating Concurrent FSMs into CFM Process Terms) Let N(m0)
= (S,A,T,m0) — with S = {s1, . . . ,sn}, A⊆ Act, T = {t1, . . . , tk}, and l(t j) = µ j — be
a concurrent finite-state machine. Function TCFM(−), from concurrent finite-state ma-
chines to CFM processes, is defined as

TCFM(N(m0)) =C1| · · · |C1︸ ︷︷ ︸
m0(s1)

| · · · |Cn| · · · |Cn︸ ︷︷ ︸
m0(sn)

where each Ci is equipped with a defining equation Ci
.
= c1

i + · · ·+ ck
i (with Ci

.
= 0 if

k = 0), and each summand c j
i , for j = 1, . . . ,k, is equal to

• 0, if si 6∈ •t j;

• µ j.0, if •t j = {si} and t•j = /0;

• µ j.Ch, if •t j = {si} and t•j = {sh}. 2
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Theorem 7. (All Concurrent FSMs) Let N(m0) = (S,A,T,m0) be a dynamically re-
duced, concurrent finite-state machine such that A ⊆ Act, and let p = TCFM(N(m0)).
Then, JpK /0 is isomorphic to N(m0). 2

6. Congruence and Algebraic Properties

Thanks to the theorems of the previous section, we can transfer the definitions of the
various team-based bisimulation equivalences from FSM nets to CFM process terms in
a simple way.

Definition 19. Two CFM processes p and q are (strong) team bisimilar, denoted by
p ∼⊕ q, if, by considering the (union of the) nets JpK /0 and JqK /0, dec(p) ∼⊕ dec(q)
holds. In the same way, we can define all the other team equivalences; for instance,
p≈⊕c q if dec(p)≈⊕c dec(q) and p≈⊕brc q if dec(p)≈⊕brc dec(q). 2

Of course, for sequential CFM processes, strong team equivalence ∼⊕ coincides
with strong bisimilarity on places ∼. The same is true for rooted weak team equiva-
lence≈⊕c (rooted branching team equivalence≈⊕brc), which coincides with rooted weak
bisimilarity ≈c (rooted branching bisimilarity ≈brc) for sequential terms.

Thanks to Definition 19, we can now perform the usual process algebraic study of
a behavioral equivalence: to prove that it is a congruence for the operators of the CFM
process algebra and to study its algebraic properties. These will be the subject of the
next subsections.

6.1. Congruence

We first prove that strong/weak/branching bisimilarities are congruences for action
prefixing.

Proposition 20. 1) For each p,q ∈Pseq
CFM , if p∼ q (or p = q = 0), then µ.p∼ µ.q for

all µ ∈ Act.
2) For each p,q ∈Pseq

CFM , if p≈ q (or p = q = 0), then µ.p≈ µ.q for all µ ∈ Act.
3) For each p,q ∈Pseq

CFM , if p≈br q (or p = q = 0), then µ.p≈br µ.q for all µ ∈ Act.
4) For each p,q ∈Pseq

CFM , if p≈c q (or p = q = 0), then µ.p≈c µ.q for all µ ∈ Act.
5) For each p,q ∈Pseq

CFM , if p≈brc q (or p = q = 0), then µ.p≈brc µ.q for all µ ∈ Act.

PROOF. For cases 1-3, assume R is a strong/weak/branching bisimulation such that
(p,q) ∈ R (or R = /0 in case p = q = 0). Consider, for each µ ∈ Act, relation Rµ =
{(µ.p,µ.q)}∪R. It is very easy to check that Rµ is a strong/weak/branching bisim-
ulation on places. Case 4 derives from the following exercise: p ≈ q if and only if
µ.p≈c µ.q for each µ ∈ Act. With a similar exercise, also case 5 can be proved. 2

Now we prove that strong/rooted-weak/rooted-branching bisimilarities are congru-
ences for summation. As expected, weak/branching bisimilarities are not congruences
in this case. For instance, τ.a.0≈ a.0 but τ.a.0+b.0 6≈ a.0+b.0.
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Proposition 21. 1) For each p,q ∈Pgrd
CFM , if p∼ q (or p = q = 0), then p+ r ∼ q+ r

for all r ∈Pgrd
CFM .

2) For each p,q∈Pgrd
CFM , if p≈c q (or p= q= 0), then p+r≈c q+r for all r ∈Pgrd

CFM .
3) For each p,q ∈Pgrd

CFM , if p ≈brc q (or p = q = 0), then p+ r ≈brc q+ r for all
r ∈Pgrd

CFM .

PROOF. For case 1, assume R is a bisimulation such that (p,q) ∈ R (or R = /0 in case
p = q = 0). It is easy to check that, for each r ∈Pgrd

CFM , the relation Rr = {(p+ r,q+
r)}∪R∪Ir is a strong bisimulation, where Ir = {(r′,r′)

∣∣ r′ ∈ reach(r),r′ 6= θ} if
r 6= 0, otherwise Ir = /0.

For case 2, if p+ r
µ−→ s, this can be due to either p

µ−→ s or r
µ−→ s, according to

the net semantics in Table 2. In the former case, since p ≈c q, we have that q
µ

=⇒q′,
with s≈ q′. Hence, by lifting the first transition on that path with source place q+r (cf.
set T ′ in Table 2), we can derive q+ r

µ
=⇒q′ with s≈ q′, as required. In the latter case,

by the definition of the net semantics, we can derive also q+ r
µ−→ s, hence q+ r

µ
=⇒ s

with s≈ s, as required. The symmetric case when q+ r moves first is omitted.
For case 3, if p+ r

µ−→ s, this can be due to either p
µ−→ s or r

µ−→ s. In the former
case, since p ≈brc q, we have that q

µ−→q′, with s ≈br q′. Hence, by the definition of
the net semantics, we can also derive q+r

µ−→q′ with s≈br q′, as required. In the latter
case, by the definition of the net semantics, we can also derive q+ r

µ−→ s, with s≈br s.
The symmetric case when q+ r moves first is omitted. 2

Now we show that all the bisimulations on places are congruences for parallel com-
position.

Proposition 22. 1) For every p,q,r ∈PCFM , if p∼⊕ q, then p |r ∼⊕ q |r.
2) For every p,q,r ∈PCFM , if p≈⊕ q, then p |r ≈⊕ q |r.
3) For every p,q,r ∈PCFM , if p≈⊕br q, then p |r ≈⊕br q |r.
4) For every p,q,r ∈PCFM , if p≈⊕c q, then p |r ≈⊕c q |r.
5) For every p,q,r ∈PCFM , if p≈⊕brc q, then p |r ≈⊕brc q |r.

PROOF. By induction on the size of dec(p). The proof is identical in all the five cases.
So, we show only the first one.

If |dec(p)| = 0, then dec(p) = θ ; as p ∼⊕ q, necessarily also dec(q) = θ . Hence,
dec(p |r) = dec(r) = dec(q |r) and the thesis follows trivially, because∼⊕ is reflexive.
Since dec(p)∼⊕ dec(q), if |dec(p)|= k+1 for some k≥ 0, then by Definition 14, there
exist p1, p2,q1,q2 such that p1 ∼ q1, dec(p2)∼⊕ dec(q2), dec(p) = p1⊕dec(p2) and
dec(q) = q1⊕ dec(q2). Since |dec(p2)| = k = |dec(q2)| and p2 ∼⊕ q2, by induction,
we have that p2 |r ∼⊕ q2 |r. Since p1 ∼ q1, by Definition 14, we have that dec(p |r) =
p1⊕dec(p2 |r)∼⊕ q1⊕dec(q2 |r) = dec(q |r). Hence, p |r ∼⊕ q |r. 2

Still there is one construct missing: recursion, defined over guarded terms only.
Here we simply sketch the issue. Consider an extension of CFM where terms can be
constructed using variables, such as x,y, . . . (which are in syntactic category q): this
defines an “open” CFM, where terms may be not given a complete semantics. For
instance, p1(x) = a.(b.0+c.x) and p2(x) = a.(c.x+b.0) are open guarded CFM terms.
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Definition 20. (Open CFM) Let Var = {x,y,z, . . .} be a finite set of variables. The
CFM open terms are generated from actions, constants and variables by the following
abstract syntax:

s ::= 0 | µ.q | s+ s guarded open processes
q ::= s | C | x sequential open processes
p ::= q | p | p parallel open processes

where x is any variable taken from Var. The open net semantics for open CFM extends
the net semantics in Table 2 with JxKI = ({x}, /0, /0,{x}), so that, e.g., the semantics of
a.x is ({a.x,x},{a},{(a.x,a,x)},a.x). 2

However, a place x is not equivalent to 0+0, even if both are stuck, because x is in-
tended to be a placeholder for a sequential CFM term. All the behavioral equivalences
we have defined on (closed) process terms can be extended to open terms, by consider-
ing the variables in a proper way. An open term p(x1, . . . ,xn) can be closed by means
of a substitution as follows:

p(x1, . . . ,xn){r1/x1, . . . ,rn/xn}

with the effect that each occurrence of the variable xi (within p and the body of each
constant in Const(p)) is replaced by the closed CFM sequential process ri, for i =
1, . . . ,n. E.g, if p1(x) = a.(b.0+ c.x) and p2(x) = a.(c.x+ b.0), then p1(x){d.0/x} =
a.(b.0+ c.d.0) and p2(x){d.0/x}= a.(c.d.0+b.0).

A natural extension of strong bisimulation equivalence ∼ over open guarded terms
is as follows: p(x1, . . . ,xn)∼ q(x1, . . . ,xn) if for all tuples (r1, . . . ,rn) of (closed) CFM
sequential terms, p(x1, . . . ,xn){r1/x1, . . . ,rn/xn} ∼ q(x1, . . . ,xn){r1/x1, . . . ,rn/xn}. For
instance, it is easy to see that p1(x)∼ p2(x). As a matter of fact, for all r, p1(x){r/x}=
a.(b.0+c.r)∼ a.(c.r+b.0) = p2(x){r/x}, which can be easily proved by means of the
algebraic properties (discussed in the next subsection) and the congruence ones of ∼.

In the same way, we can define weak bisimilarity ≈ (as well as branching bisim-
ilarity ≈br, rooted weak bisimilarity ≈c and rooted branching bisimilarity ≈brc) over
open guarded CFM terms.

For simplicity’s sake, let us now restrict our attention to open guarded terms using
a single undefined variable. We can recursively close an open term p(x) by means
of a recursively defined constant. For instance, A .

= p(x){A/x}. The resulting process
constant A is a closed CFM sequential process. By saying that strong bisimilarity is a
congruence for recursion we mean the following: If p(x) ∼ q(x) and A .

= p(x){A/x}
and B .

= q(x){B/x}, then A ∼ B. Similarly, we can state that (rooted) weak/branching
bisimilarity is congruence for recursion. The following theorem states these facts.

Theorem 8. Let p and q be two open guarded CFM terms, with one variable x at most.
Let A .

= p{A/x}, B .
= q{B/x}.

1) If p∼ q, then A∼ B;
2) if p≈ q, then A≈ B;
3) if p≈br q, then A≈br B;
4) if p≈c q, then A≈c B;
5) if p≈brc q, then A≈brc B;
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PROOF. Consider the relation R = {(r{A/x},r{B/x})
∣∣ r ∈ reach(p)∪ reach(q),r 6=

θ}. Note that when r is x, we get (A,B) ∈ R.
For case 1, it is enough to prove that R is a strong bisimulation up to∼ [25, 14]. For

case 2, it is enough to prove that R is a weak bisimulation up to≈ [25, 14]. For case 3, it
is enough to prove that R is a branching bisimulation up to ≈br [14]. These three cases
are very similar and their proofs differ only when r = x. For cases 4 and 5, it is enough
to elaborate a bit on cases 2 and 3, respectively. By symmetry, for case 1 it is enough
to prove that if r{A/x} µ−→ p′, then r{B/x} µ−→q′ with p′ ∼ R ∼ q′ (or p′ = θ = q′);
instead, for case 2, we have to prove that if r{A/x} a−→ p′ (or r{A/x} τ−→ p′), then
r{B/x} a

=⇒q′ (or r{B/x} ε
=⇒q′) with p′ ∼ R ≈ q′ (or p′ = θ = q′); finally, for case

3 we have to prove that if r{A/x} µ−→ p′, then either µ = τ and r{B/x} ε
=⇒q′ with

p′ ∼ R ≈br r{B/x} and p′ ∼ R ≈br q′, or r{B/x} ε
=⇒q

µ−→q′ with r{A/x} ∼ R ≈br q
and p′ ∼ R ≈br q′.

The proof proceeds by induction on the definition of the net for r{A/x}. We exam-
ine the possible shapes of r, which is an open sequential process.

(a) r = µ.r′. In this case, r{A/x}= µ.r′{A/x} µ−→ r′{A/x} (in case r′ 6= 0) or r{A/x}
= µ.r′{A/x} µ−→θ (in case r′ = 0). Similarly, r{B/x}= µ.r′{B/x} µ−→ r′{B/x}
(or r{B/x}= µ.r′{B/x} µ−→θ ) is derivable, with (r′{A/x},r′{B/x}) ∈ R (or the
reached markings are both θ ).

(b) r = r1+r2. In this case, r{A/x}= r1{A/x}+r2{A/x}. A transition from r{A/x},
e.g., r1{A/x}+ r2{A/x} µ−→ p′, is derivable only if ri{A/x} µ−→ p′ for some i =
1,2. Without loss of generality, assume the transition is due to r1{A/x} µ−→ p′.
Since r1 is guarded, r1{A/x} µ−→ p′ is derivable only if r1

µ−→ r, with p′= r{A/x}.
Therefore, we can derive r1{B/x} µ−→ r{B/x} and so also r{B/x}= r1{B/x}+
r2{B/x} µ−→ r{B/x}, with (r{A/x},r{B/x}) ∈ R (or r = θ ).

(c) r =D, with D .
= s. So, r{A/x} .

= s{A/x} and r{B/x} .
= s{B/x}. If r{A/x} µ−→ p′,

then this is possible only if s{A/x} µ−→ p′. Since s is guarded, s{A/x} µ−→ p′ is
derivable only if s

µ−→ s, with p′= s{A/x}. So, we can derive s{B/x} µ−→ s{B/x}
and so, by the net semantics, also r{B/x} µ−→ s{B/x}, with (s{A/x},s{B/x}) ∈
R (or s = θ ).

(d) r = x. Then, we have r{A/x}= A and r{B/x}= B. By hypothesis, A .
= p{A/x},

hence, if A
µ−→ p′, then also p{A/x} µ−→ p′ is a transition in the net for p{A/x}.

Since p is guarded, p{A/x} µ−→ p′ is derivable only if p
µ−→ p with p′ = p{A/x}.

Hence, p{B/x} µ−→ p{B/x} is derivable, too. Now we have the following cases:

1. If p∼ q, then q
µ−→q with p∼ q (or p= θ = q). Hence, q{B/x} µ−→q{B/x}

is derivable, too, with p{B/x}∼ q{B/x} (or p= θ = q). Since B .
= q{B/x},

B
µ−→q{B/x} is derivable, too, with p{A/x}∼ p{A/x}R p{B/x}∼ q{B/x}

(or p = θ = q), as required. This concludes the proof that R is a strong
bisimulation up to ∼.
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2. If p≈ q, then q a
=⇒q (if µ = a; or q ε

=⇒q if µ = τ), with p≈ q (or p= θ =

q). Hence, q{B/x} a
=⇒q{B/x} (or q{B/x} ε

=⇒q{B/x}) is derivable, too,
with p{B/x} ≈ q{B/x} (or p = θ = q). Since B .

= q{B/x}, B a
=⇒q{B/x}

(or B ε
=⇒q{B/x}) is derivable, too, with p{A/x} ∼ p{A/x}R p{B/x} ≈

q{B/x} (or p = θ = q), as required. This concludes the proof that R is a
weak bisimulation up to ≈.

3. If p ≈br q, then either µ = τ and q ε
=⇒q, such that p ≈br q and p ≈br

q, or q ε
=⇒ s

µ−→q such that p ≈br s and p ≈br q. Hence, either µ = τ

and q{B/x} ε
=⇒q{B/x}, such that p{B/x} ≈br q{B/x} and p{B/x} ≈br

q{B/x}, or q{B/x} ε
=⇒ s{B/x} µ−→q{B/x} such that p{B/x} ≈br s{B/x}

and p{B/x}≈br q{B/x}. Since B .
= q{B/x}, in the either case B ε

=⇒q{B/x}
is derivable, too, with p{A/x}∼ p{A/x}R p{B/x}≈br q{B/x} and p{A/x}
∼ p{A/x}R p{B/x} ≈br q{B/x} (or p = θ = q), as required; in the or case
B ε
=⇒ s{B/x} µ−→q{B/x} is derivable, too, with

p{A/x} ∼ p{A/x}R p{B/x} ≈br s{B/x} and
p{A/x} ∼ p{A/x}R p{B/x} ≈br q{B/x} (or p = θ = q), as required. This
concludes the proof that R is a branching bisimulation up to ≈br.

4. If p≈c q, then q
µ

=⇒q, with p≈ q (or p = θ = q). So, q{B/x} µ
=⇒q{B/x}

is derivable, too, with p{B/x}≈ q{B/x}. Since B .
= q{B/x}, B

µ
=⇒q{B/x}

is derivable, too. Since from item 2 above (which holds because p ≈c q
implies p ≈ q), we know that R is a weak bisimulation up to ≈, we have
that p{A/x} ≈ p{B/x}, and so we can conclude that if A

µ−→ p{A/x}, then
B

µ
=⇒q{B/x} with p{A/x} ≈ q{B/x}, as required.

5. If p≈brc q, then q
µ−→q, with p≈br q (or p= θ = q). So, q{B/x} µ−→q{B/x}

is derivable, too, with p{B/x} ≈br q{B/x}. As B .
= q{B/x}, the transition

B
µ−→q{B/x} is derivable, too. As from item 3 above (which holds because

p≈brc q implies p≈br q), we know that relation R is a branching bisimula-
tion up to ≈br, we have that p{A/x} ≈br p{B/x}, and so we can conclude
that if A

µ−→ p{A/x}, then B
µ−→q{B/x} with p{A/x} ≈br q{B/x}, as re-

quired. 2

The extension to the case of open terms with multiple undefined variables, e.g.,
p(x1, . . . ,xn) can be obtained in a standard way [25, 14].

6.2. Algebraic Properties
The algebraic properties we list in this section are a slight variation of those for

strong/weak/branching bisimilarities over finite-state CCS, studied in [24, 20, 25, 26,
11, 12, 3, 14]. Interestingly enough, they can be adapted to the various team equiva-
lences we propose for CFM.

6.2.1. Strong Team Equivalence
Now we list the algebraic properties of strong team equivalence, whose proof is

outlined in [17]. On sequential processes we have the following algebraic laws.
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Proposition 23. (Laws of the choice operator for ∼) For each p,q,r ∈Pgrd
CFM , the

following hold:
p+(q+ r) ∼ (p+q)+ r (associativity)

p+q ∼ q+ p (commutativity)
p+0 ∼ p if p 6= 0 (identity)
p+ p ∼ p if p 6= 0 (idempotency) 2

Proposition 24. (Laws of the constant for ∼) For each p ∈Pgrd
CFM , and each C ∈ C ,

the following hold:
if C .

= 0, then C ∼ 0+0 (stuck)
if C .

= p and p 6= 0, then C ∼ p (unfolding)
if C .

= p{C/x} and q∼ p{q/x} then C ∼ q (folding)
where in the last law p is actually also open on x (while q is closed). 2

Proposition 25. (Laws of the parallel operator for∼⊕) For each p,q,r ∈PCFM , the
following hold:

p |(q |r) ∼⊕ (p |q) |r (associativity)
p |q ∼⊕ q | p (commutativity)
p |0 ∼⊕ p (identity) 2

As strong team equivalence is finer than rooted weak/branching team equivalences,
all these algebraic properties (except for the folding law, which is to be proved again)
hold also for these coarser equivalences.

6.2.2. Rooted Weak Team Equivalence
A simple law that holds for both weak and branching bisimilarities is the following:

if q 6= 0, then τ.q≈ q and τ.q≈br q.

In fact, relation R = {(τ.q,q)} ∪I is a weak/branching bisimulation, where I =
{(r,r)

∣∣ r ∈ reach(q),r 6= θ}. Note that the semantics of τ.0 is the net in Figure 6(d),
while the semantics of 0 is the empty marking θ ; hence τ.0 6≈ 0; nonetheless, τ.τ.0≈
τ.0. Of course, this simple law is invalid for rooted weak/branching bisimilarity.

Now we list some laws for rooted weak bisimilarity.

Proposition 26. (τ-laws for rooted weak bisimilarity) For each p ∈Pgrd
CFM , for each

q ∈Pseq
CFM and for each µ ∈ Act, the following hold:

(i) µ.τ.q ≈c µ.q if q 6= 0
(ii) p+ τ.p ≈c τ.p
(iii) µ.(p+ τ.q) ≈c µ.(p+ τ.q)+µ.q

PROOF. The first law follows directly by the fact that τ.q≈ q if q 6= 0.
For the second law, observe that the only move from τ.p, namely τ.p τ−→ p (or

τ.p τ−→θ if p = 0), can be easily matched by p+ τ.p, with p+ τ.p τ−→ p and p ≈ p
(or p+ τ.p τ−→θ ). Conversely, if p+ τ.p

µ−→ p′, then τ.p
µ

=⇒ p′ with p′ ≈ p′ (or p′ =
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og(0) og(α.p)

og(p)

og(τ.p)

og(p) C .
= p{C/x}

og(C)

og(p) og(q)

og(p+q)

Table 3: Observationally guarded predicate

θ ). Indeed, p+ τ.p
µ−→ p′ is derivable if either p

µ−→ p′ or τ.p τ−→ p (and µ = τ and
p′ = p). In the former case τ.p τ−→ p

µ−→ p′ and p′ ≈ p′ (or p′ = θ ); in the latter case,
τ.p τ−→ p and p≈ p (or p = θ ).

For the third law, the only nontrivial case is when µ.(p + τ.q) + µ.q
µ−→q (or

µ.(p+ τ.q) + µ.q
µ−→θ , if q = 0); in such a case µ.(p+ τ.q)

µ
=⇒q with q ≈ q (or

µ.(p+ τ.q)
µ

=⇒θ ). 2

In order to define the properties concerning the constants, we need an auxiliary
definition.

Definition 21. (Observationally guarded) A sequential (possibly open) CFM process
p is observationally guarded if og(p) holds, where og(−) is defined in Table 3. 2

In the definition above (and throughout the paper), it is assumed that whenever
a constant C is defined by C .

= p{C/x}, then the open guarded (but it may be not
observationally guarded) term p does not contain occurrences of C, i.e., C 6∈ Const(p),
so that all the instances of C in p{C/x} are due to substitution of C for x. Moreover, it
assumed that for each constant definition we use a different variable, e.g., D .

= q{D/y}.
For instance, if C .

= τ.C, then C is not observationally guarded because τ.x is not
so. On the contrary, let us consider

C1
.
= a.C2 + τ.a.C1

C2
.
= b.C2 + τ.C1

Note that og(C1) holds; in fact, og(a.C2{x/C1}+ τ.a.x)2 holds, as og(a.C2{x/C1})
hods and og(τ.a.x) holds as og(a.x) holds. Similarly, og(C2) holds, as og(b.y) holds
and og(τ.C1{y/C2}) holds; in fact og(C1{y/C2}) holds, because og(a.y+τ.a.x) holds.
Note that C .

= p{C/x} is observationally guarded if and only if C τ;C.

Lemma 4. Let p be a sequential process, open on x, p 6= x. If p{q/x} µ−→ r, then there
exists a process p′ such that p

µ−→ p′, r = p′{q/x} and for any sequential process t,
p{t/x} µ−→ p′{t/x}. Moreover, if µ = τ and p is observationally guarded, then p′ is
observationally guarded.

PROOF. By induction on the structure of p. If p is a constant D .
= s, then p{q/x} .

=

s{q/x} and p{q/x} µ−→ r only if s{q/x} µ−→ r; since s is guarded, then s
µ−→ s, with r =

2Note that we have used the inverse substitution {x/C1} to denote that each occurrence of constant C1
in the body of C2 is replaced by x.
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s{q/x}, and so p′ = s. If p = p1 + p2, then the result follows by easy induction. If p =
µ.p′, clearly r = p′{q/x} and so the result is immediate. Note that, in each case of the
induction, if p is observationally guarded and µ = τ , then p′ must be observationally
guarded, as required. 2

Proposition 27. (Weak folding) For each p ∈Pgrd
CFM (open on x), and each C ∈ C , if

C .
= p{C/x}, og(p) and q≈c p{q/x}, then C ≈c q.

PROOF. This statement can be proven by showing that the relation
R = {(r{C/x},r{q/x})

∣∣ r ∈ reach(p),r 6= θ}
is a weak bisimulation up to ≈ [25, 35, 14] satisfying the rootedness conditions. Here,
we consider the alternative definition of weak bisimulation as a strong bisimulation of
Proposition 4. This has the nice consequence that the proof technique that we use is
actually a strong bisimulation up to, where each occurrence of ∼ is actually replaced
by ≈ [35]. To ease notation, we write r(t) for r{t/x}.

Clearly, when r = x, we have that (C,q) ∈ R. So, it remains to prove the weak
bisimulation (up to) conditions: for each δ ∈A ∪{ε}

• if r(C)
δ

=⇒ p′, then r(q) δ
=⇒q′ and p′ ≈ R≈ q′ (or p′ = θ = q′), and

• if r(q) δ
=⇒q′, then r(C)

δ
=⇒ p′ and p′ ≈ R≈ q′ (or p′ = θ = q′).

If R is a weak bisimulation up to, then R⊆≈ and so C ≈ q; since we will show that
the rootedness conditions are satisfied for the pair (C,q), we get the thesis C ≈c q.

If r(C)
δ

=⇒ p′, then we have three cases: (i) either p′ = r(C) and r(C)
δ

=⇒ r(C)

because r δ
=⇒ r (with r 6= x); (ii) or r(C)

ε
=⇒ x(C)

δ
=⇒ p′; (iii) or r(C)

δ
=⇒ x(C)

ε
=⇒ p′.

(i) If r(C)
δ

=⇒ r(C) because r δ
=⇒ r (with r 6= x), then also r(q) δ

=⇒ r(q) is derivable
by (repeated applications of) Lemma 4, and (r(C),r(q)) ∈ R. If r(C) = θ , then also
r(q) = θ , so the thesis follows trivially.

(ii) To derivation r(C)
ε

=⇒ x(C) (due to r ε
=⇒ x), r(q) replies by mimicking each

move, by Lemma 4, with r(q) ε
=⇒ x(q) and (C,q) ∈ R. Now, derivation x(C)

δ
=⇒ p′

ensures that p(C)
δ

=⇒ p′ because C .
= p(C). Now we have only these two subcases:3

(a) p(C)
δ

=⇒ p(C) because p δ
=⇒ p and p′= p(C). In such a case, also p(q) δ

=⇒ p(q)
is derivable by (repeated applications of) Lemma 4. As q ≈c p(q), by Lemma 1

there exists q′ such that x(q) δ
=⇒q′ with p(q)≈ q′ (assuming p 6= θ ). Summing

up, if r(C)
ε

=⇒ x(C)
δ

=⇒ p′ = p(C), then r(q) replies with r(q) ε
=⇒ x(q) δ

=⇒q′

with p(C)R p(q)≈ q′. If p = θ , then also q′ = θ and the thesis follows trivially.

(b) p(C)
δ

=⇒ x(C)
ε

=⇒ p′ because p δ
=⇒ x. In such a case, also p(q) δ

=⇒ x(q) is deriv-
able by (repeated applications of) Lemma 4, with (C,q) ∈ R. As q ≈c p(q), by

3Note that the case p(C)
ε

=⇒ x(C)
δ

=⇒ p′ is impossible because p is observationally guarded.
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Lemma 1 there exists q such that q δ
=⇒q with x(q) = q ≈ q. Then, x(C)

ε
=⇒ p′

ensures that p(C)
ε

=⇒ p′ because C .
= p(C). Since p is observationally guarded,

by Lemma 4 it follows that p′ = p(C) and p ε
=⇒ p. Therefore, also p(q) ε

=⇒ p(q)
is derivable. Since q≈c q≈c p(q), there exists q′ such that q ε

=⇒q′ with p(q)≈
q′ (assuming p 6= θ ). Summing up, if r(C)

δ
=⇒ x(C)

ε
=⇒ p′ = p(C), then r(q)

replies with r(q) δ
=⇒q ε

=⇒q′ with p(C)R p(q) ≈ q′. If p = θ , then also q′ = θ

and the thesis follows trivially.

(iii) This case is analogous to the previous one, and so omitted.
The case when r(q) moves first is analogous, and so omitted. Therefore, R is a weak

bisimulation up to ≈, so that we can conclude that C ≈ q, since (C,q) ∈ R.
Actually, we can prove that C ≈c q. Reconsidering the proof above, we have actu-

ally shown that if x(C)
µ

=⇒ p(C), then x(q)
µ

=⇒q′ with p(C)R p(q) ≈ q′; since R is a
weak bisimulation up to ≈, this is the same as p(C)≈ q′, as required. 2

Observe that the requirement that p is observationally guarded is crucial for the
correctness of the weak folding property. For instance, consider p = τ.x+ a.0, which
is not observationally guarded. Then, C .

= τ.C+a.0 defines a process that can perform
only a, possibly after some internal activity, so it is rooted weak bisimilar to τ.a.0.
However, q = τ.(a.0+b.0) is such that q≈c τ.q+a.0, but C 6≈c q.

Proposition 28. (Other laws of the constant for≈c) For each p,r ∈Pgrd
CFM , and each

C,D ∈ C , the following holds:
if C .

= (τ.x+ p){C/x} and D .
= (τ.(p+0)){D/x}, then C ≈c D (w-excision)

if C .
= (τ.(τ.x+ p)+ r){C/x} and D .

= τ.(p+ r){D/x}, then C ≈c D (w-out)

PROOF. (W-excision) Relation R= {(C,D),(C,(p+0){D/x})}∪{(p′{C/x}, p′{D/x})∣∣ p′ ∈ reach(p)} is a weak bisimulation. Note that if p = 0, it would be incorrect to
state that C≈ p{D/x}, because p is not a place: this is reason why we add the summand
0 to get p+0. Now, the proof that C ≈c D follows easily. If C τ−→C, then D τ−→ (p+
0){D/x} and C ≈ (p+0){D/x}; symmetrically if D moves first. If C

µ−→ p′{D/x} be-
cause p

µ−→ p′, then D τ−→ (p+ 0){D/x} µ−→ p′{D/x} with p′{C/x} ≈ p′{D/x} (or
p′ = θ ).

(W-out) Relation R= {(C,D),(C,(p+r){D/x}),((τ.x+ p){C/x},(p+r){D/x})}
∪{(q′{C/x},q′{D/x})

∣∣ r′ ∈ reach(p+r)} is a weak bisimulation. Now, the proof that
C ≈c D follows easily. If C τ−→ (τ.x+ p){C/x}, then D τ−→ (p+ r){D/x} with (τ.x+
p){C/x} ≈ (p+ r){D/x}; symmetrically if D moves first. If C

µ−→ r′{C/x} because
r

µ−→ r′, then D τ−→ (p+r){D/x} µ−→ r′{D/x} with r′{C/x} ≈ r′{D/x} (or r′ = θ ). 2

6.2.3. Rooted Branching Team Equivalence
As ≈brc is strictly finer than ≈c, it may be not a surprise that some of the τ-laws

in Proposition 26 do not hold for it. In particular, to get convinced that the third τ-law
µ.(p+ τ.q)≈brc µ.(p+ τ.q)+µ.q is invalid, assume that µ = a, p = c.0 and q = b.0.
Then, the transition a.(c.0+τ.b.0)+a.b.0 a−→b.0 is matched (strongly, as required by
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the definition of rooted branching bisimilarity) by a.(c.0+ τ.b.0) a−→ c.0+ τ.b.0, but
of course b.0 6≈br c.0+ τ.b.0. Similarly, the second τ-law p+ τ.p ≈brc τ.p is invalid.
E.g., take p = τ.a.0+b.0; then, to transition p+τ.p τ−→a.0 (which is due to transition
p τ−→a.0), τ.p can react only with τ.p τ−→ p, but a.0 6≈br p.

Proposition 29. (τ-law for rooted branching bisimilarity) For each p,r ∈Pgrd
CFM

and for each µ ∈ Act, the following holds:

µ.(τ.(p+ r)+ p) ≈brc µ.(p+ r)

PROOF. Observe that the two terms match their initial µ-labeled transition as in strong
bisimulation, as required, and so it remains to prove that τ.(p+ r)+ p ≈br p+ r. To
achieve this, we will prove that the relation

R = {(τ.(p+ r)+ p, p+ r)}∪I

is a branching bisimulation. If τ.(p+ r)+ p τ−→ p+ r, then p+ r ε
=⇒ p+ r and (τ.(p+

r) + p, p + r) ∈ R as well as (p + r, p + r) ∈ R. Instead, if τ.(p + r) + p
µ−→ p′ (or

τ.(p+ r) + p
µ−→θ ), because p

µ−→ p′ (or p
µ−→θ ), then p+ r ε

=⇒ p+ r
µ−→ p′ and

(p′, p′) ∈ R (or p+ r ε
=⇒ p+ r

µ−→θ ) as well as (τ.(p+ r)+ p, p+ r) ∈ R.
Conversely, if p+ r moves first, we have the following two cases: (i) p+ r

µ−→ r′

(or p+ r
µ−→θ ) because r

µ−→ r′ (or r
µ−→θ ); in such a case, τ.(p+ r) + p τ−→ p+

r
µ−→ r′ with (r′,r′) ∈ R (or τ.(p+ r)+ p τ−→ p+ r

µ−→θ ) and (p+ r, p+ r) ∈ R; (ii)
p+r

µ−→ p′ (or p+r
µ−→θ ) because p

µ−→ p′ (or p
µ−→θ ); in such a case, we have that

τ.(p+ r)+ p τ−→ p+ r
µ−→ p′ with (p′, p′) ∈ R (or τ.(p+ r)+ p τ−→ p+ r

µ−→θ ) and
(p+ r, p+ r) ∈ R.

In any case, the branching bisimulation conditions are respected, hence R is a
branching bisimulation proving that τ.(p+r)+ p≈br p+r, and consequently, µ.(τ.(p+
r)+ p)≈brc µ.(p+ r) holds. 2

The first τ-law for rooted weak bisimilarity is derivable from the τ-law above, i.e.,
µ.τ.r ≈brc µ.r if r 6= 0. In fact, we can first instantiate p to 0, yielding µ.(τ.(0+ r)+
0)≈brc µ.(0+ r), and then, by absorbing 0 with the identity law in Proposition 23, we
would get µ.τ.r ≈brc µ.r. However, we have to be a bit careful because of a typing
problem: in the first τ-law (µ.τ.q ≈brc µ.q if q 6= 0) the process q is any sequential
term (hence, also a constant C), while in the τ-law above the process r is a guarded
process (hence, it cannot be a constant C). However, we can overcome this problem
by using the unfolding property as follows. If we have a constant C .

= r, then C ≈brc r
by unfolding, where r is guarded;4 so, µ.τ.C is rooted branching equivalent to µ.τ.r,
which is then equivalent to µ.(τ.(0+ r)+0), so that we can apply the τ-law above to
get µ.(τ.(0+ r)+ 0) ≈brc µ.(0+ r), and then µ.(0+ r) ≈brc µ.r ≈brc µ.C. Summing
up, µ.τ.C ≈brc µ.C, so that the first τ-law is indeed derivable in general.

4If r = 0, then we use the stuck property to get C ≈br 0+0 and the argument follows in the same way.
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In order to prove that the folding property holds for rooted branching bisimilarity,
too, we need to introduce an auxiliary proof technique.

Definition 22. (Branching bisimulation up to ≈br) Given an FSM N = (S,A,T ), a
branching bisimulation up to≈br is a relation R⊆ S×S such that if (p,q) ∈ R then, for
all µ ∈ A

• if p ε
=⇒ p′

µ−→ p′′, then

- either µ = τ and there exist p′1, p′′1 ,q
′
1,q
′′
1 ,q
′ such that q ε

=⇒q′ with p′ ≈br
p′1Rq′1 ≈br q′ and p′′ ≈br p′′1Rq′′1 ≈br q′;

- or there exist p′1, p′′1 , q′1,q
′′
1 ,q
′,q′′ such that q ε

=⇒q′
µ−→q′′ with p′ ≈br

p′1Rq′1 ≈br q′ and either p′′ ≈br p′′1Rq′′1 ≈br q′′ or p′′ = θ = q′′.

• and symmetrically, if q moves first. 2

Lemma 5. If R is a branching bisimulation up to ≈br, then ≈br R ≈br is a branching
bisimulation.

PROOF. If (p,q) ∈≈br R≈br, then there exist p′,q′ such that p≈br p′Rq′ ≈br q. Since
p≈br p′, if p

µ−→ p, then one of the following two cases are possible:

• Either µ = τ and p′ ε
=⇒ p′ with p≈br p′ and p≈br p′. This means that either p′=

p′ (and this case is empty, because q can reply by idling and all the conditions are
satisfied) or there exists r such that p′ ε

=⇒ r τ−→ p′ with p≈br r. As (p′,q′) ∈ R,
the derivation p′ ε

=⇒ r τ−→ p′ is matched

(a) either by q′ ε
=⇒q′ such that r ≈br R ≈br q′ and p′ ≈br R ≈br q′. Since

q ≈br q′, by Lemma 2, from q′ ε
=⇒q′ it follows that q ε

=⇒q with q′ ≈br q.
Summing up, if p τ−→ p, then q ε

=⇒q such that p ≈br R ≈br q (because
p≈br r≈br R≈br q′ ≈br q) and p≈br R≈br q (because p≈br p′ ≈br R≈br
q′ ≈br q).

(b) or by q′ ε
=⇒ s τ−→q′ such that r ≈br R ≈br s and p′ ≈br R ≈br q′. Since

q ≈br q′, by Lemma 2, from q′ ε
=⇒ s it follows that q ε

=⇒ s with s ≈br s.
Now, to transition s τ−→q′, place s can reply

- Either with s ε
=⇒q, such that s ≈br q and q′ ≈br q. Summing up, to

transition p τ−→ p, q replies with q ε
=⇒q so that p≈br R≈br q (because

p ≈br r ≈br R ≈br s ≈br q) and p ≈br R ≈br q (as p ≈br p′ ≈br R ≈br
q′ ≈br q).

- Or with s ε
=⇒ s′ τ−→q, such that s≈br s′ and q′ ≈br q. Summing up, to

transition p τ−→ p, q replies with q ε
=⇒ s′ τ−→q so that p ≈br R ≈br s′

(because p≈br r≈br R≈br s≈br s′) and p≈br R≈br q (because p≈br
p′ ≈br R≈br q′ ≈br q).

• Or p′ ε
=⇒ r

µ−→ p′ with p≈br r and p≈br p′ (or p = θ = p′). Since (p′,q′) ∈ R,
the derivation p′ ε

=⇒ r
µ−→ p′ is matched



6 CONGRUENCE AND ALGEBRAIC PROPERTIES 42

(a) either by q′ ε
=⇒q′ (if µ = τ) such that r ≈br R ≈br q′ and p′ ≈br R ≈br q′.

Since q ≈br q′, by Lemma 2, from q′ ε
=⇒q′ it follows that q ε

=⇒q with
q′ ≈br q. Summing up, if p τ−→ p, then q ε

=⇒q such that p ≈br R ≈br q
(because p ≈br r ≈br R ≈br q′ ≈br q) and p ≈br R ≈br q (because p ≈br
p′ ≈br R≈br q′ ≈br q).

(b) or by q′ ε
=⇒ s

µ−→q′ such that r ≈br R ≈br s and p′ ≈br R ≈br q′ (or p′ =
θ = q′). Since q≈br q′, to derivation q′ ε

=⇒ s, by Lemma 2, q can reply with
q ε
=⇒ s with s≈br s. Hence, to transition s

µ−→q′, place s can reply

- Either with s ε
=⇒q (if µ = τ), such that s≈br q and q′ ≈br q. Summing

up, to transition p τ−→ p, q replies with q ε
=⇒q so that p ≈br R ≈br q

(as p≈br r≈br R≈br s≈br q) and p≈br R≈br q (as p≈br p′≈br R≈br
q′ ≈br q).

- Or with s ε
=⇒ s′

µ−→q, such that s≈br s′ and q′ ≈br q (or q′ = θ = q).
Summing up, if p

µ−→ p, then q ε
=⇒ s′

µ−→q such that p ≈br R ≈br s′

(because p≈br r≈br R≈br s≈br s′) and p≈br R≈br q (as p≈br p′≈br
R≈br q′ ≈br q) or p = θ = q.

The symmetric case when q moves first is analogous, hence omitted. Therefore, if R is
a branching bisimulation up to ≈br, then ≈br R≈br is a branching bisimulation. 2

Proposition 30. If R is a branching bisimulation up to ≈br, then R⊆≈br.

PROOF. Note that R = I RI ⊆≈br R ≈br⊆≈br, the last inclusion due to Lemma 5.
Hence, R⊆≈br. 2

Proposition 31. (Folding law for ≈brc) For each p ∈Pgrd
CFM (open on x), and each

C ∈ C , if C .
= p{C/x}, og(p) and q≈brc p{q/x}, then C ≈brc q.

PROOF. This statement can be proven by showing that the relation
R = {(r{C/x},r{q/x})

∣∣ r ∈ reach(p),r 6= θ}
is a branching bisimulation up to ≈br satisfying the rootedness conditions. Clearly,
when r = x, we have that (C,q) ∈ R. To ease notation, we write r(t) for r{t/x}. So, it
remains to prove the branching bisimulation (up to) conditions: for each µ ∈ Act

• if r(C)
ε

=⇒ p
µ−→ p′, then

- either µ = τ and r(q) ε
=⇒q′ such that p≈br R≈br q′ and p′ ≈br R≈br q′;

- or r(q) ε
=⇒q

µ−→q′ such that p ≈br R ≈br q and p′ ≈br R ≈br q′ (or p′ =
θ = q′).

• symmetrically if r(q) moves first.

If R is a branching bisimulation up to, then R ⊆≈br and so C ≈br q; since we will
show that the rootedness conditions are satisfied for the pair (C,q), we get the thesis
C ≈brc q.
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If r(C)
ε

=⇒ p
µ−→ p′ with µ ∈ Act, then we have three cases: (i) either p = r(C),

p′ = r′(C) because r ε
=⇒ r

µ−→ r′ (with r 6= x); (ii) or r(C)
ε

=⇒ r(C)
µ−→ x(C), (iii) or

even r(C)
ε

=⇒ x(C)
ε

=⇒ p′
µ−→ p′′.

(i) If r(C)
ε

=⇒ p
µ−→ p′ (with p′ 6= θ ) because r ε

=⇒ r
µ−→ r′ (with r 6= x) and p =

r(C), p′ = r′(C), then by (repeated use of) Lemma 4, also r(q) ε
=⇒ r(q)

µ−→ r′(q) with
(r(C),r(q)) ∈ R and (r′(C),r′(q)) ∈ R. If p′ = θ , then also r′ = θ , so the thesis follows
trivially.

(ii) If r(C)
ε

=⇒ r(C)
µ−→ x(C), then r(q) replies by mimicking each move, by Lemma

4, with r(q) ε
=⇒ r(q)

µ−→ x(q), and we have that (r(C),r(q)) ∈ R and (C,q) ∈ R.
(iii) If r(C)

ε
=⇒ x(C)

ε
=⇒ p′

µ−→ p′′, then derivation r(C)
ε

=⇒ x(C) (due to r ε
=⇒ x),

is matched by r(q) by mimicking each move, by Lemma 4, with r(q) ε
=⇒ x(q) and

(C,q)∈R. Now, derivation x(C)
ε

=⇒ p′
µ−→ p′′ ensures that p(C)

ε
=⇒ p′

µ−→ p′′ because
C .
= p(C). Since p is observationally guarded, p′ = t ′(C) and p′′ = t ′′(C) by (repeated

use of) Lemma 4, so that p ε
=⇒ t ′

µ−→ t ′′ is derivable, too. This ensures that also deriva-
tion p(q) ε

=⇒ t ′(q)
µ−→ t ′′(q) is derivable. Since q≈br p(q), by Lemma 2 there exists q′

such that x(q) ε
=⇒q′ with t ′(q) ≈br q′. Now, transition t ′(q)

µ−→ t ′′(q) can be matched
by q′ with:

• Either µ = τ and q′ ε
=⇒q′′ with t ′(q) ≈br q′′ and t ′′(q) ≈br q′′. Summing up,

if r(C)
ε

=⇒ t ′(C)
τ−→ t ′′(C), then r(q) ε

=⇒q′′ such that t ′(C)Rt ′(q) ≈br q′′ and
t ′′(C)Rt ′′(q)≈br q′′, as required.

• Or q′ ε
=⇒q

µ−→q′′ with t ′(q)≈br q and t ′′(q)≈br q′′. Summing up, if r(C) moves
as r(C)

ε
=⇒ t ′(C)

µ−→ t ′′(C), then r(q) ε
=⇒q

µ−→q′′ such that t ′(C)Rt ′(q) ≈br q
and, moreover, t ′′(C)Rt ′′(q)≈br q′′, as required.

If p′′ = t ′′(C) = θ , then also t ′′(q) = θ = q′′ and the thesis follows trivially. The
case when r(q) moves first is analogous, so omitted. Therefore, R is a branching bisim-
ulation up to ≈br, so that we can conclude that C ≈br q, since (C,q) ∈ R.

Actually, we can prove that C ≈brc q. Since C .
= p(C), if C

µ−→ p, then p(C)
µ−→ p;

since p is guarded, transition p
µ−→ p′ is derivable, with p= p′(C). So, p(q)

µ−→ p′(q) is
derivable, too. Since q≈brc p(q), transition p(q)

µ−→ p′(q) must be matched by q
µ−→q′

with p′(q)≈br q′. Summing up, if C
µ−→ p′(C), then q

µ−→q′ with p′(C)Rp′(q)≈br q′.
As we have proved that R is a branching bisimulation up to ≈br, then the condition
p′(C)Rp′(q)≈br q′ is equivalent to p′(C)≈br q′, as required by the definition of rooted
branching bisimilarity. The case when q moves first is symmetric, hence omitted. 2

Observe that the condition that p is observationally guarded is crucial for the cor-
rectness of the branching folding property. The same example discussed after Proposi-
tion 27 applies also in this case.

Proposition 32. (Other laws of the constant for ≈brc) For each p,r ∈Pgrd
CFM , and

each C,D ∈ C , the following hold:
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1. If C .
= (τ.x+ p){C/x} and D .

= (τ.p+0){D/x}, then
C ≈brc D (b-excision)

2. If C .
= (τ.(τ.x+ p)+ r){C/x} and D .

= (τ.(p+ r)+ r){D/x}, then
C ≈brc D (b-out)

3. If C .
= (τ.(τ.q+ p)+ r){C/x}, x unguarded in q ∈Pgrd

CFM
and D .

= (τ.(q+ p)+ r){D/x}, then
C ≈brc D (gen-out)

4. If C .
= (τ.(τ.x+ p)+ τ.(τ.x+q)+ r){C/x},

and D .
= (τ.(τ.x+ p+q)+ r){D/x}, then

C ≈brc D (fuse)

PROOF. (B-excision) Relation R= {(C,D),(C,(p+0){D/x})}∪{(p′{C/x}, p′{D/x})∣∣ p′ ∈ reach(p)} is a branching bisimulation. Now, the proof that C≈brc D follows eas-

ily. If C τ−→C, then D τ−→ (p+ 0){D/x} and C ≈br (p+ 0){D/x}. If C
µ−→ p′{C/x}

because p
µ−→ p′, then D replies with D

µ−→ p′{C/x} and p′{C/x} ≈br p′{C/x} (or
p′ = θ ). Symmetrically, if D moves first.

(B-out) Relation R= {(C,D),((τ.x+ p){C/x},(p+r){D/x}),(C,(p+r){D/x})}∪
{(t ′{C/x}, t ′{D/x})

∣∣ t ∈ reach(p+ r)} is a branching bisimulation. Now, the proof
that C ≈brc D follows easily. If C τ−→ (τ.x+ p){C/x}, then D τ−→ (p+ r){D/x} and
(τ.x+ p){C/x}≈br (p+r){D/x}. If C

µ−→ r′{C/x} because r
µ−→ r′, then D

µ−→ r′{D/x}
and r′{C/x} ≈br r′{D/x}. Symmetrically if D moves first.

(Gen-out) Relation R= {(C,D),(τ.(q+ p){C/x},(q+ p){D/x}),((q+ p){C/x},(q+
p){D/x})}∪{(t ′{C/x}, t ′{D/x})

∣∣ t ∈ reach(p+q+ r)} is a branching bisimulation.
Now, the proof that C ≈brc D follows easily. If C τ−→ τ.(q+ p){C/x}, then D τ−→ (q+
p){D/x} and (q+ p){C/x} ≈br (q+ p){D/x}. If C

µ−→ r′{C/x} because r
µ−→ r′, then

D
µ−→ r′{D/x} and r′{C/x} ≈br r′{D/x}. Symmetrically if D moves first.
(Fuse) Relation R= {(C,D),((τ.x+ p){C/x},(τ.x+ p+q){D/x}),((τ.x+q){C/x},

(τ.x+ p+ q){D/x})} ∪ {(t ′{C/x}, t ′{D/x})
∣∣ t ∈ reach(p+ q+ r)} is a branching

bisimulation. Now, the proof that C≈brc D follows easily. If C τ−→ (τ.x+ p){C/x}, then
D τ−→ (τ.x+ p+q){C/x} and (τ.x+ p){C/x} ≈br (τ.x+ p+q){D/x}. If C τ−→ (τ.x+
q){C/x}, then D τ−→ (τ.x+ p+q){C/x} and (τ.x+q){C/x} ≈br (τ.x+ p+q){D/x}.
If C

µ−→ r′{C/x} because r
µ−→ r′, then D

µ−→ r′{D/x} and r′{C/x}≈br r′{D/x}. Sym-
metrically if D moves first. 2

Since rooted branching bisimilarity is finer than rooted weak bisimilarity, the laws
above, that we proved correct for the former, are sound also for the latter.

7. Axiomatizations

Now we provide a sound and (ground-)complete, finite axiomatization of rooted
weak/branching team equivalence over observationally guarded CFM processes. For
simplicity’s sake, the syntactic definition of open CFM is given with only one syntactic
category, but each ground instantiation of an axiom must respect the syntactic definition
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A1 Associativity x+(y+ z) = (x+ y)+ z
A2 Commutativity x+ y = y+ x
A3 Identity x+0 = x if x 6= 0
A4 Idempotence x+ x = x if x 6= 0
W1 µ.τ.x = µ.x if x 6= 0
W2 x+ τ.x = τ.x
W3 µ.(x+ τ.y) = µ.(x+ τ.y)+µ.y
B µ.(τ.(x+ y)+ x) = µ.(x+ y)

R1 Stuck if C .
= 0, then C = 0+0

R2 Unfolding if C .
= p ∧ p 6= 0, then C = p

R3 Folding if C .
= p{C/x} ∧ q = p{q/x}, then C = q

R3′ BW-Folding if C .
= p{C/x} ∧ og(p) ∧ q = p{q/x}, then C = q

WU1 if C .
= (τ.x+ p){C/x}∧D .

= (τ.(p+0)){D/x} then C = D
BU1 if C .

= (τ.x+ p){C/x}∧D .
= (τ.(p+0)+ p){D/x} then C = D

WU2 if C .
= (τ.(τ.x+ p)+ r){C/x}∧D .

= (τ.(p+ r)){D/x} then C = D
BU2 if C .

= (τ.(τ.x+ p)+ r){C/x}∧D .
= (τ.(p+ r)+ r){D/x} then C = D

U3 if C .
= (τ.(τ.q+ p)+ r){C/x}∧D .

= (τ.(q+ p)+ r){D/x},
x unguarded in q ∈Pgrd

CFM , then C = D
U4 if C .

= (τ.(τ.x+ p)+ τ.(τ.x+q)+ r){C/x}
∧ D .

= (τ.(τ.x+ p+q)+ r){D/x} then C = D
P1 Associativity x |(y |z) = (x |y) |z
P2 Commutativity x |y = y |x
P3 Identity x |0 = x

Table 4: Axioms for rooted weak/branching team equivalence

of CFM given in Section 5; this means that we can write the axiom x + (y + z) =
(x+y)+ z, but it is invalid to instantiate it to C+(a.0+b.0) = (C+a.0)+b.0 because
these are not legal CFM processes (the constant C cannot be used as a summand).

The set of axioms is outlined in Table 4. By the notation E ` p = q we mean that
there exists an equational deduction proof of the equality p = q, by using the axioms in
the set E. Besides the usual equational deduction rules of reflexivity, symmetry, tran-
sitivity, substitutivity and instantiation (see, e.g., [14]), in order to deal with constants
we need also the following recursion congruence rule:

p = q ∧ A .
= p{A/x} ∧ B .

= q{B/x}
A = B

SB is the set {A1, A2, A3, A4, R1, R2, R3, P1, P2, P3} that constitutes a sound
and complete, finite axiomatization of strong team equivalence [17]. The axioms A1-
A4 are the usual axioms for choice (originally in [24]) where, however, A3-A4 have
the side condition x 6= 0; hence, it is not possible to prove SB ` 0+0 = 0, as expected,
because these two terms have a completely different semantics. The conditional axioms
R1-R3 are about process constants. Note that axiom R2 requires that p is not 0. Note
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also that these conditional axioms are actually a finite collection of axioms, one for
each constant definition: since the set C of process constants is finite, the instances of
R1-R3 are finitely many. Finally, we have axioms P1-P3 for parallel composition.

We call WBg the set SB of axioms, where R3 is replaced by its more restrictive
variant R3′, with the addition of the axioms {W1, W2, W3} (originally in [20]). These
axioms are the analogous of the three τ-laws for rooted weak bisimilarity. We call BBg
the set of axioms WBg, where {W1, W2, W3} are replaced by {B} (originally in [12]).
We will prove that WBg (BBg, respectively) is a sound and complete, finite axiomati-
zation of rooted weak (rooted branching, resp.) team bisimilarity over observationally
guarded CFM processes.

Finally, WB is obtained by adding to WBg also the axioms {WU1, WU2, U3},
while BB is obtained by adding to BBg also the axioms {BU1, BU2, U3, U4}. We will
prove that these are sound and complete, finite axiomatization for rooted weak/rooted
branching team equivalence for the whole of CFM, hence including observationally
unguarded processes.

Theorem 9. (Soundness) For every p,q ∈PCFM:
1) If SB ` p = q, then p∼⊕ q.
2) If WB ` p = q, then p≈⊕c q.
3) If BB ` p = q, then p≈⊕brc q.

PROOF. The proof is by induction on the proof of E ` p = q, where E can be SB, or
WB or BB.

1) The thesis follows by observing that all the (closed instantiations of the) axioms
in SB are sound by Propositions 23, 24 and 25.

2) All the axioms in WB which are also in SB are sound because they are sound also
for strong team equivalence. Moreover, axiom R3′ is sound by Proposition 27; axioms
W1, W2, W3 are sound by Proposition 26; axioms WU1, WU2 and U3 are sound for
Propositions 28 and 32, respectively.

3) Similarly, all the axioms in BB are sound; axiom R3′ is sound by Proposition 31,
while axiom B is sound by Proposition 29, and, finally, axioms BU1, BU2, U3, U4 are
sound by Proposition 32. 2

7.1. Normal Forms, Unique Solutions and Saturated Normal Forms

A CFM sequential process p is a normal form if the predicate n f (p) holds. This
predicate stands for n f (p, /0), whose inductive definition is displayed in Table 5. Ex-
amples of terms which are not in normal form are a.b.0 and C .

= a.b.C.
Note that if C is a normal form, then its body (ignoring possible empty summands

0, that can be absorbed) is of the form ∑
n
i=1 µi.Ci +∑

m
j=1 µ ′j.0, (assuming that this term

is 0 if n = m = 0) where, in turn, each Ci is a normal form.
We will show that, for each sequential CFM process p, there exists a normal form

q such that SB ` p = q.

Proposition 33. (Reduction to normal form) Given a sequential CFM process p,
there exists a normal form q such that SB ` p = q.
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n f (0, I)

C ∈ I

n f (C, I)

n f (p, I∪{C}) C .
= p C 6∈ I

n f (C, I)

n f (µ.0, I)

n f (C, I)

n f (µ.C, I)

n f (p, I) n f (q, I)

n f (p+q, I)

Table 5: Normal form predicate

PROOF. The proof is by induction on the structure of p, with the proviso to use a
set I of already scanned constants, in order to avoid looping on recursively defined
constants, where I is initially empty. We prove that for (p, I) there exists a term q such
that n f (q, I) holds and (SB, I) ` p = q, where this means that the equality p = q can
be derived by the axioms in SB when each constant C ∈ I is assumed to be equated to
itself. The thesis then follows by considering (p, /0).

The base case is (0, I); in such a case, q = 0, because n f (0, I) holds, and the thesis
(SB, I) ` 0 = 0 follows by reflexivity.

Case (µ.p, I): by induction, (p, I) has an associated normal form n f (q, I) such that
(SB, I) ` p = q; hence, (SB, I) ` µ.p = µ.q by substitutivity. If q is a constant or q =
0, then µ.q is already a normal form. Otherwise, take a new constant C .

= q, so that
n f (C, I) holds because n f (q, I ∪{C}) holds (note that C does not occur in q, so that
this is the same as stating n f (q, I), which holds by induction). The required normal
form is µ.C. Indeed, n f (µ.C, I) holds because n f (C, I) holds; moreover, since (SB, I)`
p = q by induction and (SB, I) `C = q by axiom R2, we have that (SB, I) ` p =C by
transitivity, so that (SB, I) ` µ.p = µ.C by substitutivity.

Case (p1 + p2, I): by induction, we can assume that for (pi, I) there exists a normal
form n f (qi, I) such that (SB, I) ` pi = qi for i = 1,2. Then, n f (q1 + q2, I) holds and
(SB, I) ` p1 + p2 = q1 +q2 by substitutivity.

Case (C, I), where C .
= r{C/x}. If C ∈ I, then we can stop induction, by returning C

itself: n f (C, I) holds and (SB, I) `C =C by reflexivity. Otherwise (i.e., if C 6∈ I), if r =
0, then by axiom R1, (SB, I)`C = 0+0, where 0+0 is a normal form. If r 6= 0, then, by
induction on (r{C/x}, I∪{C}), we can assume that there exists a normal form q{C/x}
such that n f (q{C/x}, I∪{C}) holds and (SB, I∪{C}) ` r{C/x}= q{C/x}. Note that,
by construction, if (SB, I ∪ {C}) ` r{C/x} = q{C/x}, then also (SB, I) ` r{C/x} =
q{C/x}. Hence, as (SB, I) ` C = r{C/x} by axiom R2, it follows that (SB, I) ` C =
q{C/x} by transitivity. Then, we take a new constant D .

= q{D/x} such that n f (D, I)
because n f (q{D/x}, I∪{D}) holds. Hence, (SB, I) `C = D by axiom R3, where D is
a normal form. 2

Remark 3. (Normal forms as systems of equations) As a matter of fact, we can re-
strict our attention only to normal forms defined by constants: if p is a normal form,
p 6= 0 and p is not a constant, then take a new constant D .

= p, which is a normal form
such that SB ` D = p by axiom R2. For this reason, in the following we often restrict
our attention to normal forms that can be defined by means of a system of equations: a
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set C̃ = {C1,C2, . . . ,Cn} of defined constants in normal form, such that Const(C1) = C̃
and Const(Ci)⊆ C̃ for i = 1, . . . ,n; the equations of the system E(C̃) are of the follow-
ing form (where µ and ν stands for any kind of action and function f (i, j) returns a
value k such that 1≤ k ≤ n):

C1
.
= ∑

m(1)
i=1 µ1i.C f (1,i)+∑

m(1)
j=1 ν1 j.0

C2
.
= ∑

m(2)
i=1 µ2i.C f (2,i)+∑

m(2)
j=1 ν2 j.0

. . .

Cn
.
= ∑

m(n)
i=1 µni.C f (n,i)+∑

m(n)
j=1 νn j.0

where Ci
.
= 0 in case m(i) = 0 = m(i). We sometimes use the notation body(Ch) to

denote the sumform ∑
m(h)
i=1 µhi.C f (h,i)+∑

m(h)
j=1 νh j.0. 2

Remark 4. (Observationally guarded system of equations) We say that a system of
equations E(C̃), not necessarily in normal form like the one above, is observationally
guarded if, for each Ci ∈ C̃, there is no silent cycle Ci

τ
=⇒Ci. This definition is coherent

with Definition 21 For instance, consider again the following example:
C1

.
= a.C2 + τ.a.C1

C2
.
= b.C2 + τ.C1

Of course, Ci
τ;Ci for i = 1,2, so that the system is observationally guarded. And

indeed we proved that og(C1) and og(C2) hold. 2

The next theorem (and the following corollary) shows that every observationally
guarded system of equations (not necessarily in normal form) has a unique solution up
to provably equality.

Theorem 10. (Unique solution for WBg) Let X̃ = (x1,x2, . . . ,xn) be a tuple of vari-
ables and let p̃ = (p1, p2, . . . , pn) be a tuple of open guarded CFM terms, using the
variables in X̃ . Let C̃ = (C1,C2, . . . ,Cn) be a tuple of constants (not occurring in p̃)
such that the system of equations

C1
.
= p1{C̃/X̃}

C2
.
= p2{C̃/X̃}

. . .

Cn
.
= pn{C̃/X̃}

is observationally guarded. Then, for i = 1, . . . ,n, WBg `Ci = pi{C̃/X̃} if pi 6= 0, while
WBg `Ci = 0+0 if pi = 0.

Moreover, if the same property holds for q̃ = (q1,q2, . . . ,qn), i.e., for i = 1, . . . ,n
WBg ` qi = pi{q̃/X̃} (or WBg ` qi = 0+0 if pi = 0), then WBg `Ci = qi.

PROOF. By induction on n. For n = 1, if p1 6= 0, we have C1
.
= p1{C1/x1}, and so the

result WBg ` C1 = p1{C1/x1} follows immediately using axiom R2. This solution is
unique because p1 is observationally guarded (cf. Remark 4): if WBg ` q1 = p1{q1/x1},
by axiom R3′ we get WBg ` C1 = q1. In case p1 = 0, then, by axiom R1, we have
WBg `C1 = 0+0. Since q1 is such that WBg ` q1 = 0+0, the thesis WBg `C1 = q1
follows by transitivity.
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Now assume a tuple p̃ = (p1, p2, . . . , pn) and the term pn+1, so that they are all
open on X̃ = (x1,x2, . . . ,xn) and the additional xn+1. Assume, w.l.o.g., that xn+1 oc-
curs in pn+1. First, define Cn+1

.
= pn+1{Cn+1/xn+1}, so that Cn+1 is now open on X̃ .

Therefore, also for i = 1, . . . ,n, each pi{Cn+1/xn+1} is now open on X̃ . The resulting
observationally guarded system of equations is:

C1
.
= p1{Cn+1/xn+1}{C̃/X̃}

C2
.
= p2{Cn+1/xn+1}{C̃/X̃}

. . .

Cn
.
= pn{Cn+1/xn+1}{C̃/X̃}

so that now we can use induction on X̃ and (p1{Cn+1/xn+1}, . . . , pn{Cn+1/xn+1}), to
conclude that the tuple C̃ = (C1,C2, . . . ,Cn) of closed constants is such that, for i =
1, . . . ,n, if pi 6= 0, then:

WBg `Ci = (pi{Cn+1/xn+1}){C̃/X̃}= pi{C̃/X̃ ,Cn+1{C̃/X̃}/xn+1},
while, in case pi = 0, WBg ` Ci = 0 + 0. Note that above by Cn+1{C̃/X̃} we have
implicitly closed the definition of Cn+1 as

Cn+1
.
= pn+1{Cn+1/xn+1}{C̃/X̃}= pn+1{C̃/X̃}{Cn+1/xn+1},

so that WBg `Cn+1 = pn+1{C̃/X̃}{Cn+1/xn+1} by axiom R2.
Unicity of the tuple (C̃,Cn+1) can be proved by using axiom R3′. Assume to have

another solution tuple (q̃,qn+1). This means that, for i = 1, . . . ,n+1, if pi 6= 0, then
WBg ` qi = pi{q̃/X̃ ,qn+1/xn+1},

while, in case pi = 0, WBg ` qi = 0+0. By induction, we can assume, for i = 1, . . . ,n,
that WBg `Ci = qi.

Since WBg ` Cn+1 = pn+1{C̃/X̃}{Cn+1/xn+1} by axiom R2, by substitutivity we
get WBg ` Cn+1 = pn+1{q̃/X̃}{Cn+1/xn+1}. Note that pn+1{q̃/X̃} is term open on
xn+1 which is observationally guarded. Let F be a constant defined as follows: F .

=
pn+1{q̃/X̃}{F/xn+1}. Then, by axiom R3′, Cn+1 = F . Hence, since

WBg ` qn+1 = pn+1{q̃/X̃}{qn+1/xn+1}
by axiom R3′, we get WBg ` F = qn+1; and so the thesis WBg `Cn+1 = qn+1 follows
by transitivity. 2

Corollary 5. (Unique solution for BBg) Let X̃ = (x1,x2, . . . ,xn) be a tuple of variables
and let p̃ = (p1, p2, . . . , pn) be a tuple of open guarded CFM terms, using the variables
in X̃ . Let C̃ = {C1,C2, . . . ,Cn} be a set of constants such that the system of equations

C1
.
= p1{C̃/X̃}

C2
.
= p2{C̃/X̃}

. . .

Cn
.
= pn{C̃/X̃}

is observationally guarded. Then, for i = 1, . . . ,n, BBg `Ci = pi{C̃/X̃} if pi 6= 0, while
BBg `Ci = 0+0 if pi = 0.

Moreover, if the same property holds for q̃ = (q1,q2, . . . ,qn), i.e., for i = 1, . . . ,n
BBg ` qi = pi{q̃/X̃} (or BBg ` qi = 0+0 if pi = 0), then BBg `Ci = qi.

PROOF. It is the same as the one for Theorem 10. 2
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A normal form p is saturated if whenever p
µ

=⇒ p′, then p′ is saturated and, if p is
not a constant, then µ.p′ is a summand of p, instead if p = C (with C .

= q), then µ.p′

is a summand of q. As an example, consider the following normal form (i.e., system of
equations):

C1
.
= a.C1 + τ.C2

C2
.
= τ.C3 +b.C2 + c.0

C3
.
= d.C1 + τ.0

This is not saturated because, e.g., C1
b

=⇒C2, but b.C2 is not a summand of the body
of C1. However, by using the axioms in WBg, we can equate this to another normal form
which is saturated:

D1
.
= a.D1 + τ.D2 + τ.D3 +b.D2 + c.0+d.D1 + τ.0+d.D2 +d.D3

D2
.
= τ.D3 +b.D2 + c.0+d.D1 + τ.0+d.D2 +d.D3

D3
.
= d.D1 + τ.0+d.D2 +d.D3

Let us now prove that a normal form can always be saturated.

Lemma 6. (Saturation Lemma)
If p is a normal form and p

µ
=⇒ p′, then WBg ` p = p+µ.p′.

PROOF. By induction on the length of p ε
=⇒ µ−→ ε

=⇒ p′. The proof is very similar to
the original one [25] (also in [14]), that makes use of axioms W2 and W3. 2

Proposition 34. (Reduction to saturated normal form) For each normal form p,
which is observationally guarded, there exists an observationally guarded, saturated
normal form q such that WBg ` p = q.

PROOF. By Remark 3, we may restrict our attention to an observationally guarded
normal form of the form E(C̃):

C1
.
= ∑

m(1)
i=1 µ1i.C f (1,i)+∑

m(1)
j=1 ν1 j.0

C2
.
= ∑

m(2)
i=1 µ2i.C f (2,i)+∑

m(2)
j=1 ν2 j.0

. . .

Cn
.
= ∑

m(n)
i=1 µni.C f (n,i)+∑

m(n)
j=1 νn j.0

Then, for each Ch, we have two cases: Either Ch
.
= 0 and in such a case, by axiom

R1, WBg `Ch = 0+0 with 0+0 a saturated normal form. Or take the set

Rh = {(µh
k ,Cg(h,k))

∣∣ Ch
µh

k=⇒Cg(h,k),Ch 6
µh

k−→Cg(h,k)}∪{(νh
k ,0)

∣∣ Ch
νh

k=⇒0,Ch 6
µh

k−→0},
where g is a function returning a value in the range {1, . . . ,n}. By the saturation Lemma
6, we have that
WBg `Ch =∑

m(h)
i=1 µhi.C f (h,i)+∑

m(h)
j=1 νh j.0+∑(µh

k ,Cg(h,k))∈Rh
µh

k .Cg(h,k)+∑(νh
k ,0)∈Rh

νh
k .0.

Therefore, if we saturate each Ch in this way, we get
WBg `
C1 = ∑

m(1)
i=1 µ1i.C f (1,i)+∑

m(1)
j=1 ν1 j.0+∑(µ1

k ,Cg(1,k))∈R1
µ1

k .Cg(1,k)+∑(ν1
k ,0)∈R1

ν1
k .0

C2 = ∑
m(2)
i=1 µ2i.C f (2,i)+∑

m(2)
j=1 ν2 j.0+∑(µ2

k ,Cg(2,k))∈R2
µ2

k .Cg(2,k)+∑(ν2
k ,0)∈R2

ν2
k .0

. . .

Cn = ∑
m(n)
i=1 µni.C f (n,i)+∑

m(n)
j=1 νn j.0+∑(µn

k ,Cg(n,k))∈Rn µn
k .Cg(n,k)+∑(νn

k ,0)∈Rn
νn

k .0
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where, by the “either” case above, some of the Ch may be actually equated to 0+ 0.
Hence, it is enough to take a tuple D̃ = (D1,D2, . . . ,Dn) of new constants, defined as
the following system of equations F(D̃):

D1
.
= ∑

m(1)
i=1 µ1i.D f (1,i)+∑

m(1)
j=1 ν1 j.0+∑(µ1

k ,Cg(1,k))∈R1
µ1

k .Dg(1,k)+∑(ν1
k ,0)∈R1

ν1
k .0

D2
.
= ∑

m(2)
i=1 µ2i.D f (2,i)+∑

m(2)
j=1 ν2 j.0+∑(µ2

k ,Cg(2,k))∈R2
µ2

k .Dg(2,k)+∑(ν2
k ,0)∈R2

ν2
k .0

. . .

Dn
.
= ∑

m(n)
i=1 µni.D f (n,i)+∑

m(n)
j=1 νn j.0+∑(µn

k ,Cg(n,k))∈Rn µn
k .Dg(n,k)+∑(νn

k ,0)∈Rn
νn

k .0

where actually Dh
.
= 0 in case WBg ` Ch = 0+ 0. Clearly, if E(C̃) is observationally

guarded, then also F(D̃) is so. Moreover, F(D̃) is clearly saturated. Finally, by Theorem
10 (unique solution), WBg `Ch = Dh for h = 1, . . . ,n, as required. 2

A consequence of Proposition 33 and of the proposition above is that each obser-
vationally guarded, sequential CFM process can be equated, by means of the axioms in
WBg, to an observationally guarded, saturated normal form. Therefore, in the following
proof of completeness of WBg, we can focus our attention to observationally guarded,
saturated normal forms.

Remark 5. (Weak bisimulation on saturated normal forms) Let p and q be two
observationally guarded, saturated normal forms such that p≈ q. If p

µ−→ p′, then

• q
µ−→q′ with p′ ≈ q′ (or p′ = θ = q′); or

• µ = τ and p′ ≈ q;

and symmetrically, if q
µ−→q′ then

• p
µ−→ p′ with p′ ≈ q′ (or p′ = θ = q′); or

• µ = τ and p≈ q′.

As a matter of fact, if p
µ−→ p′, then, as p ≈ q, either q

µ
=⇒q′ with p′ ≈ q′ (or p′ =

θ = q′), or µ = τ and q ε
=⇒q′ with p′ ≈ q′ (or p′ = θ = q′). In the former case, as q

is saturated, also q
µ−→q′ is a transition, so that the first condition is satisfied. In the

latter case, if q′ 6= q, then q τ
=⇒q′, and we are in the same case as above: q τ−→q′ with

p′ ≈ q′ (or p′ = θ = q′); instead, if q′ = q, then the second condition is satisfied: p′ ≈ q.
Symmetrically, if q moves first. 2

7.2. Completeness of WBg

Lemma 7. (Completeness for saturated normal forms) For every p, p′ observation-
ally guarded, saturated normal forms, if p≈c p′ (or p = 0 = p′), then WBg ` p = p′.

PROOF. If p = 0 = p′, then WBg ` p = p′ by reflexivity. Otherwise, by Remark 3, we
can assume that p is (or is equated to) the saturated system of equations E(C̃):
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C1
.
= ∑

m(1)
h=1 µ1h.C f (1,h)+∑

m(1)
j=1 ν1 j.0

C2
.
= ∑

m(2)
h=1 µ2h.C f (2,h)+∑

m(2)
j=1 ν2 j.0

. . .

Cn
.
= ∑

m(n)
h=1 µnh.C f (n,h)+∑

m(n)
j=1 νn j.0

where actually Ci
.
= 0 in case m(i) = 0 = m(i). For each i = 1, . . . ,n, in case Ci

.
= 0,

by axiom R1, we get WBg ` Ci = 0+ 0; otherwise, we get WBg ` Ci = body(Ci), by
axiom R2, where by body(Ci) we denote the saturated normal form ∑

m(i)
h=1 µih.C f (i,h)+

∑
m(i)
j=1 νi j.0.

Similarly, by Remark 3 we can assume that p′ is (or is equated to) the saturated system
of equations F(C̃′):

C′1
.
= ∑

m′(1)
h=1 µ ′1h.C

′
f ′(1,h)+∑

m′(1)
j=1 ν ′1 j.0

C′2
.
= ∑

m′(2)
h=1 µ ′2h.C

′
f ′(2,h)+∑

m′(2)
j=1 ν ′2 j.0

. . .

C′n′
.
= ∑

m′(n′)
h=1 µ ′n′h.C

′
f ′(n′,h)+∑

m′(n′)
j=1 ν ′n′ j.0

For each i= 1, . . . ,n′, in case C′i
.
= 0, by axiom R1, we get WBg `C′i = 0+0; otherwise,

we get WBg `C′i = body(C′i), by axiom R2, where by body(C′i) we denote the saturated

normal form ∑
m′(i)
h=1 µ ′ih.C

′
f ′(i,h)+∑

m′(i)
j=1 ν ′i j.0. Moreover, as p≈c p′, we have C1 ≈c C′1.

Now, let I = {(i, i′)
∣∣ Ci ≈C′i′}.

Note that if Ci ≈C′i′ , then Ci
ν−→θ if and only if C′i′

ν−→θ for all ν . Therefore, the
summands that ends immediately successfully are the same, up to reordering (axioms
A1-A2) and the presence of possible duplicates that can be absorbed (axiom A4):

WBg ` ∑
m(i)
j=1 νi j.0 = ∑

m′(i′)
j=1 ν ′i′ j.0 for each (i, i′) ∈ I.

Hence, we can equate these summands in the following.
Clearly, since C1 ≈c C′1, we have that (1,1) ∈ I. Moreover, since C1 and C′1 are

rooted weakly bisimilar and saturated, the following hold: for (1,1) ∈ I, there exists a
total surjective relation J11 between {1,2, . . .m(1)} and {1,2, . . .m′(1)} given by

J11 = {( j, j′)
∣∣ µ1 j = µ ′1 j′ ∧ ( f (1, j), f ′(1, j′)) ∈ I}.

For any other (i, i′) ∈ I, since Ci and C′i′ are only weakly bisimilar (and saturated!
- see Remark 5), there exists a total surjective relation Jii′ between {1,2, . . .m(i)} and
{1,2, . . .m′(i′)} given by Jii′ = J1

ii′ ∪ J2
ii′ ∪ J3

ii′ , where
J1

ii′ = {( j, j′)
∣∣ µi j = µ ′i′ j′ ∧ ( f (i, j), f ′(i′, j′)) ∈ I}

J2
ii′ = {( j, i′)

∣∣ µi j = τ ∧ ( f (i, j), i′)) ∈ I}
J3

ii′ = {(i, j′)
∣∣ µ ′i′ j′ = τ ∧ (i, f ′(i′, j′)) ∈ I}.

.

Now, for (1,1) ∈ I, let us consider the set of variables X̃ = {xii′
∣∣ (i, i′) ∈ I} and

the open term

t11 = ∑
( j, j′)∈J11

µ1 j.x f (1, j) f ′(1, j′)+
m(1)

∑
j=1

ν1 j.0
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and, for each (i, i′) ∈ I, the open terms

tii′ = ∑
( j, j′)∈J1

ii′

µi j.x f (i, j) f ′(i′, j′)+ ∑
( j,i′)∈J2

ii′

τ.x f (i, j)i′ + ∑
(i, j′)∈J3

ii′

τ.xi f ′(i′, j′)+
m(i)

∑
j=1

νi j.0

This gives rise to a system of equations G(D̃), where D̃ = {Dii′
∣∣ (i, i′) ∈ I}, of the

following form:
D11

.
= t11{D̃/X̃}

. . .

Dii′
.
= tii′{D̃/X̃}

. . .

The system G(D̃) is observationally guarded and saturated by construction. For each
(i, i′) ∈ I, by axiom R2, we get WBg ` Dii′ = tii′{D̃/X̃} provided that tii′ 6= 0. In case
tii′ = 0, then WBg ` Dii′ = 0+0 by axiom R1.

Now, let us consider the terms qi = Ci if J3
ii′ = /0, qi = τ.Ci otherwise, which are

cumulatively represented as q̃. If we close each tii′ by replacing x f (i, j) f ′(i′, j′) with C f (i, j)
in the first summation, x f (i, j)i′ with C f (i, j) in the second summation and xi f ′(i′, j′) with
τ.Ci in the third summation, we get the term tii′{q̃/X̃}=

∑( j, j′)∈J1
ii′

µi j.C f (i, j)+∑( j,i′)∈J2
ii′

τ.C f (i, j)+∑(i, j′)∈J3
ii′

τ.τ.Ci +∑
m(i)
j=1 νi j.0

which is provably equal to Ci in case J3
ii′ = /0, or to τ.Ci otherwise. (Of course, the

special case tii′{q̃/X̃}= 0 is trivial: this means that Ci
.
= 0 and so WBg `Ci = 0+0.)

In fact, if J3
ii′ = /0, then the summation tii′{q̃/X̃} contains (with possible repetitions)

exactly the same terms µ.Ck for which Ci
µ−→Ck, and the thesis WBg `Ci = tii′{q̃/X̃}

follows from WBg `Ci = ∑
m(i)
h=1 µih.C f (i,h)+∑

m(i)
j=1 νi j.0.

On the other hand, if J3
ii′ 6= /0, then tii′{q̃/X̃} contains, in addition, the terms τ.τ.Ci.

In this case, we can first use axiom W1 (instance τ.τ.Ci = τ.Ci), then possibly axiom
A4 (instance τ.Ci + τ.Ci = τ.Ci, for removing possible duplicates of τ.Ci), then R2 `
Ci = body(Ci) (where body(Ci) = ∑

m(i)
h=1 µih.C f (i,h)+∑

m(i)
j=1 νi j.0), so that WBg ` τ.Ci =

τ.body(Ci), then axiom W2 (instance τ.body(Ci) = τ.body(Ci)+ body(Ci)), in order
to prove that tii′{q̃/X̃} is provably equal to τ.Ci, as follows:

WBg ` τ.Ci = τ.Ci +body(Ci) =

= τ.Ci +∑( j, j′)∈J1
ii′

µi j.C f (i, j)+∑( j,i′)∈J2
ii′

τ.C f (i, j)+∑
m(i)
j=1 νi j.0 =

= tii′{q̃/X̃}.
By Theorem 10, since WBg `C1 = q1 = t11{q̃/X̃} and D11

.
= t11{D̃/X̃}, we have

that WBg ` D11 =C1.
In exactly the same way, we can define the terms q′i′ = C′i′ if J2

ii′ = /0, q′i′ = τ.C′i′
otherwise, which are cumulatively represented as q̃′. If we close each tii′ by replacing
x f (i, j) f ′(i′, j′) with C′f ′(i′, j′) in the first summation, x f (i, j)i′ with τ.C′i′ in the second sum-

mation and xi f ′(i′, j′) with C f ′(i′, j′) in the third summation, we get the term tii′{q̃′/X̃}=
∑( j, j′)∈J1

ii′
µi j.C′f ′(i′, j′)+∑( j,i′)∈J2

ii′
τ.τ.C′i′ +∑(i, j′)∈J3

ii′
τ.C′f ′(i′, j′)+∑

m(i)
j=1 νi j.0

which, by substitutivity, is provably equal to:
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∑( j, j′)∈J1
ii′

µi j.C′f ′(i′, j′)+∑( j,i′)∈J2
ii′

τ.τ.C′i′ +∑(i, j′)∈J3
ii′

τ.C′f ′(i′, j′)+∑
m′(i′)
j=1 ν ′i′ j.0

which, in turn, can be proved equal to C′i′ , in case J2
ii′ = /0, or to τ.C′i′ otherwise, by

the same argument as above. By Theorem 10, since WBg `C′1 = t11{q̃′/X̃} and D11
.
=

t11{D̃/X̃}, we have that WBg `D11 =C′1. Therefore, the thesis WBg `C1 =C′1 follows
by transitivity. 2

Proposition 35. (Completeness for sequential processes) For every p, p′ observa-
tionally guarded, sequential CFM processes, if p ≈c p′ (or p = 0 = p′), then WBg `
p = p′.

PROOF. By Propositions 33 and 34, there exist saturated normal forms q and q′ such
that WBg ` p = q and WBg ` p′ = q′. By Theorem 9, we have p≈c q and p′ ≈c q′, so
that q≈c q′ by transitivity. By Lemma 7, we have that WBg ` q = q′, so that the thesis
WBg ` p = p′ follows by transitivity. 2

We can extend the definition of the observationally guarded predicate og(p) to any
CFM process, by adding to the rules in Table 3, also the following:

og(p, I) ∧ og(q, I)

og(p |q, I)

With this extension, we can state the following theorem of completeness for obser-
vationally guarded CFM processes.

Theorem 11. (Completeness of WBg) For every p,q∈PCFM observationally guarded,
if p≈⊕c q, then WBg ` p = q.

PROOF. The proof is by induction on the size of dec(p). If |dec(p)|= 0, then dec(p) =
θ ; as p ≈⊕c q, necessarily also dec(q) = θ . By observing the definition of the decom-
position function in Table 1, this is possible only if p and q are either 0 or a parallel
composition of 0’s, e.g., 0 |0; hence, E ` p = 0 and E ` q = 0, possibly using axioms
P1-P3; hence, by transitivity we get E ` p = q. If |dec(p)| = k+ 1, then there exist
p1, p2,q1,q2, which are all observationally guarded, such that dec(p) = p1⊕dec(p2),
dec(q) = q1 ⊕ dec(q2), p1 ≈c q1 and dec(p2) ≈⊕c dec(q2). By the definition of the
decomposition function and by axioms P1-P3, this means that WBg ` p = p1 | p2 and
WBg ` q = q1 |q2. By Proposition 35 we have that WBg ` p1 = q1. By induction, we
have that WBg ` p2 = q2. By substitutivity we get WBg ` p1 | p2 = q1 |q2 and so the
thesis follows by transitivity. 2

7.3. Completeness of BBg

Remark 6. (Branching bisimulation and normal forms) Let p and q be two obser-
vationally guarded, normal forms such that p≈br q. If p

µ−→ p′, then

• q
µ−→q′ with p′ ≈br q′ (or p′ = θ = q′); or

• µ = τ and p′ ≈br q; or
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• q τ−→q′ with p≈br q′,

and symmetrically if q moves first. As a matter of fact, if p
µ−→ p′, then, as p ≈br q,

(i) either µ = τ and q ε
=⇒q′ with p ≈br q′ and p′ ≈br q′, (ii) or there exists q such

that q ε
=⇒q

µ−→q′ with p ≈br q and p′ ≈br q′ (or p′ = θ = q′). In the former case, we
end up in the second condition: p′ ≈br q by transitivity. In the latter case, we have two
subcases. Either q = q, so that we end up in the first condition: q

µ−→q′ with p′ ≈br q′

(or p′ = θ = q′). Or q τ−→q′′ ε
=⇒q

µ−→q′ so that we end up in the third condition:
q τ−→q′′ with p≈br q′′, because p≈br q and, by stuttering property (see Remark 2), we
have that q′′ ≈br q. 2

Lemma 8. (Completeness for normal forms) For every p, p′ observationally guarded,
normal forms, if p≈brc p′ (or p = 0 = p′), then BBg ` p = p′.

PROOF. If p = 0 = p′, then BBg ` p = p′ by reflexivity. Otherwise, by Remark 3, we
can assume that p is (or is equated to) the system of equations E(C̃):

C1
.
= ∑

m(1)
h=1 µ1h.C f (1,h)+∑

m(1)
j=1 ν1 j.0

C2
.
= ∑

m(2)
h=1 µ2h.C f (2,h)+∑

m(2)
j=1 ν2 j.0

. . .

Cn
.
= ∑

m(n)
h=1 µnh.C f (n,h)+∑

m(n)
j=1 νn j.0

where actually Ci
.
= 0 in case m(i) = 0 = m(i). For each i = 1, . . . ,n, in case Ci

.
= 0, by

axiom R1, we get BBg `Ci = 0+0; otherwise, we get BBg `Ci = body(Ci), by axiom
R2, where by body(Ci) we denote the normal form ∑

m(i)
h=1 µih.C f (i,h)+∑

m(i)
j=1 νi j.0.

Similarly, by Remark 3 we can assume that p′ is (or is equated to) the system of equa-
tions F(C̃′):

C′1
.
= ∑

m′(1)
h=1 µ ′1h.C

′
f ′(1,h)+∑

m′(1)
j=1 ν ′1 j.0

C′2
.
= ∑

m′(2)
h=1 µ ′2h.C

′
f ′(2,h)+∑

m′(2)
j=1 ν ′2 j.0

. . .

C′n′
.
= ∑

m′(n′)
h=1 µ ′n′h.C

′
f ′(n′,h)+∑

m′(n′)
j=1 ν ′n′ j.0

For each i = 1, . . . ,n′, in case C′i
.
= 0, by axiom R1, we get BBg `C′i = 0+0; otherwise,

we get BBg `C′i = body(C′i), by axiom R2, where by body(C′i) we denote the normal

form ∑
m′(i)
h=1 µ ′ih.C

′
f ′(i,h)+∑

m′(i)
j=1 ν ′i j.0. Moreover, as p≈brc p′, we have C1 ≈brc C′1.

Now, let I = {(i, i′)
∣∣ Ci ≈br C′i′}.

Clearly, since C1 ≈brc C′1, we have that (1,1) ∈ I. Since C1 ≈brc C′1, it follows that
C1

ν−→θ if and only if C′1
ν−→θ for all ν . Therefore, the summands that ends immedi-

ately successfully are the same for these two terms, up to reordering (axioms A1-A2)
and the presence of possible duplicates that can be absorbed (axiom A4):

BBg ` ∑
m(1)
j=1 ν1 j.0 = ∑

m′(1)
j=1 ν ′1 j.0 for (1,1) ∈ I.

Hence, we can equate these summands in the following. Moreover, since C1 and C′1
are rooted branching bisimilar, the following holds: for (1,1) ∈ I, there exists a total
surjective relation J11 between {1,2, . . .m(1)} and {1,2, . . .m′(1)} given by

J11 = {( j, j′)
∣∣ µ1 j = µ ′1 j′ ∧ ( f (1, j), f ′(1, j′)) ∈ I}.
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For any other (i, i′) ∈ I, since Ci and C′i′ are only branching bisimilar, by Remark
6, there exists a total surjective relation Jii′ between {1,2, . . .m(i)} and {1,2, . . .m′(i′)}
given by Jii′ = J1

ii′ ∪ J2
ii′ ∪ J3

ii′ , where
J1

ii′ = {( j, j′)
∣∣ µi j = µ ′i′ j′ ∧ ( f (i, j), f ′(i′, j′)) ∈ I}

J2
ii′ = {( j, i′)

∣∣ µi j = τ ∧ ( f (i, j), i′)) ∈ I}
J3

ii′ = {(i, j′)
∣∣ µ ′i′ j′ = τ ∧ (i, f ′(i′, j′)) ∈ I}.

.

Now, for (1,1) ∈ I, let us consider the set of variables X̃ = {xii′
∣∣ (i, i′) ∈ I} and

the open term

t11 = ∑
( j, j′)∈J11

µ1 j.x f (1, j) f ′(1, j′)+
m(1)

∑
j=1

ν1 j.0

and, for each (i, i′) ∈ I, the open terms

tii′ = ∑
( j, j′)∈J1

ii′

µi j.x f (i, j) f ′(i′, j′)+ ∑
( j,i′)∈J2

ii′

τ.x f (i, j)i′ + ∑
(i, j′)∈J3

ii′

τ.xi f ′(i′, j′)+Kii′

where Kii′ is the sumform composed of all the termination summands that occur in both

∑
m(i)
j=1 νi j.0 (i.e., in body(Ci)) and ∑

m′(i′)
j=1 ν ′i′ j.0 (i.e., in body(C′i′ ).

This gives rise to a system of equations G(D̃), where D̃ = {Dii′
∣∣ (i, i′) ∈ I}, of the

following form:
D11

.
= t11{D̃/X̃}

. . .

Dii′
.
= tii′{D̃/X̃}

. . .

The system G(D̃) is observationally guarded by construction. For each (i, i′) ∈ I, by
axiom R2, we get BBg ` Dii′ = tii′{D̃/X̃} provided that tii′ 6= 0. In case tii′ = 0, then
BBg ` Dii′ = 0+0 by axiom R1.

Now, let us consider the terms qi = Ci if J3
ii′ = /0, qi = τ.Ci +Hi otherwise, which

are cumulatively represented as q̃, where Hi is defined below. If we close each tii′ by re-
placing x f (i, j) f ′(i′, j′) with C f (i, j) in the first summation, x f (i, j)i′ with C f (i, j) in the second
summation and xi f ′(i′, j′) with τ.Ci +Hi in the third summation, we get the term

tii′{q̃/X̃}= ∑( j, j′)∈J1
ii′

µi j.C f (i, j)+∑( j,i′)∈J2
ii′

τ.C f (i, j)+∑(i, j′)∈J3
ii′

τ.(τ.Ci +Hi)+Kii′

which is provably equal to Ci in case J3
ii′ = /0, or to τ.Ci +Hi otherwise. (Of course, the

special case tii′{q̃/X̃} = 0 is trivial: this means that Ci
.
= 0 and so BBg `Ci = 0+ 0.)

First of all, let us define Hi: it is the abbreviation for the sumform
∑( j, j′)∈J1

ii′
µi j.C f (i, j)+∑( j,i′)∈J2

ii′
τ.C f (i, j)+Kii′ ,

so that tii′{q̃/X̃}= Hi in case J3
ii′ = /0, otherwise BBg ` tii′{q̃/X̃}= τ.(τ.Ci +Hi)+Hi.

If J3
ii′ = /0, then BBg ` Kii′ = ∑

m(i)
j=1 νi j.0 and, moreover, Hi contains (with possible

repetitions) exactly the same terms µ.Ck for which Ci
µ−→Ck, and the thesis BBg `Ci =

tii′{q̃/X̃} follows, by axioms A1-A4, from BBg `Ci = ∑
m(i)
h=1 µih.C f (i,h)+∑

m(i)
j=1 νi j.0.

On the other hand, if J3
ii′ 6= /0, then BBg ` tii′{q̃/X̃}= τ.(τ.Ci +Hi)+Hi. By axiom

R2, Ci = body(Ci), so that BBg ` τ.(τ.Ci +Hi)+Hi = τ.(τ.body(Ci)+Hi)+Hi. Note
that Hi is a sub-sumform of body(Ci), so that, by axiom B, we can derive that
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BBg ` τ.(τ.body(Ci)+Hi)+Hi = τ.body(Ci)+Hi,
and so the thesis BBg ` tii′{q̃/X̃} = τ.Ci +Hi follows by transitivity. By Corollary 5,
since BBg `C1 = q1 = t11{q̃/X̃} and D11

.
= t11{D̃/X̃}, we have that BBg ` D11 =C1.

In exactly the same way, we can define the terms q′i′ =C′i′ if J2
ii′ = /0, q′i′ = τ.C′i′+H ′i′

otherwise, which are cumulatively represented as q̃′, where H ′i′ is defined below. If we
close each tii′ by replacing x f (i, j) f ′(i′, j′) with C′f ′(i′, j′) in the first summation, x f (i, j)i′ with
τ.C′i′ +H ′i′ in the second summation and xi f ′(i′, j′) with C′f ′(i′, j′) in the third summation,

we get the term tii′{q̃′/X̃}=
∑( j, j′)∈J1

ii′
µi j.C′f ′(i′, j′)+∑( j,i′)∈J2

ii′
τ.(τ.C′i′ +H ′i′)+∑(i, j′)∈J3

ii′
τ.C′f ′(i′, j′)+Kii′

(where H ′i′ = ∑( j, j′)∈J1
ii′

µi j.C′f ′(i′, j′) +∑(i, j′)∈J3
ii′

τ.C′f ′(i′, j′) +Kii′ ) which can be proved

equal to C′i′ in case J2
ii′ = /0, or to τ.C′i′+H ′i′ otherwise, by the same argument as above.

By Corollary 5, since BBg `C′1 = t11{q̃′/X̃} and D11
.
= t11{D̃/X̃}, we have that BBg `

D11 =C′1. Therefore, the thesis BBg `C1 =C′1 follows by transitivity. 2

Proposition 36. (Completeness for sequential processes) For every p, p′ observa-
tionally guarded, sequential CFM processes, if p ≈brc p′ (or p = 0 = p′), then BBg `
p = p′.

PROOF. By Proposition 33, there exist normal forms q and q′ such that BBg ` p = q
and BBg ` p′ = q′. By Theorem 9, we have p≈brc q and p′ ≈brc q′, so that q≈brc q′ by
transitivity. By Lemma 8, we have that BBg ` q = q′, so that the thesis BBg ` p = p′

follows by transitivity. 2

Theorem 12. (Completeness of BBg) For every p,q∈PCFM observationally guarded,
if p≈⊕brc q, then BBg ` p = q.

PROOF. The proof, by induction on the size of dec(p), is analogous to that of Theorem
11 and so omitted. 2

7.4. Completeness of WB and BB over the whole of CFM
We now prove that the addition of the three axioms WU1, WU2, U3 to WBg is

enough to equate any CFM process p to an observationally guarded CFM process q.
Similarly, we will prove that the addition of the four axioms BU1, BU2, U3, U4 to BBg
is enough to equate any CFM process p to an observationally guarded CFM process q.
In order to prove these results, we need some auxiliary notation.

First of all, we denote by nx(p) the number of unguarded occurrences of x in p
(including the bodies of the constants occurring in p). E.g., if C .

= p{C/x} and p =
τ.x+a.x+ τ.D, with D .

= τ.D+ τ.x, then nx(p) = 2; moreover, we set nx(C) = nx(p).
Then, we need to introduce a measure of the length of all the silent computations

leading to an occurrence of an unguarded variable x. This value len(p) for the sequen-
tial CFM term p (which may be open on x, but the definition applies also to closed
terms) is computed by the length function defined in Table 6. Note that if an observable
action prefixes a process, then the returned value is 0, while the variable x returns 1.
Moreover, in case of composition with the choice operator, p+ p′, we take the sum of
len(p) and len(p′). The crucial rule is that for the constant: if C .

= p{C/x}, then, even if
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len(0) = 0 len(p+ p′) = len(p)+ len(p′)

len(x) = 1 len(τ.p) =

{
1+ len(p) if len(p) 6= 0
0 otherwise

len(a.p) = 0 len(C) = len(p) if C .
= p{C/x}

Table 6: Length function

C is closed, its length is computed on the open term p. It is an easy exercise to show that
the open sequential term p is observationally guarded (cf. Definition 21) if and only if
len(p) = nx(p) = 0. Moreover, if p is closed (actually a closed system of equations),
then p is observationally guarded (cf. Remark 4) if and only if len(p) = nx(p) = 0.

Lemma 9. Let p be an open sequential CFM term. Then, the following holds:

• og(p) if and only if len(p) = nx(p) = 0, and

• len(p)> 0 if and only if nx(p)> 0.

Moreover, p is closed and observationally guarded iff len(p) = nx(p) = 0. 2

In order to illustrate the procedure for converting an observationally unguarded
term p into an observationally guarded term q, we provide an example, which explains
the crucial steps in the proof that follows.

Example 23. Let us consider the constant definitions:
C .

= τ.C+ τ.D
D .

= τ.C+b.D+ τ.D
Clearly, both C and D are not observationally guarded. We start the procedure from

C. Define C1
.
= τ.(τ.D+ 0): by axiom WU1, we have WB `C1 = C so that the silent

self-loop is removed. Now, by axioms A3 and W1, we get WB ` C1 = τ.D. Define
a new constant C2

.
= τ.D, so that by recursion congruence, WB ` C1 = C2. Note that

no occurrence of C2 occurs in its body. (In general, after these preliminary steps, no
instance of the processed constant occurs observationally unguarded.)

Now we start the procedure for D. First of all, the occurrence of C in the body of
D is replaced by the body of C2, i.e., by τ.D, so that WB ` D = τ.(τ.D)+ b.D+ τ.D.
Then, by reordering the summands,

WB ` D = τ.D+ τ.(τ.D)+b.D
Now, we define a new constant D1

.
= τ.D1 + τ.(τ.D1) + b.D1 so that, by recursion

congruence, WB ` D = D1. Then define D2
.
= τ.(τ.(τ.D2)+ b.D2): by axiom WU1,

WB ` D1 = D2. Now we define a new constant D3
.
= τ.((τ.D3) + b.D3): by axiom

U3, WB ` D2 = D3. Now we define a new constant D4
.
= τ.(b.D4): by axiom WU2,

WB ` D3 = D4. And we are done because D4 is observationally guarded.
Now, by transitivity, substitutivity and axiom R2, we get WB `C = τ.D and WB `

D = τ.b.D. Therefore, the observationally guarded system of equations
A .

= τ.B
B .

= τ.b.B
is such that WB `C = A, WB ` D = B by Theorem 10. 2
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Proposition 37. (Reduction to observationally guarded process for WB) Let X̃ =
(x1,x2, . . . ,xn) be a tuple of variables and let p̃ = (p1, p2, . . . , pn) be a tuple of open
guarded CFM terms, using the variables in X̃ . Let C̃ = (C1,C2, . . . ,Cn) be a tuple of
constants (not occurring in p̃) such that the system of equations

C1
.
= p1{C̃/X̃}

C2
.
= p2{C̃/X̃}

. . .

Cn
.
= pn{C̃/X̃}

is observationally unguarded. Then, there exist a tuple q̃ = (q1,q2, . . . ,qn) of open
guarded CFM terms, using the variables in X̃ , and a tuple of constants D̃=(D1,D2, . . . ,Dn)
(not occurring in q̃) such that the system of equations

D1
.
= q1{D̃/X̃}

D2
.
= q2{D̃/X̃}

. . .

Dn
.
= qn{C̃/X̃}

is observationally guarded and, for i = 1, . . . ,n, WB `Ci = Di.

PROOF. The proof is by double induction: first on n, and then on the pair (nx(p), len(p))
(for the considered open guarded term p), where we assume that (n1,k2) < (n2,k2) if
n1 < n2, or n1 = n2 and k1 < k2.

For n = 1, if (nx(p1), len(p1)) = (0,0), then we are done, as C1
.
= p1{C1/x} is

actually observationally guarded. Instead, if p1 is observationally unguarded, then it
must be of the form τ.r + q, with r observationally unguarded. We now proceed by
case analysis:

• r = x: In this case, WB `C1 = (τ.x+q){C1/x} by axiom R2 (and possibly also
A1-A3). Now define C2

.
= (τ.x+ q){C2/x} so that WB `C1 = C2 by recursion

congruence. Define C3
.
= τ.(q+0){C3/x}: by axiom WU1 we have WB `C2 =

C3. Note that nx(τ.(q+ 0)) = nx(τ.x+ q)− 1, so that induction can be invoked
to conclude that there exist an observationally guarded process q1 and a constant
D1 such that D1

.
= q1{D1/x} and WB `C3 = D1, so that WB `C1 = D1 follows

by transitivity.

• r = τ.p1 + p2, with p1 observationally unguarded: We have two subcases:

- p1 = x: Thus, WB `C1 = (τ.(τ.x+ p2)+q){C1/x} by axiom R2 (and pos-
sibly also A1-A3). Now define C2

.
= (τ.(τ.x+ p2)+q){C2/x} so that WB`

C1 =C2 by recursion congruence. Define C3
.
= (τ.(p2 +q)){C3/x}: by ax-

iom WU2, we have WB `C2 =C3. Note that nx(τ.(p2 +q)) = nx(τ.(τ.x+
p2)+ q)− 1, so that induction can be invoked to conclude that there ex-
ist an observationally guarded process q1 and a constant D1 such that D1

.
=

q1{D1/x} and WB`C3 =D1, so that WB`C1 =D1 follows by transitivity.

- p1 is a guarded term, observationally unguarded in x: In this case, WB `
C1 = (τ.(τ.p1 + p2)+q){C1/x} by axiom R2 (and possibly also A1-A3).
Now define C2

.
= (τ.(τ.p1 + p2) + q){C2/x} so that WB ` C1 = C2 by



7 AXIOMATIZATIONS 60

recursion congruence. Define C3
.
= (τ.(p1 + p2) + q){C3/x}: by axiom

U3, WB ` C2 = C3. Note that len((τ.(p1 + p2) + q)) = len((τ.(τ.p1 +
p2)+ q))− 1, so that induction can be invoked to conclude that there ex-
ist an observationally guarded process q1 and a constant D1 such that D1

.
=

q1{D1/x} and WB`C3 =D1, so that WB`C1 =D1 follows by transitivity.

As no other cases are possible, the proof of the base case for n = 1 is complete.
Now assume a tuple p̃ = (p1, p2, . . . , pn) and the term pn+1, so that they are all

open on X̃ = (x1,x2, . . . ,xn) and the additional xn+1. Assume, w.l.o.g., that xn+1 occurs
in pn+1. First, define

Cn+1
.
= pn+1{Cn+1/xn+1},

so that Cn+1 is now open on X̃ . Then, we define pi{Cn+1/xn+1}, which, for i = 1, . . . ,n,
is the term pi where each occurrence of variable xn+1 has been replaced by Cn+1; note
that each term pi{Cn+1/xn+1} is open on X̃ . Hence

C1
.
= p1{Cn+1/xn+1}{C̃/X̃}

C2
.
= p2{Cn+1/xn+1}{C̃/X̃}

. . .

Cn
.
= pn{Cn+1/xn+1}{C̃/X̃}

is a system of equation of size n, so that, by induction, we can conclude that there exist
a tuple q̃ = (q1,q2, . . . ,qn) of terms and a tuple of constants D̃ = (D1,D2, . . . ,Dn) such
that

D1
.
= q1{Cn+1/xn+1}{D̃/X̃}

D2
.
= q2{Cn+1/xn+1}{D̃/X̃}

. . .

Dn
.
= qn{Cn+1/xn+1}{D̃/X̃}

is observationally guarded and WB `Ci = Di for i = 1, . . . ,n. Note that
qi{Cn+1/xn+1}{D̃/X̃}= qi{D̃/X̃ ,Cn+1{D̃/X̃}/xn+1}

so that by Cn+1{D̃/X̃} we have implicitly closed the definition of Cn+1 as
Cn+1

.
= pn+1{Cn+1/xn+1}{D̃/X̃}= pn+1{D̃/X̃}{Cn+1/xn+1}.

Now we unfold each constant Di inside the term pn+1{D̃/X̃}{Cn+1/xn+1} so that
possible further occurrences of Cn+1 are now exposed. Note that, by axiom R2,

WB ` pn+1{D̃/X̃}= pn+1{ ˜body(D)/X̃}.
More compactly, we can write
pn+1{ ˜body(D)/X̃}= rn+1{D̃/X̃}.

and define a new constant C′n+1
.
= rn+1{D̃/X̃}{C′n+1/xn+1} so that WB `Cn+1 =C′n+1

by recursion congruence. Note that we are now in a situation similar to the base case
for n = 1: if (nx(rn+1{D̃/X̃}), len(rn+1{D̃/X̃})) = (0,0), then we are done, as C′n+1

.
=

rn+1{D̃/X̃}{C′n+1/xn+1} is actually observationally guarded. Instead, if rn+1{D̃/X̃} is
observationally unguarded, then it must be of the form τ.r + q, with r observation-
ally unguarded. We can now proceed by case analysis as done for the base case; as
this is indeed very similar, we omit this part of the proof. So, at the end, we get a
new observationally guarded term qn+1 and a new constant Dn+1 such that Dn+1

.
=
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qn+1{Dn+1/xn+1}{D̃/X̃} and WB `C′n+1 = Dn+1. Assuming qn+1 6= 0, by axiom R2
(the case qn+1 = 0, using axiom R1, is obvious), we have that

WB ` Dn+1 = qn+1{Dn+1/xn+1}{D̃/X̃}.
Similarly, also that WB `Di

.
= qi{Cn+1/xn+1}{D̃/X̃} for i = 1, . . . ,n. By substitutivity,

we also get WB `Di
.
= qi{Dn+1/xn+1}{D̃/X̃} for i = 1, . . . ,n. Finally, we define a new

observationally guarded system of equations
E1

.
= q1{En+1/xn+1}{Ẽ/X̃}

E2
.
= q2{En+1/xn+1}{Ẽ/X̃}

. . .

En
.
= qn{En+1/xn+1}{Ẽ/X̃}

En+1
.
= qn+1{En+1/xn+1}{Ẽ/X̃}

such that WB ` Di = Ei for i = 1, . . . ,n+1 by Theorem 10. The thesis, WB `Ci = Ei
for i = 1, . . . ,n+1, follows by transitivity. 2

Theorem 13. For any closed CFM process p, there exists an observationally guarded,
closed, CFM process q such that WB ` p = q.

PROOF. By induction on the size of dec(p). If |dec(p)| = 0, then dec(p) = θ . By
observing the definition of the decomposition function in Table 1, this is possible only
if p is either 0 or a parallel composition of 0’s, e.g., 0 |0; hence, E ` p = 0, possibly
using axioms P1-P3, where 0 is observationally guarded. If |dec(p)|= k+1, then there
exist p1 and p2 such that dec(p) = p1⊕dec(p2). By Proposition 33 and Remark 3, p1
can be equated, via SB, to a constant C1 in normal form. By Proposition 37, there exists
an observationally guarded constant D1 such that WB `C1 = D1. By induction, there
exists an observationally guarded process q2 such that WB ` p2 = q2. Note that D1 |q2
is observationally guarded. By substitutivity we have WB` p1 | p2 =D1 |q2. By axioms
P1-P3 we have that WB ` p = p1 | p2. So the thesis WB ` p = D1 |q2 follows easily. 2

Corollary 6. (Completeness of WB for the whole of CFM) For every p,q ∈PCFM ,
if p≈⊕c q, then WB ` p = q.

PROOF. By Theorem 13, there exists p′ and q′, observationally guarded, such that
WB ` p = p′ and WB ` q = q′. By Theorem 9, we have that p≈⊕c p′ as well as q≈⊕c q′,
so that, by transitivity, we also have p′ ≈⊕c q′. By Theorem 11, we have WB ` p′ = q′,
so that the thesis WB ` p = q follows by transitivity. 2

Now we sketch how to adapt the previous proofs for the case of rooted branching
bisimilarity.

Proposition 38. (Reduction to observationally guarded process for BB) Let X̃ =
(x1,x2, . . . ,xn) be a tuple of variables and let p̃ = (p1, p2, . . . , pn) be a tuple of open
guarded CFM terms, using the variables in X̃ . Let C̃ = (C1,C2, . . . ,Cn) be a tuple of
constants (not occurring in p̃) such that the system of equations

C1
.
= p1{C̃/X̃}

C2
.
= p2{C̃/X̃}

. . .

Cn
.
= pn{C̃/X̃}
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is observationally unguarded. Then, there exist a tuple q̃ = (q1,q2, . . . ,qn) of open
guarded CFM terms, using the variables in X̃ , and a tuple of constants D̃=(D1,D2, . . . ,Dn)
(not occurring in q̃) such that the system of equations

D1
.
= q1{D̃/X̃}

D2
.
= q2{D̃/X̃}

. . .

Dn
.
= qn{C̃/X̃}

is observationally guarded and, for i = 1, . . . ,n, BB `Ci = Di.

PROOF. (Sketch) The proof follows the same induction pattern of the proof of Propo-
sition 37. We sketch only the base case for n = 1, following the idea in [11]. Let
C1

.
= p1{C1/x}. If p1 is observationally unguarded, then it may, or may not, contain

summands of the form τ.x.
In the former case, BB` p1 = τ.x+q where q does not contain any summand τ.x (as

possible replicas are absorbed via axiom A4). Now, let us define B .
= (τ.x+q){B/x},

so that, by recursion congruence, BB `C1 = B. The constant B′ .= τ.(q{B′/x}+ 0)+
q{B′/x} is such that BB ` B = B′ by axiom BU1. Note that τ.(q+ 0) + q does not
contain any summand of the form τ.x, so that all these silent self-loops have been
removed. If q is observationally guarded, then we are done. Otherwise, q must be of
the form τ.q1 +q2 (with q1 observationally unguarded), so that 0 can be absorbed, and
we have

BB ` B′ = (τ.(τ.q1 +q2)+ τ.q1 +q2){B′/x}.
Let D .

= (τ.(τ.q1 + q2) + τ.q1 + q2){D/x}, so that BB ` B′ = D. Now, define D′ .=
(τ.(q1+q2)+τ.q1+q2){D′/x}: by axiom U3, we have BB `D′ =D. Now by repeated
use of axiom U3, it is possible to shorten the silent computations leading to x, so that, at
the end, each summand of D′ will be of the form τ.(τ.x+ r1), τ.(τ.x+ r2), . . . , where
ri does not contain any observationally unguarded occurrence of x, because possible
replicas of τ.x can be absorbed via axiom A4. In other words, D′ can be equated to a
constant

F .
= (τ.(τ.x+ r1)+ τ.(τ.x+ r2)+ . . .τ.(τ.x+ rk)+ r){F/x}

where r1,r2, . . . ,rk and r are all without any observationally unguarded occurrence of
variable x. Then, by repeated application of axiom U4, this term can be equated to

τ.(τ.x+ r1 + r2 + . . .+ rk)+ r,
i.e., a term of the form τ.(τ.x+ p)+r, so that by axiom BU2, it can be equated to τ.(p+
r)+r, which is an observationally guarded term. Then, D1

.
=(τ.(p+r)+r){D1/x} and

BB `C1 = D1.
In the latter case (i.e., when p1 does not contain summands of the form τ.x),

BB ` p1 = τ.q1 + q2 where q1 6= x is observationally unguarded and q2 does not con-
tain summands of the form τ.x. Term q1 can only be of the form τ.r1 + r2, with r1
observationally unguarded, so that BB ` p1 = τ.(τ.r1 + r2) + q2. Now define B .

=
(τ.(r1 + r2) + q2){B/x}: by axiom U3, we have BB ` C1 = B. Now the proof pro-
ceeds as in the previous case: by repeated use of axiom U3, it is possible to shorten the
silent computations leading to x in r1 (and possibly in r2 and q2), so that, at the end,
each summand of B will be of the form τ.(τ.x+ t1), τ.(τ.x+ t2), . . . , where ti does not
contain any observationally unguarded occurrence of x, because possible replicas of
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τ.x can be absorbed via axiom A4. In other words, B can be equated to a constant
G .
= (τ.(τ.x+ t1)+ τ.(τ.x+ t2)+ . . .τ.(τ.x+ th)+ t){G/x}

where t1, t2, . . . , th and t are all without any observationally unguarded occurrence of
variable x. Then, by repeated application of axiom U4, this term can be equated to

τ.(τ.x+ t1 + t2 + . . .+ tk)+ t,
i.e., a term of the form τ.(τ.x+ p)+r, so that by axiom BU2, it can be equated to τ.(p+
r)+r, which is an observationally guarded term. Then, D1

.
=(τ.(p+r)+r){D1/x} and

BB `C1 = D1 also in this case. 2

Theorem 14. For any closed CFM process p, there exists an observationally guarded,
closed, CFM process q such that BB ` p = q.

PROOF. As for Theorem 13. 2

Corollary 7. (Completeness of BB for the whole of CFM) For every p,q ∈PCFM ,
if p≈⊕brc q, then BB ` p = q.

PROOF. Similar to the proof of Corollary 6, and so omitted. 2

8. Conclusion

Finite-state machines with silent moves have been equipped with simple, efficiently
decidable, truly-concurrent behavioral semantics. Indeed, weak (or branching) team
equivalence seems the most natural, intuitive and simple extension of LTS weak (or
branching) bisimulation equivalence to FSMs with silent moves; it also has a very low
complexity, actually the lowest one for FMSs with silent moves. More precisely, weak
bisimilarity on places can be checked in O(m · (n+ 1)) time (where n is the number
of places and m the number of transitions), by adapting the algorithm in [32], and
then weak team equivalence on markings can be checked in O(k2) time, where k is
the size of the involved markings (or in O(n), cf. Remark 1). Moreover, branching
bisimilarity on places can be checked with time complexity O(m · (logn+ 1)), where
n is the number of places and m the number of transitions (adapting the algorithms
proposed in [19, 21]), and branching team equivalence on markings can be checked
in O(k2), where k is the size of the involved markings (or in O(n), cf. Remark 1).
Note that these results are in striking contrast with interleaving equivalences, which
are all checkable in exponential time w.r.t. the size of the initial marking. As, in order
to perform team equivalence checking, there is no need to compute the LTSs of the
global behavior of the systems under scrutiny, our proposal seems a natural solution to
solving the state-space explosion problem for FSMs with silent moves.

Furthermore, on FSMs without silent moves, they coincide with (strong) team
equivalence, i.e., the additive closure of (strong) bisimilarity ∼ on places; this strong
equivalence, studied in [16], was proved to coincide with strong place bisimilarity, pro-
posed by Autant, Belmesk and Schnoebelen in [1, 2], an equivalence relation refining
an earlier proposal by Olderog [27], under the name of strong bisimilarity. Team equiv-
alence, which also coincides with structure preserving bisimilarity [13], is coarser than
the branching-time semantics of isomorphism of (nondeterministic) occurrence nets
(or unfoldings) [9] and finer than the linear-time semantics of isomorphism of causal



8 CONCLUSION 64

(or deterministic occurrence) nets [5, 27]; moreover, it is finer than history-preserving
bisimilarity [31, 7, 10], which on nets takes the form of so-called fully concurrent
bisimilarity [6]. Hence, strong team equivalence does respect the causal behavior of
nets. Weak (or branching) team equivalence seems the most natural extension of this
causality-based equivalence in a setting with silent moves.

It is possible to prove that weak team equivalence is finer than weak fully concur-
rent bisimilarity (whose precise, one-step definition can be obtained by adapting the
definitions in [10, 6, 36]). The formal proof of this fact, which is rather technical, is left
for future research. The inclusion is strict: for instance, the places s1 and s5 in Figure 6
are weakly fully concurrent bisimilar, but they are not weakly team equivalent, because
these two places are not even weakly bisimilar, as discussed in Example 7. It is also
possible to define branching fully concurrent bisimilarity and to prove that branching
team equivalence is finer than that; also this fact is left for future research.

The axiomatizations we have provided for rooted weak/branching team bisimilar-
ity are based on previous work by Milner [24, 26] and van Glabbeek [11, 12] over
finite-state CCS (and also on [3]). However, our calculus CFM uses guarded constants
for recursion, rather than a recursive construct (e.g., µX(a.E +X)) with possibly un-
guarded variables; moreover, our semantics is sensitive to the kind of termination: a
stuck place (unsuccessful termination) and the empty marking (successful termination)
are never equated (cf. Example 7). Hence, these axioms have been adapted to our case.
Our axiomatizations are the first finite, sound and (ground-)complete, axiomatization
of truly-concurrent equivalences in the presence of silent moves for a process algebra
admitting recursive behavior.

Acknowledgments: The anonymous referees are thanked for their detailed comments
and suggestions.
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