
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Hyperledger Fabric Blockchain: Chaincode Performance Analysis / Luca Foschini; Andrea Gavagna;
Giuseppe Martuscelli; Rebecca Montanari. - STAMPA. - (2020), pp. 1-6. (Intervento presentato al
convegno ICC 2020 - 2020 IEEE International Conference on Communications (ICC) tenutosi a Dublin,
Ireland nel 7-11 June 2020) [10.1109/ICC40277.2020.9149080].

Published Version:

Hyperledger Fabric Blockchain: Chaincode Performance Analysis

Published:
DOI: http://doi.org/10.1109/ICC40277.2020.9149080

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/792328 since: 2021-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICC40277.2020.9149080
https://hdl.handle.net/11585/792328

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

L. Foschini, A. Gavagna, G. Martuscelli and R. Montanari, "Hyperledger Fabric
Blockchain: Chaincode Performance Analysis," ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020, pp. 1-6.

The final published version is available online at:
https://doi.org/10.1109/ICC40277.2020.9149080

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1109/ICC40277.2020.9149080

Hyperledger Fabric Blockchain: Chaincode

Performance Analysis

Luca Foschini, Andrea Gavagna, Giuseppe Martuscelli, Rebecca Montanari

Dipartimento di Informatica – Scienza e Ingegneria, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

{luca.foschini, giuseppe.martuscelli, rebecca.montanari}@unibo.it, andrea.gavagna@studio.unibo.it

Abstract — Hyperledger Fabric, created and supported by the
Linux Foundation and IBM, is one of the most popular open-source
blockchain permissioned platforms that has been already used in
many industrial scenarios. One of the main characteristics of this
platform is that it provides a smart contract system that relies on
general-purpose languages instead of an ad hoc one. In fact, a
chaincode in the Fabric platform (the equivalent of the Ethereum
smart contract) is a software program which encapsulates the
business logic for the creation and modification of logical assets in
the ledger that can be written in different general-purpose
programming languages (currently Java, Go, and Node.js). This
paper analyses the transaction performance of the Fabric platform
by identifying at a fine-grained degree level the factors that most
contribute to the overall overhead. In particular, we focus on how
the transaction latency is affected by the programming language
adopted for implementing the chaincode and by varying the
number of participating endorser peers. Finally, the paper shows a
thorough test assessment aimed at evaluating the impact of the
different chaincode implementation on performance overhead. As
it emerges from our experimental results, Go is the most
performing programming language.

Keywords—blockchain, hyperledger, chaincode, fabric

I. INTRODUCTION

The last few years have been characterized by a significant
increase in interest and use of Distributed Ledger Technology
(DLT) of which blockchain is the best-known realization both
for the number of applications and for the variety of scenarios.
The introduction of blockchain technology has opened the doors
to new types of applications that allow the sharing and
management of data between untrusted organizations and
entities in a safe and collaborative manner. Blockchain grants
high degrees of non-repudiability, integrity, immutability, and
censorship resistance. In particular, it allows untrusted parties to
send transactions using a peer-to-peer network without
necessarily having an intermediary to guarantee their
correctness.

There are several blockchain platforms available nowadays,
following different models and visions in terms of application
fields. Hyperledger Fabric, created and supported by the Linux
Foundation and IBM, is one of the most popular open-source
blockchain permissioned platforms, i.e., a blockchain network
in which participants need the approval to be part of it, already
used in many industrial scenarios. The adoption of a
permissioned blockchain is highly suited for enterprises that
require authenticated users. Further, enterprise applications need
complex data models that can be supported using smart
contracts.

Despite the claimed benefits provided by the blockchain
technology and by available platforms, there are still several
issues to investigate for blockchain to take off as widespread
large-scale technology. In particular, there is a strong need for a
performance vademecum and established metrics that allow us
to clearly evaluate the performance overhead introduced by the
deployment of a blockchain platform. Some works have been
proposed that analyze the unique performance attributes of
blockchains, whereas measuring and comparing performance
between different blockchains is still difficult. Existing works
have so far been mainly focused on evaluating the Hyperledger
Fabric platform, analyzing many aspects that impact on the
Hyperledger Fabric performance. Some seminal efforts propose
some architectural solutions [9, 11]. With our work, we focus on
additional, still not investigated, factors in the Hyperledger
Fabric platform that contribute to the overall latency, such as the
choice of the programming language used for implementing the
chaincode operations.

The contribution of this paper is threefold. First, we analyzed
with a fine-grained degree of detail the blockchain consensus
algorithm flow of Hyperledger Fabric both for queries and
invocation requests isolating the main interval time. Second, we
identify the factors which mostly impact the overall latency,
such as the programming language exploited for chaincode
implementation in relation to the number of network peers.
Third, we describe several experimental results we obtained to
assess the performance overhead of the different programming
languages. The results show that the Go is the most performing
one for almost all the tests realized and that in case of update of
the ledger the latency follows a linear trend as the number of
nodes in the network increase, while in case of query the latency
is approximately constant.

The remainder of the paper is divided as follows. Section II
provides the background of the blockchain technology and the
related works. In Section III, we introduce main performance
metrics for our experiments, and in Section IV we use them for
performance assessment. Section V draws conclusions and
future work.

II. BACKGROUND AND RELATED WORKS

A. Background

Blockchain is a distributed ledger composed of a chain of
interconnected blocks containing tamper-proof information.
This technology was originally described in 1991 by a group of
researchers and was intended to apply a time stamp impossible

to counterfeit digital documents. However, it was not very
widespread until Satoshi Nakamoto in 2009 created the Bitcoin
cryptocurrency [1]. The blockchain ensures the integrity of the
stored blocks using intensively cryptographic techniques, such
as hash and digital signature making it secure and non-
counterfeit.

The blockchain networks can be divided into two different
access models: permissionless and permissioned or, as often
referred to in literature, respectively public and private
blockchains. In the first model, participation is public and open
access: anybody can participate in the network and in the
consensus process. In the second model, participation is
permissioned: participants have either restriction on writing
(validation) rights, or on both reading (access) and writing
rights.

The most popular permissionless blockchains are certainly
Bitcoin and Ethereum. Bitcoin is Proof-of-Work based
blockchain network, giving open access to its transaction logs,
whereas Ethereum is an open platform designed to build and use
decentralized applications that run smart contracts which are
applications that mechanically execute tasks when certain
conditions are met.

Within the permissioned blockchains, we can find many
solutions, such as the Hyperledger project with Fabric which is
mostly contributed by IBM and introduces an important feature
that allows nodes to confidentially transact on the same network
of peers and Sawtooth which is mostly contributed by Intel and
it uses a Proof of Elapsed Time consensus to save energy [2].
Corda is an additional platform created by the software company
R3 that leads a consortium of two hundred global financial
institutions [3]. Other platforms include Chain Core that is
mostly focused on issuing and transferring financial assets
within a consortium and Quorum that is a permissioned
implementation of Ethereum [4].

Assessing an exhaustive comparison of the different
blockchains is very complex since the various platforms rely on
different consensus algorithms, follow different data and
architecture models where often the roles of nodes are
specialized. In particular, in terms of performance comparison
between platforms, the main difficulty is to find a way to fairly
compare them given the fundamental differences touching to
consensus, block structure, P2P behaviors, etc [5].

B. Related Works

 Some performance studies are available that focus mainly on
the Hyperledger Fabric platform and its performances as
explained in the following.

The work in [6] focuses, for example, on the impact on the
transaction throughput and latency of specific configuration
parameters such as block size, endorsement policy, channels,
resource allocation. For example, the work analyses the
performance to validate a transaction’s endorsement signature
(VSCC) varying the endorsement policy and the number of
endorsers. Besides, it introduces some optimizations such as
aggressive caching for endorsement policy verification and
parallelizing endorsement policy verification.

[7] conducts a complete performance analysis of two versions of
Hyperledger Fabric, v0.6 and v1.0. The evaluation of the two
platforms is performed by varying the workload up to 10.000
transactions. Then it analyses the scalability of the two platforms
by varying the number of nodes up to 20 nodes. The results show
that the execution times increase as the number of transactions
grows and that execution times, throughput and latency for
Fabric v1.0 are better than the ones for Fabric v0.6. The results
show also that the maximum number of nodes that Fabric v0.6
can have is 16.

Authors of [8] study the throughput and latency characteristics
of Fabric by subjecting it to different sets of workloads. Through
a suite of benchmarks, they tune different parameters transaction
and chaincode parameters such as transaction per block and the
time the order waits before creating the block (timeout). They
also conduct experiments to study Fabric’s performance
characteristics while increasing the number of chaincodes,
channels, and peers.

[9] re-architects Hyperledger Fabric to increase transaction
throughput from 3,000 to 20,000 transactions per second. They
focus on performance bottlenecks beyond the consensus
mechanism such as the message pipeline, the world state
database, and the transaction header and payload. They propose
architectural changes that reduce computation and I/O overhead
during the transaction.

In [10] a performance model of Hyperledger using Stochastic
Reward Nets is presented. From the model, they compute the
throughput, utilization and queue length at each peer and critical
processing stages within a peer. From their analysis results, they
find that time to complete the endorsement process is
significantly affected by the number of peers and policies. The
performance bottleneck of the ordering service and ledger write
can be mitigated using a larger block size, albeit with an increase
in latency. For the committing peer, the transaction validation
check (using Validation System Chaincode) is a time-
consuming step, but its performance impact can be easily
mitigated since it can be parallelized.

[11] investigates whether the consensus process using Practical
Byzantine Fault Tolerance (PBFT) could be a performance
bottleneck for networks with a large number of peers. They
model the PBFT consensus process using Stochastic Reward
Nets to compute the meantime to complete consensus for
networks up to 100 peers.

Our work differs from the above-described studies as it
analyses Hyperledger Fabric considering a novel performance
aspect, i.e., the impact of the programming language exploited
for implementing chaincodes. In particular, the overall
transaction latency of chaincode operations is measured by
varying the number of nodes) and the programming language
used for chaincode and client implementation. In our scenario,
all nodes behave as endorser peers

III. PERFORMANCE METRICS FOR HYPERLEDGER FABRIC

 This section gives an analysis of the Hyperledger Fabric
platform and defines the set of metrics that we used for
comparing the latency of the transaction on Hyperledger Fabric
platform [12] and the factors which can affect them: the
programming language used for the client and the chaincode

implementation and the number of network peers (endorser
peers).

A. Analysis of the peers' role and the consensus algorithm

The Hyperledger Fabric ledger consists of two distinct parts:
world state and blockchain. The first is a database that maintains
a cache of the current values of the attributes of an object
represented by key-value pairs. The exploitation of the world
state allows programs to directly access the value of an object
without having to traverse the entire blockchain to calculate it.
The second is the blockchain transaction log which stores all the
changes that led to the current value in the world state collected
in blocks hung one in the other to form a chain. In Hyperledger
Fabric, each peer keeps a copy of the ledger (world state +
blockchain) and the update of the copy is carried out by the peers
individually through the consensus algorithm. It ensures that
every peer will do the same update and that they will, therefore,
have identical copies of the ledger.

Hyperledger Fabric network consists of a set of peers which
can assume three distinct roles (see also Fig. 1):

• Endorser which receives and executes transactions
(transaction proposal) coming from client applications.
It is the only type of peer on which a chaincode must be
installed and is, therefore, the only one that performs it.
They execute the request and reply sending back to the
client an endorsed result (endorsed transaction proposal)

• Orderer is the peer that deals with creating transaction
blocks. It receives endorsed transaction proposals and
inserts them in a block together with others in an orderly
manner.

• Committer which checks the validity of all transactions
individually contained in the received block and applies
the block to the ledger. All peers take on this role.

The consensus algorithm plays a fundamental role in
blockchain technology, as it is the mechanism that allows peers
to participate in the network to maintain a consistent version of
the ledger. It has a direct impact on blockchain performance. The
transactions flow (Figure 1), which is used by the Hyperledger
Fabric consensus algorithm can be summarized as follows:

1) The client application sends a transaction proposal to

peer, endorsers, i.e. a request to invoke a chaincode method

with certain input parameters, with the intent to read and/or

update the ledger. Applications use the Fabric SDK to generate

the transaction proposal: it packages the proposal in a format

appropriate for the gRPC protocol and uses the user's

cryptographic credentials to generate the transaction signature.

2) Peer endorsers receive the transaction proposal and

verify that the signature is valid. Once the true value is

exceeded, the method of the chaincode with respect to the

current state of the world you are producing a read set (key-

value pairs that have been read by the world state in the

execution of the method) and a write set (key-value pairs

representing the updating or creation of a new asset). No update

is actually carried out on the ledger at this time. The RW set is

digitally signed by the peer endorser who produced it and

returned as a transaction proposal response to the client

application.

3) The application verifies the signatures of endorser peers

and, if the transaction proposal is a query, it immediately gets

the result. In this case, the transaction is not sent to the orderer

since we do not need to execute the consensus algorithm and

the protocol ends. If instead the transaction proposal is not a

query, the client application sends the transaction to the orderer

in order to update the ledger by first determining if the

endorsement policy is satisfied and if the answers obtained are

identical. The endorsement policy defines the set of peers that

must execute the chaincode and signs the result in order to

consider valid the transaction and is specified for each

chaincode. The application thus sends the transaction proposal

response containing the read-write set and the signature of the

endorser peer to the order service. The order service does not

check the content of the transaction: it receives the transactions,

orders them chronologically and creates blocks of ordered

transactions.

4) The blocks are delivered from the ordering service to all

peers on the channel. Transactions within the block are

individually and sequentially validated. This process consists of

three steps:

• The first step is called Validation System Chaincode

(VSCC) and is carried out in parallel for all transactions

in the block. It verifies that each transaction has been

approved by the peers requested by the endorsement

policy of the chaincode that generated the transaction

and that all peer endorsers have generated the same

result. The transactions that do not pass these first two

checks are marked as invalid.

• For each valid transaction is made a check called Multi-

Version Concurrency Control (MVCC) to ensure that

the current ledger status is compatible with the status of

the system when the transaction proposal (read-write

set) has been generated. Indeed, another transaction

may have updated the same asset in the ledger, making

the transaction no longer valid. Each transaction is

compared to the version of the keys in the read-set with

that of the same keys in the peer's world state. In case

they are not identical the transaction is marked as

invalid. This second step is done sequentially for each

transaction.

• Once the checks have been carried out on all the

transactions individually, the peer adds the block to the

blockchain and writes the contents of the write set to

the world state for valid transactions. The effects of the

transactions resulted invalid are not applied to the

ledger, but they are in any case maintained in the same

way as the successful transactions. This means that the

blocks are the same as received by the orderer.

B. Latency details

The transaction latency is the time between the sending of the
request and the receiving of the response by the client. In Fabric,
we distinguish between two different types of latency,
depending on whether we are running a query or updating the
ledger. In the first case, in fact, the only interaction between
client and a peer occurs, while in the second case the interaction
involves several parts (peer endorser, orderer, client application,
committer peer) and multiple phases. For these reasons we
provide two different definitions:

• Query Latency (LpQ): the time between when the
request is sent, and the response is received by the
client.

• Update Latency (LpT): the time between when the
request is sent and when the client receives a
confirmation event, which notices that the transaction
has been entered in a block and added to the
blockchain.

By analyzing the entire flow, we can express query and update

latencies in terms of the following components:

LpQ = Tapp + Tendorser + Tcc + TconcurrentTransaction +

Tworldstate

LpT = Tapp + Tendorser + Tcc + Torderer + Tpeer +

TconcurrentTransaction + Tworldstate

where:

Tapp is the time taken by the client application and depends on

the underlying language SDK: Java, Go and Node.js, and on the

client machine hardware.

Tendorser represents the time needed for a transaction to reach

enough endorser peers to satisfy the endorsement policy and to

send the response back (endorser peers run the chaincode at run

time). It is affected by the number of endorser peers in the

blockchain network, the network latency and the hardware of

the machines on which the endorsers are running.

Tcc is the overall chaincode execution time and depends on the

endorsement policy, which defines how many peer endorsers

must execute the transaction, the implementation detail, and the

chaincode implementation language. In Hyperledger Fabric we

can write chaincodes in Java, Go and Node.js.

Torderer is the time needed by the orderer service component to

receive transactions and collect them in blocks. This factor

depends on which kind of orderer service you use. The orderer

service can be implemented in one mode (only one node

involved) or Kafka (requires coordination between the various

nodes that constitute it). Furthermore, the network latency also

has an impact to reach the orderer and the hardware of the

machine (or machines) on which it is running. Finally, the

maximum block size and timeout parameters (maximum time

to create the block) affect latency: the larger a block is or has a

high timeout, the more the orderer waits to create the block and

therefore the latency increases.

Tpeer is the total amount of time required by peers to receive the

block of transactions, validate all of them individually and

append the block to its ledger. It depends on the number of peers

in the network (which therefore must be reached by the block

in phase 3 of the consensus algorithm), by the network latency

and by the hardware available to the various peers, which must

validate all the transactions contained in the block

Fig. 1. Hyperledger Fabric Consensus Algorithm

TconcurrentTransaction refers to the number of concurrent

transactions that are executed: the higher this number is, the

more endorsers and peers will be charged and, consequently,

the average latency increases.

Tworldstate is the time spent in read/write operation on the

worldstate and depends on the database used. We can choose

between LevelDB and CouchDB influencing the speed of

access in reading and writing of information in the world state.

For the sake of consistency, in our testing scenario, all peers use

LevelDB as a world state.

C. Smart contract Programming Languages

Hyperledger Fabric provides a smart contract system with

general-purpose languages instead of an ad hoc language. The

chaincode, the equivalent of smart contracts in the Fabric

platform, is a software program that encapsulates the business

logic for the creation and modification of logical assets in the

ledger. It can be written in different programming languages

(currently Java, Go and Node.js) and is executed in a separate

docker container that isolates it from the other chaincodes and

from the other peer processes. For the implementation of the

application using the Java language, two ways can be followed:

the first involves the use of the SDK Hyperledger Fabric (java

low level), the second involves the use of an additional SDK

that provides APIs at a higher level of abstraction, called the

SDK Fabric Gateway(java gateway). In the following tests, we

performed both the Java SDK versions.

IV. EXPERIMENTAL RESULTS

A. Application Use Case and System Deployment

To carry out the evaluation on the latency, we created an
application that allows developers to maintain (create, delete,
update, query) software projects based on the blockchain. Each
software project is characterized by an identification code, a
name, a description, an owner, a link to the source code
repository and the hash of the code for integrity. The
identification code is used as a key for storing it in the world
state. Besides, each software project can be modified only by a
user with a name that matches the value of the owner field. In
order to carry out this control at the chaincode level, each
transaction is signed by the sender and the X.509 certificate
containing the corresponding public key is incapsulated to check
the validity. The owner's name is then obtained extracting the
CN (common name) field of the subject (subject) and compared
with the value contained in the owner field of the project.

The testing scenario consists of nodes connected to each
other in a local network, each peer runs on a different virtual
machine (VM) and has the chaincode installed (peer endorser).
The order service is implemented in one node only and is
running on a single VM, the CA is also present in a separate
docker container. The client is running on a separate VM which
is not part of the blockchain network but belongs to the local
network. The VMs are based on OpenStack-based cloud
infrastructure consisting of 4 hosts and have 2GB RAM, 20GB
hard disk, 2 CPUs. Each VM has Ubuntu 16.04 LTS as its
operating system and uses version 1.4 of Hyperledger Fabric.

B. Performance Assessment

The tests are designed to measure the impact of the
programming language used for the client application and for the
chaincode and the number of peers on the transaction latency.
For this purpose, the chaincode logic has been realized in all
three languages supported by Fabric: Java, Node.js and Go. The
tests are performed using the languages homogeneously on the
client and chaincode and increasing the number of nodes of the
network. In particular, tests have been carried out with 1, 2, 4, 6,
8, 10, 12, 14 and 16 nodes considering the worst case, that is
when the execution of the transaction proposal is requested to all
the peers of the blockchain network to meet the endorsement
policy.

The evaluation was carried out both for the latency in writing
(IV.C) and reading (IV.D) on the ledger. For each experiment
performed a client executes 50 transactions in sequence
measuring the time between the sending request and the
receiving of the response. To reduce error factor, each
experiment has been repeated 33 times and we show average
values; we are not reporting standard deviations that are
typically rather limited (always below 6% across all tests). In the
case of queries, the response is the reception of the result of the
operation, while in the case of updates it is the notification that
the transaction has been added to a block and then hung on the
blockchain. To perform a write, we executed an insertion of
software projects while for reading we requested the software
project details containing the word "blockchain" in the
description.

B.1 Update Latency

Figure 2 shows the latency for a ledger update, in this case,
the transactions modify the world state and they are then added
to the blockchain replicated on the peers. We can see that the
graph follows a linear trend. The Go language (blue) is the most
performing for all the tests. It starts from about 100ms of
difference with respect to the other languages in the case of a
few nodes, growing up to almost 0.3 seconds in a network with
10 peers and 0.5 seconds with 16 peers. Node and Java Fabric
SDK have similar performance while Java Gateway SDK turns
out to be the worst due to the higher abstraction level.

Fig. 2. Update Transaction Latency

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

2550

2600

2650

2700

2750

2800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

La
te

n
cy

 (
m

s)

Number of nodes

go

node

java
gateway

java
low_level

B.2 Query Latency

Figure 3 shows the latency in the case of queries which
involves only the first phases of the Hyperledger Fabric
consensus algorithm without including the transactions in the
ledger. In this case, the query is only sent to a single peer instead
of having to wait for replies from all peers in the network. For
these reasons, as we can see in the graph, the latency is
noticeably lower than for an update of the ledger and is constant
to vary the number of peers in the blockchain network. In
particular, the trend is constant in three cases out of four: Go,
Node.js and low-level java, while in the case of java gateway has
a linear trend which starts from about 45 milliseconds for a
single peer network to almost 220 in the case of 16 nodes. This
is presumably associated with the fact that with the Gateway
SDK the relative response is expected from all the peers. The Go
language, also, in this case, is the more performing in all the tests
together with Node.js. The java language, in the case of using
SDK Fabric Java, has instead a latency that is about twice that
of Go and Node.js with a latency ranging from 40 to 50
milliseconds.

V. CONCLUSION AND FUTURE WORKS

In this paper, we conducted a study to understand how the

latency of Hyperledger Fabric vary, both in case of an update

of the ledger and in case of query. In order to do that, first, we

identified the main factors that influence the transaction flow.

Then our study focused on the impact that the number of nodes

in the network and the programming language used for the

implementation of the client and the chaincode has on it. As a

result of our study, we provided quantitative results that show

that the programming language used has an important impact

on the latency of the transactions and that Go is the most

performing one for almost all the tests performed. Furthermore,

we showed that in case of update the latency follows a linear

trend as the number of nodes in the network increase, while in

case of query it is (as expected) approximately constant.

As a part of future work, our study can be enriched studying

the impact on performance due to other parameters, such as the

number of concurrent transactions, using the order service in

Kafka mode or using CouchDB as world state. In addition, in a

real setup of the solution, nodes would be geographically

distributed and consequently, the network delay would play a

crucial role. Hence, it could be of interest to a study about the

network impact on the overall latency of the transactions.

Further, CouchDB could be centralized in order to have a

shared centralized world state for different peers. This

possibility would be very interesting especially in the case of

nodes with limited storage capacity and should be deepen

studied in terms of feasibility, security and in terms of impact

on performance.

ACKNOWLEDGMENT

This research was funded and supported by the POR-FESR

2014-20 (no. E91F18000260009) through CIRI.

REFERENCES

[1] Nakamoto, Satoshi, "Bitcoin: A Peer-to-Peer Electronic Cash System",
2009

[2] Hyperledger Sawtooth WhitePaper, https://www.hyperledger.org

[3] Corda Enterprise: a next-gen blockchain platform, r3.com

[4] Quorum the proven blockchain solution for business, goquorum.com

[5] M. Belotti, N. Božić, G. Pujolle and S. Secci, "A Vademecum on
Blockchain Technologies: When, Which and How," in IEEE
Communications Surveys & Tutorials

[6] P. Thakkar, S. Nathan and B. Viswanathan, "Performance Benchmarking
and Optimizing Hyperledger Fabric Blockchain Platform," 2018 IEEE
MASCOTS, Milwaukee, WI, 2018

[7] Nasir, Q. & Qasse, Ilham & Talib, Manar & Nassif, Ali. (2018).
Performance Analysis of Hyperledger Fabric Platforms. Security and
Communication Networks. 2018

[8] A. Baliga, N. Solanki, S. Verekar, A. Pednekar, P. Kamat and S.
Chatterjee, "Performance Characterization of Hyperledger Fabric," 2018
CVCBT, Zug, 2018

[9] Christian Gorenflo, Stephen Lee, Lukasz Golab, Srinivasan Keshav,
"FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per
Second" in IEEE ICBC, 2019

[10] H. Sukhwani, N. Wang, K. S. Trivedi and A. Rindos, "Performance
Modeling of Hyperledger Fabric (Permissioned Blockchain Network),"
2018 IEEE NCA, Cambridge

[11] H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi and A. Rindos,
"Performance Modeling of PBFT Consensus Process for Permissioned
Blockchain Network (Hyperledger Fabric)," 2017 IEEE SRDS, Hong
Kong, 2017

[12] Hyperledger Blockchain Performance Metrics Whitepaper,
https://www.hyperledger.org

Fig. 3. Query Transaction Latency

0

20

40

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

La
te

n
cy

 (
m

s)

Number of nodes

go

node

java
gateway

java
low_level

