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Abstract
We study existence andmultiplicity of positive ground states for the scalar curvature equation

Δu + K (|x |) u n+2
n−2 = 0, x ∈ R

n , n > 2,

when the function K : R
+ → R

+ is bounded above and below by two positive constants, i.e.
0 < K ≤ K (r) ≤ K for every r > 0, it is decreasing in (0,R) and increasing in (R,+∞)

for a certainR > 0. We recall that in this case ground states have to be radial, so the problem
is reduced to anODE and, then, to a dynamical system via Fowler transformation.We provide
a smallness non perturbative (i.e. computable) condition on the ratio K/K which guarantees
the existence of a large number of ground states with fast decay, i.e. such that u(|x |) ∼ |x |2−n

as |x | → +∞, which are of bubble-tower type. We emphasize that if K (r) has a unique
critical point and it is a maximum the radial ground state with fast decay, if it exists, is unique.
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1 Introduction

In this paper we study the scalar curvature equation

Δu + K (|x |) u n+2
n−2 = 0, x ∈ R

n , n > 2, (1)

where x ∈ R
n , n > 2, K ∈ C1 and 0 < K ≤ K (|x |) ≤ K whenever |x | > 0 for

suitable positive constants 0 < K < K . In particular, we will focus our attention on radially
symmetric positive solutions with fast decay. Radial solutions of Eq. (1) solve

(u′ rn−1)′ + K (r) rn−1 u
n+2
n−2 = 0 , r ∈ (0,∞). (2)

We are interested in studying multiplicity of grounds states u of (2) having fast decay, where
with ground state (GS) we mean a positive regular solution u of (2) defined for any r ≥ 0
and for fast decay we mean that u(r)r2−n has positive finite limit as r → +∞.

The existence of GS with fast decay has been the subject of many papers for its intrinsic
mathematical interest, but also for the relevant applications it finds in differential geometry,
astrophysics and quantum mechanics, see [16], and reference therein for more details on
applications. Extensive studies have been developed since the pioneering work [33] by Ni.

It was early realized that if K is monotone (but not constant) no GS with fast decay can
exist, due to the Pohozaev obstruction, see e.g. [17]. In the 90s several different conditions
ensuring existence of GS with fast decay have been obtained when K has a positive critical
point, see the introduction in [16] for a more detailed discussion of this point.

Let us focus on the case where K (r) has a unique critical point, say K (R): the structure
of positive solutions of (1) changes drastically whether K (R) is a maximum or a minimum.
First of all, if K (R) is a maximum, we can have existence [34] and multiplicity [36] of
non-radial GS with fast decay; while, if K (R) is a minimum, Bianchi showed in [6, Theorem
2] that all the positive solutions have to be radial.

Furthermore, if K (R) is a maximum, it is possible to classify completely positive radial
solutions to get uniqueness of the radialGSwith fast decay [31,38,39] and to obtain a structure
result for radial solutions both regular and singular, also when they are sign changing [15],
and even in the p-Laplace context [20–22,24]. It is also worth noticing that multiplicity
results can be attained in presence of multiple critical points of K , see e.g. [3,4,9,24,29,37].

When K (R) is a minimum, the situation is more difficult and, concerning GS with fast
decay, it ranges from non-existence [7] to existence and multiplicity results, [7,8] and [1,10,
16,18,32], respectively.

Despite of the fact that the search of GS with fast decay has received great attention,
much less results are available concerning multiplicity when K is bounded and has a unique
critical point (a minimum, otherwise we have uniqueness [31]). In fact, as far as we are
aware, [10,16,18,32] is the complete list of papers on this topic. No results are available in a p-
Laplace context; furthermore, this paper and [16] are the only non-perturbative contributions.

Remark 1 Rescaling u, we can assume that the function K is such that

K (|x |) = 1 + εk(|x |) , 0 ≤ k(|x |) ≤ 1, (3)

for every x > 0, see [16, Remark 1.3].

In [10] and [16], the simplifying condition that K is reciprocally symmetric is required,
i.e. it is assumed

(K0) K (r) = K
( 1
r

)
for any 0 < r ≤ 1;
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(K1) K ′(r) ≤ 0 for any r ∈ (0, 1], but K ′(r) 	≡ 0 ;
(K2) K (r) = K (0) − Arl + h(r) , where

A > 0, 0 < l <
n − 2

2
, lim

r→0
|h(r)|r−l + |h′(r)|r−l+1 = 0.

Let us recall here their main theorem.

Theorem 1 [10,16] Assume that K satisfies (3) and (K0)–(K1)–(K2), then for any � ∈ N

there exists a η� > 0 such that for every ε ∈ (0, η�) Eq. (2) admits at least � GS with

fast decay u1, . . . , u�, where the function u j (r)r
n−2
2 has j local maxima and ( j − 1) local

minima.

In [16] the authors, inspired by the previouswork [10] byChen andLin, explicitly compute
the constants η�, extending the perturbative result in [10] to a non-perturbative situation. Let
us recall here their values for the reader’s convenience.

Theorem 2 [16] All the constants η� in Theorem 1 can be explicitly computed. In particular,
we find the following:

n η1 η2 η3 η4 η5 η6 η7 η8
3 2 0.910 0.584 0.429 0.339 0.280 0.238 0.207
4 1 0.5 0.333 0.25 0.2 0.166 0.142 0.125
5 0.666 0.347 0.235 0.178 0.143 0.119 0.103 0.090
6 0.5 0.266 0.182 0.138 0.111 0.093 0.080 0.070

(4)

Moreover, the explicit expression of the first two constants is

η1 = 2

n − 2
, η2 = 2

n

[(
n

n − 2

) n−2
2 − 1

]−1

. (5)

Finally, if the dimension is n = 4, we have η� = 1

�
for every positive integer �.

Remark 2 The results in [10] are perturbative, i.e. the existence of the small constant η� in
Theorem 1 is established, but there is no clue about how large η� should be and how it could
be computed. The results in [16] and in Theorem 3 of the present paper can be called non-
perturbative, since we are able to give a lower bound on the size of η� via Theorem 2. In fact,
η� is not too small, so the phenomena should be observable, at least for � not too large.

Remark 3 The value of η� found in Theorem 2 is not optimal, i.e. we cannot say that if ε > η�

we do not have � G.S with fast decay.

The aim of the present paper is to carry on the discussion started in [10,16] and to study the
structure of GS with fast decay when K is not reciprocally symmetric, i.e. when we remove
assumption (K0). In particular, we assume

(H1) K ′(r) ≤ 0 for any r ∈ (0,R], but K ′(r) 	≡ 0;
K ′(r) ≥ 0 for any r ∈ [R,+∞), but K ′(r) 	≡ 0;

(H0
2) K (r) = K0 − a0r

l0 + h0(r), where

a0 > 0, 0 < l0 <
n − 2

2
, lim

r→0
|h0(r)|r−l0 + |h′

0(r)|r−l0+1 = 0;
(H∞

2 ) K (r) = K∞ − a∞r−l∞ + h∞(r), where

a∞ > 0, 0 < l∞ <
n − 2

2
, lim

r→+∞ |h∞(r)|rl∞ + |h′∞(r)|rl∞+1 = 0.
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We set T := ln(R). This notation will be followed in the whole paper.

Remark 4 According to [5, Theorem 1] and [6, Theorem 2], we know that assumption (H1)

guarantees that each solution of (1) is radially symmetric about the origin. Thus, the search
for GS of (1) is reduced to the analysis of (2).

Theorem 3 Assume that K satisfies (3) and (H1)–(H0
2)–(H

∞
2 ), then for any � ∈ N there

exists ε� := η2� > 0 such that for every ε ∈ (0, ε�) Eq. (2) admits at least � GS with

fast decay u1, . . . , u�, where the function u j (r)r
n−2
2 has j local maxima and ( j − 1) local

minima, when r > 0.

We emphasize that the constants ε� in the statement of our main theorem are the same
constants obtained in [16] and can be explicitly computed, in particular we find ε� := η2�.
Thus, when 0 < ε < ε� we get the existence of at least 2� GS with fast decay if k is
reciprocally symmetric (via Theorem 1), while we find just � GS if such a symmetry is lost
(via Theorem 3).
Hence, if k is not symmetric we find the following table:

n ε1 ε2 ε3 ε4
3 0.910 0.429 0.280 0.207
4 0.5 0.25 0.166 0.125
5 0.347 0.178 0.119 0.090
6 0.266 0.138 0.093 0.070

(6)

Moreover, ε� = 1

2�
if the dimension is n = 4, and ε1 = 2

n

[(
n

n − 2

) n−2
2 − 1

]−1

.

As mentioned above, the main purpose of this article is to continue the discussion started
in [10,16] and to obtain multiplicity results for GS with fast decay of (2) removing the
artificial assumption of reciprocal symmetry (K0), so that the theorem can be applied to a
much larger class of potentials. However, in doing so, we lose solutions, i.e. if we maintain
the same ε and we remove (K0) we just get half of the GS with fast decay. More precisely,
let 0 < ε < ε� = η2�, then we get 2� GS under condition (K0) via Theorem 1, while we just
get � of them when (K0) is removed via Theorem 3.

To prove Theorem 3 we take advantage of the result of [16], which is mainly based on a
shootingmethod. The shooting techniques of [10,16] ensure the existence of regular solutions

u j of Eq. (2) whose weighted functions u j (r)r
n−2
2 have a critical point in r = 1 and ( j − 1)

critical points in (0, 1). Then, by the symmetry assumption (K0), the solutions u j could be
symmetrically extended to the interval (1,+∞), and consequently, they have fast decay too.
However, this procedure does not apply in a non-symmetric context and symmetric solutions
are no more expected. To remove the symmetry we need to rely heavily on some tools
concerning invariant manifold theory for non-autonomous systems, in the line of [26,29],
and some topological arguments adapted from [2,15].

Lin and Liu in [32], using a completely different argument and using a purely PDE
approach, obtained a multiplicity result analogous to Theorem 3 in the absence of symmetry,
but again in aperturbative setting.Namely, in [32,Theorem1.3] they require K0 = K∞ = 1 in
(H0

2), (H
∞
2 ), and for any � ∈ N they obtain a small but computable l̄� ↘ 0 (l̄� := n−2

(n+2)(�−1) )
and a small (unprecisely small) ε� > 0 such that (2) admits at least � GS with fast decay
whenever 0 < l0, l∞ < l̄� and 0 < ε < ε�. So, we improve the result by Lin and Liu
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by allowing K0 	= K∞, by giving a computable lower bound for the size of ε� and by
considerably relaxing the smallness condition on l0 and l∞. Notice in fact that l̄� < n−2

2
for any � ≥ 2. Furthermore, we believe that the condition l0, l∞ < n−2

2 in (H0
2), (H

∞
2 ) is

optimal, see Remark 6.
Along the same line, the paper [18] provides multiplicity results for Eq. (2) in presence

of a singular perturbation K (r) of the form

K (r) = k(rε). (7)

This peculiar perturbation amounts to ask for k to vary slowly; nevertheless it allows to get
multiple GS with fast decay under weaker conditions: it is sufficient to assume that k(r) in
(7) is strictly positive, bounded and admits at least a positive minimum to reach the same
conclusion as in Theorem 1. However, the result is of perturbative nature and we do not have
any clue about how small ε� should be.

We emphasize that all the GS found in [10,16,18,32] and in Theorem 3 are, in fact, bubble
tower solutions, i.e. they are well approximated, as ε → 0, by the sum of j explicitly known
solutions of Eq. (2) with ε = 0, for 1 ≤ j ≤ �, see e.g. [32] for more details.

To conclude this quick review of the existing literature we recall [36], where Wei and Yan
prove that if K (|x |) has a positive maximum, there are infinitely many non-radial GS (and a
unique radial GS). This result, together with [10,16,18,32] and the present article, suggests
that the bubble tower phenomenon arises in presence of a critical point of K (|x |), and it is
made up by radial solutions if the critical point is a minimum and by non-radial ones if it is
a maximum.

As in [16], Theorem 3 can be trivially generalized to embrace the slightly more general
case of

(u′rn−1)′ + rn−1+σ [1 + εk(|x |)]uq(σ )−1 = 0, 0 ≤ k(|x |) ≤ 1, (8)

where q(σ ) = 2 n+σ
n−2 , σ > −2. In [16, Corollary 1.4] the authors prove the existence of a

positive computable value ησ
� , depending on σ , such that for every ε ∈ (0, ησ

� ) Eq. (8) admits
at least � GS with fast decay, under the symmetric assumption (K0). This result admits the
following extension to the non-symmetric setting.

Corollary 1 Assume that K = 1 + εk satisfies (H1)-(H0
2)-(H

∞
2 ), then for any � ∈ N there

exists εσ
� := ησ

2� > 0 such that for every ε ∈ (0, εσ
� ) Eq. (8) admits at least � GS with fast

decay u1, . . . , u�, where the function u j (r)r
n−2
2 has j local maxima and ( j−1) local minima

in (0,+∞). In particular, ε0� = ε�, and

εσ
1 = q − 2

q

[(q
2

) 2
q−2 − 1

]−1

= 2 + σ

n + σ

[(
n + σ

n − 2

) n−2
2+σ − 1

]−1

. (9)

Note that the table (6) refers to the specific case σ = 0. So, it should be slightly modified
according to the construction in [16], in order to include the σ -dependence.

Corollary 1 allows us to deduce multiplicity of radial GS with fast decay for

Δu + rσ [1 + εk(|x |)]uq(σ )−1 = 0, (10)

since the solutions to Eq. (8) correspond to the radial solutions of (10). We emphasize that
the GS of (10) need not be radial, since it is not possible to apply directly [6, Theorem 2] to
Eq. (10).

The proofs of Theorem 3 and Corollary 1 are obtained by transforming (8), via Fowler
transformation, into the non-autonomous dynamical system (12) introduced below. Regular
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solutions will be part of the unstable leaf Wu(T ), while fast decay solutions will be part
of the stable leaf Ws(T ): the existence of a GS with fast decay is then converted in the
search for an intersection between Wu(T ) and Ws(T ), or, equivalently, in the search for a
homoclinic trajectory of (12). The Fowler transformation allows to study elliptic equations by
adopting techniques borrowed from dynamical systems theory such as phase plane analysis,
invariant manifolds, homotopies and some ideas inspired by Melnikov theory, providing a
new geometrical perspective on the given equations. This approach started by Fowler in [19],
developed and deepened by Jones et al. in [13,30] and Johnson et al. in [26–29], have turned
out to be very fruitful in several different contexts.

The paper is organized as follows. In §2we introduce the Fowler transformation to convert
Eq. (8) into the dynamical system (12), we review some basic properties concerning the new
formulation of the problem, and we recall the crucial construction of a guiding curve for the
solutions of (12) conceived in [16]. In §3 we use a topological argument to get information
on the unstable leaf Wu(T ). In §4 we use the Kelvin inversion to translate information on
the unstable leaf Wu(·) into information on the stable leaf Ws(·). Finally, in §5 we prove
the existence of multiple intersections between Wu(T ) and Ws(T ), thus proving Theorem
3 and Corollary 1.

2 Preliminary Results Borrowed from [16]

In this Section we recall the main tools introduced in [16].
The Fowler transformation

x(t) = u(r)rα, y(t) = αu(r)rα + u′(r)rα+1 , (11)

α = n−2
2 , r = et , K(t) = K (et )

permits us to pass from (8) to the following two-dimensional dynamical system:
(
ẋ
ẏ

)
=

(
0 1
α2 0

) (
x
y

)
+

(
0

−K(t) xq−1

)
, (12)

where “ · ” denotes the differentiation with respect to t , and

q = q(σ ) = 2
n + σ

n − 2
> 2.

We recall that if σ = 0, i.e. if we consider (2), then q = q(0) = 2n
n−2 .

Let φ(t; τ, Q) be the trajectory of (12) which is in Q ∈ R
2 at t = τ . We denote by u(r; d)

the regular solution of (8) satisfying u(0; d) = d > 0, and by φ(t; d) = (x(t; d), y(t; d))

the corresponding trajectory of (12). From a standard application of L’Hôpital rule, we find
that u′(0; d) = 0, whenever σ > −1; thus u(x) = u(|x |; d) is smooth as solution of (10).

Similarly, we denote by v(r; c) the fast decay solution of (8) such that limr→∞v(r; c)rn−2

= c > 0, and by ψ(t; c) the corresponding trajectory of (12).

Remark 5 In the whole paper we assume that the function K ∈ C1(0,∞) has positive finite
limit both as r → 0 and as r → +∞, and that there exists 	 > 0 such that

lim
r→0

K ′(r)r1−	 = 0 and lim
r→∞K ′(r)r1+	 = 0.

These assumptions (cf. [23]) are enough to guarantee that the function K(t) is uniformly
continuous in R and to deduce the existence of the stable and unstable manifolds, see e.g.
[14, §13.4] or [29].
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Notice that if the hypotheses (H0
2) and (H∞

2 ) hold true, the assumptions of this Remark
are satisfied by choosing 	 = 1

2 min{l0, l∞}.
Let us briefly recall some contents of [16, §2].

Proposition 1 Assume that the hypotheses of Remark 5 are satisfied.

1. The origin is a saddle-type critical point for (12) and admits unstable and stable leaves
Ŵ u(τ ) and Ŵ s(τ ), which areC1 immersedmanifolds. The origin splits Ŵ u(τ ) and Ŵ s(τ )

in two connected components: we denote respectively byWu(τ ) andWs(τ ) the oneswhich
leave the origin and enter x > 0, i.e.

Wu(τ ) := {Q | limt→−∞ φ(t; τ, Q) = (0, 0), x(t; τ, Q) > 0 when t � 0} ,

Ws(τ ) := {Q | limt→+∞ φ(t; τ, Q) = (0, 0), x(t; τ, Q) > 0 when t 
 0} .
(13)

Wu(τ ) and Ws(τ ) are C1 immersed one-dimensional manifolds for any τ ∈ R.
2. For every d > 0, u(r; d) is a regular solution if and only if the corresponding trajectory

φ(·; d) is such that φ(τ ; d) ∈ Wu(τ ) for every τ ∈ R. Moreover, Wu(τ ) is tangent in the
origin to the line y = αx, for any τ ∈ R.

3. For every c > 0, v(r; c) is a fast decay solution if and only if the corresponding trajectory
ψ(·; c) is such that ψ(τ ; c) ∈ Ws(τ ) for every τ ∈ R. Moreover, Ws(τ ) is tangent in the
origin to the line y = −αx, for any τ ∈ R.

4. Wu(τ ) and Ws(τ ) depend smoothly on τ ; i.e. let L be a segment which intersects Wu(τ0)

– or Ws(τ0) – transversally in a point Q(τ0), then there is a neighborhood I of τ0 such
that Wu(τ ) – or Ws(τ ) – intersects L in a point Q(τ ) for any τ ∈ I , and the dependence
on τ is C1.

5. Fix τ ∈ R, and let Qu
τ (d) ∈ Wu(τ ) be such that φ(τ ; d) = Qu

τ (d), for every d ≥ 0.
Then, the function Qu

τ : [0,+∞) → Wu(τ ) is a smooth (bijective) parametrization of
Wu(τ ) and Qu

τ (0) = (0, 0). Analogously, the stable leave Ws(τ ) can be parametrized
directly by c := limr→∞v(r)rn−2. In particular, fix τ ∈ R, and let Qs

τ (c) ∈ Ws(τ ) be
such that ψ(τ ; c) = Qs

τ (c), for every c ≥ 0. Then, the function Qs
τ : [0,+∞) → Ws(τ )

is a smooth (bijective) parametrization of Ws(τ ) and Qs
τ (0) = (0, 0).

Since K is bounded, cf. (3), it is convenient to consider the autonomous system obtained
from (12) by imposing K(t) ≡ 1 + c:

(
ẋ
ẏ

)
=

(
0 1
α2 0

) (
x
y

)
+

(
0

−(1 + c) xq−1

)
. (14)

System (14) admits a unique critical point P∗(c) = (P∗(c), 0) in the halfplane {x > 0}. In
particular, the value P∗(c) is given by

P∗(c) =
(

α2

c + 1

) 1
q−2

. (15)

Proposition 2 Assume (3). Let τ ∈ R and Q = (X , 0)with X > 0 and consider the trajectory
φ(t; τ, Q) = (x(t; τ, Q), y(t; τ, Q)) of system (12).

Then, y′(τ ; τ, Q) > 0 if X < P∗(ε) :=
(

α2

ε+1

) 1
q−2

.

Conversely, y′(τ ; τ, Q) < 0 if X > P∗(0) := (
α2

) 1
q−2 .

We denote by E0 the set

E0 =
{
(x, y) | y2

2
− α2 x2

2
+ xq

q
≤ 0 , x ≥ 0

}
, (16)
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and by Γ0 its border. Let us briefly recall some contents of [16, §3].

Proposition 3 Assume (3) and (H1).

1. The energy function

H(x, y, t) := y2

2
− α2 x2

2
+ K(t)

xq

q
, (17)

is decreasing along the trajectories of (12) when t ≤ T := ln(R) and increasing when
t ≥ T . In fact, if φ(t) = (x(t), y(t)) solves (12) we have

dH(φ(t), t)

dt
= d

dt
[K(t)]

xq(t)

q
. (18)

Moreover, all the trajectoriesφ(t; d) = (x(t; d), y(t; d))andψ(s; c) = (x̄(s; c), ȳ(s; c))
of system (12) belong to E0 for every t ≤ T ≤ s and d > 0, c > 0. In particular,
x(t; d) > 0 for any t ≤ T and x̄(t; c) > 0 for any t ≥ T .

2. Let φ(t) = (x(t), y(t)) be a trajectory of (12); then the function

Hc(x, y) := y2

2
− α2 x2

2
+ (1 + c)

xq

q
(19)

satisfies

d

dt
Hc(x(t), y(t)) = [

1 + c − K(t)
]
y(t) x(t)q−1. (20)

Hence, whenever x(t) > 0 we find that Hc(x(t), y(t)) is increasing in t if c = ε and
y > 0, or if c = 0 and y < 0.

From Proposition 3-1 combined with definition (13), we notice that, for every τ1 ≤ T ≤
τ2, Wu(τ1) and Ws(τ2) are fully contained in the set E0 introduced in (16).

Proposition 4 Assume (3) and (H1). Then,

Wu(τ1) ⊂ E0, Ws(τ2) ⊂ E0, ∀ τ1 ≤ T ≤ τ2.

Let us mention a relevant consequence of Proposition 3-2.

Proposition 5 Assume (3) and (H1). There exists a decreasing sequence of positive values
(ε�)�∈N with the following property: for every 0 < ε < ε� we can construct a continuous and
injective spiral-like path γ inside E0 which rotates around the points P∗(ε) = (P∗(ε), 0)
and P∗(0) = (P∗(0), 0) for a total angle equal to 2π�, cf. Fig. 1.
The spiral γ is a guiding curve for system (12) in the following sense: the trajectories
intersecting γ cross the path from the inner part to the outer part for any t ∈ R, cf. Fig. 1.

The construction of the path γ is the object of [16, §3] and it is the tool that allows to
establish a computable lower bound for the values η� and ε�. The explicit expression of the
values ε� is given in Theorem 3 and in the table (6).

The guiding curve γ is obtained by appropriately gluing pieces of level curves of the
functions Hε and H0 in the halfplanes {y ≥ 0} and {y ≤ 0}, respectively.

Let us introduce some notation, cf. Fig. 1. Let us follow clockwise the path γ from
the origin onwards: we denote by A1, A2, . . . , A2� respectively the first, second, ... 2�th

(transversal) intersection ofγ with the x positive semi-axis.We set A0 = (0, 0) andwedenote
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P (ε) P(0)

Γ

Γ

Y

XO=A0

0

0

E

0

0

E

A

A

A
A

2

4 1

3

γ

γ

2A

4A
6A

8A

θ = 0 θ = 2π θ = 4π θ=6π θ = 8π

ρ = 0

γ

Wu (τ)

ρ = Μ

ρ = ρ *

F

0Γ

Fig. 1 The path γ guides the trajectories of (12). The vector field (in blue) on γ and on the green part of
the x axis is always transversal (Propositions 5 and 2), while on Γ0 the vector field (in red) may admit some
tangencies. However, Γ0 cannot be crossed by φ(t; d) for t ≤ T , see Proposition 3-1. Below, we give an
interpetation in polar coordinates (22) of the picture above: a trajectory which is in F at the time τ is forced
to remain inside F , guided by γ and Γ0, for every t > τ (t ≤ T ) until it crosses the line θ = 8π , provided
that 0 < ε < ε4 (Color figure online)

by Ai the branch of γ between Ai−1 and Ai , cf. [16, §3]. Moreover, setting Ai = (Ai , 0),
we find

0 = A0 < A2 < · · · < A2� < A2�+2 < · · · < P∗(ε) < P∗(0) <

< · · · < A2�+3 < A2�+1 < · · · < A1 . (21)

We conclude the survey of known results by recalling a crucial asymptotic property of
the trajectories φ(t; d) of (12). The statement is a reformulation of the ones in [11, Theorem
1.6] and [10, Lemma 2.2].
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Proposition 6 [16, Lemma 4.4] Assume conditions (H1)–(H0
2) and fix τ ≤ T . There is an

increasing sequence di → +∞ as i → +∞ satisfying the following property: for any i ∈ N

the trajectory φ(·; di ) is such that x(·; di ) > 0 and y(·; di ) has at least 2i non-degenerate
zeroes in the time interval (−∞, τ ).

Remark 6 We emphasize that (H0
2) does not seem to be a technical requirement; in fact the

existence of the sequence di in Proposition 6 is proved in [11, Theorem 1.6] as a consequence
of the existence of a trajectory φ(t) of (12) which has the whole Γ0 as α-limit set. However,
in [11, Theorem 1.1] it is shown that such a trajectory cannot exist if l0 ≥ n−2

2 in (H0
2). We

conjecture that, if (H0
2) is removed, Theorem 3 does not hold and that there exists an upper

bound N , with N ≥ 1, of the number of GS with fast decay of (8), even for ε → 0+.

According to Proposition 1-2, we need to locate the unstable leaves Wu(τ ) in order to
detect regular solutions of system (12), andwe need to compute the number of laps performed
by Wu(τ ) around the points P∗(ε) and P∗(0) to ensure multiplicity. We are also interested
in correlating the number of rotations drawn by the branch of Wu(τ ) between the origin and
its point Qu

τ (d) = φ(τ ; d), with the number of rotations realized by the solution φ(·; d) in
(−∞, τ ].

In line with the behaviour of the trajectories of (12) illustrated in Propositions 3 and 5,
fixed τ ≤ T we also expect that Wu(τ ) rotates clockwise accompanied by the spiral γ , and
intersects 2�-times the x axis, when ε < ε�. This conjecture will be demonstrated in the next
Section.

3 Properties of the Unstable Manifold

This Section is devoted to determine the position and the shape of Wu(τ ) using polar
coordinates. Let M = (M, 0) be the middle point between P∗(ε) and P∗(0), i.e. M =
1
2 (P

∗(ε) + P∗(0)). The polar coordinates with respect to M are given by:
{
x = M − ρ cos θ

y = ρ sin θ .
(22)

Remark 7 The path γ and the set Γ0 can be parametrized according to (22). In particular, for
every 0 < ε < ε�, we define the function γ : [0, 2π�] → R

+ such that

(x, y) = (M − ρ cos θ, ρ sin θ) ∈ γ ⇐⇒ ρ = γ (θ).

Similarly, we define the function Γ0 : [0, 2π ] → R
+ such that

(x, y) = (M − ρ cos θ, ρ sin θ) ∈ Γ0 ⇐⇒ ρ = Γ0(θ).

Notice that Γ0 can be extended periodically, since Γ0(0) = Γ0(2π) = M .
Observe that the spiral γ , the point M, the functions γ and Γ0 depend on ε, but we leave this
dependence unsaid for simplicity.

Finally, since γ is a subset of the bounded region delimited by Γ0, γ (θ) < Γ0(θ), and
from (21)

0 < γ ((2i + 2)π) < γ (2iπ) < · · · < γ (2π) < γ (0) = M . (23)

Moreover, by construction, γ (θ) > ρ∗ := P∗(0)−P∗(ε)
2 > 0.
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We now parametrize the trajectories φ(t; d) of (12) corresponding to regular solutions
u(r; d) of (8) using the polar coordinates (22). We set

φ(t; d) = (
M − �u

d (t) cos(ϑ
u
d (t)) , �u

d (t) sin(ϑ
u
d (t))

)
. (24)

According to Proposition 1-2, the polar coordinates are well-defined in a neighborhood of
t = −∞: it is not restrictive to assume that

lim
t→−∞ ϑu

d (t) = 0 . (25)

When no ambiguity arises, we drop the subscript in the polar coordinates (ϑ, �).
Assume 0 < ε < ε�. From Propositions 4 and 5, we notice that the trajectory φ(t; d),

corresponding to a regular solution u(r; d), is contained in E0 at least for any t ≤ T and it
is guided by the spiral γ until it completes � rotations, cf. Fig. 1.

Let us set

F = {(θ, ρ) ∈ R
2 | θ ∈ [0, 2π�] , 0 < γ (θ) < ρ < Γ0(θ)} . (26)

We denote by td ≤ T the time at which φ(t; d) leaves F ; if the trajectory remains in F ,
we set td := T . More precisely, we have the following.

Remark 8 Assume (H1) and (3) with 0 < ε < ε�. For every d > 0, there exists td ≤ T such
that the polar coordinates in (24) are well-defined whenever t ∈ Jd = (−∞, td) and have
the following property:

ϑu
d (t) ∈ (0, 2π�) , (ϑu

d (t), �u
d (t)) ∈ F , for every t ∈ Jd . (27)

Moreover, ϑu
d (td) ≤ 2π� and if td < T then ϑu

d (td) = 2π�.

Hence, for any d > 0 we have

(ϑu
d (t), �u

d (t)) ∈ F , whenever t ∈ Jd . (28)

We are now able to restate Proposition 6 in terms of the angles.

Proposition 7 Fix a positive integer �. Assume conditions (H1)–(H0
2) and (3) with 0 < ε <

ε�. Then, for every τ ≤ T there is D�(τ ) > 0 such that

ϑu
D�(τ )(τ ) = 2�π . (29)

Without loss of generality, we assume that D�(τ ) is the smallest value which satisfies (29).
Hence, 0 < ϑu

d (T ) < 2�π for any 0 < d < D�(T ).
The proof is obtained from a trivial adaptation of the proof provided in [16, Theorem 1.1],

i.e. Theorem 1 of this article. Note that in [16, Theorem 1.1] the assumption (H1) holds under
the restriction R = 1, or, equivalently, T = 0, and (29) is proved for τ = T = 0. In fact, in
[16] (cf. the conclusive sentence of the proof of Theorem A) the authors show the existence
of a value D�(T ) > 0 such that the trajectory φ(t; D�(T )) has the following properties:
x(t; D�(T )) > 0 for any t ≤ T and ϑu

D�(T )(T ) = 2�π . Theorem 1.1 in [16] immediately
follows from this property because of the even symmetry of K(t) (cf. assumption (K0)),
which in the present paper is not assumed. So, here we just need to repeat the proof in [16,
Theorem 1.1] word by word, with T := ln(R) in place of 0 and a generic τ ≤ T .

However, we sketch the argument for completeness, remanding the interested reader to
[16] for a full fledged proof.
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Proof of Proposition 7 From Proposition 3-1, we have φ(t; d) ∈ E0 for any t ≤ T and any
d > 0. So, from Proposition 2 and Remark 8, see also Fig. 1, we notice that the first 2�
possible intersections of φ(·; d) with the x positive semi-axis are trasversal in (−∞, T ].
Then, fixed τ ≤ T , we define the set

I2�(τ ) := {d > 0 | y(t; d) has at least 2� zeroes for t < τ } ,

and we denote by Tj (d) the j th zero of y(·; d), for j = 1, . . . , 2�. Obviously, T2�(d) < τ

when d ∈ I2�(τ ). From Proposition 6 we deduce that there exists d� ∈ I2�(τ ), so I2�(τ ) 	= ∅.
Furthermore, due to the transversality of the crossings, it can be shown that I2�(τ ) is open
and that T2�(d) is continuous in I2�(τ ). According to [16, Remark 4.3], we also know that
d /∈ I2�(τ ) whenever d > 0 is small enough; hence we can define

D�(τ ) := inf I2�(τ ) > 0. (30)

Recalling Remark 8, if d < D�(τ ), then td ≥ τ so that (ϑu
d (t), �u

d (t)) ∈ F for every
t ≤ τ . By continuity, Propositions 3-1 and 5 we conclude that (ϑu

D�(τ )(t), �
u
D�(τ )(t)) ∈ F for

every t ≤ τ , in particular ϑu
D�(τ )(τ ) ≤ 2π�. We cannot have ϑu

D�(τ )(τ ) < 2π�, otherwise by
continuity we would find δ > 0 such that ϑu

d (τ ) < 2π� and (ϑu
d (t), �u

d (t)) ∈ F for every
t ≤ τ , and any d ∈ (D�(τ ), D�(τ )+ δ), thus contradicting (30). Hence, ϑu

D�(τ )(τ ) = 2π�. ��
As an immediate consequence, taking into account the definition of td given in Remark

8, we observe that

tD�(τ ) = τ and ϑu
d (τ ) ∈ (0, 2π�) for 0 < d < D�(τ ) , τ ≤ T . (31)

We now focus on the leafWu(T ): we recall it is a set of initial conditions converging to the
origin, and a priori it is not a graph of a trajectory unless the system is autonomous.Moreover,
the transversality of its intersections with the x positive semi-axis is not guaranteed.

Taking into account Proposition 1-5, we can introduce the parametrization in polar coor-
dinates of Wu(T ), by setting

Qu
T (d) = φ(T ; d) := (

M − Ru
T (d) cos(ξuT (d)) , Ru

T (d) sin(ξuT (d))
)
, (32)

where d > 0 is small enough. Recalling that Qu
T (0) = (0, 0), we may assume that

ξuT (0) = 0 . (33)

We are now interested in correlating the number of rotations of Wu(T ) with the ones
of the regular solutions of (12). To this aim, we follow the techniques introduced and
developed in the papers [30] and [2], dealing with autonomous problems. For extensions
to non-autonomous settings, we refer to [15,18,23,25,35].

From Remark 8 and Proposition 7, if 0 < ε < ε� the polar coordinates (32) are well
defined in the set [0, D�(T )], since �u

d (T ) > 0, cf. (26). We now show that the number of
rotations around M realized by the flow φ(·; d) in (−∞, T ] equals the number of rotations
performed by the branch of Wu(T ) between the origin and its point Qu

T (d) = φ(T ; d).

Lemma 1 Fix a positive integer �. Assume conditions (H1)-(H0
2) and (3) with 0 < ε < ε�.

For any d ∈ [0, D�(T )], consider the point Q = Qu
T (d) ∈ Wu(T ). Then,

ϑu
d (T ) = ξuT (d), (34)

i.e. the angle ξuT (d), performed by the branch of Wu(T ) between the origin and Q in a
rotation around M, equals the one performed by the trajectory φ(·; d) = φ(·; T , Q) in the
interval of time (−∞, T ].
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Proof The proof is achieved by exhibiting an homotopy between the two curves and it is
given in [15, Lemmas 3.3, 3.5] which is a slight variant of the argument in [2], see also [25,
Lemma 4.3] for a detailed proof in a more general context. ��
Remark 9 From Proposition 7 and Lemma 1, we deduce that the branch of Wu(T ) between
the origin and Qu

T (D�(T )) performs exactly � complete rotations around M.

Remark 10 From Remark 8, (31) and Lemma 1, we see that

ξuT (d) ∈ (0, 2π�) , (ξuT (d),Ru
T (d)) ∈ F , for any 0 < d < D�(T ) , (35)

and ξuT (D�(T )) = 2π�, ρ∗ < Ru
T (D�(T )) < M , where ρ∗ = P∗(0)−P∗(ε)

2 > 0 is defined
in Remark 7.

Remark 11 It is easy to check that Eqs. (32), (33), Lemma 1 and Remarks 9, 10 hold, in fact,
for any τ ≤ T in the place of T . If we choose τ > T we cannot ensure anymore that the
trajectories do not touch M, so our argument fails.

The existence of GS with fast decay corresponds to the existence of intersections between
Wu(T ) and Ws(T ). For this reason, we now concentrate on the study of the stable leaves.

4 Kelvin Inversion and Stable Manifold

An important tool in the analysis of Eq. (2) is a change of variables classically known as
Kelvin inversion, useful to convert the information from the unstable leaves to the stable
ones. Set

s = r−1 , ũ(s) = s2−nu(1/s), K̃ (s) = K (1/s) . (36)

Froma straightforward computation,u(r) satisfies (2) if andonly if ũ(s) satisfies the following
equation

d

ds

[
dũ

ds
sn−1

]
+ K̃ (s) sn−1 ũq−1 = 0 . (37)

Thus, the change of variables (36) brings regular solutions of (2) into fast decay solutions
ũ(s) of (37), and viceversa.
If K satisfies (H1), then K̃ satisfies the equivalent condition (˜H1):

(˜H1)
d K̃

ds
≤ 0 and

d K̃

ds
	≡ 0 in (0, 1/R),

d K̃

ds
≥ 0 and

d K̃

ds
	≡ 0 in (1/R,+∞).

Moreover, condition (H∞
2 ) on K corresponds to the following condition on K̃ :

(˜H2) K̃ (s) = K∞ − a∞sl∞ + h̃∞(s), where h̃(s) = h(1/s),

a∞ > 0, 0 < l∞ <
n − 2

2
, lim
s→0

∣∣∣h̃∞(s)
∣∣∣ s−l∞ +

∣∣∣∣∣
dh̃∞(s)

ds

∣∣∣∣∣
s−l∞+1 = 0.

Note that assumption (˜H2) is equivalent to assumption (H0
2), provided that we replace

a0 and l0 respectively with a∞ and l∞ in (˜H2). According to [23], we combine the Kelvin
inversion with the Fowler transformation (11) by setting

s = eT , x̃(T ) = ũ(s)sα, ỹ(T ) = αũ(s)sα + dũ(s)

ds
sα+1. (38)
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The change of variables (38) transforms (36) into the equivalent two-dimensional dynamical
system, see [23, p. 521] for a full fledged argument:

(
dx̃
dT̃
d ỹ
dT̃

)

=
(
0 1
α2 0

) (
x̃
ỹ

)
+

(
0

−K̃(T ) x̃q−1

)
, (39)

where K̃(T ) = K̃ (eT ) = K(−T ). Due to the reciprocal analogy, the study of system (39)
reduces to the study of system (12). In particular, system (39) admits unstable and stable
leaves, W̃ u(−τ) and W̃ s(−τ), which satisfy the same properties of Wu(τ ) and Ws(τ ),
respectively.

Notice that the trajectory φ(t) = (x(t), y(t)) solves system (12) if and only if φ̃(T ) :=
(x̃(T ), ỹ(T )) solves (39), where

T = −t, x̃(T ) = x(t), ỹ(T ) = −y(t), (40)

and, obviously, K̃(T ) = K(t). As an immediate consequence, we get the following property.

Remark 12 The stable leaves Ws(τ ) of (12) and the unstable leaves W̃ u(−τ) of (39) are
symmetric with respect to the x axis, as well as Wu(τ ) and W̃ s(−τ).

This enables us to automatically reduce the study of the stable leaves Ws(τ ) of (12) to the
study of the unstable leaves W̃ u(−τ) of (39).
Hence, each property of the regular solutions of (12) and of the unstable leaves described in
the previous sections can be translated into that of fast decay solutions and of stable leaves,
respectively.

Fix ε ∈ (0, ε�). Let γ̃ be the spiral obtained from γ with a reflection with respect to the
x axis, i.e.

γ̃ := {(M − ρ cos θ,−ρ sin θ) | ρ = γ (θ) , 0 ≤ θ ≤ 2�π}.
Equivalently, let us define γ̃ : [−2�π, 0] → R

+, by setting γ̃ (θ) = γ (−θ) for any −2�π ≤
θ ≤ 0. Thus, we obtain

(x, y) = (M − ρ cos θ, ρ sin θ) ∈ γ̃ ⇐⇒ ρ = γ̃ (θ) = γ (−θ).

Similarly, let F̃ be the set obtained from F with a reflection with respect to the x axis, i.e.

F̃ := {(θ, ρ) ∈ R
2 | θ ∈ [−2π�, 0] , γ̃ (θ) < ρ < Γ0(θ)} .

Let us focus on the stable leafWs(T ). Taking into account Proposition 1-5,we parametrize
Ws(T ) in polar coordinates, by setting

Qs
T (c) = ψ(T ; c) := (

M − Rs
T (c) cos(ξ sT (c)) , Rs

T (c) sin(ξ sT (c))
)

, (41)

for every c ≥ 0. Recalling that Qs
T (0) = (0, 0), we may assume that

ξ sT (0) = 0 . (42)

From Remarks 10 and 12, we easily obtain the following translation of Remark 10.

Proposition 8 Fix a positive integer �. Assume conditions (H1), (H∞
2 ) and (3) with 0 < ε <

ε�. Consider the parametrization Qs
T of the stable manifold Ws(T ), as in (41). Then, there

is c�(T ) such that

ξ sT (c) ∈ (−2π�, 0), (ξ sT (c),Rs
T (c)) ∈ F̃ , for every c ∈ (0, c�(T )),
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and

ξ sT (c�(T )) = −2�π , ρ∗ < Rs
T (c�(T )) < M,

where ρ∗ = P∗(0)−P∗(ε)
2 > 0 is defined in Remark 7.

The parametrization of the trajectories ψ(t; c) of (12) corresponding to fast decay solu-
tions v(r; c) of (8) is given by

ψ(t; c) = (
M − �s

c(t) cos(ϑ
s
c (t)) , �s

c(t) sin(ϑ
s
c (t))

)
, (43)

where, according to Proposition 1-3, it is not restrictive to set lim
t→+∞ ϑ s

c (t) = 0.

The next lemma is the translation of Lemma 1 for the stable manifold.

Lemma 2 Fix a positive integer �. Assume conditions (H1), (H∞
2 ) and (3) with 0 < ε < ε�.

For any c ∈ [0, c�(T )], consider the point Qs = Qs
T (c) ∈ Ws(T ). Then,

ϑ s
c (T ) = ξ sT (c) < 0, (44)

i.e. the trajectory ψ(·; c) = φ(·; T , Qs
T ) performs in the interval of time [T ,+∞) exactly

the angle −ξ sT (c) around M.

5 Main Result

This section is devoted to detect intersections betweenWu(T ) andWs(T ), which correspond
to ground states of (8) having fast decay.

Lemma 3 Fix a positive integer �. Assume conditions (H1)-(H0
2)-(H

∞
2 ) and (3) with 0 <

ε < ε�. Then Wu(T ) intersects Ws(T ) at least in � points Q∗
j , with j ∈ {1, . . . , �}.

Proof The proof is based on the same ideas developed in the proof of [15, Lemma 3.9]. Let
us fix ε ∈ (0, ε�).

According to the parametrizations (32) ofWu(T ) and (41) ofWs(T ), we define the curves
Γ u : [0,+∞) → R × [0,+∞) and Γ s : [0,+∞) → R × [0,+∞) by setting

Γ u(d) := (ξuT (d),Ru
T (d)) and Γ s(c) := (ξ sT (c),Rs

T (c)) . (45)

Note that Γ u and Γ s are the liftings of Wu(T ) and Ws(T ), respectively. Since τ = T is
fixed, from now to the end of the proof we omit the dependence of ξuT (d), Ru

T (d), ξ sT (c),
Rs

T (c), D�(T ), c�(T ), ... on this variable to deal with less cumbersome notation.
Remark 10 ensures the existence of D� > 0 such that ξu(D�) = 2π�. Thus, recalling that

Γ u(0) = (0, M), from the continuity of ξu we deduce that for every j ∈ {1, . . . , �} there
exists d̃ j ∈ (0, D�] satisfying

ξu(d̃ j ) = 2π j and 0 < ξu(d) < 2π j ∀ d ∈ (0, d̃ j ).

Observe that by construction the sequence d̃ j is increasing, and we have d̃� = D�. From
Proposition 4, we deduce that Ru(d̃ j ) < M for any j ∈ {1, . . . , �}. Furthermore, since
Wu(T ) cannot have self-intersections, we find that

0 < Ru(d̃�) < Ru(d̃�−1) < . . . < Ru(d̃1) < M . (46)

123



Journal of Dynamics and Differential Equations

We denote by Γ̃ u the restriction of Γ u to the interval [0, d̃�], i.e.
Γ̃ u := Γ u∣∣

∣[0,d̃�]
: [0, d̃�] → [0, 2π�] × [0,+∞).

Analogous arguments apply to the curve Γ s defined in (45). In particular, by Proposition 8
there exists c� > 0 such that ξ s(c�) = −2π�. Thus, recalling the equality Γ s(0) = (0, M),
for every j ∈ {1, . . . , �} we deduce the existence of c̃ j ∈ (0, c�] satisfying

ξ s(c̃ j ) = −2π j and − 2π j < ξ s(c) < 0 ∀ c ∈ (0, c̃ j ).

Again by construction, the sequence c̃ j is increasing and c̃� = c�. We now consider the
following translations in the angular-coordinate of the curve Γ s

Γ s
j (c) := (ξ s(c) + 2π j, Rs(c)) , (47)

for every j ∈ {0, 1, . . . , �}. Note that the curveΓ s
j cannot intersectΓ

s
k if j 	= k, sinceWs(T )

cannot have self-intersections.
Moreover, observe that Γ s

0 = Γ s , Γ s
j (0) = (2π j, M) and Γ s

j (c̃ j ) = (0,Rs(c̃ j )). Using
also Proposition 4, we find

0 < Rs(c̃�) < Rs(c̃�−1) < . . . < Rs(c̃1) < M . (48)

Summarizing, we have Γ̃ u(0) = (0, M), and, for any j ∈ {1, . . . , �}, Γ s
j (c̃ j ) =

(0,Rs(c̃ j )) with Rs(c̃ j ) < M , and Γ s
j (0) = (2π j, M), Γ̃ u(d̃ j ) = (2π j,Ru(d̃ j )) with

Ru(d̃ j ) < M . Thus, from a continuity argument, it follows that for any fixed j ∈ {1, . . . , �},
the graphs of Γ s

j and Γ̃ u intersect at least in a point, say Γ̃ u(d∗
j ), where 0 < d∗

j < d̃ j , see
Figs. 2 and 3. We emphasize that

Q∗
j := (

M − Ru(d∗
j ) cos(ξ

u(d∗
j )) , Ru(d∗

j ) sin(ξ
u(d∗

j ))
) ∈ Wu(T ) ∩ Ws(T )

for any j ∈ {1, . . . , �}.
Note that Q∗

j 	= Q∗
k for j 	= k, since Γ s

j and Γ s
k cannot intersect; so we have found � distinct

points in (Wu(T ) ∩ Ws(T )) and the Lemma is proved. �� ��

Let c∗
j ∈ (0, c̃ j ) be the values such that Γ̃ u(d∗

j ) = Γ s
j (c

∗
j ) so that

(
M − Rs(c∗

j ) cos(ξ
s(c∗

j )) , Rs(c∗
j ) sin(ξ

s(c∗
j ))

) = Q∗
j .

According to (45) and (47), we infer that

ξuT (d∗
j ) = ξ sT (c∗

j ) + 2π j . (49)

We are now ready to prove our main result Corollary 1 from which Theorem 3 follows as
a special case.

Proof of Corollary 1 By construction, φ(t; T , Q∗
j ) is a homoclinic trajectory of (12), and the

corresponding solution u j (r) := u(r; d∗
j ) of (8) is regular and has fast decay.

Furthermore, we have φ(t; T , Q∗
j ) ∈ E0 for any t ∈ R. In fact, φ(t; T , Q∗

j ) ∈ Wu(t) ⊂
E0 for any t ≤ T and φ(t; T , Q∗

j ) ∈ Ws(t) ⊂ E0 for any t ≥ T , see Proposition 4.
Hence, x(t; T , Q∗

j ) > 0 for any t ∈ R, whence u(r; d∗
j ) is positive for any r > 0, and,

consequently, it is a GS with fast decay.
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Fig. 2 Intersections between the (blue) curve Γ̃ u and the (red) curves Γ s
i for i = 1, 2, 3, 4, in the (θ, ρ)

plane (above), and the corresponding intersections in the (x, y) plane (below) between Wu(T ) (blue) and
Ws (T ) (red). Here we illustrate the easiest case where the intersection between Γ̃ u and Γ s

i is unique for
i = 1, 2, 3, 4, so there are 4 GS with fast decay. The trajectory φ(t;T , Q∗

i ) completes exactly i loops around
M, for i = 1, 2, 3, 4 (Color figure online)

Moreover, from Lemma 1 and Lemma 2, we know that φ(·; T , Q∗
j ) performs the angle

ϑu
d∗
j
(T ) = ξuT (d∗

j ) around M in (−∞, T ], and the angle −ξ sT (c∗
j ) in [T ,+∞). Therefore,

relation (49) ensures that φ(t; T , Q∗
j ) performs for t ∈ R the angle

ξuT (d∗
j ) − ξ sT (c∗

j ) = 2π j .

This implies that φ(t; T , Q∗
j ) for t ∈ R makes exactly j rotations clockwise around M.

Furthermore, the crossings of φ(t; T , Q∗
j ) with the x positive semi-axis are all transversal,

so x(t; T , Q∗
j ) has exactly j local maxima on the right side of M and ( j − 1) local minima

on the left side. The thesis immediately follows from transformation (11). ��
Remark 13 We can assume w.l.o.g. that the sequence d∗

j is increasing, simply redefining d∗
j

as follows

d∗
j := min{D ∈ (0, d̃ j ) : Γ̃ u(D) ∈ Γ s

j ((0, c̃�))} .
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M

=Mρ

ρ

Fig. 3 Intersections between the (blue) curve Γ̃ u and the (red) curves Γ s
i for i = 1, 2, 3, 4, in the (θ, ρ) plane

(above) and the corresponding intersections in the (x, y) plane betweenWu(T ) andWs (T ) (below). Here we
illustrate the more difficult case where the intersection between Γ̃ u (in blue) and Γ s

i (in red) is not unique for
i = 2, 3 and there are 8 GS with fast decay. The trajectories φ(t;T , Q∗

j ), φ(t;T , B∗
h), φ(t;T ,C∗

h) complete
exactly j and h loops around M, for j = 1, 2, 3, 4, and h = 2, 3 (Color figure online)

In fact, since the curveΓ s
j cannot intersectΓ

s
k if j 	= k, themonotonicity of d∗

j easily follows.
We refer to [15, Remark 3.10] for more details.

Remark 14 Weemphasize that, a priori, the curvesΓ s
j and Γ̃ u may have several intersections:

in this case Eq. (8) admits more than � GS with fast decay, see Fig. 3.
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