
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Necklace: An Architecture for Distributed and Robust Service Function Chains with Guarantees / Esposito
F.; Mushtaq M.; Berno M.; Davoli G.; Borsatti D.; Cerroni W.; Rossi M.. - In: IEEE TRANSACTIONS ON
NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - 18:1(2021), pp. 152-166.
[10.1109/TNSM.2020.3036926]

Published Version:

Necklace: An Architecture for Distributed and Robust Service Function Chains with Guarantees

Published:
DOI: http://doi.org/10.1109/TNSM.2020.3036926

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/790244 since: 2021-03-11

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TNSM.2020.3036926
https://hdl.handle.net/11585/790244

This is the final peer-reviewed accepted manuscript of:

F. Esposito, M. Mushtaq, M. Berno, G. Davoli, D. Borsatti, W. Cerroni, and M.
Rossi, “Necklace: An Architecture for Distributed and Robust Service Function
Chains with Guarantees,” IEEE Transactions on Network and Service Management,
Early Access.

The final published version is available online at DOI:

https://doi.org/10.1109/TNSM.2020.3036926

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

https://doi.org/10.1109/TNSM.2020.3036926
https://cris.unibo.it/

1

Necklace: An Architecture for Distributed and
Robust Service Function Chains with Guarantees

Flavio Esposito? Maria Mushtaq? Michele Berno† Gianluca Davoli‡ Davide Borsatti‡ Walter Cerroni‡ Michele Rossi†

?Saint Louis University, USA † University of Padova, Italy ‡ University of Bologna, Italy

Abstract—The service function chaining paradigm links or-
dered service functions via network virtualization, in support of
applications with severe network constraints. To provide wide-
area (federated) virtual network services, a distributed archi-
tecture should orchestrate cooperating or competing processes
to generate and maintain virtual paths hosting service function
chains while guaranteeing performance and fast asynchronous
consensus even in the presence of failures. To this end, we propose
a prototype of an architecture for robust service function chain
instantiation with convergence and performance guarantees. To
instantiate a service chain, our system uses a fully distributed
asynchronous consensus mechanism that has bounds on conver-
gence time and leads to a (1 − 1/e)-approximation ratio with
respect to the Pareto optimal chain instantiation, even in the
presence of (non-byzantine) failures. Moreover, we show that a
better optimal chain approximation cannot exist. To establish the
practicality of our approach, we evaluate the system performance,
policy tradeoffs, and overhead via simulations and through
a prototype implementation. We then describe our extensible
management object model and compare our asynchronous con-
sensus’s overhead against Raft, a recent decentralized consensus
protocol, showing superior performance. We furthermore discuss
a new management object model for distributed service function
chain instantiation.

Index Terms—Network Virtualization, Service Function
Chains, NFV, Consensus Algorithms, Guarantees.

I. INTRODUCTION

THE growing number of networked services and applica-
tions increased the complexity of network management.

Network virtualization has however simplified many aspects
of such complexity, while also enabling new business models;
the key idea is to abate infrastructure and service providers’
operational costs [1]. The research community has also gained
interest in this technology as it allows simpler management
of multi-tenant, wide-area and complex networks; see, for
example, large scale virtual network testbeds such as Chama-
leon [2], or Fabric [3]. To offer such wide-area network
services, physical resources from multiple federated providers
or research institutions are required. Managing these services
is, however, very complex. The management complexity is
brought by the scale and constraints required by the applica-
tions, as well as by multiple virtual network functions that
coexist to build a service function chain. Such functions range
from management tasks, such as load balancing (sometimes
also considered a data plane task), firewalls, intrusion detection
systems, network address translators or deep-packet inspec-
tion [4] and Quality-of-Service [?], [5]–[7], to data plane tasks
such as congestion control, and network scheduling [8], [9].

To orchestrate such complex environments, chain policies
need to be instantiated on multiple (physical or virtual) hosting
machines, spanning multiple federated providers, and being
dynamically reprogrammed to quickly adapt to the dynamic
nature of the service. By policy, we mean a variant aspect of
any network mechanism, e.g., a desirable high-level goal dic-
tated by users, applications, infrastructure or service providers.

Many systems for centralized service function chain orches-
tration are actively being developed, see e.g., [10], [11]. It is
still unknown, however, how multiple (virtualized) instances
of the infrastructure could cooperate or compete to orchestrate
several network management mechanisms to offer a wide-area
service function chain.

In this paper, we focus on a subset of all possible (dis-
tributed) chain orchestration mechanisms. In particular, we
present the design and implementation of Necklace, an archi-
tecture that solves the distributed chain instantiation problem
with performance guarantees via distributed asynchronous
consensus, even in the presence of a small number of random
failing processes or communication links. Necklace solves
the problem of reaching a distributed allocation agreement
among processes running on all chain hosting nodes, while
maximizing all providers’ utilities.

Motivating applications. Solutions that provide resilient de-
centralized asynchronous consensus that could be used for the
chain instantiation problem already exist, see e.g., the Paxos
consensus algorithm [12], a version of which is used even by
Google data centers [13], or the more recent Raft [14], adopted
by the Open Network Operating System (ONOS) [10]. The
design behind these protocols is sound, but although these
approaches have been subject to recent optimizations and im-
provements (see e.g., [15], [16]), none of them simultaneously
provides: (i) guarantees on the Pareto optimality of the elected
leader, (ii) bounds on the agreement convergence time, and
(iii) resilience to random failures of processes and/or com-
munication links, via a fully distributed solution (as opposed
to a decentralized one as in [14]). Our Necklace architecture
bridges this gap with the following three contributions.

Architectural contributions. Leveraging stochastic optimiza-
tion theory, we identify the mechanisms and the interactions
within what we call the complete resilient service function
chain instantiation problem. The three necessary and sufficient
sets of invariances to instantiate a chain are: (i) state retrieval,
(ii) chain mapping, and (iii) resource binding. Necklace
connects these three mechanisms via a Chain Instantiation
Protocol (CIP) that modifies states within each phase.

2

Algorithmic contributions. To solve the service chain map-
ping problem, we propose a fully Distributed Asynchronous
Chain Consensus Algorithm (DACCA) that is guaranteed to
converge and has probabilistic guarantees (i.e., guarantees on
the expected value) on the quality of the chain instantiation,
with respect to a Pareto optimal network utility.

System contributions. We analyze some policy tradeoffs of
the DACCA mechanism with simulations, and we confirm
the simulated results over a prototype implementation of
Necklace within the Mininet virtual network testbed [17].
Using a large available dataset of requests to the Facebook
datacenter, we also compare the performance of several
predictors used to provision a chain, and deploy such chains
after running DACCA using an OpenSource MANO (OSM)
physical network testbed using production-level hardware to
establish the practicality of our approach.

Paper Organization. The rest of the paper is organized as
follows: in the next Section II we relate our contributions
to existing work; in Section III we define our complete re-
silient chain instantiation problem as a stochastic optimization
problem, that served as architecture design tool; our Necklace
architecture and its core mapping mechanism DACCA are
then described in Sections IV and V, respectively, while the
details of the management object model, a superset of the
Chain Instantiation Protocol are described in Section IV. The
analytical results are highlighted in Section VI. In Section VII,
instead, we present the traffic forecast analysis, performed
using the Facebook dataset [18]. Finally, we present our
prototype evaluation results in Section VIII and draw our
conclusions in Section IX.

II. RELATED WORK

Service chain orchestration systems. The idea of providing a
resilient chain in a distributed environment has been floated at
the ETSI NFV ISG group [19], proposing a system in which
chains are deployed with automatic failover and reinstallation
of failed instances. Moreover, their proof-of-concept include
redundancy with middleware that provides state replication
and synchronization services between chain instances. Neck-
lace does not yet support chain reinstallation upon failover
but its focus is on an algorithm for instantiating a chain, that
is resilient during the instantiation phase. Necklace’s asyn-
chronous consensus mechanism does not distinguish failed
hosting nodes from silent nodes unable to take the “hosting
leadership”. Moreover, ETSI’s solution does not allow each
provider to specify their own instantiation policies (utility
or voting strategy) privately, and their system does not have
bounds on suboptimalities. Although also without guarantees,
a discussion of an optimal distribution of chains in a multi-
provider environment is discussed in [20]. A use case by the
IETF service function chaining working group [21] considers
instantiating chains across federated domains; however, no
system has been implemented yet in support of those use cases.
MIDAS [22] and Cloud4NFV [23] are other two approaches
for multi-cloud environments chain provisioning (MIDAS also
considers discovery). Their approaches are sound but many of

them are ad-hoc, i.e., they do not allow policy tuning on the
chain (middlebox) instantiation mechanism and do not discuss
any guarantees.

Several other NFV orchestration system designs have been
proposed [24], see, e.g., OpenBaton [25], FROG [26], and
several other solutions [27] have been built upon the service
function chain working group proposal, to explore, expand and
identify new abstractions, especially at the intent-specification
level [28]. Differently than OpenBaton, FROG, nf.io and
others, the design of Necklace does not depend on the
(flawed [29]) naming and addressing architecture, i.e., it does
not need to use IP addresses. Finally, Necklace shares the
distributed and unifying approach design principles with [27],
but the implementation of our prototype is limited to the
management of the lifetime of a service function chain; other
proposed orchestrators (e.g., OpenBaton [25]) have other very
useful features. OpenNF [30] does service chain orchestration
using the forwarding mechanism. It assumes that dynamic
service chaining is provided by updating how SDN switches
forward packets. OpenNF key point is efficiency, and ability to
coordinate control of forwarding changes and middlebox state
migration, so that middleboxes can be replaced quickly and
safely. The more recent Dysco [31] like the Chain Instatiation
Protocol (CIP) of Necklace, is a session protocol and places
no constraints on the choice of the control plane (i.e., it works
also without SDN), hence avoiding performance risk problems
with (OpenNF) controllers because they are responsible for
packet buffering. Other architectures, including [32], focus on
the deployment of a pre-allocated chain, without covering re-
source allocation mechanisms. To conclude, none of these pro-
posed architectures or orchestrators is based on a mechanism
design able to provide guarantees on both convergence of a
chain instantiation, and guarantees on performance utilization
of a set of chains to be instantiated.

Constrained path finder algorithms. Since a chain is a
(directed) constrained path, approaches to find a (resilient)
physical path with multiple constraints are also related. Due
to its NP-complete [33] nature, the problem of finding a
constrained path has inspired many heuristics. As in our
approach, most of these heuristics group multiple metrics into
a single function to reduce the optimization problem to a
single constrained formulation, see e.g., [34], and then solve
it using, e.g., Lagrangian relaxation. Our architecture uses a
mechanism that performs a fully distributed resource discovery
with the voting system, before mapping the path on the hosting
infrastructure, and then a subsequent phase assigns the best
candidate, given by the Pareto optimal mechanism design.

Other path finder suboptimal solutions that use k-shortest
paths like Necklace also exist: in [35] e.g., the authors propose
a k-path constraints heuristic solution. Moreover, the exact
pseudo-polynomial algorithm proposed by Jaffe et al [33]
offers a distributed path finder alternative, but restricted to
a two-paths constraint. Differently from all these solutions,
to our knowledge, we are the first to propose a constrained
path finder mechanism that is policy-based, fully distributed,
and has guarantees with respect to a Pareto optimal chain
instantiation.

3

III. MODEL AND ARCHITECTURE DESIGN

In this section, we describe the complete resilient chain
instantiation as a centralized stochastic optimization problem.
We then use our model to design a system architecture in
support of its resilient system implementation. In particular,
we model each subproblem individually as a building block
of our architecture, and we model the interfaces among such
mechanisms with coupling (or complicating) variables.

Before running a chain of (virtual) services on a shared
(physical) infrastructure, service and infrastructure providers
need to cooperatively or independently run three interacting
mechanisms: (i) chain state retrieval, (ii) service chain map-
ping, and (iii) resource binding.

The state retrieval mechanism involves querying a subset
of all the available hosting resources, among those that satisfy
the constraints of the requested service chain. These resources
are physical, in case an infrastructure provider is processing
the instantiation, or virtual, in case a service provider acts as
a broker and rents resources on top of a virtual overlay. We
refer to such underlying resources simply as hosting nodes or
links.

If a set of hosting resources has been found, a resource
mapping protocol has to be executed. It is known that finding
unconstrained shortest paths can be solved in polynomial
time [36]. However, due to the combination of node and link
constraints, this path finding problem is the most complex
step in the chain instantiation setup, and it has been shown
to be NP-hard when several path Service Level Objective
(SLO) constraints are enforced [37]. A SLO is a technical
requirement within a Service Level Agreement (the full legal
contract). Underlying or requested SLO constraints include
intra-node, e.g., desired physical location, processor speed
or storage capacity, as well as inter-node constraints, e.g.,
physical network topology.

Before data plane packets can flow on the newly instantiated
service chain, an additional hosting-hosted resource binding
step is necessary to reserve the resources and update all the
network states. A system component dedicated to this phase
has to check for additional capacity constraints or topological
dependencies, as described in the RFC [38], and choose among
all solutions available, if any, from the previous two phases.

In this work, we model a chain with a constrained virtual
path, for ease of notation denoted as a (directed) graph with
a linear topology H = (VH , EH , CH), to be instantiated on a
physical network graph G = (VG, EG, CG), where V is a set
of nodes, E is a set of links, and each node or link e ∈ V ∪E
is associated with a capacity constraint C(e). 1

A. Hosting Node State Retrieval (Resource Discovery)

A chain hosting element is available if a discovery (or
state retrieval) operation is able to find it, given a set of
protocol parameters. For example, an application may wish
to find the k-shortest paths from node n to node m, or it
may wish to find as many available Virtual Machines (VMs)

1Each constraint could be an (ordered) set of constraints containing, e.g.,
restrictions on location, delays, or even node capabilities, such as installed
packages or firewall rules.

capable of hosting a given middlebox service, e.g., a NAT or
a parental control application, within a given number of hops
to minimize latency. We assume that a chain request j is a
path that contains ηj > 0 (virtual) nodes (we omit the trivial
case of a chain composed of a single virtual machine), and
ηj−1 virtual links. We limit the discovery overhead of physical
nodes and paths with parameters ANj ≥ ηj and APj ≥ ηj−1,
respectively. This means that at least one candidate for each
resource to be instantiated within the chain needs to be found.
Otherwise, the chain allocation process gets rejected. Since
Necklace handles multiple simultaneous chain instantiations,
we identify with j ∈ J each request, where J is the set of
all Service Function Chains (SFC) to instantiate. Among all
possible resources, the state retrieval phase returns the subset
that maximizes a given notion of utility. Such utilities may
have the role of selecting resources that are closer — with
respect to some notion of distance — to the given set of
constraints Cj(e).
Let us introduce two sets of binary variables, nPij and pkj .
nPij is equal to 1 if the ith physical node, on which the
chain instance subset may be deployed is available, and zero
otherwise. Similarly, pkj is equal to 1 if the kth physical path,
is available to host the direct virtual link, and zero otherwise. If
we denote by uij ∈ R and ωkj ∈ R the utility of hosting nodes
and paths, respectively, then the state retrieval mechanism can
be modeled as follows:

maximize
nP ,p

∑
j∈J

(∑
i∈VG

uijn
P
ij +

∑
k∈P

ωkjpkj

)
subject to

∑
i∈VG

∑
j∈J

nPij −
∑
j∈J

ANj ≤ 0 ,∑
k∈P

∑
j∈J

pkj −
∑
j∈J

APj
≤ 0 ,

nPij , pkj ∈ {0, 1} , ∀i, j, k ,

(1)

where P is the set of all physical paths in G. After this phase
is completed, architecturally, the set of available physical
resources {nPij , pkj} are passed to the SFC mapper via an
interface.

B. Service Function Chain (SFC) Mapping

Among the subset of all physical resources potentially
available to host a node of the chain, we now seek a non-
empty subset of all feasible hosting paths. Note that finding
a constrained (shortest) path may have polynomial or expo-
nential time complexity, depending on the number of physical
path and physical link constraints [37]. The chain mapping
is the problem of finding a matching of H in G, such that
each service instance in H is mapped onto one hosting node
(underlying server or VM), and each virtual link is mapped
onto at least a physical path p. Note that since hosting paths
may span across different federated providers, packets may be
forced to pass through a third party firm offering deep packet
inspection as a service. Formally, the mapping is a function
Q : H → (VG,P), where Q is called a valid mapping if
all constraints of H are satisfied, and for each virtual link
lH = (sH , rH) ∈ EH , sH , rH ∈ VH , ∃ at least one physical
path (i.e., sequence of physical nodes) p = (sG, . . . , rG) such

4

that p ∈ P and virtual nodes sH and rH are mapped to
physical nodes sG and rG, respectively.

We model the sets of available paths and nodes at the time of
the chain instantiation request j with P ′

j ⊆ P and V ′
Gj
⊆ VG,

respectively. The mapper returns a list of candidate nodes and
links to the resource binder which decides the final binding
between hosting and hosted resources.

The mapping phase can hence be modeled by the following
optimization problem:

maximize
nV , l

E

∑
j∈J

 ∑
i∈V ′

Gj

Θijn
V
ij +

∑
k∈P′

j

Φkj lkj

subject to

∑
i∈V ′

Gj

nVij = ρj , ∀j ∈ J ,∑
k∈P′

j

lkj = γj , ∀j ∈ J ,

nVij , lkj ∈ {0, 1} , ∀ i, j, k ,

(2)

where Θij is the utility that the system would get if the
chain request j gets assigned to virtual node i, and Φkj is
the system’s utility when j gets the virtual link k, ρj > 0
is the number of virtual nodes, and γj ≥ 0 the number of
virtual links, respectively, requested with the chain request j.
Note that ρj and γj differ from ANj

and APj
defined in the

resource discovery problem (1), as we may not need to use
all physical nodes or physical paths that we have discovered
in the mapping phase. Also, nVij and lkj are binary variables
that are set to one if virtual node i or virtual link k have been
assigned to chain request j, and zero otherwise.

The first two constraints enforce that all the virtual resources
requested by each user are mapped, i.e., at least one hosting
node (path) is going to be assigned to each virtual node
(link) of the requested chain, respectively. The third constraint
ensures that the one-to-one mapping between virtual and
hosting nodes is satisfied.

C. Chain Resource Binding

After all mapping candidates have been identified, Necklace
solves a bin packing problem considering both chain priorities
and additional physical constraints. As multiple chains for
multiple tenants may be simultaneously requested, the SFC
instantiation solver needs to invoke the appropriate policies
on each individual request. We model this policy enforcement
in this last phase. Each resource type may have its own binding
policy (e.g., it could follow either a guaranteed 99.999%
Service Level Agreement model or a best-effort allocation).
This phase only ensures that chain requests will be unable
to exceed physical limits or their authorized resource usage.
The weight wj assigned to each chain request j, represent the
policy used (e.g. in first-come first-serve, wj = w ∀ j), or the
priority or importance of allocating chain j for the system or
application. For example, the system may assign null weight
to a request that has not yet been authorized, even though the
resources to map it exist.

Similarly to a standard set packing problem [39], we model
the resource binding phase as follows:

maximize
x

∑
j∈J

wjxj

subject to
∑
j∈J

nVijxj ≤ Cni , ∀i ∈ V ′
Gj ,∑

j∈J
lkjxj ≤ Clk , ∀k ∈ P ′

j ,

xj ∈ {0, 1} , ∀j ,

(3)

where Cni and Clk represent the capacities, i.e. the number
of virtual nodes and links, respectively, that can be simulta-
neously hosted on the hosting node i and physical path k,
respectively. The binary variable xj instead is equal to 1 if
chain j has been successfully bind and zero otherwise. Note
that it is possible for a chain request to be denied given the
scarce resource or its lowest priority.

maximize
nP ,p,nV ,l,x

E

∑
j∈J

∑
i∈VH

Ui(n
P
ij , pkj , n

V
ij , lkj , xj)

subject to

∑
i∈VG

∑
j∈J

nPij −
∑
j∈J

ANj ≤ 0 , (4a)∑
k∈P

∑
j∈J

pkj −
∑
j∈J

APj
≤ 0 , (4b)∑

i∈V ′
Gj

nVij − ρj = 0 ∀j , (4c)

∑
k∈P′

j

lkj − γj = 0 ∀j , (4d)

nVij − nPij ≤ 0 ∀i ∀j , (4e)
lkj − pkj ≤ 0 ∀k ∀j , (4f)∑
j∈J

nVijxj − Cni ≤ 0 ∀i , (4g)∑
j∈J

lkjxj − Clk ≤ 0 ∀k , (4h)

xj − 1
ρj

∑
i∈Np

nVij ≤ 0 ∀j , (4i)

xj − 1
γj

∑
k∈P

lkj ≤ 0 ∀j , (4j)

xj , n
P
ij , pkj , n

V
ij , lkj ,∈ [0, 1] ∀ i, j, k . (4k)

D. Modeling chain subproblems interactions

Building on previous optimization problems, we now for-
mulate a unified centralized stochastic optimization problem
that considers the various aspects of the SFC instantiation
problem. The optimization problem also provides insights on
the interactions among each phase and how they may impact
efficiency in network virtualization. In formulating a unified
centralized stochastic optimization problem, we assume that
processes cooperate to instantiate as many chain as the in-
frastructure can host seeking a Pareto optimality. Informally,
a chain instantiation is optimal if no infrastructure provider
hosting at least a virtual node has a better utility with another
mapping. We give more details on the utility function in
Section V. The optimization problem is stochastic since we

5

assume failures. This means that the Pareto optimal chain
instantiation is not always achievable, due to suboptimality
in the greedy leader election protocol, and due to system and
link (temporarily) failures. In particular, we model the three
phases of the complete resilient chain instantiation problem in
Problem (4).

We model with nPij (or pkj) the probability of hosting node
i (or hosting path k) being available after a state retrieval
operation; nVij represents the probability that a virtual instance
of node i is selected as a valid mapping solution relative
to the chain request j, while lkj represents the probability
that a virtual instance of the path k is selected to be hosting
a virtual link within chain request j. Finally, variable xj
represents the probability of chain j being successfully
allocated on the hosting infrastructure; Cni and Clk represent
the hosting capacity vectors, i.e. the number of virtual nodes
and links, respectively, that can be simultaneously hosted on
node i and physical path k, respectively. ρj is the number of
virtual nodes, and γj the number of virtual links, respectively,
requested within chain j. Constraints (4a) and (4b) represent
the physical state retrieval constraints, (4c) and (4d) refer to
the mapping subproblem, while (4g) and (4h) describe the
binding phase. Constraints (4i) and (4j) instead capture the
final binding subproblem: these constraints ensure that each
chain request is not considered for binding unless all virtual
nodes and all virtual links requested in the path can be (if no
failures occurs) successfully mapped (nVij = 1 and lkj = 1).
In optimization theory, constraints like (4e), (4f), (4i) and (4j)
are often called complicating constraints, as they “complicate”
the problem binding the three mechanisms together; without
those constraints, each of the chain instantiation mechanism
could be solved independently from the other two, e.g., by a
different architecture component.

IV. NECKLACE PROTOTYPE ARCHITECTURE

In this section we introduce the architecture of our Neck-
lace system, as depicted in Figure 1. Being located between
the network operating system and the application, Necklace
manages all chain instantiation states, shared across federated
domains, via a novel management protocol that we call CIP
(Chain Instantiation Protocol.) The message design of CIP
is not only used to implement the consensus strategy used
during the crucial chain mapping phase, but to manage the
inter-process communication among Necklace processes. CIP
is inspired by classical network management protocols [40]–
[42]; it is simpler, and so less general than CMIP [42] or
HEMS [41], but more complex than SNMP [40], and specific
to the service chain instantiation problem.

The core components of Necklace refer to the three coupled
mechanisms necessary and sufficient to instantiate a (resilient)
chain, as described in Section III: state retrieval (or resource
discovery), chain mapping and resource binding. All other
architecture components support such mechanisms along with
their interactions, as well as the interface with the underlying
network operating system and the application policy or intent
requests. In the rest of this section we describe the building
blocks of Necklace (Figure 1).

Fig. 1: Necklace architecture overview: the core components support the
three coupled mechanisms for a resilient Service Function Chain Instantiation,
and their interactions with the network operating system and the applications.

Management Object Model. Historically [40]–[42], a man-
agement object model has been characterized by a (i) set
of objects along with their attributes, to define the manage-
able states, (ii) an interface to modify such object attributes
locally, and a (iii) set of protocol messages, to modify at-
tributes remotely. Our approach to define a chain instantiation
management object model was no exception. Every process
participating in the distributed chain instantiation protocol
stores all relevant states locally into its Chain Information
Base (CIB). The CIB is similar in design to the Forward
Information Base (FIB), a Routing Information Base (RIB) or
a more general Management Information Base (MIB). Instead
of storing, e.g. routing states as in a RIB, the CIB stores
in a partially replicated database all the states necessary to
instantiate a chain. The Chain Information Base Daemon task
is to keep the CIB consistent across instances belonging to the
same network participating to the chain instantiation process.
The daemon works together with the message parser and
serializer, an interpreter for the CIP protocol that uses Google
Protocol Buffers [43]. We describe in details the distributed
consensus chain instantiation protocol (implemented using the
CIP management protocol messages) in Section V.

Necklace was designed and built to orchestrate virtual
function chains, but its architecture is extendable to other
virtual (network) function management mechanisms by merely
extending the object model. New objects would have to be
then managed by the Chain Instantiation Protocol (CIP) and
by the application logic. To define our objects, our protocol
implementation uses the Google Protocol Buffers [43] (GPB)
as abstract syntax notation, and JSON for our OpenSource
Mano (OSM) deployment, where processing efficiency is not
as crucial. Many systems today use XML to define policies,
intents or objects, but XML is a text-based syntax notation,
and so much less efficient than binary-based alternative like
GPB and BSON. BSON was also a very good option but the
compiler (that converts string objects into binary and API)

6

Fig. 2: Existing network management protocols are suboptimal for virtual
network function chain management given their low expressiveness or their
high overhead.

is yet unavailable; also, protocols written in GPB appear to
be easily extendable. An abstract syntax notation is needed
to serialize and de-serialize messages in a protocol. This is
needed so that a system prototype is both language-neutral and
platform-neutral, that is, different processes may implement
our protocol to host chain nodes using e.g., Java, C++, Python,
on machines whose processor architectures are little-endian or
big-endian, without needing additional code refactoring.
Chain Manager Service. In our Necklace architecture, this
component is similar to a classical Network Management
System (NMS), and it is responsible for the monitoring,
naming and addressing resolution mechanisms. By monitoring,
we mean the ability to parametrize and interpret keep-alive
messages. The Chain Manager Service orchestrates also the
authentication, enrollment and entitlement mechanisms, that
we represent in a separate block in Figure 1.
Authentication, Entitlement and Enrollment. Before a chain
can be instantiated, the processes participating in the leader
election protocol need to authenticate. To do so, they enroll
in an overlay with private addressing scheme, and subscribe
to each-other updates. The Authentication, Entitlement and
Enrollment (AEE) component deals with such authorizations
mechanisms. Currently, the architecture only supports a basic
user and password authentication, but we modularized this
block to allow independent evolution.

In the upcoming sections we describe the distributed asyn-
chronous max-consensus, core mechanism of the Necklace
architecture, used as a chain mapping mechanism. We then
describe how, under realistic assumptions, it guarantees perfor-
mance and convergence even in the presence of non-byzantine
failures during a chain instantiation process.
Why another network management protocol? As shown in
Figure 2, existing management protocols such as CMIP [42]
or HEMS [44] could have been used as well, but they are
either too complex for merely a chain instantiation, and so
they would bring unnecessary complexity and overhead, or,
like SMNP [40], are not expressive enough and they do not
support authentication (that our CIP protocol enrollment phase
provides).

V. DISTRIBUTED ASYNCHRONOUS CHAIN CONSENSUS
ALGORITHM (DACCA)

In this section we describe our proposed chain mapping
mechanism viz. Distributed Asynchronous Chain Consensus
Algorithm (DACCA). The mechanism’s goal is to reach in a
distributed fashion an agreement on which network resource
will host the chain, weather such resources are controlled by a
single, or by multiple infrastructure providers. The main idea

behind the chain mapping procedure is to have (federated)
hosting nodes independently run an election process using
a private utility function, that we formally define later in
this section. Such utility is a policy, i.e., a variant aspect
of the invariant mapping mechanism. Although our Necklace
architecture supports any utility function, we give recommen-
dations on which utility processes running DACCA should use
to obtain bounds on convergence time and guarantees with
respect to the Pareto optimal chain instantiation.
DACCA overview. Consider a chain request by an application
or a service provider, where each potentially hosting node
belongs to a different infrastructure provider. The service
provider may send to (a subset of) all hosting nodes a request
for the entire chain, or, if it has preferences, it may split
the request into multiple contiguous subsets. Each potentially
hosting node receiving the request then uses a private function
to decide what is its utility in hosting the chain (subset). After
a first asynchronous voting procedure (in which each host tries
if possible to elect himself as a leader or remains silent), each
voter exchanges its utility values (votes) only with its first-hop
neighbors, for a distributed leader election. An asynchronous
conflict resolution phase is then run to propagate only the
highest utility on each chain element, considering also times
at which the votes were generated (as opposed to receiving
time). In our system implementation each hosting process runs
a standard time synchronization protocol (TSP) set with a third
party unique server. DACCA can simultaneously elect multiple
leaders, maximizing the sum of the utilities (Pareto optimality)
of the hosting nodes. The elected leaders communicate the
mapping to the service provider that, if possible, releases the
next chain request, if any, or the next virtual node of the service
chain.

Before describing DACCA in details, we need few defini-
tions that we will use in the rest of the paper:

Definition 1. (utility function fi). Given a chain H to be
instantiated on a hosting network G with a voting procedure
among |VG| hosting nodes, we define utility function of voter i,
and we denote it with fi ∈ R|VH |

+ , the utility that hosting node
i assigns to chain node j during the chain mapping phase.
Notation R|VH |

+ represents a vector of positive real numbers
with size |VH |.

The value assumed by the utility function eventually be-
comes a vote. One example of fij is the residual capacity
(stress profile) on the hosting node, that we define as:

fij =
(Ti − Sij)

δ +
∑
i∈N Sij

· 1

Ti
(5)

where δ is a small positive constant, 1
Ti

is a normalization
constant, Sij represents the stress on the host node i, namely,
the sum of the chain node (CPU) capacity already allocated
on the i, including chain node j; Ti is the desired load on host
node i. A service chain provider may not necessarily want to
balance the load: e.g., it may be desirable to force mapping on
data center nodes where energy is cheaper. Note how, due to
the normalization factor Ti, in this particular case fij ∈ [0, 1].

7

Definition 2. (vote vector vi). Given a chain H to be
instantiated on a hosting network G with a leader election
process among |VG| hosting nodes, we define as vote vector
vi ∈ R|VH |

+ , where i ∈ I ∆
= {1, . . . , |VG|}, the vector of

current winning votes on chain nodes, i.e., each element vij
is a positive real number representing the highest vote known
by hosting node i, made so far on chain node j ∈ J ∆

=
{1, . . . , |VH |}.

Note that even though vi could contain votes for at most
|VH | virtual nodes, we leave its maximum length as a policy.

Until an agreement on the chain instantiation is reached,
DACCA iterates multiple voting and consensus phases asyn-
chronously, in what we call a round. Hosting nodes act upon
messages received at different time during each consensus
phase, and messages may arrive out of order. In the rest of
our paper, we denote those rounds or iterations with t.

Definition 3. (eligible resource indicator hi). Given a chain
instantiation of H on a hosting network G with a multi-
election process among |VG| hosting nodes, a private utility
function fij and a vote vij of hosting node i on chain
element j, we define hi(t) = (hij(t) | hij(t) = I(fij(t) >
vij(t)) ∀j ∈ VH), that is, the list of chain elements eligible
to receive votes. I(·) is the indicator function that is unitary
if the argument is true and zero otherwise.

Definition 4. (assignment vector ai). Given a set of processes
VG voting on a set of chain elements VH , we define the
assignment vector ai ∈ V

|VH |
G , as the vector containing the

latest information that i ∈ VG has on the current assignment
of all chain elements.

Depending on the level of information that it contains, the
assignment vector ai may assume two different policies —
single or least informative and multiple, or most informative.
In its least informative form, ai is a vector storing the
probability that process i hosts chain element j. In its most
informative form, ai is the vector of winning voters so far, i.e.,
each element represents the identifier of the hosting process
that has the highest utility so far to host element j.

When ai is in its most informative policy form, the vector
gives to a hosting process i information on which is the winner
of the leader election, where in its least informative policy,
process i only knows if it is the winner of a resource j or not.
In the evaluation section we show how the assignment vector
policy generates an interesting tradeoff analysis.

Definition 5. (bundle vector mi(t)). Given a process i ∈ VG
voting on a set of chain elements VH , and a bundle target size
Ti that is, the maximum number of elements that i is require
or willing to host, we define the bundle vector mi(t) ∈ V Ti

H

to be the list of chain element identifiers that hosting node i
is currently voting on during iteration t. We use C(mi(t)))
to denote the cardinality of mi(t), i.e., the number of chain
nodes currently in the bundle mi at iteration t.

Note how both the bundle target size Ti and C(mi(t)) can
be expressed either in terms of total number of virtual nodes,
e.g., C(mi(t)) = |mi(t)| or in terms of sum of their requested

Algorithm 1: DACCA for process i at iteration t
1: for all k ∈ Ni do
2: voting(ai(t− 1), vi(t− 1), mi(t− 1))
3: send(k, t) ∀k ∈ Ni // vote message for round t
4: receive(k, t) ∀k ∈ Ni
5: agreement(k, t)
6: end for

Algorithm 2: voting for process i at iteration t
1: Input: ai(t− 1), vi(t− 1), mi(t− 1),
2: Output: ai(t), vi(t), mi(t),
3: ai(t) = ai(t− 1)
4: vi(t) = vi(t− 1)
5: mi(t) = mi(t− 1)
6: while (C(mi(t)) < Ti) do
7: if hi 6= 0 then
8: vote(ai(t),vi(t),mi(t))
9: end if

10: end while

capacity: C(mi(t)) =
∑
j∈mi(t)

Cij(t), where Cij(t) is the
requested capacity of virtual node j to hosting node i at
iteration t.

We are now ready to describe the consensus-based dis-
tributed chain mapping mechanism: each hosting node i ∈ VG
performs a voting phase; then, the vote vector vi and, when
specified by the policy, the allocation vector ai are exchanged
among neighboring nodes for a distributed consensus-baesd
winner determination (Algorithm 1).

A. Phase 1: DACCA Voting Phase

After the initialization of both vectors ai, vi and mi to the
current iteration t (Algorithm 2, lines 3-5), each potentially
hosting node checks its current available capacity C(mi(t)),
given what it already has in its bundle, to verify if the target
capacity has been reached. Note that this does not mean that
there is room to host another chain node. In fact, hosting node i
may have still residual capacity, but not to host any chain node
in the current round. Assume for example that C(mi(t)) =
Ti−ε, where ε > 0 and that the requested capacity Cj > ε for
every virtual node j still to be mapped. If not, the voting phase
terminates (line 6), otherwise the hosting node verifies if it can
vote higher than some other hosting node. If there is at least an
acquirable chain node (i.e., if hi 6= 0), the function vote(·)
registers a vote for the chain node whose reward is the highest
in the vector vi, updates the assignment vector ai with itself
(node i) as a winner of that virtual node, and finally, the chain
node’s identifier is appended to the bundle vector i.e., mi ←
mi + j. At the end of this phase, the current winning vector
vi and, when the policy allows it, the assignment vector ai
are exchanged with each neighbor Ni.
Remark. Note that bundle mi is an ordered list where the
order represent the preference of hosting node i. If multiple
chain nodes are allowed to be elected simultaneously, a vote
on the highest rewarding chain node is inserted first in mi,
while subsequent chain nodes are assigned with the new value

8

Algorithm 3: agreementPhase of i at iteration t
1: Input: ai(t), vi(t), mi(t)
2: Output: ai(t), vi(t), mi(t)
3: for all k ∈ Ni do
4: for all j ∈ VH do
5: if IsUpdated(vkj) then
6: update(ai,vi,mi)
7: end if
8: end for
9: end for

of utility recomputed assuming that former entries in the
bundle will be won (elected). If we use the residual capacity as
utility (and voting function), this means that hosting nodes are
only allowed to vote using their residual capacity to acquire
subsequent resources. This in turn means that their votes is a
diminishing marginal gain function. A relaxed version of this
diminishing marginal gain property is a key notion that we
use to show bounds on optimality in the next section.

B. Phase 2: DACCA Consensus

In this phase hosting nodes make use of a max-consensus
strategy to converge to the winning vote vector b̄, and to
compute the allocation vector ā (Algorithm 3).

The standard definition of max-consensus [45], applied to
the chain instantiation problem becomes:

Definition 6. (max-consensus). Given a hosting net-
work G, an initial vector of hosting nodes v(0) :=
(v1(0), . . . ,v|VG|(0))T , and the consensus algorithm for the
communication instance t+ 1

vi(t+ 1) = max
j∈Ni∪{i}

{vj(t)} ∀i ∈ I, (6)

max-consensus among the hosting nodes is said to be achieved
if ∃ l ∈ N such that ∀t ≥ l and ∀i, i′ ∈ I,

vi(t) = vi′(t) = max{v1(0), . . . ,v|VG|(0)}. (7)

The agreement (or consensus) for each hosting node i, for
example on the vector vi received from each hosting node k
in the neighborhood of i, is performed comparing vij with
vkj for all k members of Ni. This evaluation is performed
by the function IsUpdated(·) (line 5). In case the policy
requires consensus only on a single chain node at the time
i.e. |mi| = 1, the function IsUpdated(·) returns always
true, since when a hosting nodes i receives from k an higher
utility for a chain node j (vij < vkj), the receiver hosting node
is always required to update its vote vector vi (vij ← vkj).
When instead hosting nodes are allowed to vote on multiple
chain nodes in the same election round —the size of the bundle
|mi| > 1, even if the received utility for a chain node is higher
than what is currently known, the information received may
not be up to date. In other words, the standard max-consensus
strategy may not work. Each hosting node is in fact required
to evaluate the function IsUpdated that compares the time-
stamps of the received vote and updates the bundle, the utility

and the assignment vector accordingly (Algorithm 3 line 6).
Note that a requirement of the DACCA protocol is to forbid
hosting nodes to vote (for itself) again after it has received
a valid higher utility from another hosting node. Malicious
nodes may abuse of this feature to attack the protocol; we
leave the question on how to secure a correct functionality of
DACCA even in the presence of byzantine failures open and
outside the scope of this work.
Remark: If a hosting node i received a more recent higher
vote for chain node j, deleting node j from its bundle mi is
not enough: all utilities and winners of subsequent nodes in
the bundle (built appending subsequent allocation attempts)
need to be released as they were obtained using an out of
date utility (e.g., the residual capacity was out-of-date.)

Note also that our protocol does not violate the FLP
impossibility result [46] (no consensus can be guaranteed in an
asynchronous communication system in the presence of any
failures). Our assumption is that our asynchronous consensus
is achieved among the processes that are participating before
a tunable timeout, started after receiving the first vote.

C. Pseudo sub-modular utility functions

As we will see in Section VI, our DACCA mechanism
guarantees convergence allowing hosting nodes to use their
own utility function as a private policy, as long as the func-
tion appears to be sub-modular to other bidders [47]. Sub-
modularity is a well studied concept in mathematics [48], and
applied to the distributed chain instantiation problem, can be
defined as follows:

Definition 7. (sub-modular function.) The marginal utility
function U(j,m) obtained by adding a virtual resource j to
an existing bundle m, is sub-modular if and only if

U(j,m′) ≥ U(j,m) ∀m′ |m′ ⊂m. (8)

This means that if a hosting node uses a sub-modular
utility function, a value of a particular virtual resource j
cannot increase because of the presence of other chain nodes
in the bundle.

Why do we need sub-modular functions? Consider two
hosting nodes PN1 and PN2 trying to instantiate two chain
nodes C1 and C2 using (the same) sub-modular utility function
to vote. In the first voting phase, the bundle m and voting
vector v for PN1 and PN2 are:

mPN1 = (C1, C2), vPN1 = (v, v − ε)
mPN2 = (C2, C1), vPN2 = (v, v − ε).

After the consensus phase, PN1 releases C2 and PN2
releases C1 as they are outbid and we have a converge to an
assignment. If instead PN1 and PN2 use a non sub-modular
function, after the first voting phase they could end up with
the following bundle and bid vectors:

mPN1 = (C1, C2), vPN1 = (v, v + ε)

9

mPN2 = (C2, C1), vPN2 = (v, v + ε).

After exchanging their bid vectors, the agreement phase would
require PN1 and PN2 to reset their bundle, and a second voting
phase would bring exactly the same initial case. This cycle
would repeat forever breaking convergence.

Although having sub-modular utility functions may be
realistic in many resource allocation problems [49], in the
distributed chain instantiation problem this assumption may
be too restrictive, as the value of a chain node may increase
as new resources are added to the bundle, e.g. the cost of
mapping a directed virtual link between two virtual nodes part
of the chain decreases if a hosting node is elected leader on
both virtual source and destination.

For this reason, we use the notion of pseudo sub-modularity,
that is, each hosting node may use any utility function, as long
as the bids communicated to the other bidders appear as if they
were obtained using a sub-modular function.

To guarantee convergence without using a sub-modular
utility function, we let each hosting node communicate its vote
on virtual node j obtained from a vote “bending” function:

Bij(Uij ,vi) = min
z∈{1,...,|vi|}

{Biz, Uij}, (9)

where Biz is the value of the bending function for the zth

element of vi. Note how by definition, applying the function
B to the vote before sending it is equivalent to communicating
a bid that is never higher than any previously communicated
bids. In other words, bids appear to other hosting nodes to be
obtained from a sub-modular utility function.

D. Contiguous Virtual Path Mapping Policy

In this section, we discuss the problem of a chain mapping
request that result in logical allocation of middleboxes that are
physically far away. When a chain of virtual network functions
is instantiated in a distributed fashion, hosting nodes located on
hubs i.e., highly central node, may quickly congest the entire
hosting network. Moreover, if the chain request is mapped
on a path that would include physical nodes not hosting any
virtual node, two problems may arise: (i) the hosting network
will map virtual links on hosting paths that are unnecessarily
long, with a consequent over-provisioning, additional delays
or energy waste; (ii) perhaps more importantly, in a federated
chain instantiation, virtual link requests may require to be
hosted between non-neighboring hosting nodes belonging to
different providers, expecting intermediate hosts to relay data
traffic. This may be acceptable for some applications or merely
undesirable for others.

Necklace handles this potential problem by supporting
virtual path auction policies. Such policyallows processes to
instantiate a chain in a distributed mapping, by avoiding relays,
i.e., attempting to host either contiguous or non-contiguous
virtual paths. By contiguous virtual path we mean that neigh-
boring chain nodes are mapped to neighboring (or identical)
hosting nodes. This means that each virtual link is allocated on
a single (physical) link, as opposed to being allocated on any
generally longer hosting path. This path restriction obviously
forces additional pruning but may save infrastructure providers
additional costs, for example, those arising when we leave the

mapping decision to a more classical k-shortest path. During
the voting phase, hosting nodes applying the contiguous virtual
path policy are allowed to attempt hosting a chain node j only
if the chain nodes adjacent to j are currently mapped by the
node itself, or by an adjacent hosting node. By enforcing the
contiguous virtual path policy, a chain of length L > 0 will
be mapped on physical paths of length at most L, avoiding
node relays.

E. Handling Failures
In this subsection we analyze the resiliency rationale behind

Necklace. In particular, we describe how Necklace considers
and handles node and link failures.

Necklace is based on the DACCA mechanism, an asyn-
chronous max-consensus protocol. Fischer, Lynch and Pater-
son showed that it is impossible to achieve asynchronous
consensus within a system with failing processes. (FLP im-
possibility result [50]). Many practical solutions have been
proposed to cope with the FLP impossibility result: from using
randomized algorithms to failure detectors [45], to name a few;
we employ an engineering approach and merely adopt a time-
out to forcefully terminate the asynchronous max-consensus
even if we have not received the minimum number of messages
to ensure that we have converged to a solution; this is to
avoid having to wait indefinitely for messages that are delayed
by lossy or congested paths. The DACCA timeout could be
estimated using an average of round-trip-time values across
the overlay, similarly to how TCP does it [51], or it could
be dynamically set by the SDN controller; in our prototype,
however, we statically set it from with a configuration file.
In DACCA, new votes received from first-hop neighbors
propagate hop by hop traversing the entire (virtual) network
overlay. When a resource cannot be outvoted, nodes remain
silent. This means that by merely consider application-level
states, DACCA nodes hence cannot distinguish between silent
and unavailable nodes. This is an advantage as it means that
the mechanism is resilient to silent (unavailable) nodes.

Note how timing-out in a fully distributed max-consensus
approach as DACCA does not require majority consensus;
this is different than Paxos-like protocols [12], [15], [16] or
Raft [14] that need both a leader and a majority of node
participating to the consensus, i.e., they are intolerant to
failures of the majority of nodes.
F. Traffic Forecast to Provision NFV Chain Requests

Real system measurements can be exploited to extract
knowledge about future traffic patterns. These insights can in
turn be utilized to effectively provision the underlying infras-
tructure resources and accommodate all NFV chain requests. A
responsive and effective network management requires a sharp
decision-making process, especially in dynamic settings. An
accurate estimation of the incoming future traffic is valuable to
provide such responsiveness within dynamic SFC provision-
ing, to optimize node utilization and link capacities. Traffic
volume awareness allows a responsive proactive provisioning
approach. To this aim the Request Predictor block of our
architecture deals with traffic forecasts. We validated a few
traffic prediction policies over a real dataset of requests [18]
in Section VII.

10

VI. CONVERGENCE AND PERFORMANCE GUARANTEES

In this section we show results on the convergence prop-
erties of the DACCA mechanism adopted by Necklace. By
convergence we mean that a valid mapping (Section V-B) is
found in a finite number of steps (Definition 6). Moreover,
leveraging well-known results on sub-modular functions [48],
[52], we show that under the assumption of pseudo sub-
modularity of the utility function, DACCA guarantees an
optimal (1− 1

e)-approximation, that is, a better approximation
does not exist unless P = NP .
Convergence Analysis. A necessary condition for conver-
gence of the max-consensus is that, to make all hosting nodes
aware of what is the node that has the highest (maximum)
utility on each single chain node, this information needs to
traverse all the physical network, which we assume has diam-
eter D. Our convergence results (Theorem VI.1) states that, in
absence of failures, this single hosting network traversing is
also sufficient. This claim is inspired by Theorem 1 in [53],
which deals with a distributed task allocation problem for a
fleet of robots. We relax, however, their Diminishing Marginal
Gain (DMG) property in [53] since in our problem a hosting
node utility does not depend on the order of insertion of chain
nodes in the bundle, while ordering is crucial in the mission
allocation problem in robotic networks.

Theorem VI.1. (Convergence of synchronous DACCA). Given
a chain of virtual network functions H of length |VH | and a
hosting network with diameter D, the utility function of each
hosting node is pseudo sub-modular, and the communications
occur over reliable channels, then the DACCA mechanism
converges in a number of iterations bounded above by D·|VH |.

Proof. (sketch) We use Bij(Uij ,vi) as a voting function
(pseudo sub-modular by definition). If a vote is generated
with a pseudo sub-modular function, then it appears to be
DMG and so sub-modular to other processes. From [53] we
know that by induction, a consensus-based auction run by a
fleet of Nu processes, each assigned at most T tasks, so as
to allocate Nt tasks, converges in at most Nmin · D where
Nmin = min{Nt, Nu · T}. Since for DACCA to converge,
every chain node needs to be assigned, Nmin = Nt ≡ |VH |,
and therefore we have the claim.

As a direct corollary of Proposition VI.1, we compute a
bound on the number of messages that hosting nodes have
to exchange in order to reach an agreement on a chain
instantiation. Because we only need to traverse the hosting
network once for each node, the following result holds:

Corollary VI.1. (DACCA Communication Overhead) The
number of messages exchanged to reach an agreement with
reliable channels and non-failing hosts using the DACCA
mechanisms is at most D · |SG| · |VH |, where D is the diameter
of the hosting network, |SG| is the number of edges in the
hosting network minimum spanning tree, and |VH | is the length
of the chain.

Performance Guarantees. The following results holds:

Theorem VI.2. (Asynchronous DACCA Approximation). The
DACCA consensus algorithm yields an (1− 1

e)-approximation
(circa 0.63) with respect to the optimal chain assignment.

Proof. The DACCA asynchronous consensus algorithm as-
sumes that each hosting node i does not vote on a chain node
j unless it brings a positive utility, therefore Uij and so Bij are
positive. Moreover, if we append to the vector vi an additional
set of chain nodes v resulting in vector v′

i, we have:

Bij(Uij ,v′
i) ≤ Bij(Uij ,vi) ∀ v 6= ∅ (10)

which means that Bij is monotonically non-increasing.
Since the sum of the utilities of each hosting node, and since

the bending function Bij(Uij ,vi) of DACCA is a positive,
monotone (non-increasing) and sub-modular function, theorem
1 in Nemhauser et al. [48] on sub-modular functions holds.
Therefore the claim holds.

Moreover, the following approximation bound holds:

Theorem VI.3. (Approximation Bound). The DACCA approx-
imation bound of (1− 1

e) is optimal, unless P = NP.

Proof. To show that the optimal chain instantiation cannot be
approximated in polynomial time within a ratio of (1 − 1

e −
ε) ∀ ε > 0, we use a recent result by Feige [52]. The result
shows that it is NP-hard to achieve a (1− 1

e+ε)-approximation
∀ε > 0 for the maximum k-coverage problem [54]. Given m
subsets V1, . . . , Vm of V and k processes with different weight
functions Ui : V → R+, the maximum k-coverage is the
problem of allocating each set Vj to some process i, in order
to maximize

∑k
i=1 Ui(

⋃
j∈Si

Vj), where Si are the indices
of sets allocated to hosting node i. We reduce the DACCA
assignment problem from the maximum k-coverage problem
by considering V1, . . . , Vm to be subsets of bundles that any k
hosting node wins according to their voting function. Note that
all final assigned bundles are necessarily disjoint by definition
of consensus, i.e., there cannot be two hosting nodes for each
node of the chain. The maximum k-coverage is a special case
of the maximum coverage problem for monotone sub-modular
functions, a problem for which the approximation bound for
the greedy heuristic was proven [48]. As the DACCA consen-
sus strategy is a greedy heuristic that maximizes a monotone
sub-modular function, the max-consensus greedy heuristic is
the best approximation algorithm for the node mapping phase
that we can possibly hope for, unless P = NP .

VII. TRAFFIC PREDICTION ANALYSIS

In this section, we evaluate the performance of the predictor
used in our implementation, a specific module of our archi-
tecture. Since our system uses this predictor as a policy, we
separate the evaluation of this component from the evaluation
of the entire system (Section VIII).

We used a dataset composed by real traffic requests to the
Facebook datacenter to assess the forecasting capabilities of
several learning algorithms. This forecast is an input to our
DACCA algorithm that runs chain allocation request prior to
their potential arrival and pre-launches real physical instances,
when needed.

11

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Chain Length [# of nodes]

C
h

ai
n

 A
ll

o
ca

ti
o

n
 R

at
io

Single Votes

Multiple Votes

Contiguous Path

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Chain Length [# of nodes]

L
in

k
 A

ll
o
ca

ti
o

n
 R

at
io

Single Votes

Multiple Votes

Contiguous Path

5 10 15 20

10
−1

10
0

10
1

Chain Length [# of nodes]

In
st

an
ti

at
io

n
 R

es
p

o
n

se
 T

im
e

Single Votes

Multiple Votes

Contiguous Path

Single Multiple Contiguous K=3

200 hosts 300 hosts 100 hosts 50 hosts

(a) (b) (c) (d)

Fig. 3: (abc) Prototype. (d) Simulations. (a) Hosting single chain nodes helps balancing the load and hence accepting more chain. (b) Similar results were
obtained at a larger scale in simulations. (c) Single allocation helps faster response time. (d) Host utilization tradeoffs across different hosting network sizes.

Fig. 4: Forecasting capability (quantitative): it is reported the RMSE of
the predictions for all the 7 models tested (1-step ahead predictions).

Facebook dataset description. We used the data collected
from the Facebook datacenter located in Altoona [55] to
predict traffic size and hence requests. The dataset contains
traffic from three separate clusters that refer to requests to
Database, Web servers, and Hadoop.
Learning models. We tested seven forecast models applying a
standard 70% train, 30% test ratio. All tested models and their
acronyms are denoted as follows: Random Forest (RF), Linear
Regressor (LR), Ridge Regressor (RR), Multi-layer Perceptron
(MLP), Decision Tree (DT), Support Vector Regression (SVR)
and Long Short-Term Memory (LSTM)-neural network. In
Figure 4, we report the Root Mean Square Error (RMSE) ob-
tained by the seven algorithms with a 1-step ahead prediction
model. Note that signals’ range is in [0, 1]: feature scaling is
commonly applied to avoid issues during model training.

We observe that the normalized RMSE of all but LSTM is
less than 0.1 showing that the maximum forecasting error is
10% of the real values. In Figure 5, we show the predicted
and real values of the average packet length over the next
minute, for a period of 300-minutes. Due to their similarities,
we only show the three representative (and best performing)
prediction algorithms: multilayer perceptron, support vector
regressor, and linear regressor over a 300-minute period within
Cluster-B.

VIII. EVALUATION

To test our proposed distributed chain instantiation pro-
tocol we developed our own event-driven simulator and we
implemented a prototype of Necklace. We also assessed the
deployment time of service chains on a real-hardware testbed
using the OpenSource MANO (OSM) orchestrator.

Fig. 5: Forecasting capability (qualitative): predictions of the average
packet length obtained using MLP, SVR, and LR over a period of 300 minutes.

Hosting Network Model: With the BRITE topology genera-
tor [56], we obtain a topology that we use as hosting processes.
We use the top-down generation model of BRITE which is
based on two phases. In the first phase, an Autonomous-
System (AS) topology is generated using the Barabasi-Albert
model with incremental growth type and preferential connec-
tivity. In the second phase, a node level topology is generated
for each AS, where hosting nodes are placed randomly on the
2D-plane and connected using the Waxman model. The sizes
of our chains (virtual network with a linear topology) were
obtained from sampling a distribution uniformly distributed
at random with an average 50 nodes. The physical network,
synthetically generated with BRITE has 500 nodes.

We compared three policies of our DACCA’s mechanism:
(i) single if a single chain node is allowed to be mapped at
a time (i.e., |mi| = 1), (ii) multiple when multiple chain
nodes are allowed to be mapped simultaneously, i.e., |mi| > 1
(even if we have to create Generic Routing Encapsulation
(GRE) tunnels among elected leaders), and (iii) contiguous,
when relays are forbidden (see Section V-D). Unless otherwise
stated, we used a k-shortest path with k = 2 to map virtual
endpoints.
Chain Model: Even though a chain request may have several
constraints, we focus our evaluation solely on CPU and band-
width constraints. We synthetically generate requests for chain
instantiations sampling uniform distributions ranging between
1 and 20 for the number of virtual CPU units, and between
1 and 50 Mbps for the requested bandwidth, respectively. We
ensure that each chain node is able to support at least the
capacity of its adjacent virtual links, and we impose ratios
between chain-host node and link capacity of 200 and 500,

12

respectively.
Evaluation metrics. Our evaluation results quantify the bene-
fits of our approach across two metrics: mapping efficiency
and time to find a solution, and across two platforms: a
simulator and our Necklace prototype tested over Mininet [17].
In particular, the time to find a solution is evaluated through
the response time, namely, the number of one-hop commu-
nications that the DACCA protocol needs to realize a chain
can or cannot be instantiated (since we found bounds on
convergence time). Efficiency instead is evaluated through the
chain allocation ratio within our prototype, namely, the ratio
between the number of chains requested and those successfully
instantiated, and with resource utilization in our simulations,
namely, the hosting node capacity utilized in the mapping.
Evaluation Results. We attempt to map 100 chains with
increasing lengths over a testbed of 50 (mininet) hosting
nodes running a Necklace prototype (Figure 3a-c). We then
repeat the same experiments with a simulated (more scalable)
version of DACCA and evaluate the physical (hosting) net-
work utilization. We present our results by summarizing the
key observations. Moreover, results are shown with a 95%
confidence interval.
Physical testbed deployment over OpenSource MANO
(OSM). Our testbed implemented on real-hardware is man-
aged by the OpenSource MANO (OSM) orchestrator (Release
7). The orchestrator controls three OpenStack clusters (Stein
Release), each including two compute nodes, for a total of
six individually-addressable nodes on which the chain can be
mapped. Although from the algorithm’s point of view this is a
much smaller scenario than the one emulated with mininet,
it is still scaled down within a single order of magnitude
with respect to the emulated testbed (50 mininet nodes vs. 6
hardware nodes). Moreover, the physical testbed is composed
of full-fledged servers, making their performances comparable
to those that would be observed in a production environment.

We defined a format for the exchange of information be-
tween the allocation algorithm and the hardware orchestrator,
using the JSON formalism:

{ "sfc-id": "id_value",
"vnfs": [

{
"type": "type_value",
"node": "node_value"

}, ...]
}

where: sfc-id is a unique identifier associated with the
specific chain, in the form of a text string id_value; vnfs
is the ordered list of service functions forming the chain; each
service function is described by fields type and node, with
type_value and node_value being strings identifying
a predefined Virtual Network Function Descriptor in the
orchestrator, and the physical node the service function has
been mapped onto, respectively.

(1) Multiple virtual resources allocated on the same hosting
node lead to smaller chain allocation ratios. This is
because central hosting paths become quickly congested,

leaving no room for future chain requests (Figures 3a and 3b).

(2) Allowing multiple chain nodes to be mapped onto the
same hosting node leads to a slower convergence time.
Although we showed that the worse case convergence bound
is the same, our results show that practically there is a
difference. This can be understood in an extreme case where
a single chain node cannot be allocated, hence the entire
chain request is rejected, without trying to elect a leader to
host other elements of the chain (Figure 3c). The contiguous
path instantiation policy has the same response time as the
multi-node mapping policy. This is because the response time
does not depend on the constraints on the links, but merely
on the number of nodes (see how the curve in Figure 3c
related to multiple votes overlaps with the contiguous path).

(3) Instantiating contiguous virtual paths may increase the
chain acceptance rate when multiple chain nodes are allowed
to be hosted on the same host. This result is surprising
and counterintuitive. We were expecting that by adding the
contiguous additional constraint, on average, instantiating
multiple chains on the same distributed multi-provider
infrastructure would prune solutions. Our evaluation results
instead explained that, when multiple chain nodes are allowed
to be hosted by the same hosting node, it is better (in
terms of allocation ratio) if virtual paths are allocated on
contiguous (physical) paths, avoiding long path stretches.
This is because, intuitively, a couple of hosting nodes that
are distant in terms of number of hops but both with higher
similar residual capacity may end up winning alternatively
multiple chain nodes, forcing multiple longer hosting paths
(Figure 3ab). Figure 3b shows that the main responsibility for
non allocating chains is due to a lower link mapping, i.e., node
utilities that do not take into account full paths may lead to
suboptimal chain allocations. This in turn suggests that further
exploration of distributed constraint path vectors is needed
to instantiate a chain, and that node agreement strategies
alone are insufficient to guarantee optimal chain instantiations.

(4) With Necklace, providers can tune load profiles by
balancing the load or packing hosts. Allowing a single
chain node per host balances the overall host network
load and lowers utilization. These results were confirmed
across different hosting network sizes (Figure 3d). On the
contrary, allowing multiple chain nodes on the same host
packs resources and has a “bin packing” effect, potentially
reducing energy costs by leaving unused hosting machines
idle. The load packing effect is partially mitigated when we
increase the virtual link mapping policy k, allowing virtual
link splitting across up to k = 4 hosting paths when available.
Our experiments shows that (in BRITE generated topologies)
there are very rarely no more than 4 disjoint paths available.

(5) Necklace outperforms the (decentralized) Raft consensus
protocol in terms of overhead, with or without failures. As
we show in Figure 6a, Raft has higher overhead with respect
to our DACCA, as we increase the number of processes that
need to reach an asynchronous consensus. Note that DACCA

13

(a) (b) (c)

Fig. 6: (a) Overhead of our DACCA consensus protocol compared to Raft: DACCA’s overhead is lower, especially as the number of hosting nodes that need
to reach consensus grows. (b) Raft overhead dissected by phase: DACCA does not have to commit logs and does not have to elect a leader. (c) OpenSource
MANO (OSM) deployment time as a function of chain length and number of hosting nodes.

inherits the properties of the max-consensus and so converges
with the minimum possible number of messages, but more
importantly, when a leader fails in Raft (as well as in similar
consensus protocols such as Paxos [12] or its improvements),
processes have to re-elect a new leader. Our fully distributed
consensus-based auction instead, does not need a leader and
so it has less overhead in case any of the processes fails. Raft
(or Paxos) were not designed to deal with resilient network
function orchestration and Necklace could work even replacing
DACCA with Raft; by doing so, however, also the performance
guarantees would be lost. Finally, Raft was not designed to be
partition tolerant, while DACCA can still instantiate a chain
as long as the majority of hosting nodes agree on a maximum
objective vote set. Figure 6b shows how the overall overhead
of Raft is higher as the hosting nodes that need to reach
consensus grow. On the right plot we dissect the overhead of
Raft: DACCA does not have to commit logs and does not have
to elect a leader, hence it has a lower overhead. In summary,
being a leader-based decentralized protocol and not fully
distributed, Raft has higher overhead compared to DACCA
because not only the maximum vote needs to propagate, but
the entire log needs to be pushed from the leader to all the
followers.
(6) A larger number of hosting nodes ensures a faster deploy-
ment. In our physical experimental testbed using OSM, we
injected a progressively larger number of chain deployment
requests, allowing service functions to be mapped onto one,
then three, then all six physical nodes. For each case, we
submitted requests for twenty different values of chain length,
ranging from 1 to 20. We measured the deployment time
of each chain, then removed the chain before running the
next experiment, so as to have independent measurements.
We performed 30 measurements per chain length, and plotted
the average deployment time with confidence intervals. Each
measurement campaign took anywhere between 8 and 14
hours. As Figure 6c shows, having more hosting nodes results
in a better chain resource management, as service functions
can be allocated on more nodes thus balancing loads, therefore
resulting in a shorter chain deployment time. While this is
an expected result, it demonstrates that the proof-of-concept
implementation with OSM is functional, and hence Necklace
can be used to deploy service chains on real systems within

reasonable time scales (tens of seconds).

IX. CONCLUSION

In this paper we proposed Necklace, an architecture for
service function chain instantiation with programmable poli-
cies. Through this architecture, we modeled the separation
and interaction of functionalities of the SFC instantiation
problem via a stochastic optimization model, and then used
such model to design our Necklace system. DACCA, the core
mechanisms of Necklace, is a decentralized max-consensus
protocol that allows providers to cooperatively instantiate
wide-area service function chains. Hosting processes running
DACCA have guarantees on convergence and on performance
bounds with respect to a Pareto optimal instantiation, even in
the presence of (non-byzantine) failures. Our Necklace’s per-
formance evaluation showed a few surprising results, among
which the higher acceptance rate when the chain request
is released for instantiation sequentially, i.e., each hosting
process should allocate a single chain node at a time. Our
Necklace prototype can be used by the community interested
in providers mechanism design or tradeoff analysis. Our work
leaves several open questions, e.g., how to design a path vector
protocol with the same allocation guarantees, while being
fully distributed (not decentralized) and resilient to byzantine
failures as well.

ACKNOWLEDGMENT

This work has been supported by NSF Awards
CNS1647084, CNS1836906 and CNS1908574, and by
the Italian Ministry of Education, University and Research
(MIUR) through the PRIN project no. 2017NS9FEY. The
work of M. Berno and G. Davoli was performed at SLU.

REFERENCES

[1] F. Esposito, I. Matta, and V. Ishakian, “Slice Embedding Solutions for
Distributed Service Architectures,” ACM Computing Surveys, vol. 46,
no. 2, pp. 6:1–6:29, March 2014.

[2] The Chamaleon Testbed. [Online]. Available: https://ben.renci.org
[3] The Fabric Testbed Initiative. (2020) http://www.whatisfabric.net.
[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in Proc of the 9th USENIX Conf. on OS Design and
Implementation, ser. OSDI’10, 2010, pp. 1–16.

14

[5] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proceedings of the ACM SIGCOMM
2011 Conference, ser. SIGCOMM ’11, 2011, pp. 242–253.

[6] H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and
G. O’Shea, “Chatty tenants and the cloud network sharing problem,”
in In Proc. of USENIX NSDI ’13, Lombard, IL, 2013, pp. 171–184.

[7] F. Esposito, D. Di Paola, and I. Matta, “On distributed virtual network
embedding with guarantees,” IEEE/ACM Transactions on Networking,
vol. 24, no. 1, pp. 569–582, 2016.

[8] C. Gkantsidis, T. Karagiannis, P. Key, B. Radunovic, E. Raftopoulos,
and D. Manjunath, “Traffic management and resource allocation in small
wired/wireless networks,” in Proc. of CoNEXT ’09, 2009, pp. 265–276.

[9] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. of the ACM SIGCOMM 2012,
pp. 127–138.

[10] Berde, Pankaj et al., “onos: Towards an open, distributed sdn os.”
[11] Linux Foundation. (2015) The OpenDayLight Project.

http://opendaylightproject.org/.
[12] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,

vol. 16, no. 2, pp. 133–169, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

[13] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in Proceedings of the Twenty-sixth Annual
ACM Symposium on Principles of Distributed Computing, ser. PODC
’07, 2007, pp. 398–407.

[14] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14), Jun. 2014, pp. 305–319.

[15] L. Lamport, “Fast paxos,” Distributed Computing, vol. 19, no. 2, pp.
79–103, 2006.

[16] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring paxos: A high-
throughput atomic broadcast protocol,” in 2010 IEEE/IFIP International
Conference on Dependable Systems Networks (DSN), June 2010.

[17] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks,” in Proc. of ACM
SIGCOMM Hotnets-IX, 2010, pp. 19:1–19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

[18] Facebook Dataset, https://www.facebook.com/network-analytics.
[19] ETSI NFV ISG, “Demonstration of multi-location, scalable, stateful

Virtual Network Function,” Dec 2014.
[20] D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, and A. Erbad, “Multi-

cloud distribution of virtual functions and dynamic service deployment:
Open adn perspective,” in Cloud Engineering (IC2E), 2015 IEEE
International Conference on, March 2015, pp. 299–304.

[21] S. Kumar et. al. - IETF SFC WG, “Service Function Chaining Use Cases
In Data Centers,” Jan 2015.

[22] A. Abujoda and P. Papadimitriou, “MIDAS: Middlebox discovery and
selection for on-path flow processing,” in 2015 7th International Con-
ference on Communication Systems and Networks (COMSNETS), Jan
2015, pp. 1–8.

[23] J. Soares, C. Gonçalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Bar-
raca, R. L. Aguiar, and S. Sargento, “Toward a telco cloud environment
for service functions,” IEEE Communications Magazine, vol. 53, no. 2,
pp. 98–106, Feb 2015.

[24] Charalampos Rotsos et al., “Network service orchestration standardiza-
tion: A technology survey,” Computer Standards and Interfaces, vol. 54,
pp. 203 – 215, 2017, sI: Standardization SDN and NFV.

[25] OpenBaton, “http://openbaton.github.io/,” 2017.
[26] Cerrato, Ivano et al, “Toward dynamic virtualized network services in

telecom operator networks,” Comput. Netw., vol. 92, no. P2, pp. 380–
395, Dec. 2015.

[27] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf,
W. Tavernier, and F. Risso, “Multi-domain service orchestration over
networks and clouds: A unified approach,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 377–378.
[Online]. Available: http://doi.acm.org/10.1145/2785956.2790041

[28] G. Davoli, W. Cerroni, S. Tomovic, C. Buratti, C. Contoli, and F. Cal-
legati, “Intent-based service management for heterogeneous software-
defined infrastructure domains,” International Journal of Network Man-
agement, vol. 29, no. 1, p. e2051, 2019.

[29] V. Ishakian, J. Akinwumi, F. Esposito, and I. Matta, “On Supporting Mo-
bility and Multihoming in Recursive Internet Architectures,” Computer
Communications, vol. 35, no. 13, pp. 1561 – 1573, 2012.

[30] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function

control,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 163–
174, Aug. 2014.

[31] Zave, Pamela et al., “Dynamic service chaining with dysco,” in Pro-
ceedings of SIGCOMM ’17, 2017, pp. 57–70.

[32] D. Borsatti, G. Davoli, W. Cerroni, and F. Callegati, “Service Function
Chaining leveraging Segment Routing for 5G Network Slicing,” in 2019
15th International Conference on Network and Service Management
(CNSM), 2019, pp. 1–6.

[33] J. M. Jaffe, “Algorithms for finding paths with multiple constraints,”
Networks, vol. 14, no. 1, pp. 95–116, 1984. [Online]. Available:
http://dx.doi.org/10.1002/net.3230140109

[34] P. Khadivi et al, “Multi-constraint qos routing using a new single mixed
metric,” in Communications, 2004 IEEE International Conference on,
vol. 4, June 2004, pp. 2042–2046 Vol.4.

[35] X. Yuan and X. Liu, “Heuristic algorithms for multi-constrained quality
of service routing,” in INFOCOM 2001. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 2, 2001, pp. 844–853 vol.2.

[36] Dijkstra, “A note on two problems in connexion with graphs,” E.W.
Numer. Math., vol. 269, 1959.

[37] D. Chemodanov, P. Calyam, F. Esposito, and A. Sukhov, “A general
constrained shortest path approach for virtual path embedding,” in
2016 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), June 2016, pp. 1–7.

[38] Editors P. Quinn and T. Nadeau, RFC 7498 - Problem Statement for
Service Function Chaining. IETF, April 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7498#section-2.1

[39] S. S. Skiena., Set Packing. The Algorithm Design Manual., 1997.
[40] J. Case, “A Simple Network Management Protocol (SNMP). ARPA

Request For Comment (RFC) - 1157,” May 1990. [Online]. Available:
ftp://ftp.rfc-editor.org/in-notes/rfc1157.txt

[41] C. Partridge and G. Trewitt, “High-level Entity Management Protocol
(HEMP),” RFC 1022, October 1987.

[42] ISO/IEC 9596-1, “Information Technology - OSI, Common Manage-
ment Information Protocol (CMIP) - Part 1: Specification,” 1991, Also
CCITT X.711.

[43] Google Protocol Buffers. (2013) Developer Guide http://code.google.
com/apis/protocolbuffers.

[44] C. Partridge and G. Trewitt, “High-level Entity Management Protocol
(HEMP),” RFC 1022, October 1987.

[45] N. A. Lynch, Distributed Algorithms, 1st ed. Morgan K., Mar. 1996.
[46] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of

distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
p. 374–382, Apr. 1985. [Online]. Available: https://doi.org/10.1145/
3149.214121

[47] L. Johnson, H.-L. Choi, S. Ponda, and J. How, “Allowing Non-
submodular Score Functions in Distributed Task Allocation,” in Decision
and Control (CDC), 2012 IEEE 51st Annual Conference on, 2012, pp.
4702–4708.

[48] G. Nemhauser, L. Wolsey, and M. Fisher, “An Analysis of Approx-
imations for Maximizing Submodular Set Functions,” Mathematical
Programming, vol. 14, no. 1, p. 265–294, 1978.

[49] A. Kulik, H. Shachnai, and T. Tamir, “Maximizing Submodular Set
Functions Subject to Multiple Linear Constraints,” ser. SODA ’09,
Philadelphia, PA, USA.

[50] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985. [Online]. Available: http://doi.acm.org/10.
1145/3149.214121

[51] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach. Addison Wesley, 2009.

[52] U. Feige, “A Threshold of ln n for Approximating Set Cover,” J. ACM,
vol. 45, no. 4, pp. 634–652, Jul. 1998.

[53] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based Decentralized
Auctions for Robust Task Allocation,” IEEE Transaction of Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[54] D. S. Hochbaum, “Approximation Algorithms for NP-hard Problems.”
Boston, MA, USA: PWS Publishing Co., 1997, pp. 94–143.

[55] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, 2015,
pp. 123–137.

[56] A. Medina, A. Lakhina, I. Matta, and J. W. Byers, “BRITE: An
Approach to Universal Topology Generation,” in MASCOTS, 2001.

15

Flavio Esposito (flavio.esposito@slu.edu) is an As-
sistant Professor with the Department of Computer
Science at Saint Louis University (SLU), with a
second affiliation in Electrical and Computer Engi-
neering withing the Parks College of Engineering at
SLU. He received the M.Sc. degree in telecommuni-
cation engineering from the University of Florence,
Italy, and the Ph.D. in computer science from Boston
University in 2013. His research interests include
network management, network virtualization, artifi-
cial intelligence, and distributed systems. Dr. Espos-

ito is a currently a principal investigator of four National Science Foundation
grants, and one grant from the International Center for Responsible Gaming.
Dr. Esposito was awarded with the Comcast Innovation Fund Award in 2020,
and is the recipient of three best paper awards from the IEEE.

Maria Mushtaq is a Graduate Research Assistant
with the Department of Computer Science at Saint
Louis University. She received a B.S. degree in
Computer Science from Karachi Institute of Eco-
nomics and Technology (PAF-KIET), Pakistan in
2015. Followed by a M.S. degree in Project Man-
agement from Shaheed Zulfikar Ali Bhutto Institute
of Science and Technology (SZABIST), Pakistan in
2019. Her research interests include Machine Learn-
ing and its application in the field of Networking.

Michele Berno received the B.Sc. degree in Infor-
mation Engineering and the M.Sc.degree (Hons.) in
Telecommunication Engineering from the University
of Padova, Italy, in 2015 and 2017, respectively.
He is currently pursuing the Ph.D. degree in ICT
Engineering with the SIGNET research group in the
Department of Information Engineering (University
of Padova). During 2019, he was a research scholar
with the Department of Computer Science, Saint
Louis University (SLU), Missouri, US. He was a re-
cipient of two best paper awards (FMEC 2019, IEEE

MobileCloud 2020). His research interests include sustainable edge/cloud
computing, distributed optimization, and machine learning.

Gianluca Davoli received his M.Sc. Degree in
Telecommunications Engineering from the Univer-
sity of Bologna, Italy, in 2017, and he currently is a
PhD candidate and Research Fellow there. His fields
of interest revolve around communication networks,
focusing on the new approaches to programmabil-
ity, management and monitoring of software-based
network infrastructures.

Davide Borsatti received his B.S. and M.S. in
Telecommunications Engineering from University
of Bologna in 2016 and 2018 respectively. He is
currently enrolled in the Electronics, Telecommuni-
cations, and Information Technologies Engineering
PhD program from the University of Bologna. His
research interests include NFV, SDN, Intent Based
Networking, MEC and 5G Network slicing.

Walter Cerroni [M’01, SM’16]
(walter.cerroni@unibo.it) is an Associate Professor
of communication networks at the University of
Bologna, Italy. His recent research interests include
software-defined networking, network function
virtualization, service function chaining in cloud
computing platforms, intent-based northbound
interfaces for multi-domain/multi-technology
virtualized infrastructure management, modeling
and design of inter- and intra-data center networks.
He co-authored more than 130 articles published

in the most renowned international journals, magazines and conference
proceedings. He serves/served as Series Editor for the IEEE Communications
Magazine, Associate Editor for the IEEE Communications Letters, and
Technical Program Co-Chair for IEEE-sponsored international workshops
and conferences.

Michele Rossi (SM’13) is a Full Professor of
Telecommunications in the Department of Informa-
tion Engineering (DEI) at the University of Padova
(UNIPD), Italy, teaching courses within the Master’s
Degrees in ICT for internet and Multimedia at DEI
(http://mime.dei.unipd.it/ and Data Science, offered
by the Department of Mathematics (DM) at UNIPD
(https://datascience.math.unipd.it/). Since 2017, he
has been the Director of the DEI/IEEE Summer
School of Information Engineering (http://ssie.dei.
unipd.it/). His research interests lie in wireless sens-

ing systems, green mobile networks, edge and wearable computing. In recent
years, he has been involved in several EU projects on IoT technology (e.g.,
IOT-A, project no. 257521), and has collaborated with companies such as
DOCOMO (compressive dissemination and network coding for distributed
wireless networks) and Worldsensing (optimized IoT solutions for smart
cities). In 2014, he was the recipient of a SAMSUNG GRO award with
a project entitled “Boosting Efficiency in Biometric Signal Processing for
Smart Wearable Devices”. In 2016-2018, he has been involved in the design
of IoT protocols exploiting cognition and machine learning, as part of
INTEL’s Strategic Research Alliance (ISRA) R&D program. His research is
currently supported by the European Commission through the H2020 projects
SCAVENGE (no. 675891) on “green 5G networks”, MINTS (no. 861222)
on “mm-wave networking and sensing” and GREENEDGE (no. 953775)
on “green edge computing for mobile networks” (project coordinator). Dr.
Rossi has been the recipient of seven best paper awards from the IEEE and
currently serves on the Editorial Boards of the IEEE Transactions on Mobile
Computing, and of the Open Journal of the Communications Society.

