
03 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Pervasive Games as Web-applications: A Case Study based on a Laser Game / Delnevo G.; Pergolini D.;
Passeri L.; Mirri S.. - ELETTRONICO. - (2020), pp. 9045181.1-9045181.6. (Intervento presentato al
convegno IEEE 17th Annual Consumer Communications and Networking Conference, CCNC 2020 tenutosi
a usa nel 2020) [10.1109/CCNC46108.2020.9045181].

Published Version:

Pervasive Games as Web-applications: A Case Study based on a Laser Game

Published:
DOI: http://doi.org/10.1109/CCNC46108.2020.9045181

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/792137 since: 2021-01-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/CCNC46108.2020.9045181
https://hdl.handle.net/11585/792137

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

G. Delnevo, D. Pergolini, L. Passeri and S. Mirri, "Pervasive Games as Web-
applications: a Case Study based on a Laser Game," 2020 IEEE 17th Annual
Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
2020, pp. 1-6

The final published version is available online at
https://dx.doi.org/10.1109/CCNC46108.2020.9045181

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/CCNC46108.2020.9045181

Pervasive Games as Web-applications:
a Case Study based on a Laser Game

Giovanni Delnevo
Dept. of Computer Science and Engineering

University of Bologna
giovanni.delnevo2@unibo.it

Luca Passeri
Two Year Master in Computer Science and Engineering

University of Bologna
luca.passeri3@unibo.it

Diego Pergolini
Two Year Master in Computer Science and Engineering

University of Bologna
diego.pergolini@unibo.it

Silvia Mirri
Dept. of Computer Science and Engineering

University of Bologna
silvia.mirri@unibo.it

Abstract—With the amazing success of PokemonGo, pervasive
games have definitely caught the attention of the entire world.
Their game experience is characterized by the fusion of real
and virtual elements. In order to be able to extend the virtual
world into the real one, such games have to access the mobile
devices sensors like GPS and camera. For this reason, they are
implemented as native or hybrid mobile applications. Contrary to
this trend, in this paper we present Shoot Them All, a pervasive
game implemented as a web application. In Shoot Them All,
players have to hit the opponents, trying, at the same time, not
to get hit. The battlefield is the real world, while the guns are
virtual, as an extension of players’ mobile devices. We were able
to successfully developed such a game thanks to the availability of
Javascript APIs that allow to access and manage device sensors.
The success of this case study highlight how these technologies
are mature enough, opening the door to web pervasive games.

Index Terms—web pervasive game, web location-based game,
web laser game

I. INTRODUCTION

PokemonGo has become one of the most successful game
ever [1], after being released in July 2016, making the per-
vasive games mainstream. One week after its publication, it
counted 28.5 million daily unique players only in the United
States. Thus, it has reached over 750 million downloads
worldwide within its first year. The PokemonGo phenomenon
has also attracted not only the interest of players, but also
the one of the scientific community [2]. Many studies eval-
uated the consequences derived from its use [3]. Just to cite
few examples, Zach and Tussyadiah evaluated its impact on
the sense of community, mobility, and well-being [4], while
Leblanc and Chaput suggested it as a successful strategy to
increase physical activity levels of the populations [5].

Despite the recent exploit, pervasive games have been sub-
ject of studies for a long time, receiving continuously increas-
ing attention, until becoming a popular field of investigation
[6]–[8]. Different types of games have been grouped under
this concept, as can be seen from a first overview presented by
Magerkurth et al. [9]. They identified the following sub-genres
of pervasive games: smart toys, affective gaming, augmented

tabletop games, location-aware games, and augmented reality
games [10]. This has caused a sort of ambiguity, which has
resulted in the lack of a standard and shared definition of the
term pervasive game [11]. However, generally, they can be
defined as games that combine together elements of the real,
social and virtual world. Valente et al. defined four boundary
criteria to identify pervasive mobile games [12]. They have to:
i) be context-aware, ii) use mobile devices, iii) access remote
data, and iv) be multi-player. According to their vision, only
the first two criteria are mandatory.

Both in the scientific literature and in the commercial
world, we can find several examples of pervasive games.
Among these, in addition to Pokemon Go, we can mention
Pirates! [13], Pervasive Clue [14], Botfighters [15], Can you
see me now? [16], Geocaching [17], Urbanopoly [18], Geo-
Zombie [19], Ingress1, up to the very recent Harry Potter:
Wizards Unite2. The older ones, like Pirates! and Pervasive
Clue, were implemented for ad-hoc devices, since they were
developed in the pre-smartphone era. The newer ones, instead,
are developed as native or hybrid applications. The reason is
quite obvious and lies in the need to access the smartphones
sensors [20], [21]. In fact, in order to mix the real world
with the virtual one, application must be able to access to
the position sensor, in the case of location-based games, or to
the camera, for games employing augmented reality.

Nevertheless, in the last few years, W3C has released several
specifications, with the aim of defining standard interfaces
for obtaining information from smartphones sensors. Actually,
there are specifications for the following sensors: accelerom-
eter3, ambient light4, gyroscope5, magnometer6, orientation7,

1https://www.ingress.com/
2https://www.harrypotterwizardsunite.com
3https://www.w3.org/TR/accelerometer/
4https://www.w3.org/TR/ambient-light/
5https://www.w3.org/TR/gyroscope/
6https://www.w3.org/TR/magnetometer/
7https://www.w3.org/TR/orientation-sensor/

and proximity8. Even if they are released as Working Drafts,
they are increasingly being supported by many browsers. Obvi-
ously, from great power comes great responsibility. The access
to smartphones sensors poses problems regarding security and
privacy, as highlighted in [22], [23].

Such policy, undertaken by the W3C, follows the current
trends of web access, which have seen, since 2016, the mobile
and tablet Internet usage exceeds desktop computers9. This
represents an interesting opportunity in the development of
pervasive games. In fact, they can start to be developed as
web applications rather than as native or hybrid mobile ones.

In this paper, we present Shoot Them All, a pervasive game,
designed and developed as a web application, consisting in a
mobile laser game. The idea is to create a virtual laser game
immersed in the physical environment. The aim of the game
is to hit as many opponents as possible, while avoiding, at the
same time, being hit. The circular battlefield will be specified
using latitude and longitude, representing the center, together
with the radius, that determines its amplitude. Players will
be allowed to move only within such area, looking for other
players to shoot at. Players’ smartphones will have a dual
task. First of all, they will allow users to complete all the
management activities like create new matches, join already
existing ones, manage their personal profiles, and see the
leaderboard of the game. The second and more important
function will be act as a gun during the matches.

With regard to the four boundary criteria, cited above, that
define pervasive mobile games, Shoot Them All respects all
four of them. In fact, the physical position of the players
will determine if players will be hit by bullets or not (first
criterion), players will have to employ a mobile device (i.e.,
smartphone or tablet) to be able to play the game (second
criterion), all the data relative to the game will be stored in a
remote database, only accessible trough predefined API (third
criterion), and the game will require at least two players (fourth
criterion).

The challenge, here, is twofold. On the one side, we want
to implement a game, that usually requires additional devices
(such as laser tag), only with a smartphone. On the other side,
instead, we want to develop a pervasive game, in particular
location-based, as a web application, hence employing only
standard web technologies. Although these ones present some
limitations in the access to the device hardware, a web
application presents different advantages. For example, it does
not require any installation, ensuring, at the same time, the
maximum compatibility with different devices.

The remainder of this paper is organized as follows. Section
II describes the system architecture and the communication
between clients, the server and the database. Section III is
devoted to illustrate the implementation of the whole system,
with a particular focus on the client, the server and the
collision detection system. Section IV details the implemented
prototype, showing different screenshots of the implemented

8https://www.w3.org/TR/proximity/
9http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-

desktop-for-first-time-worldwide

web application. Then, Section V presents some limitations of
the current prototype and some possible extensions. Finally,
Section VI concludes the paper.

II. SYSTEM ARCHITECTURE DESIGN

This Section describes the outline architecture of the system,
also reported in Figure 1. As shown, it is composed by three
main entities: clients, a server and a database.

A client is any device equipped with sensors for positioning
(i.e., GPS, accelerometer, gyroscope, and magnetometer). This
is the minimum requirement for clients to play the games,
since they are needed to compute collisions between the bullets
of a player and his opponents. The server has two main tasks.
The former one is to continuously update the database with
the information about the matches and the players. The latter
one, instead, is to provide all the connected clients with such
updated information.

There are two different types of interaction between these
two entities: (i) client-server, and server-client. With the first
type of interaction, managed through a standard REST API, a
client is able to: register into the system, login into the system,
create a new match, join an existing match, and visualize the
personal profile of a given user.

The second type of interaction, instead, is used to provide
players with some real-time information. In particular, the
following data have to continuously be sent to all the con-
nected clients: the position of each player during a game, the
active matches available in the system, the score of each player
register to the platform, and the score of each player during a
game.

Finally, the database simply contains the state of all the
matches, the global score of each player and the score of the
players during a match.

Fig. 1. System Architecture: Overview

III. IMPLEMENTATION

In this Section, we describe the implementation of the pro-
posed system. We employed the MEAN stack [24] (Mongodb,
Express, Angular, and Node.js), since it offers a modern and
effective solution to realize web applications. The implemen-
tation of the server, of the client, and of the collision detection
are discussed in isolation in the following Subsections.

A. Server

The server takes advantage of Node.js as a web server. In
particular, the framework Express is used since it wraps many
low-level Node functionalities, in a simplified and convenient
way.

With regard to the client-server communication, described
in the previous section, we implemented REST APIs that will
be used by the client through Ajax calls. In particular, the
implemented APIs expose five main routes:

• /registration: it allows users to register for the
game, providing all the necessary data.

• /login: it lets the clients to authenticate themselves,
providing username and password.

• /profile: it allows to get all the public information
relative to a specific player.

• /matches: it allows to get the list of all the current
matches or to create new ones. Moreover, for each
existing match, different sub-routes are available. They
allow to get/update, the state of the match, to get the list
of participants, to add/remove players, and to get/modify
a player’s position and score.

• /users: it allows to get the list of the registered users
and, for each of them, to get/update the relative score.

The server-client communication is instead implemented
by exploiting web sockets, that ensure full-duplex real-time
communications. In particular, we employed the Socket.IO
library10. To facilitate the communication between socket.io
process and non-socket.io ones, we took advantage of Redis11,
an in-memory data structure store, that can be used as a
database, cache and message broker. The exchanged messages
can be grouped in different topics:

• users-pos: this channel contains all the information
about the position of each player during a match.

• matches: in this channel there are all the information
about all the matches that are going on.

• users-leaderboard: in this channel all the informa-
tion about the global scores of all the players registered
are exchanged in order to update the global leaderboard
real-time.

• users-score: the scores of all the players in a given
match are sent in this channel to update the leaderboard
of the match real-time.

• time-out: in this channel are sent all the messages that
communicate a change in the match status (in preparation,
started, ended).

Finally, to host the MongoDB database, we decided to
take advantage of the Mlab service12, a Database-as-a-Service
platform. All the data are saved in this space, with the server
that makes sure to update them every time they change, then
notifying the affected clients.

Three main schemas were identified to map all the domain
of the game. In particular, they are:

10https://socket.io/
11https://redis.io/
12https://mlab.com/

• Users: schema in which all the documents containing
the information relative to the registered users are saved.

• Users in Match: in this schema there are all the
documents concerning the participation of users in a
match, such as the score, the position, and the belonging
team.

• Rooms: here there are the historical data about all the
matches created, like the position of the match, the
maximum number of participants, and the match typology
(i.e., public or private).

B. Client

The client side of the web application has been implemented
using Angular [25], version 6. Following Angular guidelines,
we used Angular Components to manage the presentation
logic, while we added all the application logic and the in-
teraction with the server in Angular Services.

The structure of the implemented Angular Components can
be easily represented through a hierarchy of components,
as shown in Figure 2. Each box in the picture represents
a component. Some of them (i.e., Home and Match) have
also child components. The arrows, instead, represent the
navigation flow.

The main page, as expected, is managed by the Home
component. Such a component presents a brief description of
application (Description) and allows to visualize the global
leaderboard (Leaderboard) and the available matches, pre-
sented both as a simple list (Matches List) and as a map
(Matches Map). For the authentication, we implemented the
Login and Registration components, that show, respectively,
the login and the registration form. The User Profile com-
ponent, instead, shows the user profile. A user can create
a new match through the form of the Match Configuration
component. Once a new match has been created or selected
from the list, it is possible to visualize a summary of the match
information (Match Info) and to join, if possible, that match.
Finally, in the Match component, the actual game takes place
(Game Map). During the match, it is possible to see also the
scores of all the players that have joined the match (Match
Leaderboard).

During the development of the components, we also took
advantage of the following libraries in order to implement a
User Interface modern and mobile-first: Angular Material13,
SCSS14, ChartJs15, iDangero.us Swiper16, and Angular Google
Maps17.

C. Collision Detection

The collision detection system is based on two main data:
the position and the orientation of each player in the match.
These data simply come from the device sensors, in particular

13https://material.angular.io/
14https://sass-lang.com/
15https://www.chartjs.org/
16https://idangero.us/swiper/
17https://angular-maps.com/

Fig. 2. Angular Components

GPS for the position, and accelerometer, gyroscope, and
magnetometer for the orientation.

To obtain the position of a player, we used the HTML
5 Geolocation API. Such an API provide an object Naviga-
tor.geolocator with a method getCurrentPosition that returns
an object containing both the current latitude and longitude of
the device, together with the accuracy of position.

Instead, to get the orientation of the device with respect
to the three Earth axis (x, y, and z), we simply registered a
listener to the event deviceorientationabsolute. Every time that
there are changes in the orientation, an object is returned. Such
an object contains four fields: (i) absolute, that determines if
the position is absolute or not; (ii) alpha, that is the rotation
angle with respect to the Earth z-axis (where 0 is the East,
90 is the North, 180 is the West, and 270 is the South), (iii)
beta, that indicates the inclination with respect to the Earth
y-axis; (iv) gamma, angle of rotation with respect to the Earth
x-axis. To determine the device orientation, we used only the
alpha and beta information. However, the current prototype
uses the beta information only to compute the orientation of
the device, but it does not consider such information in the
collision detection system (i.e., if a player A shoots to a player
B that is right in front of him, but on a different floor, he/she
will be hit). This means that, by now, the z-axis is not taken
into account.

For performance reasons, we decided not to use the server
to compute the collisions during the matches. It only takes care
of the creation and management of the matches. Instead, all the
game logic, including the collision calculation, is distributed
to the clients (i.e., the players in the match). This way,
the workload of the server is limited, improving the overall
scalability of the system [26]–[28].

IV. OUR PROTOTYPE

In this Section, we illustrate the main features of the current
prototype. The relative code is currently maintained in a public
Github repository18.

Once logged in, a user has access to the homepage of
the web application. It is composed by four different views,
reported in Figure 3. Firstly, there is the global leaderboard
of the system (case a), in which players are ranked, based on
their scores. As shown, each player has also a Ranking title
(e.g., Corporal and Master Sergeant), that is always computed
based on the player score. In the second view, instead, a brief
description of the game is reported (case b). Finally, the last
two views provide the list of the matches, already created and
that are still open, in two different ways. In the first one, the
match are geo-localized on a map (case c), while in the other
one the matches are represented as a list (case d). In both
cases, a click on a match, will allow to visualize the detail of
the match and, in case, to join it.

Besides joining an existing match, it is also possible to
create a new one. In Figure 4, case a, we depict part of the
creation process. During it, a player has to specify the match
name, if the match will be public (everyone will be able to
join it) or private (a password will be required in order to join
it), some players settings like the team names, how long the
match will last, and the match area. The match area will always
consist in a circle, therefore requiring the coordinates (latitude
and longitude) of the center and the relative radius (expressed
in meters). Figure 4 also reports how the information of a
match, once a player has joined it, are shown. Case b shows
the waiting room before a match starts. In fact, each match,
after the creation, will start in sixty seconds, giving to other
players the time to join it. Once the match starts, players can
choose the teams, if they were specified in the creation process
(case c). In the leaderboard section, it is possible to visualize
the team scores (case d), together with the player’s score of
each team.

Finally, in Figure 5, we report the main screenshots of the
application during the game. It consists in: a radar, that shows
other players nearby, the current player’s score, the gun, that
allows to shoot, and the remaining bullets.

V. LIMITATIONS AND FUTURE WORKS

Even if the current prototype allows to play an entire game
against other players, it still presents two major limitations.
The first one regards the collision detection system, as already
highlighted in Subsection Collision Detection. In fact, the
altitude of the players is not considered when computing
collisions. The second one, instead, consists in the positioning
system. Actually, the prototype exploits GPS to trace the
player’s position but it only works well in outdoor environ-
ments. The implementation of an indoor-positioning system
would allow to play both in indoor and outdoor environments.
However, a reliable indoor-positioning system is still an open
problem. In fact, the several approaches presented in literature

18https://github.com/lucapasseri/Shoot-Them-All

Fig. 3. Homepage screenshots: Leaderboard (a), Description (b), Matches Map (c) and Matches List (d)

Fig. 4. Match Creation and Info

(e.g., Wi-Fi and Bluetooth based positioning, and magnetic
field fingerprinting) still have an error of several meters [29].

Besides the limitations described above, we would like to
implement and investigate the following additional features
and improvements:

• Make the gaming experience more engaging. This could
be achieved taking advantage of the human-centered
design. An evaluation session with different users should
be conducted. Then, the collected feedback should be
used to improve the overall user experience of the system.

• Introduce more weapons. Currently, there is only one
weapon, with a predefined range. Different weapons (e.g.,

pistols, assault rifle, tactical rifle, sniper rifle, ...) could be
introduced, each of them with different range, available
bullets, and recharge time.

• Providing communication mechanisms among players.
As an example, a chat in the waiting room would allow
a better organization of players in teams. Thus, during
the match, a team chat would let players coordinate
themselves. However, it would also require an adequate
reporting system, that allows players to report the so-
called toxic players [30].

Fig. 5. Shooting System during matches

VI. CONCLUSION

Pervasive games have now become mainstream. Due to their
functional requisites, they are often implemented as native
or hybrid applications. In this paper, instead, we propose
Shoot Them All, a pervasive game implemented as a web
application. It consists in a virtual laser game, immersed in the
physical environment, where people have to hit the opponent
players without being hit. The successful development has
been possible thanks to the growing presence of Javascript
APIs that allow to manage devices sensors. Such a support
opens the door to a new generation of pervasive games that
can be now implemented as web applications.

REFERENCES

[1] K. Alha, E. Koskinen, J. Paavilainen, and J. Hamari, “Why do people
play location-based augmented reality games: A study on pokémon go,”
Computers in Human Behavior, vol. 93, pp. 114–122, 2019.

[2] A. M. Clark and M. T. Clark, “Pokémon go and research: Qualitative,
mixed methods research, and the supercomplexity of interventions,”
2016.

[3] V. R. Wagner-Greene, A. J. Wotring, T. Castor, J. K. MSHE, and
S. Mortemore, “Pokémon go: Healthy or harmful?,” American journal
of public health, vol. 107, no. 1, p. 35, 2017.

[4] F. J. Zach and I. P. Tussyadiah, “To catch them allthe (un) intended
consequences of pokémon go on mobility, consumption, and wellbe-
ing,” in Information and communication technologies in tourism 2017,
pp. 217–227, Springer, 2017.

[5] A. G. LeBlanc and J.-P. Chaput, “Pokémon go: A game changer for the
physical inactivity crisis?,” Preventive medicine, vol. 101, pp. 235–237,
2017.

[6] L. Valente, B. Feijó, J. C. S. D. P. Leite, and E. Clua, “A method to
assess pervasive qualities in mobile games,” Personal and Ubiquitous
Computing, vol. 22, no. 4, pp. 647–670, 2018.

[7] A. Bujari, M. Ciman, O. Gaggi, and C. E. Palazzi, “Using gamification
to discover cultural heritage locations from geo-tagged photos,” Personal
and Ubiquitous Computing, vol. 21, no. 2, pp. 235–252, 2017.

[8] C. Prandi, V. Nisi, P. Salomoni, and N. J. Nunes, “From gamification to
pervasive game in mapping urban accessibility,” in Proceedings of the
11th Biannual Conference on Italian SIGCHI Chapter, pp. 126–129,
ACM, 2015.

[9] C. Magerkurth, A. D. Cheok, R. L. Mandryk, and T. Nilsen, “Perva-
sive games: bringing computer entertainment back to the real world,”
Computers in Entertainment (CIE), vol. 3, no. 3, pp. 4–4, 2005.

[10] P. Salomoni, C. Prandi, M. Roccetti, L. Casanova, L. Marchetti, and
G. Marfia, “Diegetic user interfaces for virtual environments with hmds:
a user experience study with oculus rift,” Journal on Multimodal User
Interfaces, vol. 11, no. 2, pp. 173–184, 2017.

[11] E. Nieuwdorp, “The pervasive discourse: an analysis,” Computers in
Entertainment (CIE), vol. 5, no. 2, p. 13, 2007.

[12] L. Valente, B. Feijó, and J. C. S. do Prado Leite, “Mapping quality
requirements for pervasive mobile games,” Requirements Engineering,
vol. 22, no. 1, pp. 137–165, 2017.

[13] S. Björk, J. Falk, R. Hansson, and P. Ljungstrand, “Pirates! using the
physical world as a game board.,” in Interact, vol. 1, pp. 423–430, 2001.

[14] J. Schneider and G. Kortuem, “How to host a pervasive game-supporting
face-to-face interactions in live-action roleplaying,” in Position paper at
the Designing Ubiquitous Computing Games Workshop at UbiComp,
pp. 1–6, 2001.

[15] O. Sotamaa, “All the world’s a botfighter stage: Notes on location-based
multi-user gaming.,” in CGDC Conf., Citeseer, 2002.

[16] S. Benford, A. Crabtree, M. Flintham, A. Drozd, R. Anastasi, M. Paxton,
N. Tandavanitj, M. Adams, and J. Row-Farr, “Can you see me now?,”
ACM Transactions on Computer-Human Interaction (TOCHI), vol. 13,
no. 1, pp. 100–133, 2006.

[17] K. O’Hara, “Understanding geocaching practices and motivations,” in
Proceedings of the SIGCHI conference on human factors in computing
systems, pp. 1177–1186, ACM, 2008.

[18] I. Celino, D. Cerizza, S. Contessa, M. Corubolo, D. DellAglio,
E. Della Valle, and S. Fumeo, “Urbanopoly–a social and location-
based game with a purpose to crowdsource your urban data,” in 2012
International Conference on Privacy, Security, Risk and Trust and 2012
International Confernece on Social Computing, pp. 910–913, IEEE,
2012.

[19] C. Prandi, P. Salomoni, M. Roccetti, V. Nisi, and N. J. Nunes, “Walking
with geo-zombie: A pervasive game to engage people in urban crowd-
sourcing,” in 2016 International Conference on Computing, Networking
and Communications (ICNC), pp. 1–5, IEEE, 2016.

[20] A. Melis, S. Mirri, C. Prandi, M. Prandini, P. Salomoni, and F. Callegati,
“Crowdsensing for smart mobility through a service-oriented architec-
ture,” in 2016 IEEE International Smart Cities Conference (ISC2), pp. 1–
2, IEEE, 2016.

[21] S. Ferretti, S. Mirri, C. Prandi, and P. Salomoni, “Trustworthiness
in crowd-sensed and sourced georeferenced data,” in Proceedings of
the 2nd International Workshop on Crowd Assisted Sensing, Pervasive
Systems and Communications (CASPer 2015)-in conjunction with IEEE
PerCom, 2015.

[22] A. Das, G. Acar, N. Borisov, and A. Pradeep, “The web’s sixth sense:
A study of scripts accessing smartphone sensors,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1515–1532, ACM, 2018.

[23] M. Roccetti, S. Ferretti, C. E. Palazzi, P. Salomoni, and M. Furini,
“Riding the web evolution: from egoism to altruism,” in 2008 5th IEEE
Consumer Communications and Networking Conference, pp. 1123–
1127, IEEE, 2008.

[24] S. Holmes, Getting MEAN with Mongo, Express, Angular, and Node.
Manning Publications Co., 2015.

[25] Y. Fain and A. Moiseev, Angular 2 Development with TypeScript.
Manning Publications Co., 2016.

[26] V. Ghini, P. Salomoni, and G. Pau, “Always-best-served music distribu-
tion for nomadic users over heterogeneous networks,” IEEE Communi-
cations Magazine, vol. 43, no. 5, pp. 69–74, 2005.

[27] A. Bujari, M. Massaro, and C. E. Palazzi, “Vegas over access point:
Making room for thin client game systems in a wireless home,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 25,
no. 12, pp. 2002–2012, 2015.

[28] S. Mirri, C. Prandi, P. Salomoni, F. Callegati, A. Melis, and M. Prandini,
“A service-oriented approach to crowdsensing for accessible smart
mobility scenarios,” Mobile Information Systems, vol. 2016, 2016.

[29] P. Davidson and R. Piché, “A survey of selected indoor positioning
methods for smartphones,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 1347–1370, 2016.

[30] J. Blackburn and H. Kwak, “Stfu noob!: predicting crowdsourced
decisions on toxic behavior in online games,” in Proceedings of the
23rd international conference on World wide web, pp. 877–888, ACM,
2014.

