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Abstract
Liquidity is a risk factor of primary relevance that can significantly affect the asset
allocation decisions of investors. In this paper, we introduce the concept of portfolio
staleness andpropose a simple framework tomanageportfolio liquidity, intended as the
cost needed to liquidate the portfolio. Within this framework, the traditional minimum
variance problem is solved under the additional constraint that portfolio staleness
must be smaller than a given threshold. We show that a dynamic asset allocation
strategybasedon the staleness constrainedportfolio can significantly enhance portfolio
liquidity over the standard minimum variance solution. Meanwhile, the increase in
portfolio risk is limited, generating large liquidity gains per unit of risk.
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1 Introduction

The Markowitz (1952) mean–variance framework is at the core of modern asset allo-
cation. In this setting, an investor optimally allocates wealth across risky assets caring
only about the mean and the variance of portfolio returns. Although theoretically
sound, the mean–variance framework has not reached widespread consensus in the
finance industry. Among the causes of what Michaud (1989) defines “the Markowitz
optimization enigma”, he identifies the fact that mean–variance portfolios ignore fac-
tors, such as liquidity, that are important for investment decisions. The relevance of
liquidity in the asset allocation problem iswidely recognized in thefinancial economics
literature. For instance, Canner et al. (1997) show that portfolios recommended by four
popular financial advisors are not on the mean–variance efficient frontier and consider
assets marketability among the possible explanatory factors. Similarly, Ghysels and
Pereira (2008), Hodrick and Moulton (2009) and Bazgour et al. (2016) find that fund
managers are sensitive to liquidity while achieving their targets in the portfolio allo-
cation decision. Despite these empirical evidences, few efforts have been devoted to
understanding how investors can manage liquidity within the mean–variance frame-
work.

Since the last financial crisis, both regulators and investors have expressed con-
cerns about the worsening conditions of liquidity in the markets. First, the regulatory
restructuring related to the traditional activities of banks and financial intermediaries
tightened capital requirements, reducing their ability to supply liquidity. Funding con-
straints and higher margins can force liquidity suppliers to liquidate their positions
in case of redemption pressures, thus raising market illiquidity (Gromb and Vayanos
2002; Chiu et al. 2012). Second, the growth of the ETF industry is raising concerns for
a possible liquidity crisis.1 In case of investor redemption, passive (index-tracking)
funds following similar strategies can induce coordinated liquidations of securities
(Scharfstein and Stein 1990), depressing market prices and thus leading to “liquid-
ity spirals” (Brunnermeier and Pedersen 2008; Hameed et al. 2010). These premises
warrant the development of amethodological framework tomanage portfolio liquidity.

In this paper, we consider an investor who uses the minimum-variance framework2

to allocate funds across stocks, and pursuits a volatility timing strategy (Fleming
et al. 2001, 2003). The portfolio is rebalanced on a daily basis, and the solution of the
optimization problem is a sequence of optimal weights that vary exclusively according
to changes in the conditional covariances of the assets held in the portfolio. Using this
framework, we aim to answer the following questions: how can we include liquidity in
the dynamic portfolio optimization problem?How canwemeasure portfolio liquidity?
Canwe consistently generate portfolio liquidity gains selecting portfolios that are close
to the minimum-variance portfolio?

The traditional approach to portfolio construction in the presence of illiquid assets
entails the modeling of the transaction costs and the solution of a dynamic portfo-
lio strategy. Some examples are given by Constantinides (1986), Gârleanu (2009)

1 See the Wall Street Journal article on 21st March 2018, “Could ETFs Fall Into a Liquidity Jam?”
2 Recent research has indeed focus on minimum-variance portfolios, which are only based on covariances
and thus are not sensitive to estimation errors on expected returns (Jagannathan and Ma 2003; DeMiguel
et al. 2009). The proposed approach remains valid if a mean–variance framework is considered instead.
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and Gârleanu and Pedersen (2013). A similar route is adopted in the literature on asset
pricing with transaction costs (Amihud and Mendelson 1986; Acharya and Pedersen
2005; Vayanos 1998; Vayanos and Vila 1999) and in that on optimal trade execu-
tion (Bertsimas and Lo 1998; Almgren and Chriss 2000). Modeling and estimating
the transaction costs is a difficult task. Commissions fees, bid–ask spreads, funding
costs, price-impact are all relevant components of the transaction costs that may not be
directly available to the investor. For this reason, a set of simplifying assumptions are
typically imposed on the transaction cost function, and the existence of a closed-form
or numerically tractable solution crucially relies on these assumptions.

The approach adopted in this paper is deliberately different. Our goal is to include
the liquidity dimension in the standard Markowitz framework without explicitly
modeling the transaction costs. To be more specific, we look for a synthetic and easy-
to-compute measure which reflects the main determinants of portfolio illiquidity. In
doing so, we try to conciliate the need for sufficiently liquid portfolios with parsimony
and computational efficiency.

Bandi et al. (2017) show that asset prices observed at high-frequency update less
frequently than what assumed in standard continuous time models of asset pricing.
They introduce an economic indicator, named idle time, that estimates the probability
of observing a zero return (or a stale price, whence the nomenclature adopted in this
manuscript) at a given sampling frequency. Idle timeprovides information on the extent
of liquidity of an asset, and it is related to both transaction costs and absence of volume
(Bandi et al. 2020).We extend this notion to a portfolio of assets by defining the concept
of portfolio staleness: on a given day, portfolio staleness is computed as the weighted
average of assets’ idle times, using the corresponding portfolio weights. This measure
has several attractive features: (a) is easy to compute, as idle time solely requires data
on transaction prices to be implemented; (b) has a clear economic interpretation, as
idle time can be regarded as an illiquidity proxy within a model of price formation
with transaction costs and asymmetric information; (c) being idle time a probability, it
naturally ranges between zero and one, allowing to easily compare and rank portfolios.

Building upon these considerations, our first contribution is to propose a tractable
framework where the liquidity dimension is integrated into the portfolio selection
problem. This is done by imposing an additional constraint (henceforth referred to as
staleness constraint) on the minimum-variance portfolio optimization that limits the
degree of portfolio staleness. The intuition behind this approach is straightforward: a
portfolio with lower staleness places larger weights on assets with lower idle time. To
the extent that idle time proxies illiquidity, the new portfolio is expected to give larger
weights to liquid assets than the standard minimum-variance portfolio. On the other
side, a very tight upper bound on the level of staleness for the assets included in the
allocation will unavoidably result in a less-diversified portfolio. These considerations
naturally lead to wonder to what extent such a staleness constrained asset allocation
delivers amore liquid portfolio. Several definitions andmeasures of liquidity are avail-
able for individual securities, but the literature offers little guidance toward defining
and assessing portfolio liquidity. Here, we adopt the economically motivated measure
of portfolio liquidity of Pastor et al. (2017) to evaluate the degree of liquidity of an
asset allocation strategy. Pastor et al. (2017) argue that the liquidity of a portfolio
should depend not only on the liquidities of the stocks held in the portfolio, but also on
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the degree of portfolio diversification. The intuition underlying this argument is that
a more diversified portfolio can lead to lower trading costs.3 Similarly, when the total
value of the assets in the portfolio relative to the market capitalization of the assets is
large, trading is more expensive. They formalize this intuition in a simple economic
setting and derive the following portfolio liquidity measure:

L =
(

N∑
i=1

ω2
i

mi

)−1

(1)

where N is the number of assets held in the portfolio,ωi is the portfolio weight of stock
i , andmi denotes the weight of asset i in a market-cap-weighted benchmark portfolio.
Note thatL takes values between 0 and 1. It can be shown that the portfolio with lowest
L is the one fully invested in the stock with smallest market capitalization, and that
the portfolio with largest L is the one coinciding with the benchmark portfolio, for
which L = 1. In addition, Pastor et al. (2017) show that L factorizes into the product
of two components: (1) the average of individual liquidities, defined as a function of
the stock market capitalization; (2) a measure of the degree of diversification, related
to the number of stocks held in the portfolio and to the Herfindahl index of portfolio
weights.

Our second contribution is to show empirically that an appropriate choice of the
staleness constraint leads to significant liquidity gains over the standard minimum-
variance portfolio, as quantified by the measure of Pastor et al. (2017). Moreover, we
show that gains in portfolio liquidity are much larger than the unavoidable increase in
portfolio variance. Noteworthy, the risk profile of the staleness constrained portfolio
is found to be very close to that of the minimum-variance portfolio. This result is
somewhat consistent with the evidence in Canner et al. (1997) that investors do not
choose portfolios on the efficient frontier, but are not too far from it.

Finally, our third contribution is to show how the proposed asset allocation strategy
can be implemented in practice in an out-of-sample exercise. Given that idle time
significantly changes over time, the portfolio staleness constraint must be adapted
dynamically to the evolving market conditions. We show that this can be done with a
simple rule based on forecasts of portfolio staleness. As before, we find that staleness
constrained portfolios are significantlymore liquid thanminimum-variance portfolios,
and that the liquidity-risk tradeoff is definitely in favor of portfolio liquidity.

Our paper is closely related to the works ofMichaud (1989) and Lo et al. (2003), but
it substantially differs in at least three aspects. First, we work in a dynamic setting, as
the portfolio is rebalanced on a daily basis; second, we use an economically motivated
measure of portfolio liquidity (i.e. portfolio staleness) to assess the degree of liquidity
of the constrained portfolio; third, we show how to set the portfolio staleness constraint
to obtain out-of-sample liquidity gains. Our paper is also related to the literature on
shrinkage of portfolio weights (Jagannathan and Ma 2003; DeMiguel et al. 2009).
However, instead of reducing the uncertainty on the estimated covariance matrix, our
aim is to shrink portfolio weights towards more liquid assets.

3 For instance, trading a given fraction of the portfolio in one stock is more costly than spreading it over
several stocks, because of the higher price impact.
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As a robustness check, we replicate our analysis using, in place of portfolio stale-
ness, the weighted average of inverse daily trading volume and the weighted average
of daily bid–ask spreads. We show that bounds on these illiquidity measures pro-
vide liquidity-volatility profiles similar to those obtained through portfolio staleness.
However, we discuss why portfolio staleness is more suited within the portfolio opti-
mization framework.

The paper is organized as follows: Sect. 2 introduces themethodology and describes
the staleness constrained portfolio; Sect. 3 provides details on the econometric mod-
eling and forecasting of portfolio staleness and realized covariances; Sect. 4 reports
the results of the empirical analysis and provides a comparison with common liquidity
proxies; Sect. 5 concludes. Supplementary analyses are relegated to “Appendix”.

2 Framework

Let us consider a portfolio of N assets. Let t = sn,0 < sn,1 < · · · < sn,n = t + 1
be a sampling partition of n + 1 points of the time interval [t, t + 1], which can be
thought of as representing one trading day. Let us also denote by�n, j = sn, j − sn, j−1
the lengths of the n sub-intervals and let s ∈ [t, t + 1]. The vector of logarithmic

efficient price processes Xs =
(
X (1)
s , . . . , X (N )

s

)
is assumed to follow a Brownian

semimartingale
dXs = μsds + σ sdWs (2)

where μs is an N -dimensional drift process, σ s is an N × N matrix and Ws is
an N -dimensional standard Brownian motion. The assumptions on the sub-interval
lengths �n, j and on the drift and diffusion coefficients μs, σ s are the same as in
Bandi et al. (2017). Following Bandi et al. (2017, 2020), we assume that, due to illiq-
uidity frictions, the observed (on the sampling partition) logarithmic price processes
Y (i)
sn, j , i = 1, . . . , N , differ from the efficient logarithmic price paths. More precisely,

Y (i)
sn, j is assumed to be driven by the following recursive equation

{
Y (i)
sn,0 = X (i)

sn,0

Y (i)
sn, j = (1 − B(i)

j,n)X
(i)
sn, j + B(i)

j,nY
(i)
sn, j−1

(3)

where B(i)
j,n is a triangular array of measurable Bernoulli variates so that

n∑
j=1

�n, j B
(i)
j,n

p−−−→
n→∞ pi

Here, pi ∈]0, 1] represents a random asymptotic probability, which we will address
as “probability of stale price”. The Bernoulli variates are pairwise independent,4 that
is, for all i1 �= i2,P[B(i1)

j,n = a, B(i2)
k,n = b] = P[B(i1)

j,n = a]P[B(i2)
k,n = b], for all

4 Bandi et al. (2018) add a systematic (market-wide) staleness component in Eq. (3), which accounts
for pervasive decline of market activity across many assets. It is found on empirical data that systematic
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j, k = 1, . . . , n. The key idea behind the modeling in Eq. (3) is that it allows for the
possibility of no trade, hence capturing inhibition of the trading activity. As in Bandi
et al. (2017), we further assume that the supremum of the number of consecutive flat
trades, denoted by K (i)

n , diverges at a rate slower than the number of observations

K (i)
n

n

p−−−→
n→∞ 0 (4)

for i = 1, . . . , N . Such assumption is necessary for the development of the asymptotic
theory of the idle time estimator described in Sect. 3.2; see Bandi et al. (2017). In what
follows, we will denote by pi,t the asymptotic probability of stale price of asset i on
day t . Note that the above assumptions allow the Bernoulli variates to be correlated
with the efficient price process, temporally dependent and non identical distributed.

Finally, it is worth mentioning that the relationship between the Bernoulli variates
and the efficient price process can be understood in a context of amicro-foundedmodel
of price formation.We refer the interested reader to the model described in Bandi et al.
(2017).

Let �t = ∫ t+1
t σ s · σ T

s ds denote the N × N integrated covariance matrix of
the vector of efficient prices X, on day t . Let pt = (p1,t , . . . , pN ,t )

′ be the N × 1
vector of stale price probabilities. Denoting by ωt = (ω1,t , . . . , ωN ,t )

′ the portfolio
weights, we define the portfolio staleness on day t as the weighted average of stale
price probabilities

St = ω′
t pt = ω1,t p1,t + · · · + ωN ,t pN ,t . (5)

For each day t , the investor solves the following quadratic optimization:

min ω′
t�tωt

s.t. 1Nωt ≥ 0N
ω′
t ι = 1

St ≤ St

(6)

where 1N is the N × N identity matrix, 0N is an N × 1 vector of zeros, ι is an N × 1
vector of ones and St is a cap on the portfolio staleness St . The problem in equations
(6) extends the classical minimum-variance (henceforth MV)Markowitz problem5 by
including the linear constraint St ≤ St .

Footnote 4 continued
staleness is considerably weaker than idiosyncratic (asset-specific) staleness. Our analysis remains robust
in the presence of systematic staleness, since in that case the idle time estimator described in Sect. 3.2
consistently estimates the total staleness; see Bandi et al. (2018) for further details.
5 As argued by Jagannathan and Ma (2003), short positions are difficult to implement in practice, and
imposing a no-short-sale constraint can help improving the portfolio allocation when covariances are esti-
mated with errors. For portfolios that allow for short positions, Eq. (5) is not an appropriate definition of
portfolio staleness because short and long positions, in securities characterized by the same level of stale-
ness, cancel out. In this circumstance, portfolio staleness can alternatively be defined as St = ω̃′

tpt , where

ω̃t is an N × 1 vector of modified weights with i th element given by ω̃i,t =
∣∣ωi,t

∣∣∑N
j=1

∣∣ω j,t
∣∣ .
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Since, as empirically proved in Bandi et al. (2020), asset staleness measures illiq-
uidity (along several dimensions), it is natural to impose the constraint St ≤ St for
the purpose of putting larger weights on more liquid assets. As a consequence, the
resulting portfolio composition is expected to be more liquid than that of the classical
MV portfolio. We notice that the optimization problem (6) incorporates a liquidity
constrain with the minimal set of input data: portfolio staleness St can be obtained
as soon as transaction prices are available, as it happens for the variance–covariance
matrix �t .

By looking at the equations in (6), it is clear that the proposed framework differs
from the literature on portfolio construction with transaction costs (Constantinides
1986; Gârleanu 2009; Gârleanu and Pedersen 2013) in at least two aspects. First,
portfolio illiquidity is captured by portfolio staleness to the same extent that the trans-
action costs of the individual assets are captured by idle time. Therefore, no explicit
modelization of the multiple components of the transaction costs (commissions fees,
bid–ask spreads, funding costs, price-impact) is required. Second, the optimization
problem is a simple quadratic problem with linear constraints. It is thus readily imple-
mentable by financial institutions that aim to conciliate the request of lower trading
costs with computational efficiency.

Amore general framework would include a further constraint on portfolio expected
returns.However, the latter are notoriously difficult to estimate andmeasurement errors
can lead to overweight (underweight) securities with large (small) expected returns
(Jorion 1985; Garlappi et al. 2006). Since our aim is to evaluate the improvement of
portfolio liquidity for every unit of risk, we avoid to target expected returns. However,
the methodology remains unchanged for mean–variance portfolios.

3 Portfolio allocationmodel

Given the information available at time t , the quadratic minimization problem (6),
which returns the weights of the SC portfolio, can be solved based on one-step ahead
forecasts of the integrated covariance matrix �̂t+1 and of the vector of stale price
probabilities p̂t+1. In addition, the cap St+1 that defines the staleness constraint must
be chosen. In this section, we describe the forecasting models adopted to obtain the
predictions �̂t+1 and p̂t+1 and showhow to set a dynamic portfolio staleness constraint
St+1.

3.1 Covariancematrix estimation

Since the seminalworks ofAndersen et al. (2003) andBarndorff-Nielsen andShephard
(2004), realized measures constructed from high-frequency returns have became the
preferential tool to estimate covariances. We model time-series of realized covariance
matrices using the dynamic HAR-DRD specification of Oh and Patton (2016). Let
r (i)
j,n = Y (i)

sn, j −Y (i)
sn, j−1 be the j th intraday return of the i th asset on day t .We consider the

N × 1 vector of returns r j,n = (r (1)
j,n, . . . , r

(N )
j,n )′ and compute the realized covariance
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matrix on day t as

RCt =
n∑
j=1

r j,n r ′
j,n

Similarly to the DCC (Engle 2002) parameterization of the conditional covariance
matrix, Oh and Patton (2016) factorize the realized covariance matrix in terms of
realized variances and realized correlations

RCt = [diag(RVt )]1/2ρt [diag(RVt )]1/2,

where diag(RVt ) is an N × N diagonal matrix of realized variances and ρt is an
N × N matrix of realized correlations. Individual variances are modeled through the
HAR model of Corsi (2009)

log
(
RVi,t

) = φ
(c)
i + φ

(d)
i log

(
RVi,t−1

) + φ
(w)
i

1

4

5∑
j=2

log
(
RVi,t− j

)

+φ
(m)
i

1

15

20∑
j=6

log
(
RVi,t− j

) + εi,t (7)

where i = 1, . . . , N ,RVi,t denotes the i th element of RVt and εi,t are idiosyncratic
innovations. Correlations are modeled through an analogous HAR specification

vech(ρt ) = θ (c) + θ(d)vech(ρt−1)+ θ(w) 1

4

5∑
j=2

vech(ρt− j )+ θ(m) 1

15

20∑
j=6

vech(ρt− j )+ηt , (8)

where vech
(
ρt

)
indicates the operator stacking in a column the lower triangular part

of ρt and θ (c) = ρ(1 − θ(d) − θ(w) − θ(m)), with ρ = 1
T

∑T
t=1 vech

(
ρt

)
, while the

elements ηi,t of the vector ηt are idiosyncratic innovations. Estimation of the param-

eter vectors
(
φ

(c)
i , φ

(d)
i , φ

(w)
i , φ

(m)
i

)N

i=1
and

(
θ(c), θ (d), θ (w), θ(m)

)
is easily achieved

through standard OLS, without requiring to specify a distribution for the error terms
εi,t andηt . FromEqs. (7)–(8), it is straightforward to derive the one-step-ahead forecast
of the covariance matrix

�̂t+1 = Et [diag(RVt+1)]1/2Et [ρt+1]Et [diag(RVt+1)]1/2 (9)

where Et [diag(RVt+1)] is the N × N matrix with the predicted realized variances on
the main diagonal and Et [ρt+1] is obtained by re-arranging the predicted correlations
into an N × N matrix. Theorem 2 in Oh and Patton (2016) provides conditions under
which �̂t+1 is positive definite.
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3.2 Estimating the probability of stale prices

As anticipated in the introduction, following Bandi et al. (2020), we estimate the
probabilities of stale price through the percentage of zero-returns at a given frequency.
For this purpose, we define the idle time for the i th asset on day t as

ITi,t = 1

n

n∑
j=1

1{
r (i)
j,n=0

}

where 1{·} denotes the indicator function. ITi,t is easily interpretable as the percentage
of zero returns at a given sampling frequency. Time series of idle times of equity stocks
exhibit strong serial dependence. As an example, consider Fig. 1, which shows the
sample autocorrelation function of idle time of Goldman Sachs (GS) and Altria Group
(MO). This empirical evidence supports the adoption of the following HAR (Corsi
2009) specification for the dynamics of daily idle times:

ITi,t = ψ
(c)
i + ψ

(d)
i ITi,t−1 + ψ

(w)
i

1

4

5∑
j=2

ITi,t− j + ψ
(m)
i

1

15

20∑
j=6

ITi,t− j + ξi,t , (10)

which, in all our applications, is estimated through OLS. Similarly to the case of the
variance–covariance matrix in Eq. (9), the t-conditional vector of stale price proba-
bilities predicted for the day t + 1 is obtained as

p̂t+1 = (
Et

[
IT1,t+1

]
, . . . ,Et

[
ITN ,t+1

])′
. (11)

To conclude this section, we remark that we did not specify whether the forecasts
are performed in-sample or out-of-sample. Since both cases will be considered, we
postpone the remaining implementation details to Sect. 4.

3.3 Portfolio staleness constraint

Since idle time changes significantly over time, the portfolio staleness cap St , that
appears in the minimization problem (6), needs to be set adaptively in order to be
meaningful. More specifically, at each day t , the staleness constraint is required to lie
in the interval between the lowest and the highest daily forecast of asset stale price
probabilities. Indeed, a constraint lower than the lowest asset staleness will not be
satisfied, and a constraint higher than the highest asset staleness will return a solution
for the staleness constrained portfolio equal to the MV. We overcome this issue by
choosing, given the information at time t , the staleness cap St+1 as the α-quantile of
t-conditional idle time predictions. In formula, ifQα(·) denotes the empirical quantile
function6 at quantile level α, then we set the staleness constraint as St+1 = Qα(̂pt+1).

6 The empirical quantile function Qα(·) is computed as Qα(̂pt+1) = XN (i), where XN (1), . . . , XN (N )

are the order statistics of p̂t+1 = (
Et

[
IT1,t+1

]
, . . . ,Et

[
ITN ,t+1

])′ and i is such that i−1
N < α ≤ i

N .
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Fig. 1 Realized variance and idle time. The time series of 1-min realized variance (upper-left panel) and 1-
min idle time (upper-right panel). Bottom left and bottom right panels show, respectively, their corresponding
autocorrelation functions. Black and red lines correspond to the tickers Goldman Sachs (GS) and Altria
Group (MO), respectively (color figure online)

Hence, α is a choice variable designed to trade-off liquidity and diversification, which
are the two liquidity components of the portfolio liquidity measure in Eq. (1). In
fact, setting a tight constraint on portfolio staleness (i.e. a value of α close to zero)
imposes to concentrates funds onmore liquid assets, reducing the benefits derived from
diversification. In contrast, loosening the portfolio staleness constraint (i.e. a value of
α close to one) makes the portfolio converge toward that of minimum variance, thus
loosing the benefits from the highly liquid assets.

4 Empirical analysis

Our dataset consists of transactions prices of 50 NYSE assets and covers T = 2244
business days, from 03-01-2006 to 31-12-2014. The time resolution is the minute. We
select trades occurring between 9:30 and 16:00, leading to 390 timestamps. Summary
statistics for the assets in the sample are reported in Table 1. In order to assess the
effectiveness of our methodology at different dimensions, we build three groups of
10, 25 and 50 assets, respectively. The stocks included in the 10- and 25-sized groups
are randomly selected, while the 50-sized group includes all the assets in the dataset.

Both ITi,t and RCt are computed at the same sampling frequency of 1 min.7 We
perform both an in-sample and an out-of-sample analysis. The in-sample analysis

7 A consequence of staleness is that the off-diagonal elements ofRCt are asymptotically downward biased
at large sampling frequencies. This is known as “Epps effect” (Epps 1979). A robust estimator was proposed
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Table 1 Summary statistics

Ticker Asset Variance Correlation Idle time
Mean SD Mean SD Mean SD

ABT Abbott 0.031 0.062 0.265 0.149 0.298 0.124

ACN Accenture 0.043 0.071 0.225 0.146 0.276 0.114

AFL AFLAC 0.098 0.288 0.308 0.148 0.227 0.116

ALL Allstate 0.071 0.216 0.302 0.148 0.315 0.140

AMT American Tower 0.056 0.112 0.237 0.148 0.254 0.108

AXP American Express 0.097 0.231 0.319 0.146 0.208 0.101

BA Boeing 0.050 0.088 0.303 0.147 0.147 0.061

BAX Baxter 0.031 0.059 0.250 0.142 0.275 0.106

CAH Cardinal Health 0.037 0.057 0.266 0.146 0.301 0.129

CCL Carnival 0.061 0.103 0.290 0.157 0.298 0.125

CI CIGNA 0.096 0.380 0.258 0.144 0.224 0.095

CL Colgate-Palmolive 0.025 0.054 0.254 0.138 0.233 0.089

COP ConocoPhillips 0.062 0.145 0.293 0.161 0.158 0.083

CVS CVS Health 0.050 0.136 0.266 0.145 0.317 0.125

CVX Chevron 0.051 0.135 0.313 0.162 0.115 0.054

D Dominion Energy 0.035 0.082 0.262 0.146 0.290 0.125

DHR Danaher 0.041 0.075 0.322 0.149 0.220 0.094

EMR Emerson Electric 0.056 0.115 0.341 0.151 0.214 0.092

ETN Eaton 0.062 0.104 0.309 0.146 0.194 0.082

EXC Exelon 0.050 0.108 0.241 0.144 0.297 0.159

FE FirstEnergy 0.044 0.097 0.234 0.142 0.313 0.135

GD General Dynamics 0.041 0.069 0.303 0.147 0.196 0.083

GIS General Mills 0.021 0.031 0.245 0.138 0.353 0.149

GS Goldman Sachs 0.110 0.405 0.299 0.132 0.071 0.047

HD Home Depot 0.059 0.124 0.302 0.149 0.283 0.128

HON Honeywell International 0.051 0.104 0.347 0.154 0.220 0.094

ITW Illinois Tool Works 0.047 0.086 0.335 0.155 0.227 0.092

JNJ Johnson & Johnson 0.020 0.044 0.287 0.147 0.274 0.120

JPM JPMorgan Chase 0.110 0.277 0.319 0.142 0.225 0.111

KO Coca-Cola 0.024 0.058 0.273 0.148 0.331 0.138

KR Kroger 0.044 0.066 0.229 0.135 0.461 0.160

LLY Eli Lilly 0.032 0.065 0.267 0.147 0.325 0.148

MCD McDonald’s 0.029 0.071 0.276 0.148 0.233 0.117

MDT Medtronic 0.035 0.072 0.278 0.147 0.307 0.112

MO Altria Group 0.029 0.058 0.224 0.135 0.465 0.212

NKE Nike 0.048 0.079 0.281 0.145 0.170 0.076

PEP Pepsico 0.025 0.073 0.275 0.144 0.246 0.104

PG Procter & Gamble 0.025 0.076 0.278 0.145 0.253 0.108
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Table 1 continued

Ticker Asset Variance Correlation Idle time
Mean SD Mean SD Mean SD

PNC PNC Financial Services 0.105 0.253 0.306 0.142 0.181 0.093

PRU Prudential Financial 0.157 0.569 0.323 0.146 0.157 0.077

STT State Street Corp 0.144 0.904 0.309 0.141 0.194 0.099

TGT Target 0.061 0.121 0.273 0.145 0.212 0.093

TJX TJX Companies 0.055 0.083 0.276 0.148 0.293 0.132

UNH UnitedHealth 0.069 0.131 0.246 0.144 0.237 0.096

UNP Union Pacific 0.067 0.123 0.290 0.144 0.133 0.066

UPS United Parcel Service 0.038 0.078 0.322 0.150 0.185 0.076

UTX United Technologies 0.041 0.091 0.338 0.152 0.167 0.068

WMT Walmart 0.030 0.068 0.266 0.139 0.270 0.113

XOM Exxon Mobil 0.045 0.130 0.319 0.157 0.148 0.074

YUM Yum! Brands 0.046 0.079 0.279 0.151 0.250 0.106

Mean and standard deviation of annualized 1-min realized volatilities, realized correlations (computed as
the average of all the 1-min correlations of the ticker with the other stocks in the sample) and 1-min idle
times

is made on the whole dataset and is aimed to provide empirical evidence that SC
portfolios are significantlymore liquid than standardMVportfolios. Portfolio liquidity
is assessed through the measure of Pastor et al. (2017) in Eq. (1). In particular, we
use the weight of each asset i in the S&P500 to obtain a proxy for the weight mi that
appears in Eq. (1). The out-of-sample analysis is performed through a rolling window
of 1000 days. Our dynamic HAR models are re-estimated on a daily basis and then
used to construct a sequence of SC portfolios based on one-step-ahead forecasts of
RCt and ITi,t . Similarly to the in-sample analysis, we show that out-of-sample SC
portfolios feature larger liquidity. Moreover, we provide guidelines on how to set in
practice the quantile level α of the staleness constraint.

4.1 In-sample analysis

In the in-sample analysis the HAR models (7), (8) and (10) are estimated using the
whole sample available. We solve the SC problem for twenty equally distant values
of the quantile level α, obtaining a sequence of optimal solutions ω̂

SCα
t of the mini-

mization problem (6).
To assess to which extent the SC portfolio is more liquid than its MV counterpart,

we compute the portfolio liquidity measure Lt defined in Eq. (1) for both the MV
and SC portfolios, for every day t of the sample. Figure 2 reports (in percentage) the

Footnote 7 continued
by Buccheri et al. (2019). The latter can be employed in place of the standard RCt without altering the
methodology.
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Fig. 2 In-sample portfolio liquidity. The red line corresponds to the average percentage relative differ-
ence in portfolio liquidity between the SC portfolio at the quantile level α and the MV portfolio, i.e.

(1/T )
∑T

t=1

(
L
SCα
t − L

MV
t

)
/LMV

t . Grey-shaded area delimits the 95% bootstrap confidence bands. Val-

ues of the red line exceeding the horizontal dashed-blue line signal a statistically significant improvement
in portfolio liquidity of the SC portfolio over the MV (color figure online)

average relative difference

1

T

T∑
t=1

L
SCα
t − L

MV
t

L
MV
t

(12)

between the liquidityLSCα
t of the SC portfolio at quantile level α and the liquidityLMV

t
of the MV portfolio. A grey area delimits the 95% confidence bands, obtained with a
block bootstrap of 12 lags based on 1000 resamplings of the differences in portfolio
liquidities. The plots in Figure 2 show that, for the three groups of assets, there exist
several choices of α for which the corresponding SC portfolios are significantly more
liquid than their MV counterparts. In particular, the plots show that portfolio liquidity
presents an inverse U-shaped pattern. Setting a tight portfolio staleness constraint
allows to concentrates funds on more liquid assets, but does not allow to benefit
from diversification. In contrast, increasing the portfolio staleness constraint beyond a
certain threshold makes the portfolio converge toward the MV portfolio, thus loosing
the benefits from the highly liquid assets. This result shows that there is a tradeoff
between the two liquidity components of the portfolio liquidity measure in (1), and
highlights howportfolio staleness can be effectively used tomanage portfolio liquidity.
We also notice that, at the optimal α, the SC portfolio is considerably more liquid
than the MV portfolio. Indeed, the average relative difference of portfolio liquidities
between the two can be as high as 110% for N = 10, 40% for N = 25 and 22% for
N = 50.
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Fig. 3 In-sample portfolio volatility. The red line corresponds to the average percentage relative differ-
ence in portfolio volatility between the SC portfolio at the quantile level α and the MV portfolio, i.e.

(1/T )
∑T

t=1(V
SCα
t − V

MV
t )/VMV

t . Grey-shaded area delimits the 95% bootstrap confidence bands. Val-
ues of the red line exceeding zero signal a statistically significant deterioration in portfolio volatility of the
SC portfolio with respect to MV (color figure online)

The volatility of the SC portfolio is expected to be higher than that of the MV
portfolio. To complete our empirical analysis, it is thus necessary to assess the cost of
liquidity gains in terms of deterioration of portfolio risk. We estimate the SC portfolio
volatility (VSCα

t ) and the MV portfolio volatility (VMV
t ) as

V
SCα
t =

√(
ω̂
SCα
t

)′
6̂t ω̂

SCα
t , V

MV
t =

√(
ω̂MV
t

)′ 6̂t ω̂MV
t

where ω̂SCα and ω̂MV
t indicates the corresponding portfolio weights. Figure 3

reports, in percentage and as a function of α, the average relative difference

(1/T )
∑T

t=1

(
V
SCα
t − V

MV
t

)
/VMV

t , along with the 95% bootstrap confidence bands.

The SC portfolios are alwaysmore volatile than theMV portfolio but, for large enough
values of α, the difference between the two portfolio volatilities becomes very small.

In order to quantify how much the increase in portfolio variance is compensated
by the increase in portfolio liquidity, we compute a volatility-adjusted measure of
liquidity, defined as

AL
SCα
t = L

SCα
t

V
SCα
t

, AL
MV
t = L

MV
t

V
MV
t

(13)
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Fig. 4 In-sample adjusted portfolio liquidity. The red line corresponds to the average percentage relative
difference in the adjusted portfolio liquidity between the SC portfolio at the quantile level α and the MV

portfolio, i.e. (1/T )
∑T

t=1

(
AL

SCα
t − AL

MV
t

)
/ALMV

t . Grey-shaded area delimits the 95% bootstrap

confidence bands. Values of the red line exceeding the dashed-blue line signal a statistically significant
improvement of the volatility-adjusted portfolio liquidity of the SC portfolio over the MV (color figure
online)

for both the SC and theMVportfolios. Figure 4 reports, in percentage and as a function
of α, the average of the relative difference

AL
SCα
t − AL

MV
t

AL
MV
t

(14)

along with 95% bootstrap confidence bands. Similarly to Fig. 2, we find an inverse
U-shaped pattern. This implies that the tradeoff between the two liquidity components
of the portfolio liquidity measure (1) is still present after controlling for portfolio
volatility. In particular, we can find values of α for which gains in portfolio liquidity
are significantly greater than the increase in portfolio volatility. This finding further
corroborates the use of portfolio staleness as a tool to manage portfolio liquidity.

To conclude this section, we observe that the minimization problem in Eq. (6)
could be solved by directly imposing a cap on the measure of portfolio liquidity in
Eq. (1). In other words, we could limit the degree of portfolio illiquidity as quantified
by the Pastor et al. (2017) measure Lt rather than the portfolio staleness St . While this
is theoretically possible, due to the highly nonlinear dependence of Lt on the weights,
the corresponding optimization problem can only be solved numerically and it may
lead to unstable and irregular portfolio configurations. For this reason, we implement
the linear portfolio staleness constraint and use the Pastor et al. (2017) measure as
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an independent proxy to assess and compare the level of liquidity of the constructed
portfolios.

4.2 Out-of-sample analysis

The results discussed in Sect. 4.1 show that it is possible to appropriately choose
the staleness constraint to achieve statistically significant in-sample gains in terms of
volatility-adjusted liquidity. We now question whether these results can be extended
to an out-of-sample framework.

For this purpose, we design an out-of-sample asset allocation strategy in which we
adopt a rolling window of T0 = 1000 observations, leaving the remaining T1 = 1244
days as a validation sample. We estimate, for each day t > T0 and in the time window
[t−T0+1, t], the dynamicmodels (7) and (8) for the covariancematrices and themodel
(10) for the idle times. The output of the estimation are the one-day-ahead forecasts
�̂t+1 and p̂t+1. These predictions are then used to solve the SC and MV optimization
problems, obtaining the portfolio weights ω̂

SCα∗
t+1 and ω̂MV

t+1, respectively. The quantile
level α∗ is chosen following a simple optimization procedure: first, the estimated
covariance and stale price probabilities corresponding to the last day of the rolling
window are used to solve the SC optimization problem with 20 different constraints,
as in Sect. 4.1; then, we choose the α∗ that maximizes the volatility-adjusted liquidity
measure ALSCα

t in Eq. (13) and set S
∗
t+1 = Qα∗ (̂pt+1) as a constraint in the out-of-

sample portfolio problem.
For each day of the validation sample, we compute the volatility-adjusted liquidity

measure in Eq. (13), for both SC and MV portfolios. Figure 5 reports the percentage
relative differences, defined in Eq. (14), together with 95% bootstrap confidence bands
under the null hypothesis of zero difference. The plots show that these differences tend
to be positive over the whole validation sample, suggesting that the volatility-adjusted
liquidity of the out-of-sample SC portfolios is significantly larger than that of the MV
portfolio.

The results of this empirical study suggest that the introduction of a portfolio stale-
ness constraint in the Markowitz framework can significantly enhance out-of-sample
portfolio liquidity without jeopardizing the portfolio risk profile.

4.3 Robustness check: comparison with other liquidity measures

The outcome of Sect. 4 naturally leads to wonder whether similar results may have
been obtained imposing a constraint on other illiquidity proxies and, in case, what are
the advantages of relying on portfolio staleness.

In order to answer this question, we perform an empirical analysis identical to that
proposed in Sect. 4, with the notable difference that the constraint on portfolio stale-
ness is substituted with a constraint on different, commonly used, illiquidity proxies.
Formally, let 	t = (

�1,t , . . . , �N ,t
)′ be a vector of illiquidity proxies at time t . We
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Fig. 5 Out-of-sample adjusted portfolio liquidity. Percentage relative differences in the volatility-adjusted
liquiditymeasure, defined in Eq. (14), between the SC andMVportfolios (red line), their average (blue line),
and the 95% bootstrap confidence bands (grey-shaded area) under the null hypothesis of zero difference
(color figure online)

solve the following portfolio optimization problem

min ω′
t�tωt

s.t. 1Nωt ≥ 0N
ω′
t ι = 1

ω′
t	t ≤ �t

(15)

where �t is a cap on the portfolio illiquidity ω′
t	t . For each day t , we consider, as

illiquidity proxies, the inverse of the total daily trading volume and the daily average
relative bid–ask spread. Daily volumes and average relative bid–ask spreads for the
i th asset, i = 1, . . . , N , are defined as

Vi,t =
ni,t∑
s=1

Ni,s (16)

Si,t = 1

ni,t

ni,t∑
s=1

Ai,s − Bi,s
Bi,s

(17)

where ni,t is the number of transactions on day t, Ni,s is the number of shares traded
at the sth transaction of day t, Ai,s and Bi,s denote, respectively, the best ask and the
best bid prevailing at the sth transaction.
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The results of the analysis are reported in Appendix A. They are similar to those
obtained with SC portfolios, which further corroborates the interpretation of idle time
as a proxy of illiquidity. However, it is worth pointing out that the use of idle time in
a portfolio selection problem provides several advantages.

First, idle time can be computed using solely transaction data. This is convenient
from a practical perspective, given that order book data related to bid–ask spreads or
other micro-structural variables are not generally available to investors. Second, idle
time has solid economic foundations. In a price formation model featuring transaction
costs and agents with different degrees of information, it is correlated with relevant
illiquidity factors, such as bid–ask spreads, asymmetric information and delays in the
incorporation of the information flow into the assets’ prices (Bandi et al. 2017). In
contrast, common liquidity measures computed with high-frequency data are not easy
to interpret once aggregated at the daily level. For instance, bid–ask spread is a very
informative liquidity measure, well-suited to derive the optimal trading positioning
minimizing the transaction costs. However, it looses its natural interpretation when
aggregated over the day. Finally, idle time is formally a probability and thus can be
compared across assets without normalization. In a portfolio setting, standard liquidity
measures need some sort of normalization to be compared. For example, the bid–ask
spread is naturally larger for stocks with larger prices, but this does not imply that
these stocks are less illiquid. To circumvent this issue, one needs to normalize the
aggregated daily measures of liquidity in order to make them comparable in the asset
allocation procedure (Lo et al. 2003). Of course, this practice introduces some form of
arbitrariness in the optimization strategy that instead is absent when using idle time.

5 Conclusions

Building upon the interpretation of idle time as an illiquidity proxy, we introduced the
concept of portfolio staleness and showed that it can be effectively used to manage
liquidity in a standardminimum-variance framework.A staleness constrainedportfolio
leads to significant improvements in terms of individual asset liquidities and to lower
price impact due to a better degree of diversification. Interestingly, the unavoidable
deterioration of portfolio risk due to the staleness constraint is much less important
than the corresponding liquidity gain. Using transaction data of a cross section of
NYSE assets, we showed how to properly select the staleness constraints in a real-life
out-of-sample portfolio choice problem.

The proposed approach can be viewed as an “econometric framework” to manage
liquidity in a standardminimum-variance problem. At each time period, the user of our
methodology computes one-step-ahead forecasts of the relevant econometric variables
(covariances and idle times) in order to recover the portfolio weights. The optimization
problem is solved in closed formwithout explicitly modeling themultiple components
of the transaction costs (commissions fees, bid–ask spreads, funding costs, price-
impact). In this perspective, the methodology differs substantially from the methods
based on direct inclusion of transaction costs in the investor’s objective function,which
lead to more complex dynamic programming optimization problems.
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A Robustness checks: inverse of total trading volume and average
relative bid–ask as illiquidity proxies

We solve the portfolio problem (15) for 20 equally spaced quantile levels α, using the
procedure outlined in Sect. 3.3. Figure 6 reports the average relative difference

1

T

T∑
t=1

L
VCα
t − L

MV
t

L
MV
t

(A.1)

between the inverse-volume constrained liquidity portfolioLVCα
t and the its MV coun-

terpart LMV
t . The former is obtained solving the optimization problem (15) with

	t = (
1/V1,t , . . . , 1/VN ,t

)
where Vi,t is the liquidity measure defined in Eq. (16),

i.e. the total daily trading volume for asset i . Similarly, Figure 7 shows the average
relative difference

1

T

T∑
t=1

L
BACα
t − L

MV
t

L
MV
t

between the bidask-spread constrained liquidity portfolioLBACα
t and the itsMV coun-

terpart LMV
t . The former is obtained solving the optimization problem (15) with

	t = (
S1,t , . . . , SN ,t

)
where Si,t is the illiquidity measure defined in Eq. (17), i.e.

the daily average relative spread for asset i . We adopt, in both cases, the same groups
of N = 10, N = 25 and N = 50 assets considered in the analysis with constrains on
portfolio staleness. Gray shaded areas correspond to 95% bootstrap confidence bands.
We note that both the inverse-volume and the bidask-spread constrained portfolios
provide significant liquidity gains over MV portfolios, in a similar fashion to staleness
constrained portfolios.

In order to assess the increase in volatility, we plot in Figs. 8 and 9 the average
relative differences between volatilities of, respectively, inverse-volume and bidask-
spread constrained portfolios and MV portfolios. As expected, these differences are
positive and statistically significant, and similar in magnitude to those observed for
the SC portfolios.

Wealso evaluatewhether portfolio liquidity gains can justify the increasedvolatility.
Figure 10 (resp. Fig. 11) reports the (percentage) average of the relative differences
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Fig. 6 Liquidity of inverse-volumeconstrainedportfolios.Averagepercentage relative difference in portfolio
liquidity between the inverse-volume constrained portfolio, at the quantile level α, and theMVportfolio (red
line). The grey-shaded area delimits the 95% bootstrap confidence bands. Values of the red line exceeding
the dashed-blue line signal an improvement of portfolio liquidity over theMV portfolio (color figure online)
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Fig. 7 Liquidity of bidask-spread constrained portfolios. Average percentage relative difference in portfolio
liquidity between the bidask-spread constrained portfolio, at the quantile level α, and the MV portfolio (red
line). The grey-shaded area delimits the 95% bootstrap confidence bands. Values of the red line exceeding
the dashed-blue line signal an improvement of portfolio liquidity over theMV portfolio (color figure online)
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Fig. 8 Volatility of inverse-volumeconstrainedportfolios.Averagepercentage relative difference in portfolio
volatility between the inverse-volume constrained portfolio, at the quantile levelα, and theMVportfolio (red
line). The grey-shaded area delimits the 95% bootstrap confidence bands. Values of the red line exceeding
zero signal a statistically significant deterioration in portfolio volatility with respect to the MV portfolio
(color figure online)
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Fig. 9 Volatility of bidask-spread constrained portfolios. Average percentage relative difference in portfolio
volatility between the bidask-spread constrained portfolio, at the quantile level α, and theMV portfolio (red
line). The grey-shaded area delimits the 95% bootstrap confidence bands. Values of the red line exceeding
zero signal a statistically significant deterioration in portfolio volatility with respect to the MV portfolio
(color figure online)
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Fig. 10 Volatility-adjusted liquidity of inverse-volume constrained portfolios. Average percentage relative
difference in the adjusted portfolio liquidity between the inverse-volumeconstrainedportfolio, at the quantile
level α, and theMV portfolio (red line). The grey-shaded area delimits the 95% bootstrap confidence bands.
Values of the red line exceeding the dashed-blue line signal an improvement of adjusted portfolio liquidity
over the MV portfolio (color figure online)
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Fig. 11 Volatility-adjusted liquidity of bidask-spread constrained portfolios. Average percentage relative
difference in the adjusted portfolio liquidity between the bidask-spread constrained portfolio, at the quantile
level α, and theMV portfolio (red line). The grey-shaded area delimits the 95% bootstrap confidence bands.
Values of the red line exceeding the dashed-blue line signal an improvement of adjusted portfolio liquidity
over the MV portfolio (color figure online)
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Fig. 12 Out-of-sample volatility-adjusted liquidity of inverse-volume constrained portfolios. Percentage
relative (with respect to the MV portfolio) differences in volatility-adjusted liquidity between the inverse-
volume constrained andMVportfolios (red line), their average (blue line), and the 95%bootstrap confidence
bands (grey-shaded area) under the null hypothesis of zero difference (color figure online)
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Fig. 13 Out-of-sample volatility-adjusted liquidity of bidask-spread constrained portfolios. Percentage
relative (with respect to the MV portfolio) differences in volatility-adjusted liquidity between the bidask-
spread constrained andMV portfolios (red line), their average (blue line), and the 95% bootstrap confidence
bands (grey-shaded area) under the null hypothesis of zero difference (color figure online)

123



238 G. Buccheri et al.

in volatility-adjusted liquidity, defined analogously to those in Eq. (14), between the
inverse-volume (resp. the bidask-spread) constrained portfolios and theMVportfolios,
for the three portfolio dimensions considered here.Also in this case, considerable gains
in the liquidity/volatility trade-off can be obtained for suitable choices of α.

As a final robustness check, we replicate the out-of-sample analysis of Sect. 4.2
for the inverse-volume and bidask-spread constrained portfolios. The same groups of
N = 10, N = 25 and N = 50 assets are used. The illiquidity caps �t for the inverse
volume and the average relative spread portfolios are adaptively chosen each day, using
the same procedure adopted in the case of the staleness constrained minimization. We
compute the volatility-adjusted liquidity measure in Eq. (13) for the inverse-volume
and bidask-spread constrained portfolios and report, respectively, in Figs. 12 and 13 the
(percentage) relative differenceswith respect to theMVportfolio (defined analogously
to those defined in Eq. (14) for the staleness constrained portfolio). We note that these
differences are significantly positive in most of the days of the sample.
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