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Abstract. In this paper we discuss the ordering properties of positive
radial solutions of the equation

Δpu(x) + k|x|δuq−1(x) = 0

where x ∈ R
n, n > p > 1, k > 0, δ > −p, q > p. We are interested both

in regular ground states u (GS), defined and positive in the whole of Rn,
and in singular ground states v (SGS), defined and positive in R

n \ {0}
and such that lim|x|→0 v(x) = +∞. A key role in this analysis is played by

two bifurcation parameters pJL(δ) and pjl(δ), such that pJL(δ) > p∗(δ) >
pjl(δ) > p: pJL(δ) generalizes the classical Joseph–Lundgren exponent,
and pjl(δ) its dual. We show that GS are well ordered, i.e. they cannot
cross each other if and only if q ≥ pJL(δ); this way we extend to the p > 1
case the result proved in Miyamoto (Nonlinear Differ Equ Appl 23(2):24,
2016), Miyamoto and Takahashi (Arch Math Basel 108(1):71–83, 2017)
for the p ≥ 2 case. Analogously we show that SGS are well ordered, if
and only if q ≤ pjl(δ); this latter result seems to be known just in the
classical p = 2 and δ = 0 case, and also the expression of pjl(δ) has not
appeared in literature previously.
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1. Introduction

In this paper we continue the discussion started by Miyamoto [25] and Miyamoto
et al [26] concerning the ordering properties of radial solutions for a class of
quasilinear elliptic equations, including p-Laplacian and k-Hessian.

Let us start our discussion from the p-Laplace setting, i.e. we consider
radial solutions u(|x|) = u(r) for the following equation

Δpu(x) + k|x|δu(x)q−1 = 0, x ∈ R
n, (1.1)

where Δp(u) = div(∇u|∇u|p−2). In the whole paper we always assume the
following relations for the parameters

H k > 0, n > p, δ > −p and q > p.

Since we are just interested in radial solutions we restrict to consider the
following singular ODE:

(u′|u′|p−2rn−1)′ + rδ+n−1kuq−1 = 0, (1.2)

where ′ = ∂
∂r .

Let us introduce some terminology. We say that a definitively positive
solution u(r) is regular if u(0) = d > 0 and that it is singular if limr→0u(r) =
+∞; analogously we say that u(r) has fast decay if limr→∞ u(r)r(n−p)/(p−1) =
L > 0 and that it has slow decay if limr→+∞u(r)r(n−p)/(p−1) = +∞. We
denote by u(r; d) a regular solution to (1.2) such that u(0; d) = d > 0 and
by v(r;L) a fast decay solution to (1.2) such that limr→+∞v(r)r(n−p)/(p−1) =
L > 0.

In fact for any d > 0 and any L > 0 there is a unique regular solution
u(r; d) and a unique fast decay solution v(r;L) to (1.2), see Proposition 1.5
and Theorem 1.6.

A Ground State (GS) and a Singular Ground State (SGS) are respectively
a regular and a singular solution of (1.2) which are positive for any r > 0; it
is easy to check that in both cases limr→+∞u(r) = 0.

It is well known that the structure of positive solutions to (1.1) undergoes
several bifurcations as q passes through some critical exponents, in particular

p∗(δ) :=
p(n − 1) + δ(p − 1)

n − p
< p∗(δ) :=

p(n + δ)
n − p

. (1.3)

If q > p∗(δ) there exists an explicitly known SGS with slow decay u(r;∞) :=
Pxr−α where Px is defined in (2.3). Further, if q ≥ p∗(δ) all the regular solu-
tions are GS. In particular we have the following classical results see e.g. [12,
§2].

Theorem A. Assume H. If q > p∗(δ), p > 1, all the regular solutions to (1.2)
are GS with slow decay, and there is a unique SGS with slow decay u(r;∞) :=
Pxr−α, where α := p+δ

q−p and Px > 0 is an explicitly known constant, see (2.3).
There are no other positive solutions for any r > 0: fast decay solutions

exist but they are sign changing.
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Theorem B. Assume H. If p∗(δ) < q < p∗(δ) all the fast decay solutions are
SGS with fast decay, and there is a unique SGS with slow decay u(r;∞) :=
Pxr−α. There are no other solutions positive for any r > 0: regular solutions
exist but they are sign changing.

In order to complete the picture we recall that if q = p∗(δ) then regular
solutions are GS with fast decay and in fact they are explicitly known, see e.g.
[25, Eq. (1.17)] and there is a two parameter family of SGS with slow decay,
see e.g. [12].

We think it is worthwhile to point out that p∗ := p∗(0) is related to the
continuity of the trace operator in Lq, while p∗ := p∗(0) is the Sobolev critical
exponent so it is the upper bound for the compactness of the embedding of Lq

in W 1,p.
In the classical p = 2 and δ = 0 case the intersection properties of positive

solutions depend on two further critical exponents, i.e.

2jl :=
{

2 + 4
n−4+2

√
n−1

, if n ≥ 3
∞, if n = {1, 2}

2JL :=
{

2 + 4
n−4−2

√
n−1

, if n ≥ 11
∞, if n ≤ 10.

(1.4)

Notice that 2 < 2∗(0) < 2jl < 2∗(0) < 2JL. The latter, 2JL, is the so called
Joseph- Lundgren exponent and it was introduced in [23], while 2jl was in-
troduced in [4]: 2JL and 2jl are used to determine the intersection properties
respectively of regular and singular solutions of (1.2).
Namely if 2∗ < q < 2JL all the GS of Theorem A intersect each other
indefinitely, while if q ≥ 2JL they are well ordered, i.e. if d2 > d1 then
u(r; d2) > u(r; d1), for any r ≥ 0.

These results are crucial for determining the long time behaviour of pos-
itive solutions of the following parabolic problem{

∂u
∂t (t, x) = Δu(t, x) + |x|δuq−1(t, x)
u(0, x) = U0(x),

(1.5)

where U0(x) need not be radial. We emphasise that (1.5) is a simple model
for an explosion: u describes the temperature and the non linearity |x|δuq−1

represents a spatial-dependent esothermic reaction. The two main expected
behaviors are the blowing up in finite time of the solution (the explosion takes
place) or the convergence to zero of the solution (the temperature is too low
to initiate the explosion).

If 2∗ < q < 2JL, using the intersection property in Theorem A, it is
possible to construct sub and super solutions and to show that the radial GS
are on the threshold between blowing up and fading solutions, see [2,19,31] for
details. Further, if q ≥ 2JL, the ordering property described in Theorem B is
essential to prove that GS enjoy some stability in appropriated L∞ weighted
space, see again [2,19,31]. In fact Theorem B was a key stone for a flourishing
of interesting papers, concerning the possible rate of convergence either to the
null solution or to the GS, or to determine the speed of the blow up of the
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solutions of (1.5), see e.g. [9,21,27] and references therein, see also Corollary
3.6 below.
The generalisation of 2JL to a p-Laplace context firstly appeared in [3] (see
also [15] and [25]).
Its complicated expression can be found explicitly in [25, (1.13)] and it is
obtained as the largest solution of a quadratic equation, see Sect. 4.1. The
exponent 2jl, is the bifurcation parameter for the ordering properties of SGS.
This characteristic is again crucial for (1.5): in fact Sato and Yanagida in the
interesting paper [28] managed to prove local uniqueness of singular solutions
of (1.5) (assuming a priori that the type of singularity is preserved for any
t ≥ 0) and some stability properties of SGS with slow and fast decay when
p = 2, δ = 0 and 2∗(0) < q < 2jl, see also [22] and Corollary 3.7 below.

One achievement of this article is to obtain the expression of 2jl in a
p-Laplace context: it is denoted by pjl(δ) and it is the smallest solution of the
quadratic equation mentioned above, see Sect. 4.1 and in particular equation
(4.4). For any value of the parameters we have:

p < p∗(δ) < pjl(δ) < p∗(δ) < pJL(δ) ≤ ∞.

One of our main results is the following

Theorem 1.1. Assume H, q ≥ max{2, pJL(δ)} and consider (1.2). If 0 < d1 <
d2, then 0 < u(r; d1) < u(r; d2) for any r ≥ 0.

We emphasise that this result has already been proved in [31] in the case
p = 2, and in [25,26] when p > 2. Here we extend it to the 1 < p < 2 case
too. After the paper was completed we were informed that Theorem 1.1 was
recently proved by Guo and Zhou in the 1 < p < 2 case too, see [20], which,
however, is in Chinese.

Theorem 1.1 is in some sense optimal. In fact we have the following known
result, see e.g. [15,25].

Theorem C. Assume H, p∗(δ) < q < pJL(δ) and consider (1.2). Then for any
R > 0 and 0 < d1 < d2 the function u(r; d1) − u(r; d2) changes sign infinitely
many times when r ≥ R.

In the classical p = 2 case Theorem C has been proved in [19,31] and it
was an important ingredient to prove the weak asymptotic stability of the GS,
u(r; d), for (1.5), and several nice results concerning the rate of convergence of
the solutions of (1.5), see e.g. [27] and references therein.

We give a second main contribution concerning the dual situation, i.e.
the ordering properties of SGS in the subcritical case.

Theorem 1.2. Assume H, p∗(δ) < q ≤ pjl(δ), q ≥ 2 and consider the SGS
with fast decay v(r;L). If 0 < L1 < L2, then 0 < v(r;L1) < v(r;L2) for any
r > 0.

We emphasize that the rather weak condition q ≥ 2 in Theorems 1.1 and
1.2 seems to be technical. However it is always satisfied if p ≥ 2.

As far as we are aware the ordering properties of SGS are known just
when p = 2 and δ = 0 (see [4, Proposition 2.5]).
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Table 1. Summary of the results for the p-Laplace setting

Range of q (p∗, pjl] (pjl, p
∗) (p∗, pJL) [pJL,∞)

Solution type SGS SGS GS GS
Structure Ordered (q ≥ 2) Indefinite Indefinite Ordered (q ≥ 2)
Theorem Th. 1.2 Th. 1.3 Th. C Th. 1.1

One of the main purposes of this paper is to generalise this result to the
p > 1 and δ > −p case. In fact in the p = 2 case Theorem 1.2 can be obtained
from Theorem 1.1 by combining Kelvin inversion and Fowler transformation,
however as far as we are aware the result has not yet appeared in literature
(we provide a short proof in this easier case at the end of Sect. 3). Anyway
in the general p > 1 case the Kelvin inversion is not available, so we have to
argue differently, in fact even the exponent pjl(δ) was known just in the case
p = 2 and δ = 0.

Also in this context the result is optimal, i.e. we have the following result
which seems to be new, as far as we are aware.

Theorem 1.3. Assume H, pjl(δ) < q < p∗(δ); then the SGS v(r;L) of (1.2)
intersect each other indefinitely. More precisely for any R > 0 and 0 < L1 <
L2 ≤ ∞ the function v(r;L1) − v(r;L2) changes sign infinitely many times
when r ≤ R. Here v(r;∞) = Pxr−α.

We wish to spend few lines to point out that, if δ ≤ 0 and p = 2, positive
solutions to (1.1) have to be radial, see e.g. [17], while if δ > 0 even in the p = 2
case we may have non-radial positive solutions, see e.g. [7] where the authors
constructed a positive non-radial singular solution of the Hénon equation in
R

n \ {0}; see also [30] for an example concerning a non-radial regular solution
in a ball in the critical case.

In fact there are some symmetry results also in the p > 1 case, when
δ = 0: e.g. radial symmetry is ensured in the critical case for any p > 1, see
[29], and by requiring 1 < p ≤ 2 and some a priori estimates on the asymptotic
behavior of positive solutions, see [6].

The results concerning existence and ordering properties of GS and SGS
are summed up in Table 1.

Let us denote by B the unit ball in R
n. Following [25], as a Corollary

of Theorems 1.1 and C we also find the bifurcation diagram for the positive
radial solutions of the following problem

ΔpU(x) + λ|x|δ(U + 1)q−1(x) = 0, in B, (1.6)

with Dirichlet boundary conditions. Abusing the notation we denote once again
by U(x) = U(r) when r = |x| since U is radially symmetric; in fact (1.6) is
reduced to a singular O.D.E. analogous to (1.2). So let U(r;D) denote the
unique solution of (1.6) such that U(0;D) = D > 0, see Proposition 1.5 just
below, and denote by ρ(D;λ) the first zero of U(r;D). It is not difficult to



54 Page 6 of 36 R. Colucci and M. Franca NoDEA

show that U ′(r;D) < 0 for any 0 < r < ρ(D;λ); then, following [25], we see
that for any D we have a value λ = λ(D) for which (1.6) admits a solution.

Then we have this result concerning the shape of λ(D), which is a gen-
eralisation of [25, Theorem B], [26, Theorem B].

Theorem 1.4. Assume H and q > p∗(δ); the function λ = λ(D) satisfies
limD↘0 λ(D) = 0 and limD→+∞ λ(D) → λ∗ := (Px)q−p, where Px > 0 is
given in (2.3). Further
(i) If q ≥ max{pJL(δ), 2} then λ(D) is strictly increasing.
(ii) If p∗(δ) < q < pJL(δ) then λ(D) > 0 for any D > 0 and λ(D) oscillates

indefinitely around λ∗. Moreover

λ(D2) < · · · < λ(D2j) < · · · < λ∗ < · · · < λ(D2j+1) < · · · < λ(D1)

where Dk is the set of the critical points of λ(D). In particular Dk is a
local minimum point for k even and a local maximum point for k odd.

Proof. The proof is a consequence of Theorem 1.1 and can be obtained by a
straightforward repetition of the argument developed in [25, Theorem B] for
the case p ≥ 2. �

To complete the picture we recall that if p < q ≤ p∗(δ) then there is a
Λ such that the Dirichlet problem associated to (1.6) admits two solutions if
0 < λ < Λ, one solution for λ = Λ and no solution if λ > Λ, see [25, Theorem
B], [8, Theorem 4].

Now we briefly observe how our discussion can be used to obtain infor-
mation on the analogous problems where the p-Laplace operator is replaced
by the K-Hessian. Following [25] we denote by {λj}N

j=1 the set of the eigenval-
ues of the Hessian matrix D2u in R

N . Let K ∈ {1, 2, . . . , N}; the K-Hessian
operator is defined by

SK(D2u) :=
∑

1≤j1<j2<···<jK≤N

λj1λj2 · · · λjK
,

so that the classical Laplace operator is S1(D2u) = Δu, while the Monge-
Ampere operator is SN (D2u) = det(D2(u)). Let us set

CN,K :=
(−1)K−1K(N − K)!(K − 1)!

(N − 1)!
.

Then, following the introduction of [25] (see page 16) the radial solutions of
the K- Hessian equation

cN,KSK(D2u) + uq−1 = 0, in R
N ,

solve an equation of the form (1.2), where n = N −K+1, p = K+1 δ = K−1,
k = 1. Hence all the results of this paper concerning the p-Laplace operator
are immediately translated for the K-Hessian operator.

Let us conclude the introduction by stating the basic facts concerning
regular and fast decay solutions.

Theorem 1.5. [16,25] Assume H; then for any d > 0 there exists a unique
solution u(r; d) of (1.2) such that u(0; d) = d.
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A proof of this result can be found in [16, Appendix] and in [25]. Analo-
gously we have the following.

Theorem 1.6. Assume H, q > p∗(δ). Then, for any L > 0 there exists a fast
decay solution v(r;L) of (1.2) and it is unique and C2 for r large enough.

The existence part is in fact already known, see, e.g. [12], but the unique-
ness is new as far as we are aware, and it will be proved in Sect. 4.2.1

Let us recall some well known facts.

Lemma 1.7. If δ > −1 then u′(0; d) = 0 for any d > 0 and regular solutions
are in fact smooth also regarded as solutions of (1.1), i.e. U(x) := u(|x|; d) is
at least C1 in the whole of Rn.

Proof. From a straightforward application of De l’Hospital rule we find

lim
r→0

u′(r)|u′(r)|p−2

r1+δ
= lim

r→0

u′(r)|u′(r)|p−2rn−1

rn+δ

= lim
r→0

[u′(r)|u′(r)|p−2rn−1]′

(n + δ)rn−1+δ
= lim

r→0

ku(r)q−1rn−1+δ

(n + δ)rn−1+δ
=

kdq−1

(n + δ)
.

Then the statement easily follows. �

Lemma 1.8. Assume that a solution u(r) of (1.2) is non-negative and decreas-
ing for r large, then it is positive and there exists L > 0, possibly L = +∞,
such that

lim
r→+∞u(r)r

n−p
p−1 = L, lim

r→+∞u′(r)r
n−1
p−1 = −n − p

p − 1
L

Proof. From (1.2) we find that

{[−u′(r)]p−1rn−1}′ = ku(r)q−1rδ+n−1 > 0,

hence u′(r)r
n−1
p−1 is negative and decreasing and admits limit as r → +∞, say

−n−p
p−1L, where L > 0 may be L = +∞. It is easy to check that limr→+∞u(r) =

0; so from De l’Hospital rule we find

lim
r→+∞

u(r)

r− n−p
p−1

= lim
r→+∞

u′(r)

−n−p
p−1 r− n−1

p−1

= L, (1.7)

and this concludes the proof. �

Most of the proofs of this article rely on a change of variable known as
Fowler transformation, which enables us to use phase plane analysis, and to
profit of invariant manifold theory and dynamical systems techniques. The plan
of the paper is as follows. In Sect. 2 we introduce the Fowler transformation for
p-Laplace equations and system (2.2). In §2.1 we define the critical exponents
pJL(δ) and pjl(δ) even if the lengthy computation needed for their evaluation is
postponed to §4.1; further we explore the dynamics of (2.2) in a neighborhood
of the critical point P , corresponding to singular and slow decay solutions of
(1.2). In §2.2 we introduce the unstable manifold Wu

+ and the stable manifold
W s

+ of the origin of (2.2) corresponding to regular and fast decay solutions of
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(1.2). In §2.3 we see how the Pohozaev identity is interpreted in this context
and enables us to locate Wu

+ and W s
+. In §3 we prove Theorems 1.1 and 1.2.

In §4 we have some technical lemmas, concerning explicit evaluation of pJL(δ)
and pjl(δ), in §4.1, and the construction of Wu

+ and W s
+ in a non-smooth

context in Sect. 4.2.

2. Fowler transformation

In this section we introduce a change of variables known as Fowler transfor-
mation which allows to pass from the non-autonomous singular ODE (1.2) to
a two dimensional autonomous dynamical systems. Hence we set

α =
p + δ

q − p
, β = (α + 1)(p − 1), γ = β − (n − 1),

x = u(r)rα, y = u′(r)|u′(r)|p−2rβ , r = et,

(2.1)

and we obtain (
ẋ
ẏ

)
= f

(
x
y

)
:=

(
α 0
0 γ

)(
x
y

)
+

(
y|y| 2−p

p−1

−kxq−1

)
. (2.2)

Here and later “ · ” stands for d
dt , while “ ′ ” stands for d

dr . In the whole paper we
denote by φ(t;Q) = (x(t;Q), y(t;Q)) the trajectory of (2.2) passing through
Q at t = 0, omitting the dependence on Q when it is not needed.

This change of variables was developed by Fowler in the 30s and extended
to the p-Laplace case by Bidaut-Veron in [1] and independently by Franca in
[10].

One of the main advantage in studying (2.2) lies in the fact that the
system is autonomous and we can profit of phase plane techniques and of
invariant manifold theory.

Remark 2.1. The well known scaling invariance property of (1.2) here is trans-
lated in the fact that (2.2) is autonomous. The property that if u(r) is a solution
of (1.2) then u(cr)cα solves (1.2) for any c > 0, here becomes the fact that if
φ(t) solves (2.2) then φτ (t) = φ(t + τ) solves (2.2) for any τ ∈ R.

However in the p �= 2 case we have the following problem.

Remark 2.2. System (2.2) is C1 if 1 < p ≤ 2 ≤ q but it is just Holder contin-
uous on the x axis if p > 2 and on the y axis if p < q < 2.

2.1. Definition of the critical exponents and their dynamical interpretation

As we said in the introduction equation (1.2) and system (2.2) change their
characteristics as q crosses some critical values, see (1.3).

In particular q > p∗(δ) iff γ < 0; consequently (2.2) admits two further
critical points apart from the origin: P = (Px, Py), where Py < 0 < Px and
−P , where

Px = [(−γ)(α)p−1/k]1/(q−p), Py = −(αPx)p−1. (2.3)

Hence (1.2) admits a SGS with slow decay u(r,∞) = Pxr−α iff q > p∗(δ).
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Let df
dφ (P ) be the linearisation of (2.2) on P , i.e.

df

dφ
(P ) =

(
α

|Py|
2−p
p−1

p−1

−k(q − 1)P q−2
x γ

)
. (2.4)

Let T and D be the trace and the determinant of df
dφ (P ) respectively, we easily

see that
T = α + γ = αp − (n − p),

D = α|γ| q−p
p−1 , for q > p and p > 1,

(2.5)

see (4.2) for a detailed computation. Hence, T < 0 if and only if α < n−p
p or

equivalently q > p∗(δ).
Thus the critical point P is asymptotically unstable if p∗(δ) < q < p∗(δ), a
center if q = p∗(δ), asymptotically stable if q > p∗(δ): in this case (1.2) is
respectively subcritical, critical or supercritical (see Theorems A, B).

Further the eigenvalues λ1 = λ1(q) and λ2 = λ2(q) of df
dφ (P ) have the

form

λ1 =
α + γ − √

Δ
2

, λ2 =
α + γ +

√
Δ

2
, (2.6)

where Δ = Δ(q) will be determined explicitly in Sect. 4.1, see in particular
(4.4). From a tedious computation, which is postponed to Sect. 4.1, we see
that Δ(q) is a parabola. Further Δ(p∗(δ)) < 0 hence the equation Δ(q) = 0
has at most one solution in (p∗(δ), p∗(δ)), denoted by pjl(δ), and at most one
solution in (p∗(δ),+∞), denoted by pJL(δ). We set pjl(δ) = p∗(δ) if there are
no solution of Δ(q) = 0 in (p∗(δ), p∗(δ)) and pJL(δ) = +∞ if there are no
solution of Δ(q) = 0 in (p∗(δ),+∞).

Hence the Joseph-Lundgren exponent pJL(δ) and its dual pjl(δ) are the
values such that λi(q) has non-zero imaginary part if pjl(δ) < q < pJL(δ)
and it has zero imaginary part (i.e. it is real) if either p∗(δ) < q ≤ pjl(δ) or
q ≥ pJL(δ), for i = 1, 2. Summing up we have the following

Lemma 2.3. P and −P are unstable nodes if p∗(δ) < q ≤ pjl(δ), unstable foci
if pjl(δ) < q < p∗(δ), centers if q = p∗(δ), stable foci if p∗(δ) < q < pJL(δ),
stable nodes if q ≥ pJL(δ).

We emphasise that in the p = 2 and δ = 0 case pJL(δ) reduces to the
classical Joseph-Lundgren exponent 2JL(0).

From a straightforward computation we see that when λ1 and λ2 are real
and distinct their eigenvectors are

v1 =
(

−1,
(α − λ1)(p − 1)

(αPx)2−p

)
:= (−1,m1),

v2 =
(

−1,
(α − λ2)(p − 1)

(αPx)2−p

)
:= (−1,m2).

(2.7)

Notice that m1 ≥ m2 > 0, and we have the same expression if either p∗(δ) <
q ≤ pjl(δ), or q ≥ pJL(δ). If λ1 = λ2, i.e. when q ∈ {pjl(δ); pJL(δ)}, their
geometric multiplicity is 1, so the unique eigenvector of df

dφ (P ) is v1 = v2
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and it is again given by (2.7), and df
dφ (P ) has a nilpotent part (hence the

corresponding linear differential equation is resonant).

2.2. The stable and unstable manifolds W s
+ and W u

−
Now we turn to consider the stability properties of the origin for system (2.2).
In this subsection we assume for simplicity that (2.2) is C1, cf. Remark 2.2, so
that the origin is a saddle (a discussion of the non-smooth case is postponed
to Sect. 4.2). So we can define the following sets

Wu :={Q | lim
t→−∞φ(t;Q) = (0, 0)},

W s :={Q | lim
t→+∞φ(t;Q) = (0, 0)}.

(2.8)

Lemma 2.4. Assume q > p∗(δ) and that (2.2) is C1. Then Wu and W s are 1
dimensional (immersed) manifolds.

This Lemma easily follows from the Hartman-Grobman Theorem, see e.g.
[18, §1.3].

It is easy to check that Wu (respectively W s) is split by the origin in two
connected components: since we are interested in definitively positive solutions,
we consider the one leaving the origin and entering x ≥ 0, denoted by Wu

+

(respectively W s
+). In fact we have the following Lemma

Lemma 2.5. Let Qu ∈ Wu
+ and Qs ∈ W s

+, then

Wu
+ := {φ(t;Qu ) | t ∈ R} ∪ {(0, 0)},

W s
+ := {φ(t;Qs) | t ∈ R} ∪ {(0, 0)}.

From the Hartman-Grobman theory we also get the following useful re-
sult, see again [18, §1.3].

Lemma 2.6. Assume q > p∗(δ) and that (2.2) is C1. Then Wu
+ is tangent in

the origin to the x axis, while W s
+ is tangent to the y axis if 1 < p < 2 and to

the line y = −(n − 2)x if p = 2.

Then we immediately obtain the following.

Lemma 2.7. Assume q > p∗(δ) and that (2.2) is C1. Then there is a ball Ω
centered in the origin such that the sets

Wu
loc := {Q ∈ (Ω ∩ Wu

+) | φ(t;Q) ∈ Ω for any t ≤ 0} ⊂ Wu
+,

W s
loc := {Q ∈ (Ω ∩ W s

+) | φ(t;Q) ∈ Ω for any t ≥ 0} ⊂ W s
+,

are C1 embedded 1 dimensional manifolds. Further

Wu
loc ⊂ {(x, y) | αx − |y|p−1 > 0, y < 0},

W s
loc ⊂ {(x, y) | αx − |y|p−1 < 0 < x}.

Using standard tools of dynamical system theory and some integral es-
timates, we find the following correspondences between trajectories of (2.2),
and solutions of the original equation (1.2).
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Lemma 2.8. Assume q > p∗(δ) and that (2.2) is C1; let u(r) be a solution of
(1.2) and let φ(t;Q) be the corresponding trajectory of (2.2) via (2.1).
Then u(r) is a regular solution if and only if Q ∈ Wu

+, while u(r) has fast
decay if and only if Q ∈ W s

+.
Moreover, if q �= p∗ then singular and slow decay solutions u(r) of (1.2) cor-
respond to the trajectories φ(t) converging to P respectively as t → −∞ or as
t → +∞; thus limr→0u(r)rα = Px and limr→+∞u(r)rα = Px respectively. No
other solutions of (1.2) definitively positive either for r small or for r large
exist.

Proof of Lemma 2.8. If u(r) is a regular solution, from (2.1) it follows easily
that φ(t) → (0, 0) as t → −∞.

Viceversa assume that limt→−∞φ(t) = (0, 0). Since φ(t) ∈ Wu
+ we easily

see that y(t) < 0 < x(t) when t  0, hence u(r) is positive and decreasing
for 0 < r  1. Using standard tools of invariant manifold theory, see e.g. [18,
§1.3], we see that the trajectory in Wu

+ has the same asymptotic behaviour as
a trajectory of the unstable space of the linearisation of system (2.2) in the
origin, i.e. limt→−∞‖φ(t)‖e−αt = d(u) > 0. Further Wu

+ is tangent to the x
axis in the origin; hence we find

0 < d(u) = lim
t→−∞x(t) e−αt = lim

r→0
u(r),

and the claim concerning regular solutions is proved.
Now we turn to consider a fast decay solution v(r;L) of (1.2) and the

corresponding trajectory φ(t) of (2.2).
If v(r;L) is a fast decay solution then from Lemma 1.8 it follows that

limr→+∞v′(r;L)r
n−1
p−1 = −n−p

p−1L; so from (2.1) we easily see that φ(t) → (0, 0)
as t → +∞.

Viceversa assume that limt→+∞φ(t) = (0, 0). Since φ(t) ∈ W s
+ we easily

see that y(t) < 0 < x(t) when t � 0, hence u(r) is positive and decreasing for
r � 1. From Lemma 1.8 we see that limr→+∞v(r)r

n−p
p−1 exists and it is either

a positive constant or +∞.
Again from standard tools of invariant manifold theory, [18, §1.3], we

see that the trajectories in W s
+ satisfy limt→+∞‖φ(t)‖e−γt = n−p

p−1L, for some
L > 0. Further W s

+ is tangent to the y axis in the origin hence we find

lim
t→+∞|y(t)|e−γt = lim

r→+∞|v′(r)|p−1rn−1 =
[
n − p

p − 1
L

]p−1

> 0,

where we used the fact that β−γ = n−1. Hence we obtain limr→+∞|v′(r)|r n−1
p−1 =

n−p
p−1L and using (1.7) we prove that v(r) has fast decay. The claim concerning
singular and slow decay solutions follows from an elementary analysis of the
phase portrait of (2.2), see, e.g., [10, Observation 2.14] and Fig. 1. �

When q = p∗ the results in Lemma 2.8 need to be modified slightly. In
fact in this case (2.2) is Hamiltonian and admits periodic trajectories which
correspond to singular solutions u(r) of (1.2) which have a slightly different
behaviour. We remand the interested reader, e.g., to [10, Proposition 2.11].
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Figure 1. The phase portrait as q passes through the critical
values. The unstable manifold Wu

+ is in blue while the stable
manifold W s

+ is in red. When q = p∗(δ) we have drawn the
manifold Wu

+ = W s
+ in magenta, and we have drawn in green

some periodic trajectories corresponding to singular solutions
with slow decay

Lemma 2.9. Let (2.2) be smooth. Then Wu
+ may be parametrized by d ≥ 0. So

if we follow Wu
+ from the origin towards x > 0 we go from d = 0 to d = +∞.

Analogously W s
+ may be parametrized by L ≥ 0: following W s

+ from the origin
towards x > 0 we go from L = 0 to L = +∞.
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Proof. Let x(t;Qu ), Qu ∈ Wu
+, be the trajectory of (2.2) corresponding to

u(r; 1). From (2.1), Lemma 2.8 and using the invariance for t-translations of
(2.2), for any d > 0, we can write

u(r; d)rα = x(t;Q) = x(t − τ ;Qu ) = u(re−τ , 1)rαe−ατ , (2.9)

where r = et and Q := x(−τ ;Qu ) ∈ Wu
+ (since Wu

+ is invariant, see Lemma 2.5).
Then passing to the limit as r tends to 0 we find

d = lim
r→0

u(r; d) = lim
r→0

u(re−τ , 1)e−ατ ,

from which

d = e−ατ , u(r; d) ≡ u
(
r

α
√

d; 1
)

d for any r ≥ 0. (2.10)

Similarly let v(r; 1) be a fast decay solution of (1.2) and let x(t;Qs) be
the corresponding trajectory of (2.2), so that Qs ∈ W s

+.
Reasoning as above we see that φτ (t) := φ(t − τ ;Qs) is a trajectory of (2.2)
and φτ (0) = R ∈ W s

+, see again Lemma 2.5.
So φτ (t;R) corresponds to a fast decay solution v(r;L) of (1.2) such that

v(r;L)rα = xτ (t) = x(t − τ ;Qs) = v(re−τ ; 1)rαe−ατ

v(r;L)r
n−p
p−1 = v(re−τ ; 1)r

n−p
p−1 e− n−p

p−1 τe(
n−p
p−1 −α)τ ,

(2.11)

where we have used the same idea as in (2.9)
Hence passing to the limit as r → +∞ on the left hand side and as re−τ → +∞
on the right hand side we find

L = e(
n−p
p−1 −α)τ , v(r;L) ≡ v(rL− p−1

n−p−α(p−1) ; 1)L− α(p−1)
n−p−α(p−1) for any r > 0.

�

Proposition 2.10. Assume H. Lemmas 2.4, 2.7, 2.8 and Lemma 2.9 hold also if
(2.2) is not smooth, i.e. whenever q > p∗(δ), δ > −p, p > 1 (even if p < q < 2
or p > 2).

The proof of this result is rather technical, and in fact the part concerning
Wu

+ and regular solutions can be found in literature, with some effort, even in
a non-autonomous context, see [11] and references in Sect. 4.2. We give a new
and shorter proof suitable for this simpler autonomous context in Sect. 4.2 for
completeness.

2.3. Pohozaev function and heteroclinic connections

Let us introduce the following energy like function

H(x, y) = n−p
p xy + p−1

p |y| p
p−1 + k |x|q

q
(2.12)

which is closely related to the Pohozaev identity, see e.g. [13, §2], or [10, §2]:
From a straightforward computation it is easy to check that when q =

p∗(δ) then H(x, y) is a first integral, see e.g. [13, §2]. In general we have the
following result.
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Lemma 2.11. Let Qu ∈ Wu
+ and Qs ∈ W s

+. If q > p∗(δ), then H(Qu ) < 0 <
H(Qs). If p∗(δ) < q < p∗(δ), then H(Qs) < 0 < H(Qu ). If q = p∗(δ), then
Wu

+ = W s
+ and H(Qu ) = 0 for any Qu ∈ Wu

+.

We provide here the proof of this known result for the convenience of the
reader, however see, e.g. [13, §2], for a proof in a non autonomous context.

Proof. For any solution u(r) of (1.2) we can define the following Pohozaev
function

P (u(r), u′(r), r) =
n − p

p
rn−1u(r)u′(r)|u′(r)|p−2

+ rn p − 1
p

|u′(r)|p + krδ+n+1 |u(s)|q
q

.

One of the main tool in the analysis of this equation is the well known Pohozaev
identity, see, e.g., [24], that in this context reads as follows:

d

dr
P (u(r), u′(r), r) = k

(n − p)(p∗(δ) − q)
pq

rn+δ|u(r)|q. (2.13)

Therefore P (u(r), u′(r), r) is monotone increasing if p < q < p∗(δ), it is con-
stant if q = p∗(δ), and it is monotone decreasing if q > p∗(δ).
Further observe that if u(r) is a regular solution and v(r) is a fast decay
solution we have

lim
r→0

P (u(r), u′(r), r) = 0, lim
r→+∞P (v(r), v′(r), r) = 0. (2.14)

Then we go back to system (2.2) and we see that if φ(t) = (x(t), y(t)) is the
trajectory of (2.2) corresponding to u(r) we have

H(x(t), y(t)) = P (u(et), u′(et), et)e(α+γ)t, (2.15)

where H is the function defined in (2.12).
Let φu (t), φv (t) be the trajectories of (2.2) corresponding to the regular

and the fast decay solution u(r) and v(r) of (1.2). Assume to fix the ideas
that q > p∗(δ); then from (2.13) and (2.14) we find that P (u(r), u′(r), r) <
0 < P (v(r), v′(r), r) for any r > 0. Hence from (2.15) we see that H(φu (t)) <
0 < H(φv (t)) for any t ∈ R, so the Lemma follows. The case p < q < p∗(δ) is
analogous.

With the same argument we easily see that if q = p∗(δ) then H is a first
integral; hence Wu

+ and W s
+ are obtained as the subset of the 0-level set of H

which is contained in x ≥ 0. �

Then from an elementary analysis of the phase portrait we obtain the
following, cf. Fig. 1.

Proposition 2.12. If q > p∗(δ) there is Qu = (Qu
x, Qu

y ) such that Qu
x > 0,

H(Qu ) < 0 and

lim
t→−∞φ(t;Qu) = (0, 0), lim

t→+∞φ(t;Qu) = P ,

Wu
+ := {φ(t;Qu) | t ∈ R} ∪ {(0, 0)}.
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If p∗(δ) < q < p∗(δ) there is Qs = (Qs
x, Qs

y) such that Qs
x > 0, H(Qs) < 0

and
lim

t→−∞φ(t;Qs) = P , lim
t→+∞φ(t;Qs) = (0, 0),

W s
+ := {φ(t;Qs) | t ∈ R} ∪ {(0, 0)}.

To complete the picture we observe that if p∗(δ) < q < p∗(δ) then Wu
+ is

made up by an unbounded trajectory which converges to the origin as t → −∞
and rotates clockwise indefinitely as t increases. Similarly if q > p∗(δ) then
W s

+ is made up by an unbounded trajectory which converges to the origin as
t → +∞ and rotates clockwise indefinitely as t decreases. If q = p∗(δ) then
Wu

+ = W s
+ and it is the graph of an homoclinic trajectory and coincide with

the set {Q = (Qx, Qy) | H(Q) = 0, Qx > 0}, see again Fig. 1. We do not give
a full fledged proof of this known facts (which will not be used in this article)
remanding the interested reader, e.g., to [10].
Proof of Theorems C and 1.3

Theorems C and 1.3 simply follow putting together Lemma 2.8, Propo-
sition 2.12 and Lemma 2.3. �

3. Proof of the main results

In this section we show that if q ≥ pJL(δ) then Wu
+ is a graph on π := {(x, 0) |

0 ≤ x < Px} while if p∗(δ) < q ≤ pjl(δ) then W s
+ is a graph on π. Whence

Theorems 1.1 and 1.2 easily follow.
The idea is inspired by the work by Miyamoto [25] and it is obtained by

constructing suitable positively and negatively invariant sets.

Proposition 3.1. Let r1 be the semi-line through P with the direction of v1 and
let r2 be the semi-line through P with the direction of v2 and with equation

r1 : y = −m1(x − Px) + Py, x < Px,

r2 : y = −m2(x − Px) + Py, x < Px.

Let q > p. If q ≥ pJL(δ), q ≥ 2 and p > 1 then both the lines r1 and r2
intersect the x positive semi-axis respectively in the points Si

x = (Xi, 0), for
i = 1, 2, with X1 ≥ X2 > 0.
If p∗(δ) < q ≤ pjl(δ) and p ∈ (1, 2] then the semi-line r1 and r2 intersect the
y positive semi-axis in the points Si

y = (0,−Y i) with Y 2 ≥ Y 1 > 0.

Proof. The proof is based on a geometric argument. We first observe that on
the positive x-semi-axis we have ẋ > 0 and ẏ < 0. We restrict to consider the
4th quadrant so the x-nullcline is

αx − |y| 1
p−1 = 0, (3.1)

and it is represented in Fig. 2 for p ∈ (1, 2) and for p ≥ 2.
The y-nullcline is (see Fig. 3)

γy − kxq−1 = 0, (3.2)

so ẏ > 0 if y < − k
|γ|x

q−1.



54 Page 16 of 36 R. Colucci and M. Franca NoDEA

Figure 2. The x-nullcline in the case p ∈ (1, 2) and p ≥ 2
respectively

Figure 3. The y-nullcline when q > 2 on the left and when
q ∈ (1, 2) on the right

Since q > p, the x-nullcline is below the y-nullcline when x ∈ (0, Px) that
is

− k

|γ|x
q−1 > −(αx)p−1, 0 < x < Px,

while we have the opposite situation for x > Px.
The two nullclines, the vertical line x = Px and the horizontal line y = Py

define 8 regions in the fourth quadrant (see Fig. 4). In order to conclude the
proof we consider two cases.
Case 1: q > p > 1, q ≥ 2 and q ≥ pJL(δ).
In this case the fixed point P is a stable node; so there are solutions of the
linearised system which converge to P along the semi-lines r1 and r2; corre-
spondingly there are solutions of the nonlinear system which converge to P
tangentially to r1 and r2. Then the semi-lines ri, spanned by the eigenvectors
vi , must lie inside the regions of the space which allow convergence to P . By
the analysis of the vector field we conclude that there are only two regions in
which we can find solutions converging to P , that is region 3 and 7 (see Fig. 4).
Whence both r1 and r2 are in region 3 and, since the y-nullcline is concave,
the lines r1 and r2 both intersect the x-axis at a certain Xi > 0. We note that
this is not ensured when q < 2 since the y-nullcline is convex (a priori ri may
intersect the x-axis for a negative value of x).
Case 2: p ∈ (1, 2], p < p∗(δ) < q ≤ pjl(δ).
In this case the fixed point P is an unstable node; reasoning as above we
see that the semi-lines ri must lie inside the regions of the space which allow
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Figure 4. The eight regions of the fourth quadrant defined
by the x-nullcline (in red), the y-nullcline (in green) the verti-
cal line x = Px and the horizontal line y = Py (in blue) (color
figure online)

convergence to P in the past, i.e. regions 1 and 5. Then, r1 and r2 lie in region
1, below the convex x-nullcline; hence r1 and r2 both intersect the y-negative
semi-axis. We note that this argument does not work for p > 2 since the
x-nullcline is concave. �

Let us denote by Sx the intersection between the semi-line r2 and the x
axis, and by Sy the intersection between the semi-line r1 and the y axis, see
Fig. 5.

Proposition 3.2. (i) Let q ≥ pJL(δ), q ≥ 2 ≥ p > 1. Then the region A+

(see Fig. 5) delimitated by the x-nullcline, the segments OSx and PSx

is positively invariant.
(ii) Let p ∈ (1, 2], and p∗(δ) < q ≤ pjl(δ), q ≥ 2. Then the region A−, delim-

itated by the the x-nullcline, the segments SyO and PSy , is negatively
invariant.

Proof. We divide the proof into two parts.

(i). On the x-nullcline and on the segment OSx the vector field points inside
A+. It remains to check the vector field on the segment PSx which lies
on the line r2.

We rewrite (2.2) in the following form

φ̇ = f(φ) =
∂f

∂φ
(P )

(
φ − P

)
+ R(φ), (3.3)
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Figure 5. The sets A+ on the left and A− on the right: they
are respectively positively and negatively invariant for (2.2).
We have represented the x-nullcline in red, the lines r2 and
r1 in purple and the segments OSx and SyO in green and in
blue respectively

where

R(φ) :=
(

R1(y)
R2(x)

)
=

(
y|y| 2−p

p−1 − Py|Py| 2−p
p−1 − |Py|

2−p
p−1

p−1 (y − Py)
−k[xq−1 − P q−1

x − (q − 1)P q−2
x (x − Px)]

)
,

and φ = (x, y). We observe that ψ̂(t) = P + v1eλ1t is a solution of the linear
system

ψ̇ = f(ψ) =
∂f

∂φ
(P )

(
ψ − P

)
, (3.4)

and its graph is r2. Further

R1(y) = g(y) − [g(Py) + g′(Py)(y − Py)],

where g(y) = −|y| 1
p−1 .

Since R1(Py) = R′
1(Py) = 0 and for any y �= 0

R′′
1 (y) = g′′(y) = − 2 − p

(p − 1)2
|y| 3−2p

p−1 ≤0,

we have that R1(y) < 0 for all y ∈ (Py, 0). Moreover

R2(x) = h(x) − [h(Px) + h′(Px)(x − Px)],

where

h(x) = −kxq−1, and h′′(x) = −k(q − 1)(q − 2)xq−3.

Since R2(Px) = R′
2(Px) = 0 and R′′

2 (x) = h′′(x)≤0, we see that R2(x) < 0
when 0 < x < Px. Let φ(t;Q) = (x(t;Q), y(t;Q)) and ψ(t;Q) = (x̄(t;Q),
ȳ(t;Q)) be solutions of (3.3) and (3.4) respectively, departing from Q =
(Qx, Qy) ∈ r2. We find

ẏ(0;Q) − ˙̄y(0;Q) + m1[ẋ(0;Q) − ˙̄x(0;Q)] =R2(Qx) + m1R1(Qy) < 0.

(3.5)
Then observing that r2 is invariant for the flow of (3.4) and using (3.5) we
conclude that A+ is positive invariant on r2 too, so claim (i) is proved.
(ii) We observe that on the negative y-axis the vector field points outside

A−. The rest of the proof is identical to case (i).
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�
Proof of Theorems 1.1 and 1.2 in the 1 < p ≤ 2 case

Let q ≥ pJL(δ): we claim that Wu
+ is a graph on π := {(x, 0) | 0 ≤ x <

Px}.
From Lemma 2.7 we know that there is a neighborhood Ω of the origin such
that Wu

loc ⊂ A+, and if Q ∈ Wu
loc then φ(t;Q) ∈ Wu

loc ⊂ A+ for any t ≤ 0.
From Proposition 3.2 we see that φ(t;Q) ∈ A+ for any t ≥ 0. Hence from
Lemma 2.5 we see that φ(t;Q) ∈ A+ for any t ∈ R and Wu

+ ⊂ A+. Thus
ẋ(t;Q) > 0 for any t ∈ R and the claim easily follows from Lemma 2.5.
Now let 0 < d1 < d2 < +∞; let φ(t;Q(di)) be the trajectory of (2.2) corre-
sponding to the regular solution u(r, di) of (1.2), for i = 1, 2, so that Q(di) =
(Qx(di), Qy(di)) ∈ Wu

+. From Lemma 2.9 we see that 0 < Qx(d1) < Qx(d2)
and 0 < x(t;Q(d1)) < x(t;Q(d2)) < Px for any t ∈ R; then Theorem 1.1
immediately follows.

Analogously let p∗(δ) < q ≤ pjl(δ): from Lemma 2.7 we see that W s
loc ⊂

A−, for a suitable neighborhood Ω of the origin. Using again Lemma 2.7 and
Proposition 3.2 and reasoning as above we see that if Q ∈ W s

+ then φ(t;Q) =
(x(t;Q), y(t;Q)) is such that ẋ(t;Q) < 0 for any t ∈ R, and W s

+ is a graph on
π.
Now let 0 < L1 < L2 < +∞, and let φ(t;Q(Li)) be the trajectory of (2.2)
corresponding to the fast decay solution v(r, Li) of (1.2), for i = 1, 2, so that
Q(Li) = (Qx(Li), Qy(Li)) ∈ W s

+. From Lemma 2.9 we see that 0 < Qx(L1) <
Qx(L2) and that 0 < x(t;Q(L1) < x(t;Q(L2) < Px for any t ∈ R; then
Theorem 1.2 immediately follows. �
Now we turn to consider the p > 2 case: in this setting we use the argument
developed by Miyamoto in [25]. So, with a slight adaption of [25] we rewrite
(2.2) as follows: {

ẋ = z,
ż = − αγ

p−1x + [α + γ
p−1 ]z − k

p−1 g̃(x, z), (3.6)

where

g̃(x, z) =
xq−1

|αx − z|p−2
.

We denote by φ̃(t;Q) = (x̃(t;Q), z̃(t;Q)) a solution of (3.6) leaving from Q at

t = 0. Moreover, we rewrite (3.6) as ˙̃
φ(t) = f̃(φ̃), i.e. f̃(φ̃) is the right hand

side of (3.6).
The point P̃ = (Px, 0) (where Px is given in (2.3)) is the critical point of
system (3.6) corresponding to the critical point P of (2.2). Notice that from a
lengthy but straightforward computation we find

df̃

dφ̃
(P̃ ) =

(
0 1

−αγ+k ∂g̃
∂x (P̃ )

p−1 α + γ−k ∂g̃
∂z (P̃ )

p−1

)
=

(
0 1

αγ(q−p)
p−1 α + γ

)
. (3.7)

We emphasize that df̃

dφ̃
has the same trace T and determinant D as df

dφ (P ), cf.

(2.5). Hence, as it has to be expected, P̃ has the same stability properties as
P , i.e. we have the following.
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Figure 6. The sets B̃+ on the left and B̃− on the right: they
are respectively positively and negatively invariant for (3.6)

Lemma 3.3. The critical point P̃ is an unstable node if p∗(δ) < q ≤ pjl(δ),
an unstable focus if pjl(δ) < q < p∗(δ), a center if q = p∗(δ), a stable focus if
p∗(δ) < q < pJL(δ), a stable node if q ≥ pJL(δ).
Further its eigenvalues are the λi given in (2.6), and when P̃ is a node the
eigenvectors are given by ṽi = (1, λi).

Passing from (2.2) to (3.6) the 1 dimensional manifolds Wu
+ and W s

+ are
driven into the 1 dimensional manifolds W̃u

+ and W̃ s
+ by a global diffeomor-

phism (which brings the nullcline ẋ = 0 into the x axis, and it is linear when
p = 2). Obviously the trajectories in W̃u

+ and W̃ s
+ correspond respectively to

regular and fast decay solutions of (1.2) and all the results in §2 hold for W̃u
+

and W̃ s
+ too, apart from the ones regarding the tangent in the origin.

We omit the computation which is quite similar to the one carried on for
system (2.2), see also the analogous computation performed in [25, Lemma
2.5].
Let us set

r̃i := {(x, z) : z = λi(x − Px), x < Px}, for i = 1, 2

and
�̃ := {(x, z) : z = αx > 0}.

Notice that the semi-line �̃ of (3.6) corresponds to the x-positive semi-axis
of (2.2), so to solutions u(r) of (1.2) such that u′(r) = 0. We stress that if
p∗(δ) < q ≤ pjl(δ) then λ2 > λ1 > 0; hence r̃1 lies in the semiplane z < 0 and
it intersects the z negative semi-axis in a point S̃z = (0, Z−), with Z− < 0,
while if q ≥ pJL(δ) then λ1 < λ2 < 0; hence r̃2 lies in the z > 0 semiplane and
it intersects �̃ in the point S̃� .
If p∗(δ) < q ≤ pjl(δ) we denote by B̃− the compact set enclosed by the
segments S̃zO, S̃z P̃ and OP̃ .
Similarly if q ≥ pJL(δ) we denote by B̃+ the compact set enclosed by the
segments OP̃ , OS̃� and S̃�P̃ (see Fig. 6).
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Proposition 3.4. Assume p ≥ 2. If p∗(δ) < q ≤ pjl(δ), then the set B̃− is neg-
atively invariant for (3.6), while if q ≥ pJL(δ) then B̃+ is positively invariant
for (3.6).

Proof. The flow of (3.6) on the segment of the x positive semi-axis between
the origin and P̃ points upwards, this can be checked directly; similarly we see
that on the z-negative semi-axis the flow points towards x < 0.
We recall that the line �̃ of (3.6) corresponds to the x positive semi-axis of
(2.2): hence the vector field points towards the interior of B̃+. It remains to
check the vector field on r̃i.
Observe first that ψ̃i(t) = P̃ + vie

λi = (Px + eλit, λieλit), for i = 1, 2 is a
solution of the autonomous linear equation

˙̃
ψi =

df̃

dφ̃
(P̃ )[ψ̃i − P̃ ], (3.8)

and that r̃i := {ψ̃i(t) | t ∈ R}.
Assume p∗(δ) < q ≤ pjl(δ) (respectively q ≥ pJL(δ)) we claim that if Q ∈ S̃zP̃

(respectively Q ∈ S̃	P̃ ), then ˙̃
φ(t;Q) − ˙̃

ψ(Q) = (0,−c2(Q)) where c2(Q) > 0.
Now we prove the claim.
Let s ∈ (0, Px]; we define the following function:

c̃(s) =
(

c̃1(s)
c̃2(s)

)
= f̃(s;λ1(s − Px)) − df̃(P̃ )

dφ̃

(
s

λ1(s − Px)

)
. (3.9)

By construction c̃(s) evaluates ˙̃φ(t;Q) − ˙̃ψ1(Q) for Q = (s;λ1(s − Px)) ∈ r̃.
Since the non-linear part of c̃(s) just depend on the presence of g̃ in (3.6) we
have c̃2(0) = c̃′

2(0) = 0; further c̃1(s) ≡ s − s = 0. To prove the claim it is
sufficient to show that c̃′′

2(s) < 0 for any s ∈ (0, Px].
Once again, since all the linear terms cancel out, it is enough to differentiate

G̃(s) := − k

p − 1
g̃(s, λ1(s − Px)) = − k

p − 1
sq−1

A(s)p−2
,

where we have set for simplicity A(s) := αs − λ1(s − Px).
Differentiating the previous expression we find

d

ds
G̃(s) = − k

p − 1

{
(q − 1)

sq−2

A(s)p−2
− (p − 2)

(α − λ1)sq−1

A(s)p−1

}
,

d2

ds2
G̃(s) = − k

p − 1

{
(q − 1)(q − 2)

sq−3

A(s)p−2

− 2(q − 1)(p − 2)
(α − λ1)sq−2

A(s)p−1
+ (p − 1)(p − 2)

(α − λ1)2sq−1

A(s)p

}
.

Hence we find
d2

ds2
G̃(s) = − ksq−3

(p − 1)A(s)p

{
(q − 1)(q − 2)

[
A(s) − p − 2

q − 2
(α − λ1)s

]2

+
p − 2
q − 2

(q − p)(α − λ1)2s2
}

< 0
(3.10)
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for any s �= 0. Hence d2c̃2
ds2 (s) = d2G̃

ds2 (s) < 0 for any 0 < s < Px and the claim is
proved. Now, using the claim, we easily conclude in both the cases: q ≥ pJL(δ)
and p∗(δ) < q ≤ pjl(δ) �

Remark 3.5. The second part of the Lemma can be obtained by [25, Lemma
2.6] and in fact our proof is a slight simplification and a geometrical interpre-
tation of the one by Miyamoto. The first part is obtained using Miyamoto’s
idea in the subcritical context.

Proof of Theorems 1.1 and 1.2 in the p > 2 case
We develop the proof just for Theorem 1.2, Theorem 1.1 is analogous. Let

p∗(δ) < q ≤ pjl(δ): we claim that W̃ s
+ is a graph on π := {(x, 0) | 0 ≤ x < Px}.

Let W̃ s
loc := {Q ∈ W̃ s

+ | φ̃(t;Q) ∈ Ω for any t ≥ 0}, for a suitable neigh-
bourhood Ω of the origin. In fact applying Lemma 2.7 and Proposition 2.10
to W s

+ and passing to system (3.6), we can choose Ω so that if Q ∈ W̃ s
loc, then

φ̃(t;Q) = (x̃(t;Q), ỹ(t;Q)) ∈ B̃− for any t ≥ 0. Further from Proposition 3.4
we see that φ̃(t;Q) ∈ B̃− for any t ≤ 0. Hence ˙̃x(t;Q) < 0 for any t ∈ R, and
W̃ s

+ is a graph on π.
Then we easily conclude the proof repeating the argument of the proof

of the 1 < p ≤ 2 case. �
We observe that in the p = 2 and δ �= 0 case Theorem 1.2 can be obtained

in a simpler way combining Kelvin inversion and Fowler transformation.
Proof of Theorem 1.2 in the p = 2, δ > −2 case.

Let us recall first the Kelvin inversion. If u(r) is a solution of (1.2) then
ũ(s) = u(s−1)s2−n solves

d

ds

[
sn−1 dũ

ds
(s)

]
+ ksδ̃ũq−1 = 0, (3.11)

where δ̃ = (n − 2)(q − 2∗) − δ. Notice that regular solutions u(r; d) of (1.2)
become fast decay solutions ṽ(r; d) of (3.11) and fast decay solutions v(r;L)
of (1.2) become regular solutions ũ(r;L) of (3.11), and viceversa.

If we apply (2.1) to (3.11) with the new parameters α̃ = −γ, γ̃ = −α

(β̃ = α̃ + 1) we obtain again an autonomous system of the form (2.2). More
precisely if we denote by x(t), y(t), z(t) = ẋ(t) the Fowler variables obtained
from the original (1.2) and by x̃(t), ỹ(t), z̃(t) = ˙̃x(t) the Fowler variables
obtained from (3.11) we pass from{

ẋ = z,
ż = −αγx + (α + γ)z − kxq−1,

(3.12)

to {
dx̃
ds = z̃,
dz̃
ds = −αγx̃ − (α + γ)z̃ − kx̃q−1.

(3.13)

We remand the interested reader to [14, pag. 521] for the tedious computation.
Further if q > 2∗(δ), q ≥ 2JL(δ), 2∗(δ) < q < 2jl(δ) in the original system
then q < 2∗(δ̃), q ≤ 2jl(δ̃), q > 2JL(δ̃) for the system obtained after Kelvin
inversion, and viceversa
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We emphasise that if (x(t), z(t)) solves (3.12) then (x(−t),−z(−t)) solves
(3.13) and viceversa, therefore the stable manifold W s

+ of (3.13) where 2∗(δ) <

q ≤ 2jl(δ) is obtained from the unstable manifold W̃u
+ of (3.12) where q >

2JL(δ̃) simply by a reflection with respect to the z = 0 axis. From Theorem 1.1
we know that W̃u

+ is a graph on {(x, 0) | 0 < x < Px} and that it is contained
in the z̃ > 0 semi-plane, hence W s

+ is a graph on {(x, 0) | 0 < x < Px} and
that it is contained in the z̃ > 0 semi-plane. So the proof of Theorem 1.2 easily
follows reasoning as above. �

From Theorems 1.1 and 1.2 , we easily deduce the following results which
are useful in a parabolic context.

Let O(ra) as r → +∞ (respectively as r → 0) denote a function such
that O(ra)r−a has a finite limit, possibly null as r → +∞ (respectively as
r → 0).

Corollary 3.6. Assume H and q > pJL(δ), q ≥ 2, then for any  > 0 the GS
have the following expansion as r → +∞:

u(r; d) = Pxr−α + c(d)r−α−|λ2| + O(r−α−|λ1| + r−α−2|λ2|+
) (3.14)

where c(d) < 0, c′(d) > 0. Further if we set w(r; d0) = ∂
∂du(r; d)�d=d0 we have

w(r; d0) ≥ 0 for any r ≥ 0 and d0 ≥ 0.

In the p = 2, δ = 0 case Corollary 3.6 was an essential ingredient to
construct sub-super solutions for (1.5); then these sub-super solutions allowed
to prove interesting results concerning the rate of convergence of the solutions
of (1.5) to the stationary GS, see e.g. [9,19,21] and references therein.

Proof. Since u(r; d) is monotone increasing in d for any r ≥ 0, we immediately
find that w(r; d0) ≥ 0.

We claim that, as r → +∞, we find

u(r; 1) = Pxr−α + c(1)r−α−|λ2| + O(r−α−|λ1| + r−α−2|λ2|+
) (3.15)

where c(1) < 0 and  > 0 is an arbitrarily small positive constant.
Then from (2.10) we see that (3.14) holds and c(d) = c(1)d−|λ2|/α, hence
c(d) < 0, c′(d) > 0, and we prove the Corollary.

Now we prove the claim, using a new geometrical idea. Let φ(t) =
(x(t), y(t)) be the trajectory corresponding to u(r; 1). From standard facts
of invariant manifold theory, see e.g. [5, §13.4], we know that any trajectory
converging to P as t → +∞ satisfies

φ(t) = P + b(1)v2eλ2t + a(1)v1eλ1t + R(t) (3.16)

where R(t) = O(e(2λ2+
)t), and (a(1), b(1)) ∈ R
2. So we immediately see that

u(r; 1) can be expanded as in (3.15), but we have to show that c(1) < 0.
Generically, i.e. if b(1) �= 0, a trajectory converging to P is tangent to the
line y = −m2(x − Px) + Py, cf. (2.7), but if b(1) = 0 then it is tangent to
y = −m1(x−Px)+Py. However from an inspection of the proof of Theorem 1.1
and of the positively invariant regions for 1 < p ≤ 2 and for p > 2, we see
that just the former possibility takes place, whence b(1) �= 0. Further, since
x(t) − Px < 0 for any t ∈ R we see that c(1) < 0 and the claim is proved. �
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Corollary 3.7. Assume H, p∗(δ) < q < pjl(δ), and q ≥ 2; then for any  > 0,
the SGS have the following expansion as r → 0:

v(r;L) = Pxr−α + C(L)r−α+|λ1| + O(r−α+|λ2| + r−α+2|λ1|−
) (3.17)

where C(L) < 0 and C ′(L) > 0. Further if we set W (r;L0) = ∂
∂Lv(r;L)�L=L0

we have W (r;L0) ≥ 0 for any r ≥ 0 and L0 ≥ 0.

Proof. The proof is analogous to the one of Corollary 3.6. The fact that
W (r;L0) ≥ 0 follows from the monotonicity in L of the SGS v(r;L).

Let φ(t) = (x(t), y(t)) be the trajectory corresponding to v(r; 1). From
standard facts of invariant manifold theory, see again [5, §13.4], any trajectory
converging to P as t → −∞ satisfies (3.16) where R(t) = O(e(2λ1−
)t) as
t → −∞, and (a(1), b(1)) ∈ R

2. So we immediately see that v(r; 1) can be
expanded as in (3.17), but we have to show that C(1) < 0.
Again, from an inspection of the proof of Theorem 1.2 and of the positively
invariant regions for 1 < p ≤ 2 and for p > 2, we see that φ(t) is tangent to
the line y = −m1(x − Px) + Py (in fact to the semi-line r1), whence a(1) �= 0.
Further, since x(t) − Px < 0 for any t ∈ R we see that C(1) < 0 and the claim
is proved. �

Corollary 3.7 is again important in the parabolic context: when p = 2,
δ = 0, it is crucial to get local uniqueness results for the Cauchy problem
with singular data, and to prove some stability properties of SGS, see the nice
papers [22,28] and references therein.

4. Technical results

In this section we provide the detailed proof of several results needed for the
main theorems.

4.1. Evaluation of the critical exponents pjl(δ), pJ L(δ)
In the following lines we perform the detailed computation needed to define the
critical exponents pjl(δ) and pJL(δ). We recall that they are obtained as the
positive numbers such that the eigenvalues λ1(q) and λ2(q) of df

dφ (P ) defined
in (2.6), have non-zero imaginary part for any q ∈ (pjl(δ); pJL(δ)).
Linearising the right hand side f of (2.2) in P , we see that the Jacobian df

dφ (P )
satisfies

df

dφ
(P ) =

(
α

|Py|
2−p
p−1

p−1

−k(q − 1)P q−2
x γ

)
=

(
α (αPx)

2−p

p−1

−k(q − 1)P q−2
x γ

)
. (4.1)

The trace T of df
dφ (P ) satisfies T = α + γ, see (2.5), and the determinant D

can be written as follows

D = αγ +
k(q − 1)
p − 1

α2−pP q−p
x = αγ +

q − 1
p − 1

α|γ| = α|γ|q − p

p − 1

= |γ|p + δ

p − 1
=

[
n − p

p − 1
− α

]
(p + δ).

(4.2)
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Hence df
dφ (P ) has real eigenvalues if and only if Δ := T 2 − 4D ≥ 0 where Δ is

given by the following expression:

Δ = [αp − (n − p)]2 + 4(p + δ)
[
α − n − p

p − 1

]
. (4.3)

Thus the critical values pjl(δ) < pJL(δ) are obtained as the smallest and the
largest root of the following second order equation in α:

Δ(α) = α2p2−2α [p(n − p) − 2(p + δ)]+(n−p)
[
(n − p) − 4

p + δ

p − 1

]
= 0. (4.4)

From a lengthy but straightforward computation the discriminant Ψ of (4.4)
is always positive, in fact we have

Ψ := 16(p + δ)
[
p(n − p)

p − 1
+ (p + δ)

]
> 0.

So the equation Δ(α) = 0 has always two solutions, say α∗ < α∗. Further from
(2.1) we see that α = α(q) is monotone decreasing, and α(q) : (p∗(δ);+∞) →
(0, n−p

p−1 ) is a bijection whose inverse is Q(α). Hence pjl(δ) = Q(α∗), while
pJL(δ) = Q(α∗), however these values are defined only if α∗ < n−p

p−1 and α∗ > 0
respectively. The condition α∗ > 0, which guarantees the existence of pJL(δ),
can be written as follows (simply requiring the last term in (4.4) to be positive):

n > 4
p + δ

p − 1
+ p , (4.5)

which gives back the known condition n > 10 for the classical Joseph-Lundgren
exponent.

The condition α∗ < n−p
p−1 which guarantees the existence of pjl(δ), is less

restrictive but more difficult to handle; it is certainly satisfied if

α∗ + α∗ = 2
n − p

p
− 4

p + δ

p2
<

n − p

p − 1
,

which is equivalent to

(n − p)
p − 2
p − 1

< 4
p + δ

p
,

and it is always satisfied if n > p and 1 < p ≤ 2.

4.2. Construction of W u
+ and W s

+ in a non smooth setting

In this section we prove again Lemmas 2.4, 2.7, 2.8 and Lemma 2.9 removing
the simplifying assumption that (2.2) is C1, i.e. we prove Proposition 2.10.

4.2.1. Existence and uniqueness of fast decay solutions in a non-smooth set-
ting. Here, working directly on (1.2) we prove the existence and the uniqueness
of fast decay solutions. In fact the existence has already been proved, e.g. in
[11], but the uniqueness of fast decay solutions is new up to our knowledge.

We recall that when (2.2) is C1 these results may be obtained using
invariant manifold tools by combining Lemma 2.8 and Lemma 2.9.

Theorem 4.1. Assume H and q > p∗(δ). Then, for any L > 0 there exists a
unique fast decay solution v(r;L) of (1.2) and it is C2 for r large enough.
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Proof. Let ν := (n − p)/(p − 1). Fix L > 0 and set ρ := (Lν)p−1; let r0 > 0 to
be chosen later, we consider the following space:

A = {u ∈ C([r0,+∞)) | u(r) is decreasing, lim
r→+∞ u(r)rν = L}

endowed with the norm ‖v‖A = sup{‖v(r)rν‖ | r ≥ r0}. Then we consider the
ball in A of radius c > 0 centered in Lr−ν , i.e.

B = {u ∈ A | ‖u(r) − Lr−ν‖A ≤ L/2}.

We introduce the integral operator F : B → A defined as follows:

F(u) :=
∫ +∞

r

1
tν+1

{
ρ − k

∫ +∞

t

sδ+n−1uq−1(s)ds

} 1
p−1

dt.

We claim that v(r;L) is a fast decay solution of (1.2) if and only if it is a fixed
point of F for a suitable r0 > 0.
Let v(r;L) be a fast decay solution; from Lemma 1.8 we see that
limr→+∞|v′(r)|p−1rn−1 = ρ := (Lν)p−1. Hence from (1.2) we find

|v′(r)|p−1rn−1 = ρ − k

∫ +∞

r

sδ+n−1vq−1(s)ds. (4.6)

Since limr→+∞v′(r)rν+1 = −Lν < 0 we can find r0 > 0 such that v′(r) < 0
for r > r0. Hence integrating (4.6), for any r > r0 we find v(r) = F(v).

The viceversa can be obtained from a straightforward computation. Then
the claim is proved.
We will show that F maps B into itself and it is a contraction, then we obtain
the existence and uniqueness of the fixed point of F , and as a consequence of
the above discussion Theorem 1.6 follows.

We begin by showing that F maps B into itself. Observe that∣∣F(u) − Lr−ν
∣∣ ≤

≤
∣∣∣∣∣
∫ +∞

r

1
tν+1

{
Lν −

[
ρ − k

∫ +∞

t

sδ+n−1uq−1(s)ds

] 1
p−1

}
dt

∣∣∣∣∣
≤

∫ +∞

r

1
tν+1

∣∣∣∣∣ρ
1

p−1 −
[
ρ − k

∫ +∞

t

sδ+n−1uq−1(s)ds

] 1
p−1

∣∣∣∣∣ dt.

(4.7)

Before to proceed we need to prove the following estimate:

let c1 := k(2L)q−1

ν[q−p∗(δ)]
and set r1 :=

[
2c1
ρ

] 1
ν[q−p∗(δ)] then, if u ∈ B, for any t > r1

we have

I1(t) := k

∫ +∞

t

sδ+n−1uq−1(s)ds ≤ c1t
−ν ≤ ρ

2
. (4.8)

In order to prove the previous estimate we first note that

ν(p∗(δ) − 1) = n + δ > 0. (4.9)
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Further, if u ∈ B we have |u(t)tν | ≤ L + L/2 ≤ 2L for any t > r1. Hence

I1(t) ≤ k(2L)q−1

∫ +∞

t

sδ+n−1−ν(q−1)ds ≤ k(2L)q−1

∫ +∞

t

s−ν[q−p∗(δ)]−1ds

≤ k(2L)q−1

ν[q − p∗(δ)]
t−ν[q−p∗(δ)] = c1t

−ν[q−p∗(δ)] < c1r
−ν[q−p∗(δ)]
1 =

ρ

2
.

So the estimate (4.8) is proved.
Then, using the mean value theorem, for any 0 < ξ < η we find∣∣∣ξ 1

p−1 − η
1

p−1

∣∣∣ ≤ ξ
2−p
p−1

p−1 |ξ − η|, if p ≥ 2,∣∣∣ξ 1
p−1 − η

1
p−1

∣∣∣ ≤ η
2−p
p−1

p−1 |ξ − η|, if 1 < p < 2.
(4.10)

So, if p ≥ 2, plugging (4.10) into (4.7), and using (4.8) we find

|F(u) − Lr−ν | ≤
(

ρ
2

) 2−p
p−1

p − 1

∫ +∞

r

kdt

tν+1

∫ +∞

t

sδ+n−1uq−1(s)ds

≤
(

ρ
2

) 2−p
p−1

p − 1

∫ +∞

r

c1
t1+ν[q−p∗(δ)+1]

dt ≤ c22
p−2
p−1

rν[q−p∗(δ)+1]
,

(4.11)

where c2 := c1ρ
2−p
p−1

ν[q−p∗(δ)+1](p−1) . Similarly if 1 < p < 2, plugging (4.10) into (4.7),
and using (4.8) we find

|F(u) − Lr−ν | ≤ (ρ)
2−p
p−1

p − 1

∫ +∞

r

kdt

tν+1

∫ +∞

t

sδ+n−1uq−1(s)ds

≤ (ρ)
2−p
p−1

p − 1

∫ +∞

r

c1
t1+ν[q−p∗(δ)+1]

dt ≤ c2
rν[q−p∗(δ)+1]

.

(4.12)

Therefore if we set c̄ := max{2(p−2)/(p−1); 1}, r2 :=
[
2c̄c2

L

] 1
ν[q−p∗(δ)]

and ra :=
max{r1; r2}, from (4.11) and (4.12) we find

‖F(u) − Lr−ν‖A ≤ sup
r≥ra

{c̄c2r
−ν[q−p∗(δ)]} ≤ c̄c2r

−ν[q−p∗(δ)]
a ≤ L

2
. (4.13)

Now we pass to prove that F is a contraction. Observe that

|F(u1) − F(u2)| ≤
∫ +∞

r

I2(t)
tν+1

,

where

I2(t) :=

∣∣∣∣∣
[
ρ − k

∫ +∞

t

sδ+n−1uq−1
1 (s)ds

] 1
p−1

−
[
ρ − k

∫ +∞

t

sδ+n−1uq−1
2 (s)ds

] 1
p−1

∣∣∣∣∣ .

Then, using (4.10) and (4.6) and reasoning as in (4.11) and (4.12) we find

I2(t) ≤ kc̄ρ
2−p
p−1

p − 1

∫ +∞

t

sδ+n−1
∣∣∣uq−1

1 (s) − uq−1
2 (s)

∣∣∣ ds. (4.14)
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Since u1, u2 ∈ B, using the mean value theorem we find ũ(s) between u1(s)
and u2(s) such that∣∣∣uq−1

1 (s) − uq−1
2 (s)

∣∣∣ ≤ (q − 1)[ũ(s)]q−2|u1(s) − u2(s)|
≤ (q − 1)(2L)q−2s−ν(q−1) ‖u1(s) − u2(s)‖A .

(4.15)

Hence plugging (4.15) into (4.14), setting c4 := (q−1)(2L)q−2 kc̄ρ
2−p
p−1

p−1 and using
(4.9) we find

|F(u1) − F(u2)| ≤ c4

∫ +∞

r

1
tν+1

(∫ +∞

t

sδ+n−1−ν(q−1) ‖u1 − u2‖A ds

)
dt

=c4 ‖u1 − u2‖A

∫ +∞

r

1
tν+1

∫ +∞

t

dsdt

sν[q−p∗(δ)]+1
≤ c5

‖u1 − u2‖
rν[q−p∗(δ)+1]

,

where c5 := c4
ν2[q−p∗(δ)][q−p∗(δ)+1] . Then, setting rb = (2c5)

1
ν[q−p∗(δ)] , for any

r > rb we find

‖F(u1) − F(u2)‖A ≤
(rb

r

)ν[q−p∗(δ)] ‖u1 − u2‖A
2

<
‖u1 − u2‖A

2
. (4.16)

Hence for any r > r0 := max{ra; rb} we find that both (4.13) and (4.16) hold,
so F admits a unique fixed point, thanks to the Banach Theorem. �
4.2.2. Construction of W u

+ and W s
+ via Wazewski’s principle. In this section

we prove again Lemmas 2.4, 2.8 and Lemma 2.9 removing the simplifying
assumption that (2.2) is C1.

We begin by the analogous of Lemma 2.8, then we use an idea inspired by
Wazewski’s principle to construct compact and connected stable and unstable
sets. Finally we combine these results with the ones of Sect. 4.2.1 to show that
Wu

+ and W s
+ are 1 dimensional manifolds.

Proposition 4.2. Lemma 2.8 holds for any q > p∗(δ), whenever q > p > 1.

The proof of these results can be found in [11, Lemmas 5.4, 5.5] in a non-
autonomous context. The argument in [11] is based on an iterative application
of Gronwall inequality. Here we give a new proof, which is much simpler and
in fact can be adapted to the non- autonomous setting too.

Proof. If u(r) is either a regular or a fast decay solution from (2.1) we imme-
diately see that φ(t;Q) → (0, 0) respectively as t → −∞ or as t → +∞.

So let us prove the viceversa: assume that Q ∈ Wu
+ so that limt→−∞φ(t;Q) =

(0, 0). Then by an elementary phase-plane analysis it follows that there is
T ∈ R such that ẏ(t) < 0 < ẋ(t) for any t ≤ T , where φ(t;Q) = (x(t), y(t)).
Since ẏ(t) < 0 for any t ≤ T , we find

|y(t)| <
k

|γ|x(t)q−1. (4.17)

Hence, plugging (4.17) in the expression of ẋ we find

αx(t) −
[

k

|γ|
] 1

p−1

x(t)
q−1
p−1 < ẋ(t) < αx(t). (4.18)
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Let us denote by x(t) and by x(t) the solutions of the following scalar smooth
ODEs: ⎧⎨

⎩ ẋ(t) = αx(t) −
[

k
|γ|

] 1
p−1

x(t)
q−1
p−1 ,

x(T ) = x(T ),

{
ẋ(t) = αx(t),
x(T ) = x(T ).

We claim that x(t) < x(t) < x(t) for any t ≤ T .
In fact x(T ) = x(T ) = x(T ) by construction. Further from (4.18) it

follows that ẋ(T ) > ẋ(T ) > ẋ(T ) so the inequality holds in a left neighborhood
of t = T .
Assume by contradiction that there is T0 < T such that x(T0) = x(T0) = x(T )
and x(t) < x(t) < x(t) for T0 < t < T . Then from (4.18) it follows that
ẋ(T0) > ẋ(T0) > ẋ(T0), hence x(t) > x(t) > x(t) in a right neighbourhood of
t = T0; but this is a contradiction and the claim is proved.

Now from standard fact in ODE theory we see that both x(t)e−αt and
x(t)e−αt have positive finite limit, say 0 < d ≤ d.
Hence there is ρ > 0 such that d

2 < u(r) < 2d for any 0 < r ≤ ρ. Since u(r) is
positive and decreasing we see that limr→0u(r) = d > 0, where d ≤ d ≤ d and
the part of the Proposition concerning regular solutions is proved.

So let us assume now that Q ∈ W s
+ i.e. limt→+∞φ(t;Q) = (0, 0); then

by an elementary phase-plane analysis we find T ∈ R such that ẋ(t) < 0 and
ẏ(t) > 0 for any t ≥ T , where φ(t) = (x(t), y(t)). Since ẋ(t) < 0 for any t ≥ T ,
we find

x(t) <
|y(t)|1/(p−1)

α
. (4.19)

Plugging (4.19) in ẏ, see (2.1), we find

γy(t) − k
|y(t)| q−1

p−1

αq−1
< ẏ(t) < γy(t). (4.20)

Let us denote by y(t) and by y(t) the solutions of the following scalar smooth
ODEs: {

ẏ(t) = γy(t) − k |y(t)|
q−1
p−1

αq−1 ,
y(T ) = y(T ),

{
ẏ(t) = γy(t),
y(T ) = y(T ).

Reasoning as above we see that y(t) < y(t) < y(t) for any t ≥ T .
Then from standard fact in ODE theory we see that both y(t)e−γt and

y(t)e−γt have negative finite limit, say −� ≤ −� < 0.
Hence there is τ > T such that −2� < y(t)e−γt < − 	

2 for any t ≥ τ . Recalling
that y(ln(r))r−γ = −|v′(r)|p−1rn−1 and that limr→+∞|v′(r)|p−1rn−1 exists,
see Lemma 1.8, we show that v(r) is a fast decay solution and the Proposition
is proved.

The proof concerning singular and slow decay solution proceeds as in the
smooth case. �

Now we show that Wu
+ and W s

+ are non-empty compact sets. The argu-
ment can already be found in [13] in a more general setting: we repeat here a
simplified version of the proof for completeness.
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Figure 7. Construction of Wu
loc and illustration of

Lemma 4.3

To construct Wu
+ we look for a positively invariant triangular like set Eu,

then we conclude with a topological argument based on Wazewski’s principle.
Let Ax = Px

2 and Ay = − (
αPx

2

)p−1
so that A = (Ax, Ay) is a point in

the nullcine ẋ = 0. Then we set

A := {(x, y) | αx − |y| 1
p−1 = 0, 0 < x ≤ Ax , y < 0}. (4.21)

We now consider the curve y = −εxq−1 where ε > 0 is a small constant to be
fixed below. Let us set Bu

y = −ε(Ax)q−1 and Bu = (Ax, Bu
y ); we define the

following sets:

Bu := {(x,−εxq−1), 0 < x ≤ Ax }, U := {(Ax, y), Ay ≤ y ≤ Bu
y };

Eu := {(x, y) | −(αx)p−1 ≤ y ≤ −kxq−1, 0 < x ≤ Ax}.
(4.22)

Then Eu ∪ {(0, 0)} is the compact set enclosed by A, Bu and U , see Fig. 7;
notice that ∂Eu = A∪Bu ∪U ∪{(0, 0)}. Observe that (2.2) is C1 in Eu; further
we have the following.

Lemma 4.3. Let 0 < ε < εu := k
|γ|+α(q−1) ; then the flow of (2.2) on (A ∪

Bu) \ {A,B} aims towards the interior of Eu, while on U it aims towards the
exterior of Eu.

Proof. If Q ∈ U the proof is obtained simply by observing that, by construc-
tion, we are in the set where ẋ > 0. If Q ∈ A it follows from a straightforward
computation, or from the fact that we are on the branch of the nullcine ẋ = 0
between the origin and A (so on the left of P ). If Q = (x, y) ∈ Bu we have to
show that

D :=
d

dt

{
y(t;Q) + ε[x(t;Q)]q−1

} �t=0< 0. (4.23)
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In fact, using (2.2) and the fact that y = −εxq−1, we find

D =γy − kxq−1 + ε(q − 1)xq−2(αx − |y|1/(p−1))

= − (k − ε|γ| − εα(q − 1)) xq−1 − ε(q − 1)xq−2|y|1/(p−1)

< − (k − ε|γ| − εα(q − 1)) xq−1.

Hence D < 0 if ε < εu, so (4.23) follows and the Lemma is proved. �

Let us set

Wu
loc := {Q | φ(t;Q) ∈ Eu for any t ≤ 0}.

A priori a trajectory may converge to the origin in finite time since local
uniqueness on the coordinate axes is not ensured. However, from an inspection
of the proof of Proposition 4.2, we find the following.

Lemma 4.4. If Q ∈ Wu
loc then limt→−∞φ(t;Q) = (0, 0) and x(t;Q) > 0 for

any t < 0.

From an elementary analysis of the phase portrait of (2.2) we easily obtain
the viceversa.

Remark 4.5. If limt→−∞φ(t;Q) = (0, 0) and x(t;Q) ≥ 0 for t  0, there is
τ ∈ R such that φ(t;Q) ∈ Wu

loc for any t ≤ τ .

Lemma 4.6. Assume q > p∗(δ), then Wu
loc is a closed connected non-empty set.

Proof. For any Q ∈ Ũ := U \ Wu
loc we define the functions

τ(Q) := inf{T | φ(t;Q) ∈ Eu for any T < t ≤ 0},

Γ(Q) := φ(τ(Q);Q).

From Lemma 4.3 we find that if Q ∈ Ũ then either Γ(Q) ∈ A or Γ(Q) ∈ Bu.
Assume by contradiction that Wu

loc = ∅ so that Ũ = U . Notice that Γ−1(A) :=
{Q ∈ U | Γ(Q) ∈ A} and Γ−1(Bu) := {Q ∈ U | Γ(Q) ∈ Bu} are relatively
open in U , since the flow of (2.2) on Eu is C1. Further τ(A) = τ(Bu ) = 0 and
Γ(A) = A, Γ(B) = B. Whence Γ−1(A) and Γ−1(Bu) are both relatively open
and nonempty (they contain respectively A and Bu ): since U is connected we
have found a contradiction. Hence Wu

loc is a closed non-empty set.
Let Qu ∈ (Wu

loc∩U), then by construction wu
loc := {φ(t;Qu) | t ≤ 0} is a 1

dimensional manifold and wu
loc ⊂ Wu

loc. Further, from elementary consideration
on the phase portrait it is easy to check that Wu

loc is connected. �

Lemma 4.7. Assume q > p∗(δ), p > 1, then Wu
+ is a 1 dimensional immersed

manifold.

Proof. We claim that Wu
loc ∩ U is a singleton say {Qu}. In fact assume by

contradiction that there is P u ∈ (Wu
loc∩U), P u �= Qu . Let us denote by wu

P :=
{φ(t;P u ) | t ≤ 0}, and by wu

Q := {φ(t;Qu ) | t ≤ 0}; then by construction
wu

P ⊂ Wu
loc and wu

Q ⊂ Wu
loc. Further wu

Q ∩ wu
P = ∅, due to local uniqueness of

the solutions of (2.2). Finally if R ∈ (wu
P ∪ wu

Q) then the trajectory φ(t;R)
of (2.2) corresponds to a regular solution u(r; d(R)) of (1.2), where d(R) > 0,
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see Proposition 4.2. From Lemma 1.5 we see that d(R1) �= d(R2) if R1 �= R2,
i.e. d(·) : Wu

+ → [0,+∞) is injective, so in particular d(Qu ) �= d(P u ).
Assume to fix the ideas d(Qu ) > d(P u ). Using invariance for t-translations

of (2.2) as in (2.9), we find that there are R̃ ∈ wu
Q and τ̃ = 1

α ln
(

d(Qu )
d(P u )

)
> 0

such that

u(r; d(R̃))rα = x(t; R̃) = x(t − τ̃ ;Qu ) = u(re−τ̃ ; d(Qu ))rαe−ατ̃ .

Hence
d(R̃) = d(Qu )e−ατ̃ = d(P u ). (4.24)

But this is a contradiction since R̃ ∈ wu
Q while P u ∈ wu

P and wu
Q ∩ wu

P = ∅
and d(·) is injective; so the claim is proved and Wu

loc ∩ U is a singleton.
Then we easily see that Wu

+ = wu
Q = {φ(t;Qu ) | t ∈ R}, hence Wu

+ is a
1 dimensional immersed manifold. �

The construction of the stable set is completely analogous.
We consider the curve x = ε|y|1/(p−1) where ε > 0 is a small constant

to be fixed below. Let us set Bs
x = ε|Ay|1/(p−1) and Bs = (Bs

x, Ay). Then we
define the following sets.

Bs := {(ε|y|1/(p−1), y) | Ay ≤ y < 0 }, S := {(x,Ay), Bs
y ≤ x ≤ Ax};

Es := {(x, y) | αx ≤ |y| 1
p−1 ≤ x

ε , Ay ≤ y < 0}.
(4.25)

Notice that Es ∪ {(0, 0)} is the compact set enclosed by A, Bs, S and ∂Es =
A ∪ Bs ∪ S ∪ {(0, 0)}, see Fig. 8. Again (2.2) is C1 in Es; further we have the
following.

Lemma 4.8. Let 0 < ε < εs := p−1
|γ|+α(p−1) ; then the flow of (2.2) on (A ∪

Bs) \ {A,B} aims towards the exterior of Es, while on S it aims towards the
interior of Es.

Proof. Observe that if 0 < x < Px the nullcline ẋ = 0 lies below the nullcline
ẏ = 0, since q > p, cf Fig. 4; hence if Q ∈ S the proof is obtained simply by
observing that we are in the set where ẏ > 0 by construction. If Q ∈ A it
follows from the fact that we are on the nullcline ẋ = 0 between the origin and
A (so on the left of P ).

If Q = (x, y) ∈ Bs we have to show that

Ds :=
d

dt

{
εp−1y(t;Q) + x(t;Q)p−1

} �t=0< 0. (4.26)

In fact, using (2.2) and the fact that |y|1/(p−1) = x/ε, we find

Ds =εp−1(γy − kxq−1) + (p − 1)xp−2(αx − |y|1/(p−1))

=
(

|γ| + (p − 1)α − p − 1
ε

)
xp−1 − εp−1kxq−1

<

(
|γ| + (p − 1)α − p − 1

ε

)
xp−1.

Hence Ds < 0 if 0 < ε < εs, so (4.26) follows and the Lemma is proved. �
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Figure 8. Construction of W s
loc and illustration of

Lemma 4.8

Once again priori a trajectory may converge to the origin in finite time
since local uniqueness on the coordinate axes is not ensured. However, from
an inspection of the proof of Proposition 4.2, we find the following.

Lemma 4.9. If Q ∈ W s
loc then limt→+∞φ(t;Q) = (0, 0) and x(t;Q) > 0 for

any t > 0. Conversely if limt→+∞φ(t;Q) = (0, 0) and x(t;Q) ≥ 0 for t � 0
then there is τ ∈ R such that φ(τ ;Q) ∈ W s

loc.

Now using Lemma 4.8 and arguing as in Lemma 4.6 we obtain the fol-
lowing.

Lemma 4.10. Assume q > p∗(δ), then W s
loc is a compact connected non-empty

set.

Lemma 4.11. Assume q > p∗(δ), then W s
+ is a 1 dimensional immersed man-

ifold.

Proof. We just need to show that W s
loc ∩ S is a singleton, say {Qs}; then we

conclude the proof arguing as in Lemma 4.7.
Assume by contradiction that there is P s ∈ (W s

loc∩S), P s �= Qs . Denote
by ws

P := {φ(t;P s) | t ≥ 0} ⊂ Es, and by ws
Q := {φ(t;Qs) | t ≥ 0} ⊂

Es: by construction ws
P ⊂ W s

+ and ws
Q ⊂ W s

+, and ws
P ∩ ws

Q = ∅, due to
local uniqueness of the solutions of (2.2) outside the coordinate axes. If R ∈
(ws

P ∪ ws
Q) then the trajectory φ(t;R) of (2.2) corresponds to a fast decay

solution v(r;L(R)) of (1.2), where L(R) > 0. From Theorem 1.6 we see that
L(·) : W s

+ → [0,+∞) is injective, so in particular L(Qs) �= L(P s). Assume to
fix the ideas L(Qs) > L(P s); using invariance for t-translations of (2.2) as in
(2.11), we find that there are R̃ ∈ ws

Q and τ̃ = p−1
n−p−α(p−1) ln

(
L(P s )
L(Qs )

)
such
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that

v(r;L(R̃))rα = x(t; R̃) = x(t − τ̃ ;Qs) = v(re−τ̃ ;L(Qs))rαe−ατ̃ .

Hence, cf. (2.11), we find

L(R̃) = L(Qs)e
n−p−α(p−1)

p−1 τ̃ = L(P s). (4.27)

But this is a contradiction since R̃ ∈ ws
Q while P s ∈ ws

P , ws
Q ∩ ws

P = ∅, and
L is injective so the Lemma is proved. �

Remark 4.12. Lemma 2.4 in the general p > 1 case now immediately follows
from Lemmas 4.7 and 4.11 , while Lemma 2.7 is easily obtained observing that
by construction Wu

loc ⊂ Eu and W s
loc ⊂ Es.
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