
05 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Barchi, F., Parisi, E., Urgese, G., Ficarra, E., Acquaviva, A. (2021). Exploration of Convolutional Neural
Network models for source code classification. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,
97, 1-11 [10.1016/j.engappai.2020.104075].

Published Version:

Exploration of Convolutional Neural Network models for source code classification

Published:
DOI: http://doi.org/10.1016/j.engappai.2020.104075

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/791214 since: 2022-02-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.engappai.2020.104075
https://hdl.handle.net/11585/791214

Exploration of Convolutional Neural Network Models
for Source Code Classification

Francesco Barchia,∗, Emanuele Parisia, Gianvito Urgeseb, Elisa Ficarrab,
Andrea Acquavivaa

aUniversità di Bologna (DEI), Viale del Risorgimento, 2 - 40126 Bologna, Italy
bPolitecnico di Torino (DAUIN), Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy

Abstract

The application of Artificial Intelligence is becoming common in many engi-
neering fields. Among them, one of the newest and rapidly evolving is software
generation, where AI can be used to automatically optimise the implementation
of an algorithm for a given computing platform. In particular, Deep Learn-
ing technologies can be used to the decide how to allocate pieces of code to
hardware platforms with multiple cores and accelerators, that are common in
high performance and edge computing applications. In this work, we explore
the use of Convolutional Neural Networks (CNN)s to analyse the application
source code and decide the best compute unit to minimise the execution time.
We demonstrate that CNN models can be successfully applied to source code
classification, providing higher accuracy with consistently reduced learning time
with respect to state-of-the-art methods. Moreover, we show the robustness of
the method with respect to source code pre-processing, compiler options and
hyper-parameters selection.

Keywords: Deep Learning, LLVM-IR, Code Mapping, Heterogeneous
Platforms

1. Introduction

While Artificial Intelligence (AI) is now widespread in many engineering
fields, a novel and rapidly evolving application is software generation and in
particular compiler optimisation [1]. Considering the increasing complexity of
High Performance Computing and Edge Computing platforms adopted in re-
search and industrial applications, the problem of intelligently and automati-
cally optimizing software on these platforms is one of the major challenges for
software developers, preventing their fast and easy exploitation on the field [2].

∗Corresponding author
Email address: francesco.barchi@unibo.it (Francesco Barchi)

Preprint submitted to Engineering Applications of Artificial Intelligence January 7, 2025

One can view this AI application as a technology helping itself. This help
is needed to decide how to efficiently map a given algorithm to a target plat-
form featuring multiple cores and accelerators such as GPUs, DSPs and custom
hardware accelerators on FPGA. AI can support many aspects of this problem,
such as parallelization, compiler flag optimisation, code transformation [1]. In
this paper, we focus on the kernel allocation decision, that is where it is better
to allocate a piece of code or a function (from now on called a computational
kernel), either on the main processor (CPU) or one of the available accelerator
(e.g. GPU, DSP), to optimise a given metric (e.g. overall execution time).

Without AI support, this decision requires porting of the computational
kernel to the target accelerator and its profiling, thus imposing coding and
deployment effort for the developer.

To face this issue, code analysis techniques based on deep learning methods
have been developed for high-level languages such as OpenCL [3]. To improve
the generality of this approach, these methods have been applied to machine-
independent languages, like the Low Level Virtual Machine (LLVM) Interme-
diate Representation (IR) [4] by recent academic papers [5–8]. The advantage
of LLVM representation is its hardware-independence and generality so that it
can be reached from different high-level languages.

A deep learning code classifier takes as an input a kernel in a given code
representation (e.g. IR), and after a preliminary code transformation, it imple-
ments a language model based on a deep learning network. This language model
extracts the relevant code features needed by the final dense network layer to
take the kernel allocation decision (e.g. the input kernel runs faster in GPU or
CPU).

In this work, we present a method for classification of LLVM source code
(we refer to it as DeepLLVM) where we introduce the use of Convolutional
Neural Networks (CNN) in code classification. Indeed, while CNN have been
used for source code analysis [9] their use for source code classification has never
been explored, as approaches using recurrent networks such as LSTM are more
common in source code analysis for code classification [3, 5–7, 10]. We believe
that, given the popularity of CNN and their interesting properties such as fast
learning time and availability of design and configuration tools, an evaluation
of their usage for source code analysis is of relevance.

Our CNN implementation is a one-dimensional convolutional layer (Conv1D)
integrated into DeepLLVM and using a final global max-pooling (GMP) layer
to extract knowledge from syntactic language elements (tokens) of a kernel com-
piled in IR.

DeepLLVM is divided into two modules: i) The source code preprocessing
module that identifies the most significant syntactic elements and reducing them
to a sequential list of integers. ii) The language classifier component trained us-
ing a supervised learning method that includes the Conv1D CNN model and
where we also integrated an LSTM model used in state-of-art papers for com-
parison.

We trained the network using a dataset of OpenCL kernels whose execution
time has been profiled on CPU and GPU [3]; then we evaluated the classifi-

2

cation accuracy in mapping each kernel to the best compute unit. We report
the results of a comparative analysis of CNN-based method comparing with
LSTM to demonstrate the effectiveness of the CNN model. We assess its ro-
bustness with respect to network and training hyper-parameters through exten-
sive exploration, and we evaluate the impact of code preprocessing steps on the
classification accuracy.

Besides the comparison of the network model, we also compared our method
against state-of-art approaches working on IR but exploiting different methods
for code information extraction. While we believe that approaches exploiting
code flow graph information are promising [7, 8, 10], we show that our method
provides overall better results in terms of training time, classification accuracy
and speedup.

We finally discuss the impact of some characteristics of the dataset used
by almost all recent works on this topic [3] and their impact on the validation
methods adopted.

The rest of the paper is organised as follows: In Section 2, we describe
the research area and the relevant related works. In Section 3, we describe
our methodology: the source code preprocessing module, the code classifier,
and the hyper-parameters exploration strategy. In Section 4, we assessed the
performance of several CNN model configurations and provided comparisons
against RNN model with the variation of kernel compilation options and token
filtering strategies. Then, in Section 5, we provide some conclusions and future
works.

2. Background and Related Works

In literature can be found a rapidly growing research tries to answer the
question can we analyse the code like text? exploiting natural language transla-
tion, classification and code modelling techniques for code quality assessment [9],
plagiarised source code detection [11] or classification for execution on a certain
hardware target [3, 5–7, 10]. As shown in the survey of Allamanis [12], the
source code maintains some properties of natural languages (it can be consid-
ered, like text, a human communication form) but it has profound differences.
Some of the code properties like executability, formality and structure make it
more complex to analyse than text. Compiler designers started considering the
adoption of machine learning techniques to obtain heuristic compilers capable
of learning from the data [1, 13] for code optimisation.

Research in the field of Natural Language Processing (NLP) has evolved
considerably in recent years. The current SOTA is composed by the language
models BERT [14], XLNet [15] and GPT [16]. While BERT uses Autoencoders
and token-masking to generalise model knowledge, XLNet and GPT use self-
regressive models based on transformer networks [17]. Different versions of
GPT-3 composed of a variable number of weights (from 3B to 175B) are able to
solve problems of text generation, question answering, reading comprehension
in zero-shot, one-shot and few-shot mode. Recently the ability of GPT-3 to
generate JavaScript XML (JSX) code in few-shot (two sample context) mode

3

has been shown. These techniques are the cutting edge of research on generic
text understanding models, but their size does not make them easily applicable
in domain-specific contexts.

Several domain-specific techniques, instead, have been proposed in the lit-
erature to represent programs using a set of quantifiable properties or features
compatible with the inputs of the learning module [18]. Standard machine learn-
ing algorithms typically work on fixed-length inputs, so the selected properties
shall be transformed into a fixed-length vector of features (boolean, integer,
or real values). Compiler researchers have designed, during the years, various
forms of program features for machine learning algorithms. These include static
code structures extracted from the source code or the compiler intermediate
representation [19] and dynamic profiling information obtained through run-
time profiling of the program execution [20]. Compiler optimisation methods
based on supervised learning have been proposed using Bayesian Networks [21],
Support Vector Machines [22, 23], Decision Trees [18, 24] and Graph Kernels
[25].

In the last decade, the problem of deciding the most suitable hardware unit
on which to execute a given computational kernel raised with the increasing
complexity and heterogeneity of digital platforms. Source code analysis can
help this decision avoiding to make useless porting efforts. Moreover, a profiling
approach based on source code analysis without the need for the final target
hardware or an accurate virtual (simulation or emulation) platform can speed
up the embedded systems development process.

Along this direction, in 2013, Grewe [26] developed a workflow to translate
an OpenMP program in OpenCL and to decide for each generated OpenCL
kernel the most suitable compute unit between CPU and GPU. There, the
authors defined metrics to extract from the code (like the number of calculation
operations or local and global memory access) to make decisions based on a
probabilistic method (i.e. a decision tree classifier).

In last years, a research line exploiting the maturity of deep learning methods
has started since the work of Cummins et al. [3], where the decision tree classifier
was replaced with a deep learning model based on a RNN. Thanks to deep
learning, it is no longer needed to extract the features manually since they
are inferred automatically during the training phase and improves classification
accuracy compared to [26].

The methodologies proposed in [26] and [3] were developed and customised
for kernels implemented in OpenCL, thus constraining the methodology to work
with a given source programming language. To overcome this limitation, Ben-
Nun et al. [6] and Barchi et al. [5] introduced the adoption of code analysis
at the intermediate representation (IR) level of the LLVM compiler. LLVM
is increasingly adopted in the embedded system world, because it is capable
of decoupling the front-end compiler from the target architecture, in this way
many optimisation steps can be performed at the IR level before generating the
binary machine code. Source code features, at this intermediate level, can be
exploited to perform complex compilation decisions, including allocating code
fragments to architecture devices. Machine learning techniques can be applied

4

to learn these characteristics by creating a learning model based on training
code fragments.

The LLVM based methods presented in [5] and [6] differ for the strategy for
the projection of source code in the continuous metric space. In [5] the code
stream is filtered and then introduced directly into the network, relying on the
Embedding Layer for the learning of the best token projection. On the other
side, in [6], the authors propose Inst2Vec a system to pre-train the embedding
layer analysing the Contextual Flow Graph (XFG).

Further contributions to this projection problem have been devised later.
In Kheerthy et al. [7], a procedure to project an IR in a continuous metric
space directly, called IR2Vec is proposed. In Cummins et al. [10], the authors
propose ProGraML, an extension of [6] where a GNN-based classifier is proposed
for the first time. Independently, in Brauckmann et al. [8] another GNN-based
classifier was proposed able to learn vertex embeddings by itself. Moreover, in
[8] the GNN is used to analyse both an LLVM-IR Control and Data Flow Graph
(GNN-CDFG) and a Clang Abstract Syntax Tree (GNN-AST).

Concerning the deep neural network model, all previous work use RNNs, that
have been introduced to process temporal sequences [27, 28]. An RNN main-
tains an internal state, acting as a memory, that summarises the information
extracted from the input sequence.

Very successful implementation of RNN is the Long Short-Term Memory
(LSTM), a network able to learn when to memorise or forgot information of
the input sequence and correlate together elements at different times. For this
reason, LSTM is the model adopted in state-of-art papers [3, 6, 7].

However, given the widespread use of CNN in the context of image recogni-
tion [29] but also in NLP [30] as well as fast learning time and the maturity of
network design and configuration tools, it is worth exploring their application
to source code classification.

Behind the success of this type of network, there is the assumption of infor-
mation locality in the input data. All data inside a region called “kernel” are
considered correlated, and this correlation is weighed by a filter, identical for
any region considered in the input. For image classification, the kernel shape
has two dimensions, but this technique can also be used in temporal signals us-
ing one-dimensional kernels. This is the approach we follow in this work, where
we give as an input to the CNN a tokenised and filtered code stream directly
without using additional information.

The convolution operation performs an element-wise multiplication between
the input data in the kernel region and the filter and accumulates the results in
a single scalar. The filter moves along all input dimensions by a fixed step called
stride. A convolution layer uses multiple filters to explore a different type of
kernel relationship. Each filter contributes to building a channel of the output
tensor. In this work CNN is for the first time introduced in a code classifier
method, fully characterising its performance with an extensive exploration and
comparison with LSTM. To make this comparison fair, we implemented the
LSTM model in our DeepLLVM framework.

5

Figure 1: DeepLLVM flow representation of operations to be performed for the construction
of the code classifier. A) Source code preprocessing steps for inserting the code into the
classifier B) Black-box representation of the classifier

3. Methodology

In this Section, we present the CNN-based code classification methodology,
that we included in the DeepLLVM tool working on IR. We also integrated an
LSTM classifier and we performed an hyper-parameters exploration on both
DNN models to make a solid comparison and evaluate the impact of code pre-
processing. We will then evaluate techniques and models taken from the Natural
Language Processing (NLP) research area. The aim is to use token-based meth-
ods that are easy to use like convolutional networks (CNN) and to evaluate their
performance on LLVM-IR, a language that is very unrelated to natural language.
In addition, the stability of the model has been explored with different methods
of initialisation and hyperparameters.

In the rest of this Section we present the DeepLLVM flow in which the
CNN has been integrated. Referring to Figure 1, DeepLLVM is composed of
two steps: i) Source code preprocessing (Section 3.1), which identifies the most
significant syntactic elements (Tokenisation) and translates them to a sequential
list of integers that are further filtered based on their relevance in the source
code (Atomisation). ii) Code classification (Section 3.2), which exploits a Neural
Network based on layer models1 trained using a supervised learning method. We
then describe the methodology for exploration of hyperparameters (Section 3.3),
and the metrics adopted for evaluation (Section 3.4).

3.1. Code Preprocessing

Since machine learning models work with numerical data, a procedure to
convert source code into a form suitable to be processed by the input layer of
the considered models is typically applied. We start from a dataset of source
code written using a high-level programming language. Then we compile dataset
elements (i.e. computational kernels) using a compiler able to emit LLVM-IR. To
this purpose we used the clang compiler that allows compiling C-like languages

1Convolution Layer, Recursive Cells, Dense Layer and Max Pooling

6

LLVM-IR Code Fragment

1 %9 = and i64 %8 , 4294967295
2 %10 = getelementptr inbounds <4 x float >, <4 x float >* %1, i64 %9
3 %12 = fsub <4 x float > <float 1.0e+00, float 1.0e+00, float 1.0e+00, float ←↩

1.0e+00>, %11
4 %13 = fmul <4 x float > %11 , <float 3.0e+01, float 3.0e+01, float 3.0e+01, ←↩

float 3.0e+01>

Tokenisation

1 _local = and i64 _local , _integer_constant
2 _local = getelementptr inbounds _float_4 , _float_4 * _local , i64 _local
3 _local = fsub _float_4 _vector_constant , _local
4 _local = fmul _float_4 _local , _vector_constant

Atomisation

1 10 11 13 14 10 12 15
2 10 11 16 17 18 12 18 19 10 12 14 10
3 10 11 20 18 21 12 10
4 10 11 22 18 10 12 21

Figure 2: Example of code transformations: The code in the top pane is an LLVM-IR
code fragment. The code in the middle pane contains the result of the transformations applied
in the tokenisation phases. The tokens sequence in the bottom pane is the network input, the
result obtained after the atomization phase.

(C, C++, Objective C) and OpenCL code for nvptx (NVidia), amdgcn (AMD)
and spir (Standard Portable Intermediate Representation) architectures.

The LLVM-IR code obtained after the compilation undergoes a preprocessing
step before being fed into the neural network (Fig.1- A○). In this work, we adopt
a slightly modified technique than the one we adopted in in [5].

The Tokenisation procedure identifies the most significant language syn-
tactic elements (tokens) within the sequences. Tokens are catalogued and placed
in a dictionary. Then, the Atomisation procedure transforms code sequences
replacing the characters that compose a token with the integer identifier of the
token in the dictionary and performs a filtering procedure to select the most
informative tokens.

The Tokenisation procedure is organised in two steps. The pre-tokenisation
phase acts on each line of a kernel and performs the following operations:
• Remove empty lines and comments.
• Remove all lines outside the function body.
• Replace vector and array data-types with a simplified version.
• Replace vectors, arrays and float constants with a placeholder maintaining

the type and removing the immediate value.
• Insert a space before and after the symbols

(○)○ [○]○ {○ }○ <○ >○ =○ *○ :○ ,○
During this phase, the procedure simplifies complex data types and replaces
constants with placeholders, obtaining a significant reduction of the code frag-
ment length. For example, LLVM can express real constants in different ways:
i) standard decimal notation (e.g. 6.563989), ii) exponential notation (e.g.

7

1.179029e+45), iii) hexadecimal notation (e.g. 0x5612585f32165865). These
representations are replaced with a placeholder (“ float constant”). After pre-
tokenisation, it is possible to identify as a token every sequence of characters
separated by spaces.

The post-tokenisation transformations act directly on the tokens for applying
the following higher level generalisations:
• Remove unnamed meta-data (tokens starting with !○) and attribute groups

(tokens starting with #○).
• Replace variable and function names with a placeholder.
• Identification of special labels starting with “phi”, “pre”, “in”, “preheader”

and “loopexit”.
• Identification and transformation of integer constants.
• Identification and transformation of global and local unnamed identifiers

(e.g. %5 → local, @16 → global)
The tokens are then replaced with a unique integer identifier using the same

approach proposed in [31]. Figure 2 provides an example of the preprocessing
pipeline we use.

Because the performance of text-based deep-learning systems heavily de-
pends on the dictionary chosen to transform the input into a numerical se-
quence [32], a final filtering procedure is applied before the token sequence is
given as input to the neural network. Long sequences require many training
samples and complex models capable of storing and correlating information for
more extended periods. A common practice in the Natural Language Process-
ing (NLP) field consists in removing less-informative tokens [33] for decreasing
the mean length of the sequences to be analysed and reducing the burden of
correlating distant tokens.

Here a weight function is used, namely the term frequency - inverse document
frequency (Tf-Idf), to identify the less-informative tokens. The Tf-Idf can be
obtained as in Eq.1

tfidf(t, d,D) = tf(t, d) ∗

idf︷ ︸︸ ︷
ln

(
1

df(t,D)

)
(1)

Given a dataset D : (d1, d2, . . . , dn) (corpus of documents), a document d :
(t1, t2, . . . , tn) (sequence of tokens) and a token t, the Tf-Idf is the product
between the term-frequency (tf) and inverse-document-frequency (idf). The idf
is the natural logarithm of the inverse of document-frequency (df).

tf(t, d) =
|{t′ : t′ = t, ∀t′ ∈ d}|

|d|

df(t,D) =
|{d′ : t ∈ d′,∀d′ ∈ D}|

|D|

(2)

The term-frequency is the ratio between the occurrences of term t in a sequence
of tokens d and the length, in terms of tokens count, of d. The document-
frequency is the ratio between the number of sequences of tokens where the

8

Figure 3: Informal representation of the classifier structure. The figure represents the layers of
the classifier as rectangles identified by a label describing the operation performed. The arrows
indicate the movement of data (tensors) whose dimensions are made explicit by symbolic
values described in the legend. E) CNN-based language model F) RNN-based language model
C) Early classification for specific language model training D) Overall classification network,
takes into account the source code and context data flow.

token appears and the total number of sequences. The idf reduces the term-
frequency value for very common tokens, and increase the term-frequency for
specific tokens contained in few sequences. Applied to source code analysis, each
document d represents a kernel, while the corpus of documents D represents the
entire dataset of benchmarks.

We can use this weight to build a token-blacklist to delete the tokens with
a low informative contribute from all kernels. The token-blacklist can be used
globally, or we can use the Tf-Idf score to create fine-grain filters removing from
each sequence only the tokens with a poor local score.

3.2. CNN and LSTM based classifiers

The code classifier takes the output from the Atomiser as shown in Figure
1- B○. The input is a tuple containing the preprocessed source code fragment
(src input), and auxiliary data that define the context of usage of the source
code (aux input). We use the same auxiliary inputs included in the dataset [3].

Internally, the classifier is a neural network divided into two components:
language model and features classifier. The language-model is in charge of

9

Figure 4: Schematic representation of Hyper-parameters exploration. Within the hyper-
parameters space some points are chosen to be explored by means of a grid-search. For each
hyper-parameter an exploration range is identified (Hyper-parameter Exploration Range).
Each point is explored r times. Each exploration includes a k -fold cross-validation and train-
ing of k classifiers. The confusion matrices of the classifiers in cross-validation are added
together, then the ACC and MCC are calculated. To evaluate the hyper-parameters space,
each exploration point is seen as the distribution of MCC and ACC values of its repetitions.

reducing the token sequence into a point in RM1 . The features classifier analyses
the output of the language model.

The two outputs are the features-classifier output and the language-model
output. Both outputs can be independently used, and each one is associated
with a loss-weight. The loss weight is a scalar coefficient that defines the output
loss contribute over the global-loss score.

The network structure proposed in this work is depicted in Figure 3. The
figure shows the main flow based on the CNN language model network (Figure
3- E○) and the LSTM that we used for comparison (Figure 3- F○).

The network input (“src input”) is a tensor composed of batch-size se-
quences, each one composed of sequence-length (I1) elements. We will refer
to the input elements with the term token-indexes since each component rep-
resents the position of a token inside the token dictionary. Since the following
layers need to work on comparable data, and the token indexes do not have this
property because we cannot define a distance metric between two indices, the
sequence of token-indexes must be projected into a metric space.

The Embedding layer is the first layer of the network that receives sequences
of token-indexes and projects each element into an embedding space RE1 . The
output of the Embedding Layer is, therefore, a list (of length batch-size) of
sequences (of length I1) where each token-index has been transformed into a
E1-dimensional vector in the embedding space. The weights of the Embedding
Layer determine how the token-indexes are projected in the embedding space.
At the beginning of the training, the projection in the embedding space starts
in a random condition.

The purpose of the language model is to process the output of the Embedding
Layer (a vector in RI1,E1) and, at the end of the process, reduce each sequence
to a single point in the features space (RM1). Features can now be passed to
the second part of the network (Fig. 3- D○) that will perform the classification.

Our CNN implementation of the language model consists of a one-dimensional
convolution layer, followed by a global max-pooling layer. The convolutional
layer applies in the sequence direction a number K2 of filters of size K1xE1 so

10

as to process each sequence produced by the Embedding Layer. The global max
pooling acts for each channel of convolution layer output and selects the max-
imum value. This structure is inspired by the one adopted in [34] for sentence
sentiment classification.

The LSTM model is composed by two layers as in [5] and [3]. The first layer
elaborates the input sequence and produces another sequence in output. The
second layer elaborates the output of the first layer maintaining only the last
output element, considering it a point in the feature space.

3.3. Hyper-parameters exploration

The goal of the Hyper-parameters exploration is twofold: i) To assess the
robustness of the method w.r.t. network and training hyperparameters; ii) To
evaluate the impact of source code preprocessing parameters.

The exploration is done with a multi-stage grid-search. We divided the
hyper-parameters into three categories:

• Network hyper-parameters

• Training hyper-parameters

• Dataset hyper-parameters

The network hyper-parameters are specific to the network model that we
consider. They are divided into CNN and LSTM hyper-parameters. These two
sets have in common the parameters that define the sequence input length (I1)
the output size of the embedding-layer (E1) and the output size of the last
dense-layer (D1).

The CNN hyper-parameters are the kernel size (K1) and the number of
filters (K2). The LSTM hyper-parameters are the cell-size of the first LSTM
layer (L1) and the cell-size of the second LSTM (L2) layer.

The training hyper-parameters are instead specific to the supervised train-
ing method: i) the chosen training algorithm (SGD, Adam) [28]; ii) training
algorithm hyper-parameters (specific for the training algorithm); iii) batch size
(1, 16, 32, 64) and loss weight (0.0, 0.1, 0.2, ..., 1.0) of the learning model output
(lm output).

The exploration of dataset hyper-parameters is used to evaluate the impact
of source code preprocessing options, namely: i) Padding strategy (add a null
token at the end or before the sequence); ii) Truncating strategy (keep the initial
or final tokens); iii) Token filtering policy in order to eliminate tokens with a
low information contribute (token blacklist, Tf-Idf threshold); iv) Compilation
optimisation options (-O0, -O1, -O2).

The evaluation process is depicted in Figure 4. The exploration is composed
of a first grid search on network hyper-parameters followed by a second grid
search on training hyper-parameters. The grid-searches explore a subset of the
hyper-parameters space. For each hyper-parameter, we decide a set of values of
interest that define its exploration range.

11

The exploration point is a configuration of hyper-parameters, and it is eval-
uated multiple time in order to take into account the intrinsic model variability
during the training process and improve the statistic confidence of the process.
The training of an exploration point repetition is performed in cross-validation.
The whole dataset is split in k subsets, and in turn, we train k classifiers (fold-
classifiers) changing the subset used as test-set. The confusion matrices of each
fold-classifier are reduced using a sum operator.

3.4. Metrics

As for accuracy metrics, we consider both the Accuracy (ACC) and the
Matthews Correlation Coefficient (MCC2). MCC has been introduced because
it has shown to be effective, especially in the presence of unbalanced datasets
[35], like the one we consider in our experiments.

C =

(
a b
c d

)
MCC =

ad− cb√
(a + b)(a + c)(d + b)(d + c)

(3)

Given a confusion matrix C ∈ R2,2 the MCC is a metric that contrary to
the Accuracy (ACC) considers the whole classifier behaviour and provides more
consistent results when dataset labels are not balanced. Equation 3 reports the
formula for computing MCC. Variables a and d represents true positives and
true negative while b represents false negatives and c represents false positives.

All exploration points can be compared using the mean and the standard
deviation of their performance distributions. An exploration point is evaluated
given the performance (MCC and ACC) distribution of its repetitions.

Accuracy (ACC) and Matthews correlation coefficient (MCC) are suitable
for a general assessment of classifier performance. However, in our case, the
classification purpose is to minimise the execution time on a given platform by
selecting the best compute unit. A similar consideration can be done for other
metrics (e.g. energy, power).

We measure the impact of wrong decisions made by the classifier using the
speedup with respect to fixed mappings (i.e. all kernels in the same compute
unit). These metrics can be obtained during the labelling process of the clas-
sifier. Concerning the present work, the dataset collected in [3] was labelled
with the compute unit showing the best runtime performance evaluated with
the execution of OpenCL kernels. The tested devices for this dataset were a
CPU, AMD-GPU, and Nvidia-GPU processors.

In Algorithm 1 we report a simplified summary of all operations described
so far using a pseudo-code formalism. The reported steps describe the transfor-
mation of the dataset expressed in high-level source code in a token flow until
obtaining the results of the exploration of the hyperparameters of the CNN
model described in this section.

2MCC varies between -1 and +1, being +1 the best result possible.

12

input : High level source code dataset (eg. OpenCL)
output: Best parameters and performances of LLVM-IR classifier

dataset ← new list;
foreach src in dataset opencl do

llvmir ← compile opencl(src);
llvmir tokens ← new list;

foreach line in llvmir do // section 3.1, tokenization

line ← simplify line(line);
foreach token in line do

token ← simplify token(token);
if token is valid then llvmir tokens ← add token;

end

end
dataset ← add llvmir tokens;

end

dataset ← atomize(dataset) // section 3.1, atomization

if tfidf threshold then // section 3.1, filtering
dataset ← filter tfidf(dataset)

end

network gs results ← new list ;
foreach cnn conf in network gs do // sections 3.3, 3.4

cnn conf results ← new list ;
foreach i ← 1 to n repeat do

cnn conf results ← add cnn train xvalidation(cnn conf);
end
network gs results ← add evaluate metrics(cnn conf results);

end
network gs best ← get best conf(network gs results);

training gs results ← new list ;
foreach cnn conf in training gs do // sections 3.3, 3.4

cnn conf results ← new list ;
foreach i ← 1 to n repeat do

cnn conf results ← add cnn train xvalidation(cnn conf);
end
training gs results ← add evaluate metrics(cnn conf results);

end
training gs best ← get best conf(training gs results);

Algorithm 1: Whole system pseudocode

13

Dataset Device CPU GPU

AMD Tahiti 7970 400 (58.8 %) 280 (41.2 %)

NVIDIA GTX 970 293 (43.1 %) 387 (56.9 %)

Table 1: Labels distribution in the source dataset. For both GPU considered a slight 60%/40%
unbalance in labels assignment can be observed.

4. Results & Discussion

In this Section, we report the results of the exploration of CNN source code
classification method to assess the robustness w.r.t. hyper-parameters and we
assess the impact of code preprocessing. We then compare CNN and LSTM
models in terms of classification accuracy, training time and speedup of kernel
execution compared to a fixed mapping. Finally, we compare for completeness
our approach with recent state-of-art deep learning solutions working on LLVM
but exploiting different language information, such as CDFG. This comparison
does not provide insights on the effectiveness of the CNN itself. However, we
show that our results are comparable or better than state-of-art methods in
terms of accuracy, speedup and training time.

Section 4.1 describes the main properties of the kernel dataset, as well as
the preprocessing and filtering operations we applied for producing the symbol
sequences fed into the machine learning models. Section 4.3 details the hyper-
parameters optimisation procedure we used for devising an appropriate CNN
architecture. Section 4.4 provides exhaustive comparisons between CNN and
RNN and explores how token filtering impacts on classification accuracy. Then,
it provides details regarding the time required for training the two architectures
with different input and batch sizes. Section 4.5 describes classifier performance
taking into account runtime and speedup. Section 4.6 discusses the comparison
with other LLVM approaches. Finally, Section 4.7 summarises the findings
coming from the experiments analysis we performed.

4.1. Dataset description

For training and testing with DeepLLVM , we used a composition of OpenCL
kernels coming from six source code collections [3]. Each element of the dataset
has a label denoting the best performing computation device between a CPU
and a GPU (AMD Tahiti or Nvidia GTX). The authors of the dataset executed
each kernel using different load (byte transfer) and different level of parallelism
(workgroup size), keeping track of the time required for executing each kernel
on the available devices. Each triple is composed of: a kernel, byte transfer size
and workgroup size and it is labelled with the device exposing the best runtime
performance. The full dataset is composed of 680 triples and 256 different ker-
nels, and it is characterised by a slight unbalance in labels assignment, detailed
in Table 1.

OpenCL kernels stored in the source dataset are not suitable to be classified
as they are, because machine learning models detailed in Section 3.2 require

14

Grid search Hyper-parameter Values

Network

Input size 1024, 2048, 4096

Padding/Truncating strategies pre, post

Embedding size 64, 128

Conv kernel size 5, 7, 9

Conv kernel number 32, 64, 128

Dense layer size 64, 128, 256

Training
Batch size 16, 32, 48, 64

Aux output weight loss 0.0, 0.1, ..., 1.0

Table 2: Range of hyper-parameters values tested during the network and training grid-
searches.

a sequence of numerical symbols as input. First of all, input sources were
translated into LLVM intermediate representation running clang (v7.0.1) on
each input kernel. We created a second experiment trunk adding the -O2 flag
to the clang compiler command line for checking whether any middle-end code
transformation impact on classification accuracy. Moreover, we produced a third
kind of sequences produced tokenising OpenCL kernels as they are for the sake
of comparing our preprocessing pipeline with the one of [3].

4.2. Token filtering settings

We used two methods for cleaning the input sequences from symbols with
poor informative content:

• Blacklist filtering: removing a set of intermediate representation tokens
from each kernel.

• Tf-Idf filtering: each token-kernel pair (t, d) is assigned a score as de-
tailed in Section 3.1. Whenever the score of (t, d) is lower than the given
threshold, occurrences of token t are removed from document d.

Concerning blacklist filtering, we produced a list of common tokens that we
assumed not to be strongly informative for kernel-device mapping.

In Tf-Idf filtering, it is crucial to devise a score threshold for removing
only redundant tokens. Since such thresholds are dataset dependent, and no
previous literature works provide methods for computing them, we evaluated
the distribution of the average Tf-Idf score per document and sampled four
values from it. Figures 5 and 6 show how the average Tf-Idf score per document
distributes in the two LLVM datasets. Both distributions share the same shape
and highlight a peak around 0.005 with a small tail up to 0.035 and 0.025.
We chose to test four Tf-Idf scores around the most common average values,
specifically 0.001, 0.003, 0.006 and 0.008.

15

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.0400

10

20

30

40

50

0.0
01

0.0
03

0.0
06

0.0
08

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.0
01

0.0
03

0.0
06

0.0
08

Figure 5: Tf-Idf analysis applied on LLVM -O0 dataset. Distribution of the average Tf-Idf
score measured per document (top). Average Tf-Idf score directly represented in a bar-plot.
In the figure are depicted the score threshold used in Tf-Idf filtering evaluation.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.0400

10

20

30

40 0.0
01

0.0
03

0.0
06

0.0
08

0 50 100 150 200 250
0.000

0.005

0.010

0.015

0.020

0.025

0.0
01

0.0
03

0.0
06

0.0
08

Figure 6: Tf-Idf analysis applied on LLVM -O2 dataset. Distribution of the average Tf-Idf
score measured per document (top). Average Tf-Idf score directly represented in a bar-plot.
In the figure are depicted the score threshold used in Tf-Idf filtering evaluation.

16

Hyper-parameter Init Network Training

Input size - 2048 -

Padding/Truncating strategy - pre -

Embedding size - 128 -

Conv kernel size - 9 -

Conv kernel number - 32 -

Dense layer size - 256 -

Batch size 32 - 64

Aux output weight loss 0.2 - 1.0

Table 3: Evolution of the CNN network and training hyper-parameters through the different
grid-search phases. At first, we assumed batch-size equal to 32 and auxiliary output weight
loss equal to 0.2. Then, we performed the network grid-search for establishing networks hyper-
parameters. At last, we investigated batch-size and auxiliary output weight loss values with
the training grid-search.

4.3. Hyperparameters exploration

The CNN architecture we propose for language modelling has a relatively
high number of hyper-parameters, and the number of possible network configu-
rations increases exponentially with the number of parameters considered. For
this reason, we selected a set of hyper-parameters of interest and split them
into two groups, optimised separately using two successive grid-searches. These
groups are reported in Table 2. Notice that all networks are trained using the
Adam optimiser with a starting learning rate of 0.001. Its additional hyper-
parameters are set to the default values specified by Tensorflow. We leave to
future works the evaluation of how optimisers impact the robustness of deep
learning models for source code classification.

For selecting the best configuration among a set grid-search points, we
adopted the following procedure:

1. Summarise each set of repetitions related to the same network configura-
tion with its MCC mean and standard deviation.

2. Sort grid-search configurations by their average MCC.

3. Select the top 3 configurations.

4. Declare the configuration with the smallest standard deviation to be the
best.

All experiments performed with Hyper-parameters exploration were made on
the AMD dataset, using sequences in IR obtained trough a compilation without
optimisation steps (-O0).

4.3.1. Exploration results

Figure 7 shows the performance in terms of accuracy against network hyper-
parameters (top) and training hyper-parameters (bottom) configurations con-
sidered, sorted by mean accuracy. The first grid-search aims at optimising

17

Grid-search point
0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

Grid-search point
0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

Figure 7: Classification accuracy improvements of network (top) and training (bottom) hyper-
parameters exploration. The tracks represent classification performance quartiles of grid-
search configurations explored, sorted by average accuracy. The mean trend is represented by
the white track in the middle of each plot.

hyper-parameters related to the CNN network structure. The search space is
the hyper-cube defined by the Cartesian product of the network parameters in
Table 2, while batch-size and auxiliary output weight loss were fixed to 32 and
0.2, as specified by Table 3. The best configuration so far has a mean MCC of
0.672 and a standard deviation of 0.014. Mean classification accuracy equals
84.2% with a standard deviation of 0.7% and the best value of 86.2%.

The second grid-search improves the CNN performance selecting better batch-
size and auxiliary output weight loss values, keeping the network hyper-parameters
fixed. At the end of the two optimisation procedures, mean MCC approaches
0.693, with a standard deviation of 0.015, while classification accuracy reaches
85.2% with a standard deviation of 0.7% and the best value of 86.9%.

4.3.2. Parameters impact

We analysed the outcome of the grid-search to identify the hyper-parameters
having more relevant impact on classification accuracy. Given an hyper-parameter
p and two values A and B it assumes, we are interested in computing the distri-
bution of the accuracy improvement granted by moving the value of p from A
to B. For each CNN configuration CA where p equals A, another one is selected,
called CB , characterised by having p equal to B and all the remaining hyper-
parameters in common with CA. Then, the classification accuracy difference is
computed between CA and CB .

Figure 8 shows the outcome of such a procedure for all network and training

18

Figure 8: Single hyper-parameter sensitivity analysis in CNN models.

Hyper-parameter RNN CNN

Input size 1024 2048

Padding/Truncating strategy pre pre

Embedding size 128 64

Conv kernel size - 9

Conv kernel number - 32

LSTM layer 1 size 64 -

LSTM layer 2 size 64 -

Dense layer size 32 256

Batch size 32 64

Aux output weight loss 0.2 1.0

Table 4: Architecture of the two machine learning models tested.

hyper-parameters. It shows that sequence input-size and the number of neu-
rons in the fully-connected layer of the classifier (dense-layers) are particularly
promising. In essence, increasing them seems to be beneficial, and moving them
from the minimum tested values to the maximum one always leads to better
performance, no matter the values other hyper-parameters assume. Auxiliary
output loss weight exposes a similar behaviour when exceeding 0.6. It is ob-
served that increasing convolution kernel size from 5 to 9 generally leads to
better results while applying padding to the end of the sequences is detrimen-
tal.

4.4. CNN-LSTM comparison

In this Section we compare CNN and LSTM models. We used the best model
found using the grid search in Section 4.3 and we compared it with a network

19

Dataset Filtering Length

RNN CNN

ACC MCC S.Up ACC MCC S.Up

[%] {-1, +1} [x] [%] {-1, +1} [x]

LLVM
-O0

- 3092 81.16 0.614 1.37 84.47 0.685 1.69

Blacklist 900 82.22 0.636 1.40 85.40 0.704 1.58

1 e-3 651 81.90 0.630 1.33 85.60 0.708 1.61

3 e-3 553 81.16 0.615 1.08 84.79 0.691 1.45

6 e-3 497 81.45 0.620 1.33 83.59 0.666 1.47

8 e-3 465 79.24 0.576 1.03 81.78 0.629 0.97

LLVM
-O2

- 3160 80.73 0.606 1.42 83.77 0.670 1.60

Blacklist 949 82.53 0.643 1.41 84.20 0.681 1.50

1 e-3 719 82.60 0.644 1.38 84.78 0.691 1.57

3 e-3 602 82.39 0.640 1.03 84.63 0.688 1.54

6 e-3 515 81.64 0.624 0.94 83.38 0.661 1.57

8 e-3 495 80.60 0.604 0.77 83.31 0.660 1.51

OpenCL - 2656 81.18 0.615 1.49 83.00 0.656 1.51

Table 5: Outcomes of experiments comparing different language modelling networks and token
filtering strategies on the Nvidia data-set in terms of classification accuracy and MCC. Also,
we reported speedup with respect to a static kernel mapper, mapping each kernel on GPU.

Dataset Filtering Length

RNN CNN

ACC MCC S.Up ACC MCC S.Up

[%] {-1, +1} [x] [%] {-1, +1} [x]

LLVM
-O0

- 3092 79.83 0.581 3.23 85.32 0.695 3.50

Blacklist 900 81.97 0.625 3.23 83.97 0.667 3.50

1 e-3 651 82.08 0.627 3.21 84.79 0.684 3.88

3 e-3 553 81.47 0.615 3.17 84.76 0.683 3.80

6 e-3 497 80.55 0.596 3.38 83.74 0.662 3.48

8 e-3 465 79.55 0.575 2.16 83.76 0.662 2.15

LLVM
-O2

- 3160 79.25 0.568 3.01 84.54 0.679 3.86

Blacklist 949 81.82 0.622 2.97 83.81 0.663 3.59

1 e-3 719 81.50 0.615 3.34 84.78 0.683 3.91

3 e-3 602 82.50 0.637 3.20 84.23 0.672 3.33

6 e-3 515 80.35 0.592 3.08 83.52 0.657 3.24

8 e-3 495 79.56 0.575 2.07 83.96 0.666 3.63

OpenCL - 2656 81.75 0.622 3.69 84.78 0.684 3.26

Table 6: Outcomes of experiments comparing different language modelling networks and token
filtering strategies on the AMD data-set in terms of classification accuracy and MCC. Also,
we reported speedup with respect to a static kernel mapper, mapping each kernel on CPU.

20

exploiting an LSTM-based language modelling. Table 4 details the architecture
of the two networks.

Tables 5 and 6 report the outcome of experiments performed on both the
AMD and the Nvidia datasets. For each kernel available, we applied the process-
ing procedures detailed in Section 3.1. Each kernel is tokenised and atomised
using:

• the LLVM-based pipeline described in this work with two different clang
optimisation flags, for investigating how source code transformation im-
pacts on classification.

• the OpenCL-based approach proposed in [3].

Regarding LLVM token sequences, we tested two token filtering strategies:

• the blacklist approach proposed in [5].

• four different Tf-Idf thresholds.

We evaluated experiments in terms of classification accuracy, MCC and speedup.
Red bold values highlight what preprocessing methodology gives the best result
for each metric-model pair. Instead, the highlighted values stress the filtering
strategies with which the CNN behaves better for each tokenising methodology.

The next two subsections discuss the classification performance of tested
models and how CNN language modelling impact training time.

4.4.1. Kernel classification performance

The CNN model always outperforms the RNN one, independently from the
device used for kernel labelling, the preprocessing strategies, the filtering thresh-
old.

Concerning classification metrics, the CNN performs better on LLVM -O0

sequences in the AMD dataset, where it reaches a mean classification accuracy
of 85.32% and a MCC of 0.695. The CNN grants a boost in classification perfor-
mance between +3.00% and +5.50% on unfiltered sequences, providing a solid
improvement over RNN. The same conclusion can be drawn from Nvidia results
which are characterised by a slight reduction of the gap between classification
accuracy and MCC offered by the two models. Here, the best mean classifi-
cation metrics achieved by the CNN are 84.47% accuracy and 0.685 MCC on
LLVM -O0 sequences.

Token filtering improves models classification performance of LLVM sequences
in most cases. Token blacklist, proposed in [5], and Tf-Idf filtering with thresh-
olds 0.001 and 0.003 are the three strategies that often behave better. RNN
performances are more influenced by token filtering than the CNN ones. That
is especially true in the AMD dataset, where using a threshold equal to 0.003 on
the LLVM -O2 sequences provides a boost of +3.25% in accuracy and +0.069
in MCC. Instead, the CNN is less sensitive to filtering strategies as the best
improvement is +1.13%, achieved applying Tf-Idf filtering on LLVM -O0 se-
quences. High Tf-Idf thresholds, such as 0.008, usually lead to bad performance,

21

Batch size

Input size

512 1024 2048 4096 8192

CNN RNN CNN RNN CNN RNN CNN RNN CNN RNN

16 291 1832 289 2871 397 4630 510 8560 812 15995

32 173 1034 211 1647 302 3032 421 5305 797 10637

64 144 670 179 989 263 1722 488 3331 903 6066

128 106 430 159 633 289 1212 581 2141 996 4533

Table 7: Amount of time (in seconds) required for training CNN and RNN models for
different batch-size and input-size. Experiments were run on an Nvidia Quadro RTX 6000
GPU with 24GB RAM.

Dataset
DeepTune

[3]

DeepLLVM

LLVM -O0 LLVM -O2

AMD 3.43 3.50 3.86

Nvidia 1.42 1.69 1.60

Table 8: Comparisons between the speedup obtained by DeepTune [3] and the one obtained
by the best CNN on IR.

causing an accuracy drop of 2.69% in the worst case. In those situations, the
filtering algorithm starts removing tokens with high informative content not
homogeneously, making to learn the appropriate features for carrying on the
classification tasks challenging.

4.4.2. Training time comparison

Training time is one of the most significant issues when dealing with deep
machine learning models. Since input-size and batch-size are the two hyper-
parameters that affect training time most, comparing the two proposed models
as they are, would not have been fair. We computed the average time CNN
and RNN require for being cross-validated using sequences of the same length
and an equal number of samples in mini-batches. For this analysis we also
considered pairs of input size/batch size not considered during hyper-parameters
optimisation, in order to provide a more complete set of results. As shown in
Table 7, the CNN always performs consistently better than the RNN. In the
worst case, it provides a speedup of 3.7x, if we consider the configuration with
input size 4096 and batch size 128. At the opposite, testing the two networks
with input size 8192 and batch size 16 gives the best possible speedup, equal to
19.7x.

4.5. Speedup comparison

For devising how the proposed machine learning model behaves in a real-
world scenario, evaluating classification accuracy and MCC is not sufficient.
Typical machine learning metrics take care of checking the number of correct
predictions over the total number of samples but do not consider the impact of

22

mapping a kernel on the wrong device. Missing the best compute unit may not
result in a significant penalty in terms of runtime or speedup.

For checking the impact of misclassified kernels, we measured the speedup
granted by the two machine learning models tested. We computed Speedup
using the same approach proposed in [3]. The time required for running all the
OpenCL kernels on the device predicted by a classifier is divided by the time
required for mapping all kernels on the device whose label is most common in
the labelled dataset. Experiment results are summarised in Tables 5 and 6. The
CNN always outperforms the RNN model on IR sequences analysis. It reaches
a mean speedup of 1.69x and 1.60x on the Nvidia dataset while reaching 3.50x
and 3.86x on AMD labelled data. Moreover, the best average speedup obtained
by the CNN outperforms results presented in [3] on both dataset as shown in
Table 8. The RNN module obtains better results analysing OpenCL kernels
from the AMD dataset, ensuring a speedup of 3.69x. Nonetheless, this speedup
is smaller than the 3.91x ensured by the CNN on LLVM -O2 sequences filtered
with a Tf-Idf threshold of 1e-3.

4.6. Additional comparisons and dataset considerations

While in the previous sections we focused on CNN vs LSTM comparison and
hyper-parameters impact, in this Section we compare our method with other
state-of-art papers using a different approach for source code analysis, but still
using deep learning models.

In particular, we consider recent works [8, 10], where methodology using
graph neural networks have been presented. For comparison, we adopted the
same cross-validation approach used in all state-of-art papers, and we performed
experiments using the validation method introduced in [8].

4.6.1. Preliminary considerations on validation method and literature results

Regarding validation, [8] suggests that the performance of a model can
be evaluated on a collection of N benchmark suites running a N -fold cross-
validation where each fold corresponds to a particular benchmark suite in the
dataset. It ensures that a network is tested only on samples coming from
a benchmark-suite not considered during training. Such procedure is called
grouped-split cross-validation, whereas the procedure currently used is called
random-split. Furthermore, in [8] are reproduced the results shown in previ-
ous works. The results proposed for the random-split methodology seem to
overestimate the results previously obtained in the literature (e.g. DeepTune
classification accuracy at 91% instead of 81%).

To perform the experiments, we reviewed the code attached to the work
and identified a criticality3 in the construction of the cross-validation procedure
that once corrected reported the accuracy values coherent with the one available

3The fixed seed used during the creation of the folds (204) leads to obtain exceptional
good accuracy values randomly from the cross-validation procedure. Furthermore, the same
fold configuration is always evaluated during the replicas of the cross-validation procedure.

23

Fold Test benchmark
Samples

Imbalance
Train Set

Imbalance
Test Set

Train Test AMD NVD AMD NVD

0 AMD 664 16 +0.17 -0.12 +0.25 -0.88

1 NPB 153 527 -0.02 +0.22 +0.23 -0.24

2 NVidia 668 12 +0.19 -0.14 -0.83 -0.16

3 Parboil 661 19 +0.18 -0.15 0.0 +0.33

4 Polybench 653 27 +0.22 -0.14 -0.85 -0.11

5 Rodinia 649 31 +0.18 -0.16 +0.10 +0.22

6 SHOC 632 48 +0.15 -0.21 +0.46 +0.83

Table 9: Overview of fold statistics for grouped-split cross-validation. The last four columns
report label imbalance of train and test sets for the AMD (AMD) and Nvidia (NVD) datasets
computed as (ncpu−ngpu)/(ncpu+ngpu). A positive ratio implies a bigger number of CPU la-
belled samples, while a negative ratio reports an higher number of GPU labelled samples.

in the literature. All results of [8] exposed in the random-split procedure are
affected by this problem4.

Concerning the group-split method, all results of [8] highlight a significant
reduction in classification performance of any methodologies proposed in liter-
ature so far.

We claim that the while methodology proposed in [8] is promising, the
grouped-split method in the considered dataset may lead to inconsistent re-
sults. Indeed, using benchmarks suites in place of folds during cross-validation
leads to a number of pitfalls. (i) The methodology cannot be defined strat-
ified cross-validation since each benchmark has its own class imbalance. (ii)
Cross-validation wishes for uniformly sized folds. As shown in Table 9 this is
not the case for the used dataset. As a result, the evaluation of classification
performance is likely to be biased (e.g. NPB benchmark). (iii) In the consid-
ered dataset each fold is affected by high variability in class imbalance. Such a
phenomenon is quite evident in both datasets (e.g. AMD dataset - NVidia and
Polybench benchmarks, Nvidia dataset - AMD and SHOC benchmarks).

4.6.2. Results comparison

Even if we question the usage of grouped-split cross-validation methodology
on the available dataset, we tested the proposed CNN model as detailed in [8] for
the sake of completeness. Results are presented in Table 10, where we report
the results related to random-split, both the numbers reported in [8] (called
fixed-seed) as well as the one we obtained by fixing the seed problem (random

4By eliminating the use of fixed seed, DeepTune accuracy has returned from 91% to 81%
(five repetitions) in the range of values previously described in [3, 5]. Even if the same seed
is used for the evaluations done in [3], the use of different versions of the libraries leads to
different fold configurations. We report that we were not able to replicate results for GNN-
CDFG because of problems in the provided artefacts, as such we report the results shown
in [8].

24

Method
DeepTune ProGraML GNN-CDFG DeepLLVM

[3] [10] [8]

random-split (fixed seed) 3 92% - 93% -

random-split (random seed) 4 81% 83% - 85%

grouped-split 48% - 52% 53%

Table 10: Summary of IR based source code analysis for heterogeneous device mapping. The
table reports the mean classification accuracy between AMD and Nvidia datasets. Grouped-
split results for ProGraML were not provided in [10].

seed). Missing numbers in Table 10 refers to cases for which literature numbers
are not present, or the experiments could not be replicated.

Overall, by considering the random-split (random seed) and grouped-split
results, our method implemented with DeepLLVM performs better than other
state-of-art in terms of accuracy, by keeping the advantages of a CNN model
in terms of training time. Also considering the speedup, the proposed method
outperforms the results reported in [8] that achieves 1.61 for the AMD dataset,
compared to 3.50 and 3.86 as reported in Table 8.

4.7. Summary of findings

The results obtained highlight the following main findings:

• Using CNN-based language modelling networks, in the context of kernel-
device mapping, is a promising method for extracting features from source
code. They provide mean classification accuracy, MCC and speedup
higher than the one provided by the LSTM-based network, reaching 85.32%
classification accuracy, 0.695 MCC and 3.86x speedup in the best cases
for the considered dataset;

• With respect to LSTM models, CNN is more robust with respect to token
filtering techniques, that seem to be less effective on convolutive networks;

• CNN architecture we proposed requires much lower GPU training time
with respect to the LSTM one. Indeed, CNN ensures a 4x - 7x reduction
in training time over RNN. It means that such models lend their-self to
be explored in a more effective way, allowing to test different architectures
and hyper-parameters configurations extensively;

• The study of the impact of CNN hyper-parameter on the classification
metrics shows that most relevant ones are: Input sequences size, number of
units in the fully-connected layer of the classifier, auxiliary output weight
loss.

• The LSTM network reports a more significant variation in performance
when the sequence length is reduced. At the same time, CNN is less
affected by Tf-Idf filtering because of the Global Max Pooling layer acts
as a filter itself.

25

• The proposed CNN-based method implemented in DeepLLVM outper-
forms state-of-art approaches and demonstrated to be robust w.r.t. hyper-
parameter setting.

5. Conclusion

In this work, we presented a LLVM based code classification method, and
we explored the impact of neural network models on feature extraction and
classification problems applied to source code in the intermediate representation.

Given the absence, in literature, of a CNN-based language modelling network
for kernel-device mapping, we explored the hyper-parameters of a CNN model in
order to obtain a reference model. We explored 368 different hyper-parameters
configuration, each cross-validated 20 times, reporting a statistical analysis of
the results obtained.

We compared the best configuration of hyper-parameters for the CNN with
the RNN-based network used in [3, 5] for different source code preprocessing and
token filtering strategies, evaluating classification accuracy, MCC and speedup.

Results confirm that features extraction from IR is a valuable strategy for
analysing sources without dealing with complex high-level constructs, and it can
be done keeping all the information required for performing classification tasks
in the context kernel-device mapping.

The use of SOTA natural language processing models such as GPT-3 will
be considered in future work to determine the complexity of the OpenCL and
LLVM-IR code classification task. It is currently an open issue to evaluate the
performance of these models in a few-shot mode for domain-specific problems
such as the one we face in our work. In this context, however, we should consider
the size of the networks used for domain-specific tasks. In our work, the CNN
network consisted of 3.4 ∗ 104 parameters and the LSTM network of 9.8 ∗ 104

parameters about seven orders of magnitude smaller than GPT-3, which counts
about 1.7 ∗ 1011 parameters.

We will explore other fields of application of the methodologies proposed in
this work. For example, in many cases, a source code fragment under analysis
is highly dependent on a specific software library, this is the case of Spiking
Neural Networks (SNN) simulations, described through a high-level software
library. Several works in the literature have provided a formalism to deal with
the problem of SNN placement on an MCSoC architecture (SpiNNaker, Loihi)
describing both the SNN and the architecture through a graph [36–38]. The
possibility to analyse such problem training a model able to infer the optimal
placement (or learn features to simplify the mapping procedure) is, therefore,
an open problem on which we want to investigate.

Acknowledgments

This work was supported in part by the Italian Ministry for Education, Uni-
versity and Research (MIUR) under the program “Dipartimenti di Eccellenza”

26

(2018-2022). G.U. work has been funded by ECSEL Joint Undertaking (EU
H2020) under the Arrowhead Tools research project with Grant Agreement no.
826452.

References

[1] Z. Wang, M. O’Boyle, Machine learning in compiler optimization, Proceed-
ings of the IEEE 106 (11) (2018) 1879–1901.

[2] G. Carvalho, B. Cabral, V. Pereira, J. Bernardino, Computation offloading
in edge computing environments using artificial intelligence techniques,
Engineering Applications of Artificial Intelligence 95 (2020) 103840.
doi:https://doi.org/10.1016/j.engappai.2020.103840.
URL http://www.sciencedirect.com/science/article/pii/

S0952197620302050

[3] C. Cummins, P. Petoumenos, Z. Wang, H. Leather, End-to-end deep learn-
ing of optimization heuristics, in: Parallel Architectures and Compilation
Techniques (PACT), 2017 26th International Conference on, IEEE, 2017,
pp. 219–232.

[4] C. Lattner, V. Adve, Llvm: A compilation framework for lifelong program
analysis & transformation, in: Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime op-
timization, IEEE Computer Society, 2004, p. 75.

[5] F. Barchi, G. Urgese, E. Macii, A. Acquaviva, Code mapping in heteroge-
neous platforms using deep learning and llvm-ir, in: 2019 56th ACM/IEEE
Design Automation Conference (DAC), IEEE, 2019, pp. 1–6.

[6] T. Ben-Nun, A. S. Jakobovits, T. Hoefler, Neural code comprehension: a
learnable representation of code semantics, in: Advances in Neural Infor-
mation Processing Systems, 2018, pp. 3585–3597.

[7] V. K. S, R. Aggarwal, S. Jain, M. S. Desarkar, R. Upadrasta, Y. N. Srikant,
Ir2vec: A flow analysis based scalable infrastructure for program encodings
(2019). arXiv:1909.06228.

[8] A. Brauckmann, A. Goens, S. Ertel, J. Castrillon, Compiler-based graph
representations for deep learning models of code, in: Proceedings of the
29th International Conference on Compiler Construction, CC 2020, Asso-
ciation for Computing Machinery, New York, NY, USA, 2020, p. 201–211.
doi:10.1145/3377555.3377894.
URL https://doi.org/10.1145/3377555.3377894

[9] T. Sharma, V. Efstathiou, P. Louridas, D. Spinellis, On the feasibil-
ity of transfer-learning code smells using deep learning, arXiv preprint
arXiv:1904.03031 (2019).

27

http://www.sciencedirect.com/science/article/pii/S0952197620302050
http://www.sciencedirect.com/science/article/pii/S0952197620302050
https://doi.org/https://doi.org/10.1016/j.engappai.2020.103840
http://www.sciencedirect.com/science/article/pii/S0952197620302050
http://www.sciencedirect.com/science/article/pii/S0952197620302050
http://arxiv.org/abs/1909.06228
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3377555.3377894

[10] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, H. Leather, Programl:
Graph-based deep learning for program optimization and analysis (2020).
arXiv:2003.10536.

[11] J.-W. Son, T.-G. Noh, H.-J. Song, S.-B. Park, An application for
plagiarized source code detection based on a parse tree kernel, Engi-
neering Applications of Artificial Intelligence 26 (8) (2013) 1911 – 1918.
doi:https://doi.org/10.1016/j.engappai.2013.06.007.
URL http://www.sciencedirect.com/science/article/pii/

S0952197613001085

[12] M. Allamanis, E. T. Barr, P. Devanbu, C. Sutton, A survey of machine
learning for big code and naturalness, ACM Computing Surveys (CSUR)
51 (4) (2018) 1–37.

[13] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, C. Silvano, A
survey on compiler autotuning using machine learning, arXiv preprint
arXiv:1801.04405 (2018).

[14] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of
deep bidirectional transformers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[15] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le,
Xlnet: Generalized autoregressive pretraining for language understanding,
in: Advances in neural information processing systems, 2019, pp. 5753–
5763.

[16] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei,
Language models are few-shot learners (2020). arXiv:2005.14165.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural
information processing systems, 2017, pp. 5998–6008.

[18] A. Monsifrot, F. Bodin, R. Quiniou, A machine learning approach to au-
tomatic production of compiler heuristics, in: International conference on
artificial intelligence: methodology, systems, and applications, Springer,
2002, pp. 41–50.

[19] Y. Jiang, E. Z. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, Y. Gao,
Exploiting statistical correlations for proactive prediction of program be-
haviors, in: Proceedings of the 8th annual IEEE/ACM international sym-
posium on Code generation and optimization, ACM, 2010, pp. 248–256.

28

http://arxiv.org/abs/2003.10536
http://www.sciencedirect.com/science/article/pii/S0952197613001085
http://www.sciencedirect.com/science/article/pii/S0952197613001085
https://doi.org/https://doi.org/10.1016/j.engappai.2013.06.007
http://www.sciencedirect.com/science/article/pii/S0952197613001085
http://www.sciencedirect.com/science/article/pii/S0952197613001085
http://arxiv.org/abs/2005.14165

[20] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O’Boyle, O. Temam,
Rapidly selecting good compiler optimizations using performance counters,
in: Code Generation and Optimization, 2007. CGO’07. International Sym-
posium on, IEEE, 2007, pp. 185–197.

[21] A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, C. Silvano,
Cobayn: Compiler autotuning framework using bayesian networks, ACM
Transactions on Architecture and Code Optimization (TACO) 13 (2) (2016)
21.

[22] M. Stephenson, S. Amarasinghe, Predicting unroll factors using supervised
classification, in: Proceedings of the international symposium on Code gen-
eration and optimization, IEEE Computer Society, 2005, pp. 123–134.

[23] E. Park, J. Cavazos, L.-N. Pouchet, C. Bastoul, A. Cohen, P. Sadayap-
pan, Predictive modeling in a polyhedral optimization space, International
journal of parallel programming 41 (5) (2013) 704–750.

[24] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, S. Ama-
rasinghe, Autotuning algorithmic choice for input sensitivity, in: ACM
SIGPLAN Notices, Vol. 50, ACM, 2015, pp. 379–390.

[25] E. Park, J. Cavazos, M. A. Alvarez, Using graph-based program character-
ization for predictive modeling, in: Proceedings of the Tenth International
Symposium on Code Generation and Optimization, ACM, 2012, pp. 196–
206.

[26] D. Grewe, Z. Wang, M. F. O’Boyle, Portable mapping of data parallel pro-
grams to opencl for heterogeneous systems, in: Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), IEEE, 2013, pp. 1–10.

[27] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations
by back-propagating errors, nature 323 (6088) (1986) 533–536.

[28] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

[29] Y. LeCun, et al., Generalization and network design strategies, Connec-
tionism in perspective 19 (1989) 143–155.

[30] W. Yin, K. Kann, M. Yu, H. Schütze, Comparative study of cnn and rnn
for natural language processing, arXiv preprint arXiv:1702.01923 (2017).

[31] G. Urgese, L. Peres, F. Barchi, E. Macii, A. Acquaviva, Work-in-progress:
Multiple alignment of packet sequences for efficient communication in a
many-core neuromorphic system, in: 2018 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems (CASES),
IEEE, 2018, pp. 1–2.

29

[32] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, C. Potts, Learning
word vectors for sentiment analysis, in: Proceedings of the 49th annual
meeting of the association for computational linguistics: Human language
technologies-volume 1, Association for Computational Linguistics, 2011,
pp. 142–150.

[33] E. Kaufmann, A. Bernstein, L. Fischer, Nlp-reduce: A naive but domain-
independent natural language interface for querying ontologies, in: 4th
European Semantic Web Conference ESWC, 2007, pp. 1–2.

[34] Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide
to) convolutional neural networks for sentence classification, arXiv preprint
arXiv:1510.03820 (2015).

[35] G. Jurman, S. Riccadonna, C. Furlanello, A comparison of mcc and cen
error measures in multi-class prediction, PloS one 7 (8) (2012) e41882.

[36] G. Urgese, F. Barchi, E. Macii, Top-down profiling of application specific
many-core neuromorphic platforms, in: 2015 IEEE 9th International Sym-
posium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2015,
pp. 127–134.

[37] G. Urgese, F. Barchi, E. Macii, A. Acquaviva, Optimizing network traffic
for spiking neural network simulations on densely interconnected many-
core neuromorphic platforms, IEEE Transactions on Emerging Topics in
Computing 6 (3) (2016) 317–329.

[38] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Di-
mou, P. Joshi, N. Imam, S. Jain, et al., Loihi: A neuromorphic manycore
processor with on-chip learning, IEEE Micro 38 (1) (2018) 82–99.

30

	Introduction
	Background and Related Works
	Methodology
	Code Preprocessing
	CNN and LSTM based classifiers
	Hyper-parameters exploration
	Metrics

	Results & Discussion
	Dataset description
	Token filtering settings
	Hyperparameters exploration
	Exploration results
	Parameters impact

	CNN-LSTM comparison
	Kernel classification performance
	Training time comparison

	Speedup comparison
	Additional comparisons and dataset considerations
	Preliminary considerations on validation method and literature results
	Results comparison

	Summary of findings

	Conclusion

