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Distributed Mixed-Integer Linear Programming
via Cut Generation and Constraint Exchange

Andrea Testa1, Alessandro Rucco1, and Giuseppe Notarstefano2

Abstract—Many problems of interest for cyber-physical net-
work systems can be formulated as Mixed-Integer Linear Pro-
grams in which the constraints are distributed among the agents.
In this paper we propose a distributed algorithmic framework
to solve this class of optimization problems in a peer-to-peer
network with no coordinator and with limited computation
and communication capabilities. At each communication round,
agents locally solve a small linear program, generate suitable
cutting planes and communicate a fixed number of active con-
straints. Within the distributed framework, we first propose an
algorithm that, under the assumption of integer-valued optimal
cost, guarantees finite-time convergence to an optimal solution.
Second, we propose an algorithm for general problems that
provides a suboptimal solution up to a given tolerance in a finite
number of communication rounds. Both algorithms work under
asynchronous, directed, unreliable networks. Finally, through
numerical computations, we analyze the algorithm scalability in
terms of the network size. Moreover, for a multi-agent multi-task
assignment problem, we show, consistently with the theory, its
robustness to packet loss.

I. INTRODUCTION

Mixed-Integer Linear Programs (MILPs) play an important
role in several control problems, including control of hybrid
systems [2], trajectory planning [3], and task assignment [4].
For example, since non-convex functions can be approximated
by means of piecewise-linear functions, see, e.g., [2], nonlinear
optimal control problems can be approximated by MILPs.
Though MILPs are known to be NP-hard, numerous efficient
algorithms exist in a centralized setup. A widely used approach
is the cutting-plane method, see, e.g. [5], which is based on the
iterative solution of linear programming relaxations (obtained
by neglecting integer constraints) and the generation of linear
constraints (cuts) removing the current non-integer solution
from the feasible set. In this paper, we consider the following
Mixed-Integer Linear Program (MILP)

min
z

c>z

subj. to a>i z ≤ bi , i = 1, . . . , n

z ∈ ZdZ × RdR ,

(1)
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where dZ and dR are the dimensions of the integer and real
variables, d = dZ + dR, ai ∈ Rd, bi ∈ R, c ∈ Rd, and n is
the number of inequality constraints.

We deal with a distributed setup in which MILP constraints
are shared among agents of a network, which aim at solving
the whole problem by local computations and communica-
tions. An important challenge that needs to be taken into
account in a distributed context is that the communication
can be asynchronous, unreliable, and the topology directed.
Inspired by the centralized literature, we will propose a
distributed algorithmic framework based on cutting planes.

Only few works address the solution of MILPs in a purely
distributed way, that is, with peer processors communicating
over a network, without the presence of a central (master) unit.
For this reason we organize the relevant literature to our paper
in two main blocks: centralized and parallel approaches to
solve MILPs in control applications, and distributed algorithms
solving Linear Programs (LPs) or convex programs arising as
relaxations or special versions of MILPs. As for centralized
approaches, a Model Predictive Control (MPC) scheme to
solve constrained multivariable control problems is proposed
in [6], [7]. The MPC is formulated as a multi-parametric
MILP for which solver [8] is used. In [9] a branch-and-
bound procedure is devised for the computation of optimal and
suboptimal solutions to parametric MILPs. In [3] and [10], a
collision-free trajectory optimization problem for autonomous
vehicles is formulated as a MILP solved by a branch-and-
bound algorithm with branching heuristics. In [11], a multi-
robot routing problem under connectivity constraints is shown
to be formulated as an integer program with binary variables,
and then its LP relaxation is solved. Recently, in [12] a
heuristic based on the Alternating Direction Method of Multi-
pliers is used to approximately solve mixed-integer linear and
quadratic programs. The heuristic is applied to the control of
hybrid vehicles. As for parallel methods, in [13] a Lagrange
relaxation approach is used in order to decompose the overall
MILP into multiple subproblems each of which is solved in
a client-server parallel architecture. The proposed solution is
applied to the demand response control in smart grids. In [14]
a parallel dual decomposition method, relying on a suitable
tightening of the constraints, is proposed to approximately
solve structured MILPs with local and coupling constraints.
The algorithm is improved in [15] by means of an iterative
tightening procedure. The methods are applied to charging
control of electric vehicles.

As for distributed optimization algorithms, we concentrate
our review on schemes solving linear programs or convex
programs that represent a relaxation of common mixed-integer
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programs. In [16] a robust, distributed algorithm is designed
to solve linear programs over networks with event-triggered
communication. In [17] a distributed algorithm is proposed
to find valid solutions for the so called bargaining problem,
which is an integer program, by means of a linear program
relaxation. In [18] a (mixed-integer) utility maximization
problem is addressed. The proposed solution is based on a
convex relaxation obtained by neglecting the integer constraint
on the rates. In [19] and [20] the authors propose a Newton-
type fast converging algorithm to solve Network Utility Max-
imization problems with self-concordant utility functions. In
[21] constraints consensus algorithms are proposed to solve
abstract optimization programs (i.e., a generalization of LPs) in
asynchronous networks, while a distributed simplex algorithm
is proposed in [22] to solve degenerate LPs and multi-agent
assignment problems. A distributed version of the Hungarian
method is proposed in [23] to solve LPs arising in multi-robot
assignment problems. In [24] and [25] approximate solutions
for task assignment (MILP) problems are proposed based
respectively on a simplex ascent and an auction approach. To
conclude, [26], [27], [28] are first attempts of proposing a dis-
tributed solution for MILPs. We discuss the main differences
with our approach after the contributions paragraph.

The contributions of this paper are as follows. We propose a
distributed algorithmic framework, named Distributed Cutting
Plane and Constraint Exchange for MILPs (DiCUT-MILP),
based on the local generation of cutting planes, the solution
of local LP relaxations of (1), and the exchange of active con-
straints. Specifically, we propose two distributed algorithms.
The first one, called INT-DiCUT-MILP, has guaranteed
finite-time convergence to an optimal solution of (1) under
the assumption of integer-valued optimal cost. All relevant
Integer Programs can, e.g., be casted in this setup. To remove
the assumption of integer-valued optimal cost, we then propose
an algorithm, called ε-DiCUT-MILP,“practically”solving (1),
i.e., computing a feasible point with cost exceeding the optimal
one no more than ε. Both algorithms involve, as local compu-
tations at each node, only a LP solver (processing a number of
constraints depending only on the problem dimension and the
number of neighboring nodes) and a simple procedure for the
generation of cutting planes. Thus, the algorithms are scalable
in terms of local memory, computation, and communication.
Moreover, under slightly stronger assumptions on the graph,
we provide a halting condition allowing agents to stop the
algorithm in a purely distributed way. To the best of our knowl-
edge, these are the first distributed algorithms solving MILPs
in a distributed context. Notably, the proposed algorithms work
under asynchronous, unreliable, and directed networks, so that
they are immediately implementable in concrete scenarios.

We highlight some meaningful differences with respect to
the literature discussed above. In [14] and [15], suboptimal
algorithms with performance guarantees for MILPs are given
and a central unit is required. Papers [26] and [27] propose
strategies to find feasible (suboptimal) points for problem
(1). Moreover, in [27], agents perform the local computation
in a sequential order, while in [26] a gossip protocol is
considered in which one node per time becomes active. In [28]
a distributed algorithm with performance guarantees, based on

dual decomposition and a time-varying restriction technique,
is proposed. The algorithm applies to a class of optimization
problems in which agents aim at minimizing the sum of local
linear cost functions, subject to local linear constraints, while
all local variables are coupled by global constraints. Our algo-
rithm is developed for a different class of MILPs with common
cost and local constraints. The algorithm in [28] converges
to a suboptimal solution with a performance guarantee that
depends on the problem data. Our approach, instead, finds a
suboptimal solution with an arbitrary tolerance and works over
a general, possibly unreliable, asynchronous network. Finally,
although related approaches have been proposed in [21] and
[29] for problems with continuous decision variables, novel
tools are needed in this paper due to the mixed-integer nature
of the problem.

The paper is organized as follows. In Section II we recall the
centralized cutting-plane approach for MILPs. In Section III
we introduce a distributed meta-algorithm together with two
specific algorithms, while in Section IV we analyze their con-
vergence. Numerical computations are provided in Section V
for randomly generated MILPs and for a multi-agent multi-
task assignment setup.

Notation: Given the decision variable z ∈ ZdZ ×RdR of
(1), we denote by x ∈ ZdZ the vector of variables subject to
integer constraints, and by y ∈ RdR the vector of variables not
required to be integer. We denote by e` the `-th vector of the
canonical basis (e.g., e1 = [1 0 . . . 0]>) of proper dimension.
Given a vector v ∈ Rd, we denote by v` the `-th component of
v. Given two vectors v, w ∈ Rd, v is lexicographically greater
than w, v >lex w, if there exists ` ∈ {1, . . . , d} such that v` >
w` and vm = wm for all m < `. Given an inequality a>z ≤ b
for z ∈ Rd, with a ∈ Rd and b ∈ R, we use the following
simplified notation {a>z ≤ b} := {z ∈ Rd : a>z ≤ b} for the
related half-space. The polyhedron induced by the inequality
constraints a>i z ≤ bi , i = 1, . . . , n, is P :=

⋂n
i=1{a>i z ≤ bi}.

Recall that a polyhedron is a set described by the intersection
of a finite number of half-spaces. In this paper we assume a LP
solver is available. In particular, we use the simplex algorithm
proposed in [30] to find the unique lexicographically minimal
optimal (lex-optimal for short) solution of degenerate linear
programs. From now on, we call such a solver LPLEXSOLV
and say that it returns the lex-optimal solution of the solved LP.
LPLEXSOLV also returns an optimal basis identifying the lex-
optimal solution. Given a LP with constraint set P :=

⋂n
i=1 Pi,

with each Pi a half-space, a basis B is the intersection of a
minimal number of half-spaces P`1 , . . . , P`q , q ≤ d, such that
the solution of the LP over the constraint set B is the same
as the one over P . If the lex-optimal solution is considered,
it turns out that B is the intersection of exactly d half-spaces.

II. CUTTING-PLANE FRAMEWORK FOR
MIXED-INTEGER LINEAR PROGRAMMING

In this section we provide a brief description of one of
the most used centralized methods to solve a MILP, i.e., the
cutting-plane approach, see e.g., [31]. We introduce suitable
cutting planes, namely intersection cuts and cost-based cuts,
and describe centralized algorithms for MILPs, based on these
cuts, that are relevant for our distributed framework.
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A. Cutting-Plane approach for MILP

Let PI := P ∩ (ZdZ ×RdR) be the set of feasible points of
MILP (1), also called mixed-integer set. The optimal solutions
of (1) are also optimal solutions of the following LP, [32],

min
z

c>z

subj. to z ∈ conv(PI)
(2)

where conv(PI) is the convex hull of PI . A two-dimensional
representation of a mixed-integer set and its convex hull is
given in Figure 1.

x ∈ Z

y ∈ R

Fig. 1. Example of a polyhedron P (gray area), with feasible set PI (solid
red lines) with x ∈ Z, y ∈ R and its convex hull (blue striped area).

It is worth noting that, if P is a bounded polyhedron, by
Meyer’s Theorem, [33], conv(PI) is a polyhedron. For this
reason, we make the following assumption, which is common
in MILP literature.

Assumption 2.1 (Boundedness and Feasibility): The polyhe-
dron P is bounded and conv(PI) is nonempty. �

The main idea of the cutting-plane approach for MILPs is to
neglect the integer constraints on the decision vector x (i.e.,
x ∈ RdZ ), and iteratively solve relaxed linear problems in
which the polyhedron P is tightened by additional half-spaces
called cutting planes or cuts. The procedure terminates when
the solution of the LP relaxation, call it zLP = (xLP, yLP), is in
conv(PI) with xLP ∈ ZdZ . A valid cutting plane is a half-space
containing conv(PI) but not zLP. We introduce a CUTORACLE
subroutine defined as follows. CUTORACLE(zLP, P, c) returns
the intersection of p cutting planes, {α>z ≤ β} with α ∈
Rp×d and β ∈ Rp, or Rd. An iterative cutting-plane scheme
can be recast in the form of the following meta-algorithm.

Centralized Cutting-Plane Meta-Algorithm:
1. Initialization: set P =

⋂n
i=1{aiz ≤ bi}.

2. LP solver: Find an optimal solution zLP = (xLP, yLP) of
the LP relaxation of (1) with polyhedron P .

3. Check feasibility: if xLP ∈ ZdZ , go to 6.
4. Cutting-Plane: h = CUTORACLE(zLP, P, c).
5. Update: P = P ∩ h and go to 2.
6. Output: zLP.

It is worth noting that, at each iteration, the meta-algorithm
uses the entire set of inequality constraints, P , and all the cuts
generated up to that iteration.

Following the meta-algorithm, numerous algorithms have
been proposed in the literature that have different conver-
gence properties depending on CUTORACLE and the problem
structure. In the next subsections we describe two centralized

algorithms. The key ingredients of both algorithms are: i)
Mixed-Integer Gomory (MIG) cuts, [34], and ii) cost-based
cuts generated according to the current cost value c>zLP.

B. Gomory’s Cutting-Plane Algorithm

Mixed-Integer Gomory (MIG) cuts are cutting planes pro-
posed in [34] for MILPs with integer-valued optimal cost.
Next, we introduce the notions of split disjunction, [35], and
intersection cut, [36], that are intimately related to MIG cuts.

Definition 2.2 (Split Disjunction [35]): Given π ∈ ZdZ and
π0 ∈ Z, a split disjunction D(π, π0) is a set of the form
D(π, π0) := {π>x ≤ π0} ∪ {π>x ≥ π0 + 1}. �

Let BLP be a basis for the optimal solution zLP = (xLP, yLP)
of a given LP relaxation of (1), and D(π, π0) a disjunction
with respect to xLP. Let C(zLP) be the translated simplicial
cone1 formed by the intersection of the half-planes defining
BLP with apex in zLP. Intersection cuts can be derived by con-
sidering the intersection between the extreme rays of C(zLP)
and the hyperplanes defining the split disjunction D(π, π0). A
more detailed definition can be found in [36]. A two dimen-
sional representation of a split disjunction with π = [1 0]T is
given in Figure 2 together with the corresponding intersection
cut (dashed blue line) for a given basis of zLP (solid lines).

◦
zlp

{π>x≤π0} {π>x≥π0+1}

x1
x2

Fig. 2. Example of split disjunction (gray shaded area) and intersection cut
(dashed blue line) with respect to the basis BLP (solid lines) in R2.

It can be shown that the MIG cut with respect to xLP
` , i.e.,

the `-th component of xLP, is the intersection cut to the split
disjunction D(e`, bxLP

` c) and the basis BLP, and is a valid
cutting plane [37]. Next we show how MIG cuts can be
generated. Let zLP = (xLP, yLP) be the lex-optimal solution of
a generic LP relaxation of problem (1) with xLP

` 6∈ Z for some
` ∈ {1, . . . , dZ}, and let BLP = {ABz ≤ bB} be an associated
basis. Consider the split disjunction D(e`, bxLPc) which satis-
fies zLP 6∈ D(e`, bxLPc). Let rm be the m-th column of −A−1

B

and define λm as bz
LP
` c−e

>
` z

LP

e>` r
m if e>` r

m < 0, bz
LP
` c−e

>
` z

LP+1

e>` r
m if

e>` r
m > 0 and ∞ if e>` r

m = 0. As it will be explained
in Section IV, rm represents an extreme ray (originating at
zLP) intersecting the disjunction, while λm is the displacement
along the extreme ray of the intersection point. Let Λ ∈ Rd be
the vector with m-th entry Λm = 1/λm (Λm = 0 if λm =∞).
Then, the intersection cut to the split disjunction D(e`, bxLP

` c)
and the basis BLP is hMIG = {(Λ>AB)>z ≤ Λ>bB − 1}.

Let us consider now the first non-integer component of xLP,
namely xLP

klex
where klex = min{k = 1, . . . , dZ : xLP

k /∈ Z}.
We call MIGORACLE the oracle that generates the MIG cut
hMIG with respect to xLP

klex
. We highlight that MIGORACLE

returns hMIG only when a variable subject to integer constraint

1Given a cone S ⊂ Rd and a point p ∈ Rd, the set p+ S is a translated
cone with apex in p.
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is not integer, i.e., xLP /∈ Zdz . If the optimal solution zLP

obtained by solving the LP is such that xLP ∈ Zdz , then
MIGORACLE does not return any constraint.

It is worth noting that if one implements the Centralized
Cutting-Plane Meta-Algorithm using MIGORACLE as CU-
TORACLE, the algorithm may not converge. Indeed, a “tailing-
off” phenomenon can be observed: a large number of cuts may
be added without significant improvement in the cost. A simple
two-dimensional example is discussed in [38].

We are now ready to describe Gomory’s Cutting-Plane
Algorithm for MILPs with integer-valued optimal cost [34].
We provide a reformulation, given in [37], for MILPs in the
form (1). Given a basis BLP identifying the optimal solution
zLP and the corresponding cost function value c>zLP, we define
CUTORACLE as follows

(hMIG, hc) = CUTORACLE(zLP, BLP, c)

where hMIG is the MIG cut generated by MIGORACLE and
hc = {c>z ≥ dc>zLPe}. It can be shown that, if the optimal
objective function value is integer, Gomory’s cutting plane
algorithm converges to an optimal solution in a finite number
of iterations [34].

C. Algorithms for ε-suboptimal solutions

Another relevant piece of literature regards algorithms solv-
ing MILPs up to an arbitrary tolerance, namely based on the
following notion of suboptimal solution.

Definition 2.3 (ε-suboptimal solution): Given a MILP as
in (1), we say that zε is an ε-suboptimal solution to (1) if
zε is feasible and satisfies c>zε − c>z? ≤ ε, where z? is an
optimal solution to (1). �

In [38] the authors propose a cutting-plane algorithm, based
on “variable” disjunctions, converging to an ε-suboptimal
solution of the MILP in a finite number of iterations. In
contrast to the usual cutting-plane approaches, which generate
constraints only at the optimal solution of the current LP
relaxation, the proposed algorithm generates constraints at
multiple, near-optimal vertices. In [37] the author proposes
an approximation algorithm which is not a classical cutting-
plane method because it generates cuts that might not be valid
for the mixed-integer set. Moreover, the algorithm relies on an
inner procedure to check if feasible points have been cut off,
which involves the solution of a MILP with integer-valued
optimal cost.

III. A DISTRIBUTED CUTTING-PLANE AND
CONSTRAINT EXCHANGE APPROACH FOR MILPS

Inspired by the centralized cutting-plane meta-algorithm,
in this section we first propose a distributed meta-algorithm,
called DiCUT-MILP, based on the local generation of cutting
planes and the exchange of active constraints. As in the cen-
tralized case, it is not reasonable to provide a general, unified
convergence analysis for the meta-algorithm, but proper tools
are needed for specific algorithms. Thus, based on the high-
level methodological approach, we provide an algorithm for
MILPs with integer-valued optimal cost (as in [34]) and an
approximation-based algorithm for general problems. Then,

we discuss some key features of the proposed algorithms and
provide a distributed stopping criterion. We first formalize the
distributed computation setup.

A. Distributed Optimization Setup

In our distributed setup, we consider a network composed
by a set of agents V = {1, . . . , N}. In general, the n ≥ N
constraints in problem (1) are distributed among the agents, so
that each agent knows only a small number of constraints. For
simplicity, we assume one constraint {a>i z ≤ bi} is assigned
to the i-th agent, so that N = n, but we will keep the two
notations separated to show that the algorithm can be easily
implemented also when n > N (i.e., more than one constraint
is assigned to agents). The communication among the agents
is modeled by a time-varying digraph Gc(t) = (V,E(t)), with
t ∈ N being a universal slotted time. A digraph Gc(t) models
the communication in the sense that there is an edge (i, j) ∈
E(t) if and only if agent i is able to send information to agent
j at time t. For each node i, the set of in-neighbors of i at
time t is denoted by Ni(t) and is the set of all j such that
there exists an edge (j, i) ∈ E(t). A static digraph is strongly
connected if there exist a directed path for each pair of agents
i and j. For a static digraph Gc = (V,E), we use dG to denote
the graph diameter, that is the maximum distance taken over
all the pairs of agents (i, j), where the distance is defined as
the length of the shortest directed path from i to j. A time-
varying digraph is jointly strongly connected if, for all t ∈ N,
∪∞τ=tGc(τ) is strongly connected. The time-varying digraph
is said to be (uniformly jointly) L-strongly connected if there
exists an integer L ≥ 1 such that, for all t ∈ N, the graph
∪t+L−1
τ=t Gc(τ) is strongly connected.

B. Meta-Algorithm description

We now describe the proposed distributed meta-algorithm.
In contrast to the centralized approach, in the distributed
setup, some agents may need to solve local LP relaxations
which are unbounded, especially at the first iterations. For
this reason, we initialize the algorithm by assigning to each
agent a set of artificial constraints which are inactive for
problem (1). This method is often referred to as big-M
method. Specifically, the decision variable of each agent is
delimited by a box constraint. In particular, for a given,
sufficiently large M > 0, we define the bounding box

HM :=
d⋂
`=1

({z` ≤M} ∩ {z` ≥ −M}).

In the analysis we will need the following assumption.
Assumption 3.1 (Bounding Box): Given a MILP with poly-

hedron P and a bounding box HM , then P ⊆ HM . �
Each agent i stores a fixed constraint h[i] = hi0 ∩ HM ,

where each hi0 is a local polyhedron (e.g., a single half-
plane) known only by agent i, and updates two local states,
namely z[i], associated to the decision variable z of the MILP,
and B[i] being a candidate basis of the problem. At the
generic (universal) time instant t, agent i calls CUTORACLE
which returns, based on the current state z[i](t), the MIG
cut, hMIG(t), obtained by MIGORACLE, and a cost-based
cut, hc(t) = {c>z ≥ σ[i](t)}, where σ[i](t) must satisfy



5

σ[i](t) ≥ c>z[i](t). Then, agent i solves a local LP in which
the common objective function c>z is minimized subject to
the following constraints: the intersection of its neighbors’
candidate bases,

⋂
j∈Ni(t)B

[j](t), its own candidate basis,
B[i](t), the inequality constraint h[i], MIG cut hMIG(t), and
the cost-based cut hc(t). This procedure is formalized in the
following table.

Distributed Meta-Algorithm DiCUT-MILP

State (z[i], B[i])

Initialization
h[i] = hi0 ∩HM

(z[i], B[i]) = LPLEXSOLV(h[i], c)

Evolution
(hMIG(t), hC(t)) = CUTORACLE(z[i](t), B[i](t), c)

HTMP(t)=
(⋂

j∈Ni(t)B
[j](t)

)
∩B[i](t)∩h[i]∩hMIG(t)∩hc(t)

(z[i](t+ 1), B[i](t+ 1)) = LPLEXSOLV(HTMP(t), c)

Summarizing, at each communication round t, each agent
sends to its out-neighbors a candidate basis, consisting of d
linear constraints, and receives bases from its in-neighbors.
Then, each agent solves a local LP whose number of con-
straints depends on the dimension d and on the number of
in-neighbors. Notice that the distributed meta-algorithm does
not require time synchronization: each agent can run its local
routine (i.e., generate cuts and solve the local LP) at its own
rate, by directly using the available in-neighbor bases.

Next we provide two distributed algorithms. The first one
provides an exact solution under the assumption of integer-
valued optimal cost. The second algorithm exploits a suitable
reformulation and approximation of the centralized problem
to compute an ε-suboptimal solution.

C. INT-DiCUT-MILP

We introduce a distributed algorithm to solve a MILP in the
form (1) under the assumption that the optimal cost is integer.
The algorithm was originally introduced in the preliminary
conference paper [1]. Following the proposed distributed meta-
algorithm, we set hi0 = {a>i z ≤ bi}. Then CUTORACLE
consists of an oracle that generates MIG cuts, i.e., hMIG(t) =
MIGORACLE(z[i](t), B[i](t)), and another oracle generating
cost-based cuts, hc(t) = {c>z ≥ σ[i](t)}, based on a simple
ceiling of the current cost, that is, σ[i](t) = dc>z[i](t)e.
We now state the convergence result for INT-DiCUT-MILP,
whose proof is given in the convergence analysis section.

Theorem 3.2 (INT-DiCUT-MILP convergence): Let
MILP (1) satisfy Assumptions 2.1 and 3.1, and let the optimal
cost be integer-valued. Assume agents communicate according
to a jointly strongly connected communication graph, Gc(t),
t ≥ 0, and run INT-DiCUT-MILP distributed algorithm. Let
J [i](t) = c>z[i](t) be the cost associated to the local candidate
lex-optimal solution z[i](t) of agent i ∈ {1, . . . , N} at time
t ≥ 0. Then, in a finite number of communication rounds
the sequences {J [i](t)}t≥0 and {z[i](t)}t≥0, i ∈ {1, . . . N},

converge, respectively, to the (integer-valued) optimal cost and
to the lex-optimal solution of problem (1). �

Consistently with the (centralized) Gomory’s Cutting-Plane
Algorithm, INT-DiCUT-MILP requires an integer-valued op-
timal cost. Such assumption is needed in order to guarantee
that cost-based cuts (obtained by rounding up the current local
cost value c>z[i](t)) are valid cutting planes. One way to
guarantee integer-valued optimal cost is to take into account
MILP instances in which the cost function value depends
only on the integer variables and the cost vector has rational
components (which, through a suitable scaling, is equivalent
to assuming they are integer valued). We point out that for
a variety of practical problems, as, for example, scheduling,
cutting stock, warehouse location, [33], the optimal cost is
integer because all the decision variables are required to be
integer and the coefficients of the cost vector c are rational.
On the other hand, in many cases of interest, an integer-
valued optimal cost cannot be guaranteed a-priori. In the
next subsection we remove this assumption and propose a
distributed algorithm based on a suitable reformulation and
approximation of the centralized problem.

D. ε-DiCUT-MILP

Here we propose a distributed algorithm, based on
DiCUT-MILP meta algorithm, which computes an ε-
suboptimal solution for general MILPs. We first consider an
equivalent formulation of MILP (1), namely the epigraph form

min
ρ,z

ρ

subj. to a>i z ≤ bi , i = 1, . . . , n

c>z ≤ ρ
ρ ∈ R, z ∈ ZdZ × RdR

(3)

where ρ ∈ R is a new decision variable. Problems (1) and (3)
are equivalent in the sense that (ρ?, z?) is optimal for the
epigraph form (3) if and only if z? is optimal for problem (1)
and ρ? = c>z?.

Now, we make a change of variables ερI = ρ, with ε > 0,
and approximate problem (3) by constraining the new variable
ρI to be integer. The resulting approximate MILP is

min
ρI ,z

ρI

subj. to a>i z ≤ bi , i = 1, . . . , n

c>z ≤ ερI
ρI ∈ Z, z ∈ ZdZ × RdR ,

(4)

where the constant ε > 0 is neglected in the objective function
since it does not affect the minimization.

With problem (4) at hand, we are ready to introduce ε-
DiCUT-MILP distributed algorithm. The algorithm is ob-
tained by properly targeting DiCUT-MILP distributed meta-
algorithm to problem (4). That is, we set (ρI , z) as extended
decision variable, e1 as cost (as opposed to c), and set
hi0 = {aiz ≤ bi} ∩ {c>z ≤ ερI} as local constraint.
The polyhedron induced by the inequality constraints is
P ε = {(ρI , z) ∈ Rd+1 : a>i z ≤ bi, i = 1, . . . , n, c>z ≤
ερI}. We denote Hε

M the bounding box associated to the
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decision variable (ρI , z). Consistently with the distributed
meta-algorithm, each agent generates a MIG cut hMIG(t) =

MIGORACLE((ρ
[i]
I (t), z[i](t)), B[i](t)) and a cost-based cut

hc(t) = {ρI ≥ σ[i](t)} where σ[i](t) = dρ[i]
I (t)e. Then, it

solves a local LP based on the generated cuts and on the
neighboring bases. To better highlight the connection with the
meta-algorithm, a pseudo-code description of ε-DiCUT-MILP
is reported in the following table.

Distributed Algorithm ε-DiCUT-MILP

State ((ρ
[i]
I , z

[i]), B[i])

Initialization
h[i] = hi0 ∩HM

((ρ
[i]
I , z

[i]), B[i]) = LPLEXSOLV(h[i], e1)

Evolution
hMIG(t) = MIGORACLE((ρ[i]

I (t), z[i](t)), B[i](t))

hC(t) = {ρI ≥ dρ[i]
I (t)e}

HTMP(t)=
(⋂

j∈Ni(t)B
[j](t)

)
∩B[i](t)∩h[i]∩hMIG(t)∩hc(t)

((ρ
[i]
I (t+1),z[i](t+1)),B[i](t+1))=LPLEXSOLV(HTMP(t),e1)

The convergence properties of ε-DiCUT-MILP are stated in
the next theorem whose proof is given in the analysis section.

Theorem 3.3 (ε-DiCUT-MILP convergence): Let
MILP (1) satisfy Assumptions 2.1 and 3.1 with
M ≥ max

(
−minz∈P c

>z/ε, dmaxz∈P c
>z/εe

)
. Assume

agents communicate according to a jointly strongly
connected communication graph, Gc(t), t ≥ 0, and run
ε-DiCUT-MILP distributed algorithm. Then, in a finite
number of communication rounds the sequences {z[i](t))}t≥0,
i ∈ {1, . . . N}, converge to an ε-suboptimal solution of (1).�

From Theorem 3.3 it follows immediately that if the optimal
cost of MILP (1) consists of q decimal digits, then, by setting
ε = 10−q , agents compute an optimal solution of (1) in a finite
number of communication rounds.

Remark 3.4: (Multiple Cuts) Both INT-DiCUT-MILP and
ε-DiCUT-MILP can be implemented by generating multiple
MIG cuts at the generic communication round t. That is,
together with the MIG cut with respect to the first non-integer
component generated by MIGORACLE, agent i also generates
intersection cuts for other non-integer entries. The introduction
of multiple cuts can be a useful tool for faster and numerically
robust convergence, as shown in the numerical computations.
Proofs are provided for a single cut, but the extension to
multiple cuts follows by using similar arguments. �

E. Discussion of Main Algorithm Features

We discuss some interesting features of the proposed al-
gorithms. First, our distributed algorithms only require the
communication graph to be jointly strongly connected, and the
universal time does not need to be know by the agents. Indeed,
agents do not use it in the local updates. This implies, as we
will show in the numerical computations, that the algorithms
work under asynchronous and unreliable communication net-
works and, in particular, in networks subject to packet loss.

Second, agents can realize that convergence has occurred, and
thus halt the algorithm, in a purely distributed way under
slightly stronger assumptions on the graph. We recall that,
for a static digraph, the diameter dG is the maximum distance
taken over all the pairs of agents (i, j), where the distance is
defined as the length of the shortest directed path from i to j.
Since our distributed algorithms converge in a finite number
of communication rounds, it can be shown that, for static
communication digraphs, each agent running the algorithm
can stop the algorithm if its basis has not changed for 2dG+1
communication rounds, see, e.g., [21]. It is worth noting that,
in the initialization step, each agent can compute the graph
diameter by a simple flooding algorithm. By similar arguments
it can be shown that, if the graph is (uniformly jointly) L-
strongly connected, then each agent can stop the algorithm
if the value of its basis has not changed after 2LN + 1
communication rounds. Third, the distributed meta-algorithm
(so as the two specific algorithms) involves local computations
and communications that depend on the dimension d of the
decision variable and on the number of in-neighbors. Indeed,
an agent sends to neighbors a candidate basis, which is a
collection of d linear constraints, generates cutting planes
based on simple local computations, and solves a LP. Thus,
the main computational burden for the i-th agent is due to the
solution of a LP (solvable in polynomial time) with d variables
and d×Ni(t) constraints.

Finally, we conclude this discussion by highlighting that
the idea of solving a suitable epigraph approximation of the
original problem, proposed for ε-DiCUT-MILP, can be used
also in a centralized setup. This would result into a pure
cutting plane algorithm providing an ε-suboptimal solution for
general MILPs with a computation burden comparable with
the Gomory algorithm (which however works only under the
assumption of integer-valued optimal cost). On this regard,
we point out that other approximate algorithms, as the ones
mentioned in Section II-C, require inner, computationally
expensive, procedures to find a suboptimal solution.

IV. CONVERGENCE ANALYSIS OF
DICUT-MILP ALGORITHMS

In this section we provide a twofold result. First, we
provide two technical lemmas that hold for the DiCUT-MILP
distributed meta-algorithm and that can be used to prove the
convergence of a class of distributed optimization algorithms
based on this approach. Specifically, we prove that for each
agent the local cost and the local state converge in a finite
number of communication rounds if the generation of cost-
based cuts is assumed to stop in finite time. Then, we prove
that under the same condition, consensus among all the
agents is attained for the costs and for the candidate lex-
optimal solutions. Second, relying on these results, we prove
the convergence of INT-DiCUT-MILP and ε-DiCUT-MILP
distributed algorithms. Namely, for INT-DiCUT-MILP we
show that agents agree on the lex-optimal solution of MILP (1)
under the assumption of integer-valued optimal cost. For ε-
DiCUT-MILP we show that they agree on an ε-suboptimal
solution of MILP (1).
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A. Property of MIG Cuts to a Basis

Here, we prove a property, that will be used in our conver-
gence analysis, holding for MIG cuts generated with respect
to a basis (rather than with respect to the entire polyhedron as
usually done in centralized algorithms).

Lemma 4.1: Let zLP be the lex-optimal solution of a generic
LP relaxation of problem (1) with zLP

` 6∈ Z for some ` ∈
{1, . . . , dZ}, and BLP = {ABz ≤ bB} an associated basis. Let
D(e`, bzLP

` c) be the split disjunction {e>` x ≤ bzLP
` c}∪{e>` x ≥

bzLP
` c+ 1}, which does not contain zLP. Let h := {α>z ≤ β}

be the intersection cut to the disjunction D(e`, bzLP
` c) and to

the basis BLP. Then, the lex-optimal solution, zB , obtained by
minimizing the linear cost c>z over BLP ∩ h is such that its
`-th component is either zB` = bzLP

` c or zB` = bzLP
` c+ 1.

Proof: The intersection of the half-planes defining BLP

defines a translated cone C(zLP) with apex zLP. Points along
an extreme ray2 rm ∈ Rd, m ∈ {1, . . . , d}, associated to
C(zLP) are described by z = zLP + µrm, µ ∈ R and µ ≥ 0.
Thus, vectors z ∈ BLP can be described by a positive linear
combination of the extreme rays rm of the basis BLP, i.e.,
z = zLP +

∑d
m=1 µmr

m, µm ≥ 0. For those rm such that
e>` r

m 6= 0, let us define zm = zLP + λmr
m with

λm =


bzLP
` c−e

>
` z

LP

e>` r
m if e>` r

m < 0

bzLP
` c−e

>
` z

LP+1

e>` r
m if e>` r

m > 0.

Then zm ∈ BLP because λm ≥ 0. Moreover, zm is the point
obtained as intersection of the ray rm with the disjunctive
hyperplanes e>` z = bzLP

` c or e>` z = bzLP
` c + 1. In fact, by

solving {
z = zLP + µrm

e>` z = bzLP
` c+ 1

,

we have

e>` (zLP + µrm) = bzLP
` c+ 1

µe>` r
m = bzLP

` c+ 1− e>` zLP

µ =
bzLP
` c+ 1− e>` zLP

e>` r
m

,

which is well defined and nonnegative if e>` r
m > 0. A similar

argument holds for e>` z = bzLP
` c which gives the condition

e>` r
m < 0. If e>` r

m = 0, the extreme ray rm is parallel to the
disjunctive hyperplanes e>` z = bzLP

` c and e>` z = bzLP
` c + 1,

[40]. The intersection cut to the split disjunction D(e`, bzLP
` c)

and the basis BLP, h = {α>z ≤ β}, is then defined by the
hyperplane passing through the intersection points zm such
that e>` r

m 6= 0 and does not intersect the rays such that
e>` r

m = 0. Now, the lexicographic minimization of the linear
cost function over h ∩ BLP returns zB (cutting off zLP) and
the new basis characterized by d−1 constraints from BLP and
h. The intersection of the half-planes defining the new basis
defines a translated cone C(zB) with apex zB . Let us consider
the extreme ray rm̄ defined by the d− 1 constraints of BLP in
the new basis. Now, rm̄ cannot be parallel to the intersection
cut h otherwise the associated d − 1 constraints could not

2A nonzero vector r of a polyhedral cone C is called an extreme ray if
there are d− 1 linearly independent constraints that are active at r, [39].

belong to the new basis. Thus, there exists a point zm̄ on the
ray intersecting one of the two disjunctive hyperplanes. By
construction, zm̄ belongs also to the intersection cut h and
thus it must be the unique intersection point zB . Therefore,
zB has `-th component equal to bzLP

` c or bzLP
` c+ 1.

B. Technical Results for the DiCUT-MILP Meta-Algorithm

Lemma 4.2 (Local convergence): Let MILP (1) satisfy As-
sumptions 2.1 and 3.1. Assume agents run an algorithm based
on DiCUT-MILP distributed meta-algorithm such that, at each
node, CUTORACLE generates cost-based cuts {c>z ≥ σ[i](t)}
with σ[i](t) taking values in a finite set. Then, in a finite
number of communication rounds, for all i ∈ {1, . . . , N},

i) the sequence {J [i](t)}t≥0 converges to a constant value
J̄ [i], and

ii) the sequence {z[i](t)}t≥0 converges to a feasible z̄[i]

(with z̄[i]
1 , . . . , z̄

[i]
dZ

integer).

Proof: To prove that sequence {J [i](t)}t≥0 converges to
a constant J̄ [i] in a finite number of communication rounds
we proceed in four steps.

First, the sequence {J [i](t)}t≥0 is monotonically non-
decreasing. Indeed, to compute B[i](t + 1), the i-th agent
minimizes the common objective function subject to the con-
straint set HTMP(t) which, by construction, is a subset of the
basis B[i](t). Second, the sequence is bounded from above
by the optimal cost J? to (1) (since HTMP(t) always includes
conv(PI)). Thus, J [i](t) converges to some J̄ [i] ≤ J?. To
conclude the proof of statement i), we recall that at each
t, hc(t) = {c>z ≥ σ[i](t)}, with σ[i](t) ≥ J [i](t) and by
assumption σ[i](t) takes value in a finite set.

To prove the second statement, first notice that we have just
proved that there exists a time t0 such that J [i](t) = J̄ [i] ,∀t ≥
t0. Now let us consider the sequence of the first component
of the state associated to the integer decision variable, i.e.,
{z[i]

1 (t)}t≥t0 . The sequence {z[i]
1 (t)}t≥t0 is non-decreasing

because the local cost value is constant after t0, HTMP(t) is
a subset of B[i](t), ∀t ≥ t0, and the sequence is constructed
by taking into account the lex-optimal solution of the local
problem. Moreover, it is upper bounded by M , and therewith
convergent with limit z̃[i]

1 . So, there exists a time t1 ≥ t0
such that dz̃[i]

1 e − 1 < z
[i]
1 (t) ≤ dz̃[i]

1 e, ∀t ≥ t1. Following the
evolution of the meta-algorithm, to compute z[i]

1 (t1 + 1), first
agent i generates, through CUTORACLE, a MIG cut hMIG(t1)

to the split disjunction D(e1, dz̃[i]
1 e−1) and to the current basis

B[i](t1). Then it collects the constraints from its neighbors,
builds up HTMP(t1), and calls LPLEXSOLV. This returns a new
lex-optimal solution z[i]

1 (t1 +1), which is greater than or equal
to the solution obtained by minimizing over B[i](t1)∩hMIG(t1),
since HTMP(t1) is a subset of it. By Lemma 4.1, minimizing
the linear cost function over the set of the current basis
and the intersection cut is such that the first component is
either dz̃[i]

1 e − 1 or dz̃[i]
1 e. But, being dz̃[i]

1 e − 1 < z
[i]
1 (t)

for all t ≥ t1, it must hold z
[i]
1 (t1 + 1) = dz̃[i]

1 e and, thus,
z

[i]
1 (t) = dz̃[i]

1 e for all t > t1 + 1. Therefore, we have shown
that the sequence {z[i]

1 (t)}t≥t0 converges to z̄[i]
1 = dz̃[i]

1 e in a
finite number of communication rounds. The same argument
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can now be applied to the remaining integer components of
the decision vector, z[i]

2 , . . . , z
[i]
dZ

. So there exists a time tdZ
such that (z

[i]
1 (t), . . . , z

[i]
dZ

(t)) = (z̄
[i]
1 , . . . , z̄

[i]
dZ

), ∀t ≥ tdZ ,
and thus agent i will not generate cutting planes anymore.
Let TdZ be such that (z

[i]
1 (t), . . . , z

[i]
dZ

(t)) ∈ ZdZ , ∀t ≥ TdZ ,
∀i ∈ {1, . . . , N}. For t ≥ TdZ , no cutting planes will be gen-
erated in the network. This means that the number of possible
different bases that i-th agent can receive from its neighbors
is finite (specifically, the combination of all the constraints in
the network at TdZ ). Therefore, since the lexicographic cost
is nondecreasing and due to the finite number of possible
bases, also the non-integer variables (z

[i]
dZ+1(t), . . . , z

[i]
d (t))

will converge in a finite number of communication rounds,
thus concluding the proof.

Next we prove that agents reach consensus on (a common)
cost value and solution estimate in a finite number of com-
munication rounds. The proof follows similar arguments as in
[21] but we report all the steps for the sake of completeness.

Lemma 4.3 (Consensus): Assume that the sequences
{J [i](t)}t≥0 and {z[i](t)}t≥0 defined as in Lemma 4.2 con-
verge to a constant value J̄ [i] and a feasible z̄[i], respectively,
∀i ∈ {1, . . . , N}. Assume the communication network, Gc(t),
is jointly strongly connected. Then, J̄ [i] = J̄ [j] and z̄[i] = z̄[j]

for all i, j ∈ {1, . . . , N}.
Proof: We start by proving the consensus in cost. Sup-

pose, by contradiction, that two cost sequences, associated
with two agents, say i and j, converge to two different
values J̄ [i] and J̄ [j], respectively. Let, without loss of gen-
erality, J̄ [j] > J̄ [i]. In Lemma 4.2 we have shown that
both sequences, {J [i](t)}t≥0 and {J [j](t)}t≥0, are monoton-
ically non-decreasing and convergent in a finite number of
communication rounds. Since J̄ [j] − J̄ [i] > 0, there must
exist Tδij > 0 such that J̄ [j] ≥ J [j](t) > J̄ [i] ≥ J [i](t),
∀t > Tδij . Now since the communication graph is jointly
strongly connected, for each time t ≥ 0 and each pair of
agents (i, j), there exists a sequence of nodes {l1, . . . , lk}
and an increasing sequence of time instants {tl1 , . . . , tlk+1},
with t ≤ tl1 < . . . < tlk+1, such that the directed edges
{(j, l1), (l1, l2), . . . , (lk, i)} belong to the digraph at times
{tl1 , . . . , tlk+1}, [21]. To compute B[l1](tl1 +1), agent l1 min-
imizes the common objective function subject to the constraint
set HTMP(tl1) which, by construction, is a subset of the basis
B[j](tl1). Therefore, J [l1](tl1 + 1) ≥ J [j](tl1). Iterating, we
have J [i](tlk+1 + 1) ≥ J [j](tl1). Therefore, for each t > Tδij
there exists τ > 0 such that J [i](t+ τ) ≥ J [j](t), which leads
to a contradiction, thus proving that J̄ [1] = . . . = J̄ [N ].

To prove that z̄[i] = z̄[j] ∀ i, j ∈ {1, . . . , N}, first recall that
each sequence {z[i](t)}t≥0 converges to z̄[i] ∀i ∈ {1, . . . , N}
in a finite number of communication rounds. Let us suppose,
by contradiction, that agents do not reach consensus on the
decision variable, then there exist two agents, say i and j,
such that z̄i >lex z̄j . Using again the assumption that the
graph is jointly strongly connected, there exists a directed path
{(i, l1), (l1, l2), . . . , (lk, j)} at times {tl1 , . . . , tlk+1}. Since
consensus has been reached on the cost, it must hold (by
applying to the lexicographic ordering the same argument used
for the cost) that z̄j = z[j](tlk+1 + 1) ≥lex z[lk](tlk+1) ≥lex

. . . ≥lex z[i](t) = z̄i which leads to a contradiction, thus
concluding the proof.

C. Proof of Theorem 3.2

We apply Lemma 4.2 to MILP (1). Assumptions in
Lemma 4.2 are satisfied. Indeed, at each node, the number
of cost-based cuts, hc = {c>z ≥ σ[i](t)}, that can be
generated along the algorithm evolution is finite, because
σ[i](t) = dc>z[i](t)e and c>z[i](0) ≤ c>z[i](t) ≤ J? for
all t, with J? being the (integer-valued) optimal cost to (1).
Therefore, by Lemma 4.2, the sequences {J [i](t)}t≥0 and
{z[i](t)}t≥0 at each node i converge in a finite number of
communication rounds. Now, since the communication graph
is jointly strongly connected, by Lemma 4.3 the sequences
converge in a finite number of communication rounds to a
common limit cost value J̄ and a common limit point z̄
respectively.

To prove that J̄ = J?, we start by highlighting two facts.
First, J [i](t) ≤ J?, ∀t ≥ 0, and for all i ∈ {1, . . . , N}, because
every agent minimizes the cost function over HTMP(t), which
by construction (it is the intersection of the collected bases
and the local generated cuts) always contains conv(PI). Thus,
J̄ ≤ J?. Second, there exists t̄ such that z[i](t) = z̄ for all
t ≥ t̄ and ∀i ∈ {1, . . . , N}. This means that z̄ satisfies the
local constraints h[i] for all i ∈ {1, . . . , N} and, therefore,

z̄ ∈
(
N⋂
i=1

h[i]

)
= P . Moreover, since z̄ = (x̄, ȳ) ∈ P is such

that x̄ ∈ ZdZ , it holds z̄ ∈ conv(PI) by construction. Thus,
J(z̄) ≥ minz∈conv(PI) J(z) = J?, giving the cost optimality.
Finally, being z̄ feasible and cost optimal, it is the unique
lex-optimal solution (i.e., z̄ = z?).

D. Proof of Theorem 3.3

In this subsection, we prove Theorem 3.3, i.e., ε-
DiCUT-MILP computes an ε-suboptimal solution of
MILP (1). Before proving the convergence result, we need
the following lemma.

Lemma 4.4 (Approximate solution): Suppose MILP (1)
satisfies Assumption 2.1. Then for any given ε > 0 an optimal
solution (ρεI , z

ε) to MILP (4) exists and zε is an ε-suboptimal
(feasible) solution to MILP (1).

Proof: By Assumption 2.1, there exists z? ∈ conv(PI)
such that c>z? ≤ c>z,∀z ∈ conv(PI). If c>z?/ε ∈ Z, then
(ρεI , z

ε) = (c>z?/ε, z?) is a feasible, optimal solution of (4).
Any optimal solution (ρεI , z

ε) of (4) has cost c>z?/ε and, by
construction, zε ∈ conv(PI). Thus, c>zε/ε ≤ c>z?/ε = ρεI
and, being zε ∈ conv(PI), c>zε ≥ c>z?, so that zε is
also optimal for (1). Now suppose c>z?/ε 6∈ Z. We first
show that the pair ρεI = dc>z?/εe, zε = z? is an optimal
solution of (4). Indeed, z? is feasible for (4), i.e., z? ∈
conv(PI), and c>z? ≤ εdc>z?/εe = ερεI (simply because
c>z?/ε ≤ dc>z?/εe). Moreover, there does not exist any
z ∈ conv(PI) such that c>z = εbc>z?/εc. In fact, by the
principle of optimality, we have c>z ≥ c>z?, ∀z ∈ conv(PI),
and c>z? > εbc>z?/εc (we have already handled the case of
integer-valued optimal cost). This proves the existence of an
optimal solution of MILP (4). Now we simply notice that any
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(ρεI , z
ε) optimal solution of (4) is such that zε ∈ conv(PI)

and c>zε ≤ ερεI = εdc>z?/εe. Moreover, c>zε ≥ c>z?

because zε ∈ conv(PI), so that c>z? ≤ c>zε ≤ εdc>z?/εe.
By subtracting c>z?, we have

0 ≤ c>zε − c>z? ≤ εdc>z?/εe − c>z? < ε ,

thus concluding the proof.
We are now ready to prove that ε-DiCUT-MILP converges

in a finite number of communication rounds to an ε-suboptimal
solution of MILP (1).

Proof of Theorem 3.3: First, note that we can prove
the theorem by replacing the feasible set of MILP (4) with
P ε = {(ρI , z) ∈ Rd+1 : a>i z ≤ bi, i = 1, . . . , n, c>z ≤
ερI , ρI ≤ Mρ}, where Mρ ≥ dmaxz∈P c

>z/εe. Here we are
slightly abusing notation, since we denote by P ε the bounded
version of the polyhedron. Using P ε it can be shown that the
assumptions of Theorem 3.2 hold for MILP (4). Moreover, the
optimal cost of MILP (4) is integer (indeed, the cost depends
only on the integer variable ρI ) and the communication graph
is jointly strongly connected. Thus, the sequences {J [i](t)}t≥0

and {(ρ[i]
I (t), z[i](t))}t≥0 i ∈ {1, . . . , N}, converge, respec-

tively, to the optimal cost, Jε, and the lex-optimal solution,
(ρεI , z

ε), of MILP (4) in a finite number of communication
rounds. Finally, by Lemma 4.4, the solution zε is an ε-
suboptimal solution of MILP (1).

V. NUMERICAL COMPUTATIONS

To corroborate the theoretical analysis and better highlight
some appealing features of our algorithms, we provide numer-
ical computations. We concentrate on ε-DiCUT-MILP since it
does not require integer-valued optimal cost. First, we consider
randomly generated MILP instances and we perform a numer-
ical Monte Carlo analysis of the algorithm convergence while
varying network size and tolerance ε. Second, we consider a
multi-agent multi-task assignment problem that is relevant for
cooperative robotics. For this scenario we test our algorithm
in an unreliable network due to packet loss.

A. Scalability and Convergence Rate for Randomly Generated
MILPs

We first perform a numerical Monte Carlo analysis to study
the number of communication rounds for convergence while
varying the network size. For each network size, we randomly
generate 50 MILP instances with fixed dimension, d = 10 and
dZ = 3, and run ε-DiCUT-MILP with ε = 0.1 and a bounding
box HM with M = 100. The inequality constraints of the
MILP instances are randomly generated as follows. The vec-
tors ai are drawn from the standard Gaussian distribution. The
term bi is uniformly randomly generated in [0, 50]. The cost
vector c is obtained as c = a>i ĉ where ĉ is uniformly randomly
generated in [0, 1]n. The problems generated according to this
model are feasible. The LP relaxation of such a MILP is one of
the models proposed in [41]. We first choose a cyclic digraph
for which the diameter, dG , is proportional to the number of
agents, specifically dG = N − 1, and consider the following
cases: number of agents equal to 16, 32, 64 and 128. The
results are shown in Figure 3a. The red central line of each
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Fig. 3. Communication rounds for convergence while varying the number of
agents for (a) a cyclic digraph with dG = N − 1 and (b) an Erdős-Rényi
random graph with diameter dG = 8. Each box plot shows the minimum
and maximum communication rounds (whiskers), 25% and 75% percentiles
(lower and upper box edges), median (red line), and outliers (red crosses).

box shows the median value of the communication rounds for
the 50 random MILPs. The lower and upper edges of the blue
box represent the 25-th and 75-th percentiles. Some outliers3

(red crosses) can be observed. This is not surprising considered
that MILPs are NP-hard. We point out that the number of
communication rounds needed for convergence grows linearly
with the network size (i.e., number of agents and diameter).
Then, we consider Erdős-Rényi static digraphs with diameter
fixed dG = 8, and a growing number of nodes (and so agents),
namely 25, 50, 75 and 100. The results are shown in Figure 3b.
Here we highlight that the median value of communication
rounds needed for convergence is between 177 and 190, that
is the completion time of the algorithm is roughly constant
with respect to the number of agents.

Second, we perform a numerical Monte Carlo analysis
to study the behavior of ε-DiCUT-MILP while varying ε.
We randomly generate 50 MILP instances with d = 10,
dZ = 3 and 256 constraints, as before. The constraints are
distributed among N = 64 agents, so that each one knows 4
constraints. Agents communicate according to an Erdős-Rényi
random graph with dG = 7. Each instance is solved with
ε = 0.05, 0.1, 0.5, 1, and the results are shown in Figure 4.
For each communication round t, we plot the mean value
(over instances and agents), Avg(|c>z? − ερ

[i]
I (t)|), of the

distance |c>z? − ερ[i]
I (t)| of each instance from the optimal

cost. Different curves are associated to different values of ε. As
expected, by decreasing ε, the cost at convergence is closer to
the optimal one, but a larger number of communication rounds
is needed for convergence. To speed-up the convergence, a
“multi-resolution” strategy may be implemented, in which ε is
reduced at each run and the previous computed solution is used
to initialize the new run. Notice that, if agents can apply one
of the distributed stopping criteria discussed in the previous
section, e.g., if the communication graph is static, this scheme
can be implemented in a purely distributed way. Finally, we
point out that the algorithm exhibits a convergence rate behav-
ior similar to centralized cutting-plane algorithms. That is, in
the first iterations the cost soars to the optimal cost value. As
the algorithm evolves, one can observe the typical tailing-off

3Outliers are evaluated as follows. Let Q1 and Q3 be the 25-th and 75-th
percentile of the samples, respectively. A sample is an outlier if it is greater
than Q3 + 1.5(Q3 −Q1) or less than Q1 − 1.5(Q3 −Q1).
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Fig. 4. Convergence behavior of ε-DiCUT-MILP, with different ε values. For
each communication round t, the figure shows the value of |c>z?− ερ[i]I (t)|
averaged over all the agents and all the random instances.

effect characterizing cutting planes algorithms, which slows
down the convergence rate. How to combine cutting planes
with other schemes, to avoid this tailing-off, is definitely an
interesting research direction.

B. Distributed Multi-Agent Multi-Task Assignment under Un-
reliable Network

In this section we apply ε-DiCUT-MILP to a Multi-Agent
Multi-Task Assignment problem for robotic networks. Here we
use the variant of ε-DiCUT-MILP described in Remark 3.4
in which multiple cuts are generated.

We consider a group of heterogeneous mobile robots that
need to accomplish a set of tasks. Each task must be performed
at a given target location and each vehicle has the capability
to execute only some of the tasks. Robots move in a con-
strained space including obstacles, which (for simplicity) are
modeled as rectangles. Given the capability constraints and
forbidden areas, the goal is to assign the tasks among the
vehicles in order to minimize the mission completion time
which is defined as the time needed for the last vehicle to
finish its mission, see, e.g., [4]. We assume that valid paths,
from vehicles to target locations, are available together with
the corresponding finishing times. This could model, e.g., a
structured environment, as in factories or warehouses, in which
vehicles follow pre-defined paths on the floor of the operating
area. Thus, we setup the following multi-agent multi-task
assignment problem.

Given Nθ target locations, {T1, . . . , TNθ}, Nν vehicles,
{V1, . . . , VNν}, and Nγ paths, we formulate the multi-agent
multi-task assignment problem as the following MILP:

min
x,y

y

subj. to p>θ x ≤ −wθ , ∀θ ∈ {1, . . . , Nθ}
q>ν x ≤ 1 , ∀ν ∈ {1, . . . , Nν} (5)

r>γ x ≤ y , ∀γ ∈ {1, . . . , Nγ}
where x ∈ ZNγ is a vector of binary decision variables
associated to the paths (x` is equal to one if the `-th path
is selected, and 0 otherwise), while y ∈ R is a continuous

decision variable associated to the mission completion time.
The vector pθ ∈ RNγ is a vector whose `-th entry is 1 if target
location Tθ is visited by path ` and 0 otherwise. The vector
qν ∈ RNγ is a vector whose `-th entry is 1 if path ` is assigned
to vehicle Vν and 0 otherwise. Each vector rγ ∈ RNγ has the
form r>γ = [0, . . . , 0, τ`, 0, . . . , 0], where τ` is the completion
time for the `-th path. The first set of constraints enforces that
each target location is visited at least wθ times, the second one
prevents more than one path being assigned to each vehicle,
and the third one forces y to be the overall finishing time,
i.e., y = max` τ`. It is worth noting that an optimal solution
of (5) cannot be obtained as the solution of its LP relaxation,
i.e., x ∈ RNγ and 0 ≤ x` ≤ 1, ∀` ∈ {1, . . . , Nγ}, due to the
presence of the capability constraints.

We consider N agents, {A1, . . . , AN}, randomly located
in the operating region and communicating according to a
jointly strongly connected communication graph. The graph
is built by considering a proximity criterion, i.e., two agents
are connected if their distance is less than a threshold.

Each agent only knows the constraints in problem (5)
associated to paths traversing a neighboring area. For example,
in Figure 5a, agent Ai (blue circle) only knows the paths
traversing a circle area of radius 14m centered at its position,
and communicates with other agents in this circle. In this
framework, a robotic vehicle, e.g., Vi in Figure 5a, is also
an agent participating to the computation.

In order to show the robustness of ε-DiCUT-MILP against
failures in the communication network, we introduce a proba-
bility of packet loss for each edge in the fixed communication
graph. Specifically, at each communication round, an agent
i does not receive a message from a neighboring agent j if
a random variable in [0, 1] is smaller than a fixed threshold.
The threshold defines the percentage of packet loss for edge
(j, i). We consider 0% (ideal case, no packet loss), 10%, 30%,
50% and 70% of packet loss. For each packet loss percentage,
we run ε-DiCUT-MILP on an instance of problem (5) with
ε = 0.1, Nθ = 32, Nν = 10, Nγ = 71, and N = 30.
The solution is depicted in Figure 5a (colored lines). The
convergence results are shown in Figure 5b in which we plot
the difference between maxi∈{1,...,N} ρ

[i]
I (t) and the solution

ρ?I of MILP (4) (computed by using a solver in YALMIP [42]).
For the ideal case (no packet loss), agents reach consensus
on the optimal cost after 19 communication rounds. When
increasing the percentage of packet loss, as expected, the
number of communication rounds increases, see Figure 5b.
Notably, as from the theory, the algorithm converges also for
very high percentages of packet loss as, e.g., 70%.

VI. CONCLUSION

In this paper, we proposed an algorithmic framework, with
two specific algorithms, to solve Mixed-Integer Linear Pro-
grams over networks. In the proposed distributed setup, the
constraints of the MILP are assigned to a network of agents.
The agents have a limited amount of memory and computation
capabilities and are able to communicate with neighboring
agents. Following the idea of centralized cutting-plane meth-
ods for MILPs, each agent solves local LP relaxations of the
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Fig. 5. In (a) Multi-Agent Multi-Task assignment solution: 10 vehicles (black
triangles), 32 tasks (green diamonds), 10 optimal paths (colored lines) and
30 agents (blue circles) connected by a proximity graph (blue dotted lines).
In (b) maxi∈{1,...,N}(ρ

[i]
I (t)− ρ?I ) for different percentages of packet loss.

global problem, generates cutting planes, and exchanges active
constraints (a candidate basis) with neighbors. We proved that
agents running the first algorithm, INT-DiCUT-MILP, reach
consensus on the lex-optimal solution of the MILP, under the
assumption of integer-valued optimal cost, in a finite num-
ber of communication rounds. Removing the assumption of
integer-valued optimal cost, we proved that agents running the
algorithm ε-DiCUT-MILP reach consensus on a suboptimal
solution (up to a given tolerance ε) of the MILP, in a finite
number of communication rounds. Both algorithms involve
low-cost local computations and work under asynchronous,
unreliable, and directed networks. Finally, we performed a
set of numerical computations suggesting that the completion
time of ε-DiCUT-MILP scales nicely with the diameter of the
communication graph. We also tested the algorithm on a multi-
agent multi-task assignment setup in unreliable networks.
Future investigations may include the solution of MILPs with
a large number of decision variables and the combination of
pure cutting plane methods with other tools, e.g. branch and
bound, as in centralized schemes.
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[40] K. Andersen, G. Cornuéjols, and Y. Li, “Split closure and intersection
cuts,” Mathematical programming, vol. 102, no. 3, pp. 457–493, 2005.

[41] M. J. Todd, “Probabilistic models for linear programming,” Mathematics
of Operations Research, vol. 16, no. 4, pp. 671–693, 1991.

[42] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in IEEE International Symposium on Computer Aided
Control Systems Design, 2004, pp. 284–289.

Andrea Testa received the Laurea degree “summa
cum laude” in Computer Engineering from the Uni-
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