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Abstract: The present study aimed to explore the variability of the arm-stroke temporal descriptors
between and within laps during middle-distance swimming event using IMMUs. Eight male swim-
mers performed a 200-m maximum front-crawl in which the inter-lap and intra-lap variability of
velocity, stroke rate, stroke-phases duration and arm-coordination index were measured through
five units of IMMU. An algorithm computes the 3D coordinates of the wrist by means the IMMU
orientation and the kinematic chain of upper arm biomechanical model, and it recognizes the start
events of the four arm-stroke phases. Velocity and stroke rate had a mean value of 1.47 ± 0.10 m·s−1

and 32.94 ± 4.84 cycles·min−1, respectively, and a significant decrease along the 200-m (p < 0.001;
η2 = 0.80 and 0.47). The end of each lap showed significantly lower stroke rate compared to the start
and the middle segment (p < 0.05; η2 = 0.55). No other significant inter-lap and intra-lap differences
were detected. The two main findings are: (i) IMMUs technology can be an effective solution to
continuously monitor the temporal descriptors during the swimming trial; (ii) swimmers are able to
keep stable their temporal technique descriptors in a middle-distance event, despite the decrease of
velocity and stroke rate.

Keywords: performance; swimming technique; stroking parameters; motor adaptation; inertial sensor

1. Introduction

In previous research, a variety of motion capture methods were used to assess the
kinetics and kinematics of swimming. The reference method is three-dimensional video-
based analysis [1,2]. Although video analysis of swimming performance has shown high
accuracy and effectiveness, it has some limitations like short capture periods, elaborate set-
ting process and extensive data processing [3,4]. Recently, the use of inertial and magnetic
measurement unit (IMMU) technology based on inertial, magnetic sensors and gyroscopes,
has gained much interest in sports applications, including swimming analysis [5,6]. Indeed,
IMMU systems allow one to continuously monitor the swimming action without spatial
limitations and they do not require long-time post-processing or complex experimental
setup [7,8].

Swimming velocity (v) is a key factor when assessing swimming performance. Velocity
is determined by examining several stroke cycles and can be described by stroke length
(SL) and stroke rate (SR). During a front crawl race, the decrease of v is related to almost
steady or slightly increasing SR [9,10]. According to Figuereido et al. [11], in a 200-m front
crawl race, the inter-lap SR develops a U-shaped manner with a smooth increase at the end
of the effort, to compensate the decrease in SL due to augmented effort when attempting
to maintain a constant speed. Thus, the swimmers adjust v by adapting their SR, since an
almost even pace is optimal for 200-m swimming performance across all strokes [12].
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The stroke cycle in swimming, according to Chollet et al. [13], can be described by
four distinct arm-stroke phases: entry, pull, push, and recovery. The duration of each phase
varies from one swimmer to another and many investigations showed that swimmers
adjust the time spent in each stroke phase for performance purposes [9]. The swimming
stroke in long-distance swimming events is characterized by an extended entry phase and
a decreased duration of the propulsive phases in comparison to sprint events [14]. During
short events, swimmers increase the time spent in the pull and push (propulsive) and
reduce the relative duration of the entry and recovery phases (non-propulsive). Thus, the
swimmer can maximize the propulsive time of the arm-stroke phase to improve his/her
performance. In general, arm-stroke phases durations are characterized by a pattern of
low inter-lap variability, as shown by Schnitzler et al. [15] for distances of 400 m. However,
Seifert et al. [16] highlighted that swimmers exhibiting medium and low speed spend
significantly longer time in the push phase during the last lap of a maximal 100-m front
crawl, although the reduction of SL makes ineffective such adjustment. Nevertheless,
until a decade ago, the methods and instruments used for assessing the stroke cycle in
swimming allowed to measure technical descriptors for only few cycles.

An additional temporal variable aimed to understand the technique modifications
under fatigue condition is the Index of Coordination, which was largely used as a tech-
nique model of inter-limb coordination (IdC) [13]. In front crawl, the IdC is based on
the measurement of the lag time between the propulsive phases of the two upper limbs.
Inter-lap results in a 200-m all-out test showed an increase in the relative duration of
the propulsive phase, suggesting a compensation for the decline of the force generating
capacity [17]. Consequently, a modification in inter-limbs coordination occurred as effort
increased. Similar results were reported by Seifert et al. [18] for a 100-m test, who reported
a change of the IdC between the beginning and the end of a race. However, the IdC over
the eight laps of a 200-m trial stayed within the catch-up model of arm coordination, where
a lag time exists between the propulsive phases of the two arms [19]. In this context, the
spatio-temporal parameters seem key features in the approach to understand the structure
of the variability of swimming performance [20].

A way to understand how a cyclic movement like swimming may be optimized to
achieve the highest possible performance, is to assess the variability characterization of tech-
nique descriptors [20]. Thus, the use of wearable IMMUs offers interesting perspectives for
a more comprehensive representation of the swimming technique. To address the issue of
the variability of technical parameters, the results of Cortesi et al. [1] and Dadashi et al. [21]
confirmed the validity of IMMUs technology in the analysis of multi-cycle kinematics vari-
ability for the stroke phases duration and IdC. Using IMMUs, Seifert et al. [22] highlighted
higher inter-individual variability for temporal descriptor and suggested that arm-stroke
variability is not necessarily detrimental to achieve high performance. However, the only
study that described the multi-cycle stroke variability within and between lap for stroking
temporal parameters using IMMUs was that of Dadashi et al. [23], highlighting a stable
pattern of stroke phase duration and IdC in swimming trials performed at submaximal
intensity. Those results suggested the necessity of an investigation of changes of arm-stroke
variability for stroking temporal parameters with augmented effort since no study has
focused on multi-cycle kinematics within and between lap variability in a 200-m swim-
ming trial performed at maximal intensity. For these reasons, the aim of this study was to
investigate, using IMMUs, the inter-lap (between lap) and intra-lap (within lap) variability
of the arm-stroke temporal descriptors in an all-out 200-m front crawl. We hypothesized a
stable pattern for these descriptors across swim trials and laps despite the increase in effort.

2. Materials and Methods
2.1. Design and Participants

To test the hypothesis, an observational study with one data collection session for
any participant was designed. We conducted the study in a 25-m indoor swimming pool
(average water temperature: 28.0 ± 0.5 ◦C) over a period of two months (October and
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November) at morning time (9:00–12:00). Each swimmer spent an average of 2 h at the
pool. The experimental trial consisted of performing a 200-m maximum front crawl in
which the variability of arm-stroke parameters (v, SR, stroke phases duration and IdC) was
measured using IMMUs.

Eight well-trained male swimmers (22.0 ± 2.5 years of age; 75.6 ± 6.3 kg of body mass;
1.78 ± 0.05 m of stature) volunteered to participate in this study. The participants had
an average of 11.9 (± 3.5) years of competitive experience, a weekly training duration of
12 ± 2 h, training volume of 40–45 km and average performance in the 200-m short-course
front crawl swim of 122.7 ± 3.7 s (representing 74.8 ± 3.8% of the World Record). The
inclusion criteria were: (i) more than 10 h of swimming training per week; (ii) personal
best in the 200-m short-course front crawl swim equaling more than 70% of the World
Record. Participants were members of a competitive swimming team who compete in
regional and national swimming events. This sample can be considered as a representative
of well-trained swimmers. Participants were excluded if they presented any relevant
neuromuscular-musculoskeletal injury or reported to have performed extenuating exercise
in the 48 h previous to any assessment.

The project was approved by the local Bioethics Committee (Approval code: 0196686)
and conducted according to the ethical standards of the Declaration of Helsinki. All subjects
were properly informed about the study purpose, and a written consent was obtained
before any formal testing.

2.2. Measuring Protocol

The swimmers performed a 200-m front crawl simulated race at maximal intensity
from a push-off start (the dive was not performed to not influence the analysis of the first
stroke cycle). Data collection was performed using five IMMUs (APDM Opals, Portland,
OR, USA, 128 Hz with internal storage 8 Gb), including tri-axial gyroscopes (±2000◦/s),
tri-axial magnetometers (±6 gauss) and tri-axial accelerometers (±6 g) each. The weight
of each unit was <25 g, including the battery. Before data collection, the five IMMUs
were calibrated as described by Cortesi et al. [1]. Each unit was inserted in round plastic
waterproofed boxes and then fixed to the swimmer’s body segments at the level of thorax,
upper-arms, and fore-arms by means of adhesive tape/spray and elastic bands. Before the
experimental trial, the swimmers completed an individual warm-up, for a total of 1000 m,
and performed a 50-m front crawl trial at submaximal pace wearing IMMUs to become
familiar with the protocol set-up.

The automatic recognition of the start events of the four arm-stroke phases during
200-m was performed using an algorithm previously validated, that computes the 3D
coordinates of the wrist by means the orientation of the inertial sensor and the kinematic
chain of the upper arm [1]. Repeatability and reliability of the proposed algorithm between
arm-stroke cycles was verified by previous analysis [1]. The same arm-stroke phases
classification of Chollet et al. used in previous research with IMMUs [21] was defined: (i) the
entry and catch phase corresponded to the time between the hand’s entry into the water
and the beginning of its backwards movement (tENTRY); (ii) the pull phase represented the
beginning of the propulsion and corresponded to the time from the beginning of the hand’s
backwards movement until the hand entry to the transversal plane crossing the shoulders
(tPULL); (iii) the push phase corresponded to the time from the hand’s position below the
shoulder to its release from the water (tPUSH); the recovery phase corresponded to the time
from the hand’s release from the water to its subsequent entry into the water (tRECOVERY).
Each phase ended with the start of next one, and all the arm-stroke phases duration were
expressed as a percentage of the complete duration of the stroke cycle (tENTRY%, tPULL%,
tPUSH% and tRECOVERY% for entry and catch, pull, push and recovery phases, respectively).
See Figure 1 for details.
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Figure 1. Graphical presentation of the arm-stroke phases classification proposed by Chollet [13]
plotted in a single frame captured by underwater camera during the experimental condition.

Arm coordination was quantified using the IdC according to one of three major
models: (i) catch-up describing a time delay between the propulsive phases of the two
arms (IdC < 0); (ii) opposition explaining a propulsive action if the propulsive phase of one
arm started when the other arm ended (IdC = 0); (iii) superposition describing an overlap
of the propulsive phases (IdC > 0).

The above described procedures enabled to calculate the stroke frequency as the
time needed to complete a stroke cycle using tENTRY as a time reference. Then, SR was
calculated by dividing 60 s by stroke frequency. The proposed algorithms in literature
based on IMMUs do not allow to accurately calculate the instantaneous velocity of the
swimmer during a non-brief event. Indeed, the accurate determination of the instantaneous
swimming velocity using IMMUs is a current area of research to solve the actual relative
errors in velocity estimation, in the drift of the acceleration data integration, and in the
versatility to individual movement characteristics [5,8]. Therefore, the intra-lap variability
of v and SL were not calculated.

Lap time was directly measured by underwater video cameras (GoPro Hero 7, GoPro,
San Mateo, CA, USA) recording at 120 Hz and full HD resolution (1920 × 1080 pixel)
and anchored on a trolley to record the athlete along the sagittal plane. The trolleys were
pulled by an operator at the swimmer’s head level at the same velocity of the swimmers.
Each lap contained a minimum of seven and a maximum of nine arm-stroke cycles. Each
lap was divided into three lap segments for intra-lap variability calculation: the first
segment contained the first two or three arm-stroke cycles of the lap (LAPstart); the second
segment contained the second two or three arm-stroke cycles of the lap (LAPmid); the
third segment contained the last two or three arm-stroke cycles of the lap (LAPfinish). The
segment partition, based on the number of stroke cycles and not on the area of the lane,
was chosen to standardize the number of cycles per segment as much as possible, avoiding
the influence of the underwater phase.

2.3. Statistics

Normal distribution of data was verified by Shapiro—Wilk tests and sphericity was
checked using Mauchly tests. The dependent variables were compared using analysis of
variances (ANOVAs) for repeated measures to investigate the effects of changes over the
eight laps (inter-lap variability) and the segments of the lap (intra-lap variability). The
possible lap conditions were 1, 2, 3, 4, 5, 6, 7, or 8, where lap segment conditions were
LAPstart, LAPmid and LAPfinish. When a significant main effect was found, the Fisher’s
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LSD post hoc test was carried out. Effect sizes were computed by the eta-squared (η2) and
interpreted as: without effect if 0 < η2 ≤ 0.04; minimum if 0.04 < η2 ≤ 0.25; moderate if
0.25 < η2 ≤ 0.64 and; strong if η2 > 0.64. All data were expressed as means (±SD). All
statistical tests were performed using the software SPSS version 20.0 (SPSS, Chicago, IL,
USA). Statistical significance was set at p < 0.05.

3. Results

Mean ± SD relative values of v and SR for each lap are presented in Figure 2. The
results showed differences for laps condition with strong effect sizes. The ANOVA indicates
a significant decrease of v along the 200-m (F7.49 = 28.232; p < 0.001; η2 = 0.80, strong). The
first and second lap showed a higher v than the remaining laps (p < 0.05). SR had a mean
value over whole trail of 32.94 ± 4.84 cycles·min−1 and a significant decrease along the
200-m (F7.49 = 6.133; p < 0.001; η2 = 0.47, moderate): the first lap showed a significantly
higher SR than the other laps; the second lap showed a significantly higher SR than the
other except lap 6, 7 and 8 (p < 0.05, see Appendix A for post hoc test results). No other
difference in v and SR was found between laps.
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Figure 2. Mean ± SD values for v (filled grey circles) and SR (filled black squares) as a function of
25-m laps (inter-lap variability). Horizontal lines indicate significant differences (p < 0.05).

Results of the ANOVA for lap segment condition (intra-lap variability) are shown in
Figure 4. Two-way ANOVAs revealed significant differences in the SR for laps segment
condition (F2,14 = 8.401; p < 0.05; η2 = 0.55, moderate), between LAPstart and LAPfinish, and
between LAPmid and LAPfinish. No significant lap segment differences were found for the
others variables: IdC (F2,14 = 4.493; p = 0.31; η2 = 0.39 η2), tENTRY% (F2,14 = 0.130; p = 0.88;
η2 = 0.02 η2), tPULL% (F2,14 = 0.972; p = 0.40; η2 = 0.12), tPUSH% (F2,14 = 3.159; p = 0.07;
η2 = 0.31 η2) and tRECOVERY% (F2,14 = 1.011; p = 0.39; η2 = 0.13). There was no significant
lap by lap segment interaction for all the variables: SR (F14,98 = 8.858; p = 0.61; η2 = 0.11),
IdC (F14,98 = 0.607; p = 0.85; η2 = 0.08 η2), tENTRY% (F14,98 = 1.379; p = 0.18; η2 = 0.16 η2),
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tPULL% (F14,98 = 1.097; p = 0.37; η2 = 0.13), tPUSH% (F14,98 = 0.764; p = 0.70; η2 = 0.10 η2) and
tRECOVERY% (F14,98 = 0.943; p = 0.52; η2 = 0.12).
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Mean ± SD relative durations of stroke phases duration and IdC over the eight laps of
the 200-m are reported in Figure 3. A stable pattern along the eight laps of the 200-m trial
(inter-lap variability) is confirmed by the non-significant difference for relative duration of
each stroke phase: tENTRY% (F7,49 = 0.751; p = 0.63; η2 = 0.10), tPULL% (F7,49 = 1.661; p = 0.14;
η2 = 0.19), tPUSH% (F7,49 = 1.002; p = 0.44; η2 = 0.13) and tRECOVERY% (F7,49 = 0.635; p = 0.73;
η2 = 0.08). There was no main effect for laps condition also for the IdC (F7,49 = 0.100;
p = 0.99; η2 = 0.14).
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and LAPfinish) of the 200-m trial (intra-lap variability).

4. Discussion

The present study aimed to explore the variability of the arm-stroke temporal descrip-
tors between and within laps during middle-distance swimming event using IMMUs. The
findings show a stable pattern with no difference across the eight laps of the 200-m for
stroke phases duration and IdC, despite a significant decrease of v and SR along the trial.
Furthermore, the present results indicate that swimmers can maintain stability within each
lap, with exception of SR, that seems to decrease at the end of each lap. This information
can assist swimming-related professionals in determining the optimal strategy for arm-
stroke temporal descriptors during middle-distance swimming events. The findings also
suggested that IMMUs technology can be an effective solution to monitor the arm-stroke
temporal descriptors continuously during the whole swimming trial.

In swimming races, the patterns of effort distribution over an exercise (pacing) should
focus on optimal individual strategy, because swimmers are not in close physical proxim-
ity [24]. The forces of drag and friction seem key determinants of different pacing models
between competitive sports activities. 200-m swimmers, who experienced the highest drag,
keep to an even pace in comparison to 800-m runners and 1500-m speed skaters that start
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faster. Nevertheless, the most commonly used pacing strategies in 200-m swimming are
parabolically shaped, with a fast start followed by an evenly paced mid-section and a fast
end sprint, or only fast-start even [12,25]. Similarly, in our study, the first and second lap
showed a higher v than the remaining laps, confirming the fast-start even pacing model
observed in the 200-m front crawl events at the 2013 World Swimming Championships,
where the swimmer’s velocity remained stable in the last laps of the race [26]. Consistently,
Simbana-Escobar et al. [10] confirmed the highest speed was that of the first lap of a 200-m
front crawl event in comparison to the other laps. This stable velocity during the middle
laps can be explained considering what happens in the underwater phase, as the under-
water velocities after start and turn are not meaningfully affected by the race progress, as
showed previously by Veiga et collaborators [26], thus allowing swimmers to maintain
their average velocity in the last laps.

Swimming speed is the product of SR and SL, where SR was highlighted to contribute
most to achieve high swimming speeds [9]. In a 200-m front crawl, high swimming speeds
are related with high SR as demonstrated by other authors [17,27]. This is consistent with
findings of our investigation, where the first two laps were performed with higher SR than
the following laps. Indeed, an increase in stroke rate can lead to an increase in swimming
speed and performance [28]. These findings suggest and support that the management of
the stroking parameters is a key aspect of performance that coaches should consider when
designing training. However, the only analysis of between laps variability might implicate
the impossibility to accurately determine the arm-stroking management during a race. The
ability to keep a constant stroke throughout the multi-cycles of a 200-m is an essential
skill of able swimmer [29]. The intra-lap results of the present study indicate a variable
behaviour of SR for the laps segment condition, with a significant reduction at the end
of each lap in comparison to the first and middle segments. Previously, Seifert et al. [18]
and Hellard et al. [27] quantified the SR cycle-by-cycle in a 200-m front crawl and showed
similar results with lower variability in SR within laps and lower values of SR during the
finish of laps after the turns. Such behavior seems strongly related to the lower speed at the
end of each lap of the 200-m highlighted by Simbana-Escobar et colleagues [10], probably
due to neuromuscular fatigue of the continuous cyclic action. Similarity, Seifert et al. [16]
highlighted that the changes in the finish of lap can be attributed to fatigue. This could
suggest that intra-lap stroke rate variability is speed-dependent, and the turns play an
important role in the recovery of the strenuous cyclic action. The 200-m front crawlers
seem to be able to rapidly increase their v and SR after the turn to better adapt to the task
constraints of the race. Therefore, it is recommended that swimming coaches consider the
impact of turning phases on arm-stroking management.

Despite the reduction of v and SR due to increasing effort, the sprinter in swimming
exhibit good stability in their stroke phases duration and IdC [16]. The stability of stroke
phases duration for swimming distances with major aerobic contribution, and especially the
400-m front crawl, was shown by Schnitzler et collaborators [15]. Although they collected
only three stroke cycles every 50-m, the absolute values of stroke phases duration were
consistent with our results, with a propulsive phase range of 30–35%. The findings of the
present study confirm that no variation occurs in the relative duration of each stroke phase
along the eight laps of the 200-m maximal trial, supporting the high capacity of well-trained
swimmers to standardize their motor pattern as shown by Dadashi et al. [23] at submaximal
intensities. On the contrary, for the 100-m front crawl, where the anaerobic pathway is the
major contributor to energy production, previous investigations reported that sprinters
spent more time with the hand in the push phase probably for an effect of fatigue [16].
Furthermore, supporting the stability of arm-stroke temporal descriptors in the middle-
distance swimming events, the present results demonstrated no differences between the
first, middle and last segment of the lap for phases duration. This kind of intra-lap stability
had never been shown previously for all-out 200-m trials, but only for submaximal trials.
Therefore, it appears that skilled swimmers are able to avoid the technique degradation
due to the augmented effort more effectively for coordination parameters than SR.



Sensors 2021, 21, 324 9 of 11

In this scenario, the behavior of the IdC is similar to that in the above observations.
The swimmers in the present study maintained strong stability of IdC model between and
within each lap. A similar pattern for inter-lap variability of IdC with no significant differ-
ences between laps was reported by Schnitzler et collaborators [15] for efforts mostly sup-
ported by the aerobic system of energy production. On the other hand, Figueiredo et al. [17]
and Alberty et al. [19] showed variations in inter-limbs coordination from the first to the last
lap of a 200-m front crawl due to an increase in the relative duration of the propulsive phase,
but the stability of the catch-up model at the same negative absolute values of our study
was confirmed. Supposedly, the discrepancy between the first two studies and the present
one is due to the low number of stroke cycles that can be captured with a video-based
system in the former studies. This study confirmed that expert swimmers are able to keep
relative stability of their arm-stroke temporal descriptors postponing a technique degrada-
tion, conversely to swimmers of less expertise as shown by Seifert et al. [16]. Hence, skilled
swimmers demonstrate to adapt their perceptions/actions and coordination strategy to
limit the loss of speed and to adapt to the environmental constraints and tasks [20]. Future
studies are warranted to investigate the role of different pacing strategies on the variabil-
ity of arm-stroke temporal descriptors in skilled swimmers for a more comprehensive
characterization of the technique degradation due to fatigue.

A limitation of this study concerns the non-inclusion of SL in the temporal parameters
analyzed. However, underwater velocities and the travelled distance in skilled 200-m
front crawlers stay stable throughout the laps, despite a decrease in the free-swimming
velocity [26]. Consequently, if the underwater distance remains stable during the trial,
SL can be calculated from the average v and SR. Such calculation, nevertheless, would
not have allowed estimating the within lap variability of the temporal parameters. On
the contrary, an advantage of the approach used in the present study is the possibility of
tracking the temporal parameters at every swim-stroke cycle and consider therefore the
effort effects on these parameters. Thus, this study points out the relevance of multi-cycle
data acquisition in the analysis of the arm-stroke temporal descriptors, in order to avoid
possible misrepresentative results due to the low number of stroke cycles captured with a
video-based system.

5. Conclusions

This study aimed to analyze the variability of the arm-stroke temporal descriptors
during a maximal effort with a prevalent aerobic contribution, in order characterize techni-
cal parameters. The present finding indicate that swimmers are able to keep stable their
temporal technique descriptors in a middle-distance swimming event, despite the decrease
of v and SR. To the best of our knowledge, this is the first study that highlights the ability
of skilled swimmers to reproduce the same stroke phases duration and IdC between and
within laps of a maximal 200-m front crawl for all stroke cycles. The results indicate that
IMMU technology can provide informative measures to recognize the variability of tem-
poral technique descriptors during middle-distance swimming events. This also suggests
that the management of the variability of arm-stroke temporal parameters may have a key
role in the swimming technique monitoring.
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Appendix A

Table A1. Summary of significant results of ANOVA and Fisher’s LSD.

Source of
Variation df Mean

Square F η2 p
Mean
Differ-
ence

Lower
Bound
95% CI

Upper
Bound
95% CI

SR
Between laps 7, 49 17.405 6.133 0.467 <0.001 *

1–2 <0.001 * 1.115 0.67881 1.55162
1–3 <0.001 * 2.212 1.28028 3.14426
1–4 <0.001 * 2.43 1.47499 3.38492
1–5 <0.001 * 2.274 1.25367 3.29474
1–6 <0.05 * 2.441 1.04285 3.83877
1–7 <0.05 * 2.185 0.67050 3.69899
2–3 <0.05 * 1.097 0.14479 2.04933
2–4 <0.05 * 1.315 0.31094 2.31854
2–5 <0.05 * 1.159 0.13492 2.18307

Within laps 2, 14 20.308 8.401 0.545
LAPstart-
LAPfinish

<0.05 * 1.105 0.25282 1.95697

LAPmid-
LAPfinish

<0.05 * 0.743 0.12614 1.36000

v
Between laps 7, 49 0.0435 28.232 0.801 <0.001 *

1–2 <0.001 * 0.124 0.08821 0.16008
1–3 <0.001 * 0.167 0.11684 0.21666
1–4 <0.001 * 0.202 0.14236 0.26111
1–5 <0.001 * 0.207 0.13214 0.28123
1–6 <0.001 * 0.221 0.15715 0.28388
1–7 <0.001 * 0.209 0.11992 0.29809
1–8 <0.001 * 0.198 0.13238 0.26383
2–3 <0.05 * 0.043 0.00854 0.07666
2–4 <0.05 * 0.078 0.03054 0.12464
2–5 <0.05 * 0.083 0.02993 0.13514
2–6 <0.05 * 0.096 0.04871 0.14402
2–7 <0.05 * 0.085 0.01294 0.15677
2–8 <0.05 * 0.074 0.01821 0.12971
3–4 <0.05 * 0.035 0.01489 0.05509
3–5 <0.05 * 0.040 0.01323 0.06665
3–6 <0.05 * 0.054 0.03079 0.07674
3–8 <0.05 * 0.031 0.00321 0.05951
6–8 <0.05 * −0.022 −0.03859 −0.00623

* Significant difference.
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