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Abstract: 

Integrated energy planning (IEP) plays an integral role in the promotion of energy efficiency in large-scale building 
stock. IEP can facilitate the evaluation of energy supply and demand in current rural and urban areas for the proper 
allocation of available resources. This paper presents a comprehensive review of large-scale energy planning and 
a systematic review of the methods employed in urban and regional integrated energy planning (UR-IEP). To this 
effect, 234 models from 157 published papers have been collected, classified based on their aims and 
methodologies, and critically subjected to meta-analysis and SWOT table. Thus, this review provides a framework 
of the fundamental concepts in energy model design and detailed analysis to support decision-making. Further, it 
provides a clear comparison of the methods and characterises them based on seven basic criteria of energy models, 
including purpose, methodology, analytical approach, geographical coverage, mathematical approach, time 
horizon, and data requirements. This framework will provide urban planners with accurate and helpful knowledge 
for the selection of appropriate energy planning methods based on most common-focused methods that have been 
introduced based on 234 models published between 1960 and 2018. 
 

Highlights:  
• This paper presents a systematic review of methods in spatial energy planning. 
• The methodology is based on characterisation and comparison of various IEP methods. 
• Characterization is based on: purpose, method, approach, structure, scale, duration, and inputs. 
• The aim, methodology, and studied location of each method are presented. 
• The IEP methods are critically subjected to meta-analysis and SWOT analysis.   

Keywords: Spatial energy planning, up-down methods, bottom-up methods, energy modelling 
characterization, urban and regional integrated energy planning, large scale building stock, urban-rural 
planning, systematic review, Meta-analysis  

The total number of words in this paper is 9986. 

List of abbreviations:  

Community Energy Planning (CEP)    Community Regularity Plan(CRP),    
Community Site Plan(CSP)   community master planning(CMP)  
Community Detailed Plan (CDP)  Space Heating (SH) 
Genetic Algorithm (GA)   Gross National Production (GNP)  
Energy Intensity (EI)     Urban and Regional Integrated Energy Planning (UR-IEP) 
Integrated Energy Planning (IEP)  Domestic Hot Water (DHW) 
Gross Domestic Production (GDP)   Ant Colony Optimization (ACO) 
 
1. Introduction 

Based on recent urbanisation trends, it has been predicted that the population of cities globally would increase by 
nearly 5 million every month until 2050[1]. Due to this exponential increase in urban population, many ecological 
and economic crises have emerged globally, which have negatively influenced cities, and subsequently affected 
the procedure of urban planning [2][3][4][5]. In 1989, Barnett stated that “urban design and planning techniques 
have to change because cities and suburbs are changing. What was true about cities as recent as ten years ago is 
true no longer, and the process of evolution goes on”[3]. Today, cities are at the core of energy-oriented plans, and 
regulations are being scaled up from buildings to large-scale structures. This means that urban plans at all levels 
are increasingly involved in the reduction of fossil fuels consumption. Creating and managing effective policies 
associated with these urban and regional integrated energy plans require suitable methods to guarantee their 
functionality in certain contexts. In recent decades, the tremendous growth of energy planning models, which vary 
in their features such as structures and purposes, necessitated the definition of a set of approaches, which are able 
to provide the required assumptions for policies and future forecasting.  



An Integrated energy planning (IEP)  project has been implemented in 20 communities in Germany; the model was 
executed through GOSOL to minimise heating demand[6]. Another project was implemented in a 35 ha city area 
in Iran; the IEP was executed to forecast the energy supply and demand based on a zero-energy future[7]. Another 
IEP has been prepared for Antigua and Barbuda in 2013. The plan is written in national scale and is focused on 
priorities of energy strategies and financing the goals toward a sustainable renewable energy based future[8]. 
Energy supply in urban residential environments has been studied in 5 areas which are as lighting, 
communication electrical appliances, space heating, and cooling in private households and public buildings. It is 
noteworthy that Energy Storage System(ESS), in parallel with IEP, investigates responsive capacities of power 
supply and are mostly used in large-scale applications such as power generation, distribution and transmission 
networks, distributed energy resources, renewable energy, and local industrial and commercial facilities[9], 
however, this paper is specifically focused on IEP methods (Figure 1). 
 

Figure 1: Structure of the IEP review 

 
According to Mirakyam and Guio, IEP methodology has been divided into 4 phases[10] and in every phase, 
different functions and tasks are expected. These phases are as follows: phase I: preparation and orientation, phase 
II: model design and detailed analysis, phase III: prioritisation and decision, and phase IV: implementation and 
monitoring. In phase I, the first step towards energy planning is preparation and orientation[11]. In this step, the 
total conditions are analysed, and the serious issues in the planning processes are recognised; moreover, some 
potential solutions may be mentioned. Phase II involves analyses and planning mostly through quantitative methods 
and models[12]. The prioritisation and decision phase (phase III) employs scenarios to set goals and objectives for 
the strategies for implementing the visions, the big picture, created in step I. The last step is allocated to creating 
policies and action plans and the formation of a monitoring framework[10]. What is considered as “energy 
modelling” or “energy system modelling” is related to phase II[12], where the quantitative methods and tools are 
employed to analyse and forecast the demand and supply. These methods have a wide variety of toolboxes, 
simulations, optimisations, and even econometrics. 
To date, however, energy concepts lack a comprehensive framework to help energy planners adopt the best methods 
when performing urban and regional planning. The main aim of this study is to propose an inclusive definition of 
urban plans and develop a decision support guideline with which the selection of appropriate energy plans, method, 
and models is facilitated. Therefore, the research questions raised by this paper are as follows. In phase II of IEP, 
which method is most suited to a certain purpose or situation? How have existing energy models been utilised in 
performing IEP in different countries?  
 

1.1. Structure of the paper 



This paper is based on a systematic review of existing energy models in phase II of IEP methods. As Figure 1 
shows the main structure of this review, objectives of this study are (i) to elaborate on the main points of IEP at 
different levels and phases, (ii) to classify the models into different methods based on their purposes and 
methodologies, (iii) to perform a meta-analysis of the methods based on 7 major characteristics: purpose, structure, 
analytical approach, geographical coverage, sectoral coverage, time horizon, and data requirements. Next section 
will be focused on the first objective and will elaborate on the main points of energy planning and the process of 
its integration in master planning. In Section 4, will go through the second objective and in this section, the 
employed classification technique and the most employed methods and approaches in energy planning in multi-
scales are summarised. The last part will take care of the third objective and provide a critical point of view by 
introducing the results of the meta-analysis of the main methods and examining their advantages and disadvantages. 
The adopted methodology specifically attempts to examine the IEP models from an urban planning standpoint for 
those who are not experts in energy, but are involved in energy subjects for planning sustainable cities, and want 
to clearly understand all the existing methods and tools in small and large scales. 
It is worth mentioning that the main motivation for authoring this paper was to present a clear guideline for 
architects and urban planners; thus, energy models are analysed in a completely understandable manner, and 
mathematical aspects are mostly simplified in the urban context.  
 

2. Methodology 

IEP modelling relies on several variables, such as the purpose of the model, structure, input requirements, analytical 
approach, and the coverage scale. This paper presents a systematic review of the urban and regional integrated 
energy planning (UR-IEP) process and meta-analysis of the existing models which were employed mostly during 
the last decades. To this effect, an overall 234 observations are examined from 157 published papers released from 
1960 to 2018. The first step is a literature search. In this step, papers are recognised through the keywords, 
energy/urban/building/models/spatial/planning, in Scopus and Web of science databases; additionally, for complete 
consideration, the papers, which have been referenced and cited, are considered to account for not only backward-
research but also forward-research cases. In the next step, the inclusion criteria are provided; papers that contained 
these keywords but that were not able to cover a clearly defined methodology have not been considered in the meta-
analysis. The meta-analysis is performed using RevMan (version 5.3). The characteristics have been grouped into 
7 variables based on analysis, structures, and input requirements.  

3. Integrating energy planning in Master planning  

In 2009, the UN-Habitat published a report in which the definition of urban planning was clarified: “Urban 
planning is used loosely to refer to intentional interventions in the urban development process, usually by the local 
government. The term “planning” thus subsumes a variety of mechanisms that are in fact quite distinct: regulation, 
collective choice, organizational design, market correction, citizen participation, and public sector action”[13]. 
Notably, this report explains urban planning as being a difficult task (or almost impossible). The reason is that there 
is a wide variety of roles, forms, and perceptions in the scale of time and location. Besides, the combination of the 
vast topic of energy planning in this definition has made it even more complex. To date, there is no common ground 
on what energy planning accurately must represent. Thus far, scholars have made several attempts to achieve an 
integrated definition due to the wide variety of applications, but they have mostly failed. Multi-scale standpoints 
are employed to address the complicated aspects of this challenge; consequently, the next section will examine the 
three of most common focused features of energy planning on large scales in recent studies according to Krog and 
Sperling[14], these features are: the allied foresight, integration process, and connection of strategic aspects in 
large scales and operational levels.  

 
3.1. Criteria of large-scale integrated energy planning  

 
• Allied Foresight: In master plans, main strategies are formulated based on a specific vision; however, 

when an energy-oriented future is considered, there, definitely, must be an allied foresight to ensure every 
aspect of the zero-fossil fuel vision and the vision of the master plan are covered as well. Furthermore, the 
vision must be adapted to the aims of higher levels, such as national plans, or with parallel programs such 
as climate-mitigating or environmental programs [15].  

  



• Unified energy and planning schemes: After aligning the perceptions and visions, the next step is to 
understand where and how the energy aspects must be integrated into the plan. Furthermore, it is crucial to 
make decisions technically and economically on all sections, including feasibility studies and land use 
plans or in the energy calculations tools. This process highly requires an easily understandable procedure 
or process map for any presentation. Notably, the performance of the abovementioned factors is not feasible 
without involving energy into every step, from the cognitive stages to brainstorming and decision making 
stages to operational levels in a certain area [16].  
 

• Bonded strategic and operational stages: The energy strategies have to be included in an operational 
program, to be applicable in the cities. The long-term strategies must go through administrative processes 
to afford short-term and mid-term strategies. Afterward, instruments at various spatial scales link the main 
strategies to the short-time ones [16]. 

 
3.2. Community Energy Planning (CEP) 

The community-scale in energy planning plays a key role since it links buildings to the city context. Community 
planning is the convergence point in energy planning, in which long-term strategies can be converted into mid-
term and short-term tasks and policies. For integrative energy solutions, a community energy plan must focus on 5 
tasks [17]: 

• Identifying the end-user of energy  
• Taking advantage of every opportunity to conserve energy  
• Seeking renewable energy potentials  
• Setting energy aims and objectives for every specific community  
• Understanding the community priorities and recognising required resources  

To consider a scale in-between the city and buildings, a community will be employed to convey the role of “a 
group of buildings”. In general, a “community” refers to a non-specific-sized social group that occupies a 
certain locality. In this paper, however, a “community” refers to the small-scale area (approximately 10 km2), 
in which mixed-use of lands occurs [18].   

Seven main steps are applicable to the energy planning process of every community [16]: 

1. Recognising a private or governmental operator who is an expert in energy planning to assume 
responsibilities in the planning process.  

2. Publishing the community vision and aims  
3. Identifying an energy baseline for the community  
4. Recognising all the possibilities of energy efficiency application in the community 
5. Considering the economic development feasibilities  
6. Identifying the service requirements in all socio-economic aspects 
7. Implementing the planned short-term policies.      

Community Energy Planning has been examined completely in the three parts of master planning, detailed 
planning, and architectural design by Huang et al. [18]. Thus, in this section, only the energy integration process 
into the master plan and detailed planning will be discussed.   

3.2.1. Community Master Plan 
 

The smallest spatial scale in the planning process is the community master planning(CMP) in which the main 
idea for a community usually is shaped, and based on it, planning visions are integrated into the energy visions. 
CMPs have a bottom-up statistical approach toward issues; this means it considers the neighbourhood as a 
system and does not enter the details of urban spaces and buildings. This approach helps urban planners to 
align the aims of the higher-level plans. Subsequently, objectives and main long-term strategies are provided; 
the last step involves collecting cognition data for the neighbourhood for preparing plans in operational levels 
and mostly place-demand policies.  
 
 
 



3.2.2. Community Detailed Plan 

Before developing the architectural energy design, Community Detailed Plan (CDP) plays a key role in 
integrating community master plan and architectural design rules. Therefore, the community detailed plan has 
both bottom-up statistical and engineering approach. The first one is applied as the Community Regularity 
Plan(CRP), and the second one is considered the Community Site Plan(CSP)[18].  

Table 1 illustrates the detailed characteristics of CMP and CDP. As has been explained, CMP and CRP are 
applicable in a community scale and will lead to action and monitoring plans. One specific feature that distinct 
CMP and CRP is the period scales, while CMP must be focused on long term policies, strategies in CRP are 
implacable in short periods. Ultimately, CSP as the last step of community energy planning, proceed the plans 
through engineering approaches and simulations, the outcome of CSP is the impact analysis and energy 
estimations.      

 Table 1: community urban plans procedures 

 

 

 
4. IEP methods in large scales   

The transition towards integrated energy planning requires developing methods to provide a clear vision as the 
prerequisite for making strategies. As has been specified, the focus of this paper is mainly on phase II of the IEP. 
After reviewing the main features, steps, and requirements of IEP, this section will go deeply into IEP methods. 
In section 4.1 the employed technique for classification of methods and the reasons for this approach. IEP 
methods are reviewed in two main groups, up-down and bottom-up methods which were employed extensively in 
the decades past to address the requirements of the next phases in the IEP process.  

 
4.1. Techniques for classification  

Thus far, a wide range of energy models has been introduced in various fields and due to the advancements in 
computer software, the creation of innovative and advanced models have been enhanced in the past years. This 
trend made it even more complicated to characterise and classify models in a solid and accurate framework. In fact, 
there are only a few models –if any– that fit into one distinct category. To date, several methods have been adopted 
to overcome this issue, such as static versus dynamic, univariate versus multivariate, and techniques ranging from 
time series to hybrid models; however, this paper, instead of classifying models based on one feature, characterises 
models based on specific characteristics that are common to all the models. In this section, a parallel system of 
classification has been adopted to divide the models both in horizontal for spatial scale division and vertical for the 
level of data input. Thus, the classification commences with splitting the approaches in two, up-down and bottom-
up methods; subsequently, the approaches in different spatial scales for every method are examined. Every model 
in this classification has been examined based on aim and methodology; eventually, meta-analysis of the presented 
models through a SWOT table and the description of the variation of 7 characteristics, including the purpose, 
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Renewable energy 
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Community 
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Plan(CSP) 
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Engineering 
approach  

Energy consumption and 
generation balance  
Technical models with 
detailed simulation and 
accurate data  

Evaluation of the 
effects of new 
technologies in 

energy 
consumption and 
decentralization 

of energy stations  



methodology, analytical approach, geographical coverage, mathematical approach, time horizon, and data 
requirements, are presented.  

4.2. Up-down methods 

Up-down methods are referred to methods that consider the historical energy consumption and estimate the energy 
demand, based on the input variables. Totally the developing and employing of these approaches expanded with 
the energy crisis in the 1970s. In these methods, buildings are not in the centre of planning, in fact, a large area 
containing a group of buildings is considered as an energy sink. Up-down methods are usually employed when the 
main aim is taking advantage of aggregated input data, which is usually available and easy to access. Generally, 
the up-down methods are mostly known in large spatial scaled areas such as national scale or city scale, but it 
should not be wrongly restricted to this. Even on a community scale, these methods could be employed for better 
clarification of the energy state of the neighbourhood.  

The next section includes the definitions from an urban planning point of view of the most well-known models 
which are employed in various countries. More specific details about their methodology structures are accumulated 
in Table 16 in section 5.    

  
4.2.1. National scale 

In this paper, models in the national scale are presented in 11 categories. In decades past, each category has been 
employed in various countries with a wide variety of functions.  

4.2.1.1. Econometric models 

Econometric models (Table 2) are based on some forecasting, exploring, and backcasting techniques that employ 
historical data to signify the economic criteria of any change in different fields. In energy modelling, econometric 
models correlate the energy with economic variables based on historical data through linear programming. 
 

Table 2: Summary of econometric models in energy planning 

Model 
developed by 

The main aim of the model Methodology  Country  

Samouilidis 
and itropoulos 

[19]  

Examination of  energy and economic growth Developing the econometric models for 
industrialized countries 

India  

Arsenault et al. 
[20]  

Sectorwise prediction of total energy demand Employing Ordinary Least Square technique 
(OLS)  

Canada, 
Quebec 

Christodoulaki
et al. [21]  

Prediction of the energy requirement and CO2 
emission 

Deriving sector wise equations for economic 
activities and for every sort of energy  

Greece 

Sharma et al. 
[22]  

Analysis of the requirement of three major 
forms of commercial energy 

Employing sector wise/product wise 
econometric 

demand models by regression method 

India, state of 
Kerala 

Lu and Ma 
[23]  

Determination of the energy consumption in 
industrial, transportation, residential and 

commercial 

Using the consumption of fuel in a sector 
taking the case of a well off society 

 

China 

EDM (Energy 
Demand 

Model) by Gori 
and Takanen 

[24] 

Development of the long term electricity 
consumption patterns 

Using cointegration and stationary time series 
models  

Italy 

Hunt and 
Ninomiya[25]  

Determination of the long-run price elasticity 
and income elasticity 

Exploring the relationship between energy 
demand, Gross National Product (GNP) and 

real energy price 

Japan 

Raghuvanshi et 
al. [26]   

Determination of the characteristics of the 
drivers of energy development 

Decomposing of primary energy consumption 
as a product of three variables, population, per 

capita Gross Domestic Product (GDP) and 
energy intensity of GDP  

India 

Saddler et al. 
[27]  

The anticipation of future energy consumption 
(the year 2040) 

Examining the balances between different 
sector’s energy usage 

Australia 

Fan et al. [28]  Analysis of the changes in energy price 
elasticity and elasticities of substitution 

Examining the effect of energy costs on 
energy and non-energy sectors 

China 

Steenhof and 
Fulton [29]  

Analysis of energy supply and demand Predicting three scenarios for different 
economic efficiency (high, low and base case) 

at various national and regional sectors 

Asia-Pacific 
region 



 
 

4.2.1.2.Unit root test and cointegration models 

Cointegration tests analyse feasible correlations among some time series on the long-term. Unit root tests are able 
to do analysis for recognising stationarity in a time series. Time series have stationarity if a rearrangement in time 
cannot cause a difference in the structure of the distribution; unit roots are considered one of the reasons for non-
stationarity [35]. Table 3 shows the 14 most creative unit root and cointegration models that have been implemented 
in the last decades.   
 

Table 3: Summary of Unit root test and cointegration models in energy planning 

Model developed 
by 

The main aim of the model Methodology Studied location  

Masih and 
Masih[36] 

Analysis cointegration between total 
energy demand and level of income 

Using a dynamic vector error-correction 
model and multivariate cointegration tests 

India, Pakistan, 
Malaysia, Singapore, 

and the 
Philippines 

Fouquet et al. 
[37] 

Examination of the disaggregated 
behaviour of UK energy crisis based on 

the short and long run factors of fuel 
consumption, economic activity, and 

real prices 

Using Cointegration analysis to determine the 
long-run relationships  

UK 

Glasure YU. [38] Examination of the combined effects of 
pure money and pure government 

expenditure on real income and energy 
demand 

 

Employing five variable vector error 
correction models (VECMs) 

Korea 

Hondroyiannis et 
al. [39] 

Examination of the relationship 
between energy demand and economic 

growth 

Employing a vector error-correction model   Greece 

Galindo LM [40] Examination of the relation between 
different kinds of energy and income 

levels 

Using Johansen procedure and ratio tests  Mexico 

Lee and Chang 
[41] 

Examination of the balance between 
energy demand and GDP 

Employing aggregate and disaggregate data 
of energy demand in various sorts 

Taiwan 

Al-Irian [42] Analysis of the relationship between 
gross domestic product (GDP) and 

energy consumption 
 

Employing panel cointegration and causality 
techniques 

Six countries of the 
Gulf Cooperation 
Council (GCC) 

Lise and 
Montfort [43] 

Analysis of the cointegration between 
energy demand and GDP 

 

Using the vector error correction model 
(ECM) 

Turkey 

Zhao and Wu 
[35] 

Prediction energy import demand Employing cointegration and vector error 
correction (VEC) model techniques 

China 

Ang JB. [44] Examination of the relationships 
between energy consumption emissions 

and outputs 

Employing cointegration and vector error-
correction 

France 

Yuan et al. [45] Examination of the effects of energy 
demand on economic growth 

Employing cointegration and VEC approach 
at both aggregated and disaggregated levels 

China 

Liu Y. [46] Analysis of the relation between energy 
demand and urbanization 

Employing autoregressive distributed lag 
(ARDL) cointegration approach 

China 

H.Sanstad et 
al. [30] 

A “hybrid” econometric-technology 
forecasting approach 

combining econometric and technological 
elements in a set of econometric models 

Western US 

 
Mirlatifi et 

al.[31]   

Development of an algorithm to estimate the 
annual peak demand of small utilities and 
investigate the influence of econometric 

variables on the power demand of N. Cyprus 

Utilizing historical annual databases, analysis 
of variance (ANOVA), and the statistical 

methods 

N.Cyprus,   

Dai et al.[32] An assessment of the economic impacts and 
environmental co-benefits of large-scale 

development of renewable energy toward 2050 

Using a dynamic Computable General 
Equilibrium (CGE) model 

China 

Wang and Li 
[33] 

An estimation of the relationship between the 
carbon emissions, population, GDP per capita, 

electricity consumption and energy 
consumption 

employing regression and econometric models 
and analysing electricity energy development 

scenarios 

China 

Tanga et al. 
[34] 

Development of EEMD-RVFL model for 
Energy price forecasting to reduce time and 

enhance accuracy 

using traditional econometric approaches or 
computational intelligence methods in 

individual prediction 

China 



Lin and 
Moubarak [47] 

Estimation of the energy-saving 
potential by determining energy 

intensity under different scenarios 

employing Johansen cointegration technique 
and scenarios analysis 

China 

Narayan [48] Hypotheses linking energy 
consumption with economic growth 

Employing cointegration and Granger 
causality type tests 

90 countries 

 
4.2.1.3.Time series models 

Time series models are the simplest energy models which employ a collection of observations of well-organised 
data items gained through regulated measurements during a reliable time. Table 4 shows the history of this model 
globally during the last 5 decades. As can be seen, the general function is for energy demand and supply predictions. 
However, source wise forecasting [24] under three different frameworks (Parabolic, linear, and chaotic behaviour), 
electronic forecasting in different time scales of hours and weeks [49] [50] [51] [52], and technology-wise models 
under four categorisation (Bass, Gompertz, Logistic, and Pearl) have been also developed under the time series 
models.  

It is noteworthy that regression can be applied to time series problems such as autoregression, but time series 
methods analyzed in this paper are not based on regression, since in IEP these methods have been employed in 
different situations, and it depends on the purpose of the forecasting. Huang et al.[18] distinguished time series 
from regression models in IEP based on independent variables and through analyzing the relationship between 
independent and dependent variables (it can include economic level, population, building area, climate, the lifestyle 
of residents, etc.). Regression methods have been employed in non-ordered series where a variable is dependent on 
values that are taken by other variables (features), so, in fact, in the prediction process, new values of features have 
been taken and regression calculates the value of the target output.  
  

Table 4: Summary of time series models in energy planning 

Model developed by The main aim of the model Methodology  Studied location 
Bargur and Mandel        

[49] 
Calculation of the energy consumption 

and economic expansion 
Employing trend analysis Israel 

Bodger [53] calculation of the electricity 
demand 

Employing simple logistic functions  
 

New Zealand 

Abdel-Aal and Al-
Garni [54]  

Analysis of monthly electric energy 
demand 

 

Employing the univariate time-series 
analysis 

 

Eastern Saudi 
Arabia 

Tripathy[55] Creation of near-optimal models for 
electricity peak load forecasting 

Employing a time-series-based decision 
support system 

India 

Ediger and Tathdil 
[56] 

Prediction of the initial energy demand   Employing a semi-numerical periodic 
model 

Turkey 

Hunt et al. [57] Development of a sector-wise energy 
demand model  

Employing time series analysis UK 

Aras and Aras [24] 
[58] 

The anticipation of the natural gas 
demand 

Employing a regression time-series model  Turkey 

Gonzalez-Romera et 
al. [59] 

Prediction of the electricity demand Using the trend extraction method  Spain 

Himanshu and 
Lester [60] 

Prediction of the electricity demand Employing time series analysis Sri Lanka 

Mabel MC and 
Fernandez E. [61] 

Prediction of wind energy production 
 

Employing pearl or logistic function India 

Grey- Markov 
Grey-Model 

(singular spectrum 
analysis) [62] 

 

Prediction of the coal, electricity 
demand 

 

Developing a rolling mechanism for crude-
petroleum consumption  

India 

4.2.1.4.Regression models 

Regression analysis is employed when the model aims at analysing several variables, where the equation has a 
dependent variable and one or more independent variables. A regression model, basically, identifies the linear or 
non-linear relation of the dependent variable (Y) to a function, the combination of independent variables (X), and 
unknown parameters (β)[63]. 

Y ≈ f (X, β).    (1) 



Specifically, in spatial energy planning (Table 5), regression models have been used to calculate the demand and 
supply for the coal, oil, gas [22] [62], and electricity load in short-term and long-term forecast, exploration, and 
even back casting[64] [65] [66] [67].   

 

Table 5: Summary of Regression models in energy planning 

            

4.2.1.5. ARIMA models 

Autoregressive integrated moving average (ARIMA) model employs autoregression analysis and moving average 
methods to a well-behaved time series data. ARIMA assumes that the time series is stationary or fluctuates 
approximately uniformly around a time-invariant mean (Table 6). Its main application is in the area of short-term 
predictions and it requires at least 40 historical data points. ARIMA models have been extensively used in energy 
demand forecasting [56].  
 
 

Table 6: Summary of ARIMA models in energy planning 

Model 
developed by 

The main aim of the model Methodology  Studied 
location 

Gonzales et al. [78] 
 

Analysis of the energy supply and demand Employing univariate Box-Jenkins time-
series analyses (ARIMA models) 

Asturias-Northern 
Spain 

Saab et al. [79]  Prediction of Lebanon’s energy demand Employing a hybrid model is more reliable in 
comparison to autoregressive and ARIMA models 

Lebanon 

Sumer et al. 
[80]  

Calculation of the monthly electric demand 
 

Using three models of ARIMA, seasonal ARIMA 
and regression models 

Balearics 
Islands, 
Spain 

Ediger and 
Akar [81]   

Prediction of fuel production Employing regression, ARIMA, and SARIMA 
 

Turkey 

Model developed 
by 

The main aim of the model Methodology Studied 
location 

Jannuzzi and 
Schipper [68] 

Calculation of the electrical 
energy consumption for the residential sector 

Analyzing the electricity consumption 
classes and end-uses 

Brazil 

Harris and Lon-
Mu [69] 

Examination of the dynamic links between electricity 
demand and weather, presented price, and income level 

using 30 years data series  South East 
USA 

Egelioglu and 
Mohamad [70] 

Examination of the influence of economic variables on 
the annual electricity consumption 

 

Utilizing historical energy 
consumption, historical economic 
databases, and multiple regression 

analyses 

Northern 
Cyprus 

Yumurtaci and 
Asmaz [71] 

calculation of  the electricity demand based on the 
population 

and per capita consumption rates 

Using a linear regression model Turkey 

O’Neill and 
Desai [72] 

Examination of  the accuracy in the projections of US 
energy consumption 

Using GDP and energy intensity (EI) US 

Tunc et al. [73] Electric energy demand 
 

Using multiple regression analysis Turkey 

Lee and Chang 
[74]  

Characterization of the relation between energy 
demand and economic growth 

Examining the linear and nonlinear 
effect of energy demand on economic 

growth  an inverse U-shape 

Taiwan 

Al-Ghandoor et 
al. [75] 

Identification of the main drivers behind changes in 
electricity and fuel consumptions in the household 

sector 

Developing two empirical models 
based on multivariate linear 

regression analysis 

Jordon 

Lam et al. [63] Examination of the electricity consumption pattern in 
the residential and commercial sector based on 

principal component analysis of five major climatic 
variables 

 

Using multiple regression technique. Hong Kong 

Summerfield et 
al. [76] 

Analysis of consumption data since 1970 Developing two models by 
employing multiple linear regression 

UK 

Fumo et al. [77] Prediction of residential energy consumption 
 

Implementing simple and multiple 
linear regression and then a quadratic 

regression analysis  

- 



Erdogdu [82] Analysis of short and long-run price and 
income fluidity of sectoral natural gas 

demand 

Using ARIMA transfer function model Turkey 

G.boroojeni et 
al. [83] 

Development of a multi-time-scale approach 
is proposed for electric power demand 

forecasting 

The historical load is modelled as a time-series 
ARIMA with multiple seasonality levels and 

Bayesian model for evaluation 

- 

4.2.1.6. Input-output models 

Input-output models can analyse an economic system based on the table of inputs-outputs and based on the 
monetary matrix. Most of the input-output models have been employed in China since 2006 (Table 7).      

Table 7: Summary of Input-output models in energy planning 

Model developed by The main aim of the model Methodology  Studied location 
Wei et al. [84] Projection of China’s energy 

requirements 
Evaluating the socio-economic factors in 

energy usage based on six scenarios 
China 

Liang et al. [85] Examination of the energy demand and 
emission 

Developing a multi-regional input-output 
model for 8 regions 

China 

Liu et al. [86] Examination of the indirect energy 
demand and the effect of energy 
strategies on economic factors 

Developing a multi-regional input-output 
model with a scenario and sensitivity 

analysis 

China 

Arbex and Perobelli 
[87] 

Analysis of the impacts of economic 
growth on energy consumption 

 

Employing an integration of growth model 
with an input-output model 

Brazil 

Mu et al. [88] Identification of dominant sectors that 
has a high electricity demand. 

Using an input-output table of electricity 
demand (IOTED) 

 

China 

Alcantara et al. [89] Examination of the electricity 
consumption pattern 

Developing an input-output table Spain 

Zhang et al. [90] The gain of supply-chain energy and 
emissions by China’s building sector 

Developing a hybrid input-output approach China 

4.2.1.7. Decomposition models 

The decomposition models break data into its component parts. In energy planning, decompositions consist of two 
approaches: the first is energy consumption, by which the total production and diversion in sectoral and structural 
energy intensity are modelled; the second is the energy intensity approach that is able to explain the changes in 
sectoral and structural energy intensity, but not in total production. These models could be applied in period-wise, 
source-wise methods (Table 8)[91]. 

Table 8: Summary of Decomposition models in energy planning 

Model 
developed by 

The main aim of the model Methodology Studied 
location 

Ang BW [92] Calculation of the decomposition of industrial 
energy demand at two levels of sector 

disaggregation 

Using the energy intensity (EI) approach Singapore 

Ang BW [93] 
[94]  

Analysis of the impact of structural and sectoral 
change on energy efficiencies 

Decomposing the industrial energy 
consumption 

Singapore and 
Taiwan 

Sun JW [95] Calculation of the future total energy demand and 
analysis of the sectoral energy intensity, structure 

change, and GDP 

Using a decomposition model to gain 
separated components 

15 European 
Union countries 

Sari and  
Soytas [96] 

Examination of the relationship between changes in 
national income growth and source wise energy 

demand and employment 

Employing a generalized forecast error 
variance decomposition technique 

Turkey 

Sadorsky 
[97] 

Examination of the effect of GDP and CO2 on 
renewable energy demand 

Employing panel cointegration G7 countries 

Odhiambo 
[98] 

Analysis of the relationship between energy 
demand and economic growth in a defined time 

duration 

Employing the panel cointegration Tanzania 

Lean  and 
Smyth [99]  

Analysis of dispersed petroleum demand Employing univariate and multivariate 
Lagrange Multiplier (LM) tests for segment 

integration. 

US 

Lee and 
Chien [100] 

Examination of  the relationship between energy 
demand, capital stock, and real income 

 

Employing a Granger causality test, the 
generalized impulse response approach, and 
variance decompositions in a multivariate 

setting 

G7 countries 

Gil-Alana et 
al. [101] 

Examination of the energy demand by the US 
electric power 

Employing various energy sources 
employing segmental integration 

US 



Afshar and 
Bigdeli [102] 

Prediction of Iran short-term electricity demand Employing singular spectral analysis (SSA) Iran 

4.2.1.8. Artificial systems – Expert systems and ANN models 

An expert system is an Artificial Intelligence (AI) application, which can employ any fact or rule to facilitate 
decision-making and problem-solving. The purpose of an artificial neural network is to recognise patterns in the 
data. Although these models were previously employed in electricity demand, they are currently mostly used to 
predict energy demand regarding macro-economic variables. Electricity price prediction and short, mid, long term 
load forecasting are also considered in recent researches ( Table 9)[103].   

Table 9: Summary of Artificial models in energy planning 

Model developed by The main aim of the model Methodology  Studied 
location 

Aydinalp et al. 
[104] 

Calculation of the energy consumption of 
appliances, lighting, and space-cooling in 

Canadian residential sector 

Employing a neural network Canada 

Hsu and Chen [105] Examination of the peak load planning to 
predict regional consumption 

Using unsupervised and supervised ANN Taiwan 

Sozen et al. [106] Presentation of two models for calculation of 
energy consumption: 1-population, 2-gross 

generation. 

Employing the ANN technique Turkey 

Yalcinoz and 
Eminoglu [107]   

Examination of the impact of variable climates 
for prediction of short-term load consumption 

Employing ANN and historical data 
 

Nigde, Turkey 

Sozen et al. [108]   Prediction of the solar potential Employing four models of SCG, LM, 
learning algorithms and a logistic sigmoid 

transfer function 

Turkey 

Benaoudaa et al. 
[109] 

Examination of short-term electricity loads Using ANN (employing wavelet-based 
non-linear decomposition) [127] 

- 

Gareta et al. [110] Examination of the hourly electricity price employing ANN - 
Pao [111] Prediction of the electricity requirements based 

on national income, population, gross of 
domestic production, consumer price index 

Employing regression, ARMA, and ANN Taiwan 

Maia et al. [112] Prediction of electricity loads [131] Using AR, ARIMA, and ANN - 
Ermis et al. [113] Examination of the world green energy 

consumption 
through artificial neural networks (ANN) - 

Sozen et al. [114] calculation of sectoral energy consumption and 
greenhouse gas mitigation 

Employing ANN Turkey 

Hamzacebi [115] Estimation of the net electricity consumption 
on a sectoral basis 

Employing ANN Turkey 

Gonzalez-Romera 
et al. [116] [117] 

Prediction of monthly electricity demand and 
its fluctuation by proposing a hybrid 

forecasting model 

Employing ANN Spain  

Azadeh et al. [118] Prediction of  Mid-term load Employing ANN and neural network as a 
hybrid model 

Iran 

Pao [119] Prediction of electricity consumption and 
petroleum 

Examination of 6 linear models to present 
two hybrid non-linear model 

Taiwan 

Sözen [120] calculation of energy needs as a model of 
energy dependency (ED), the first is focused 
on total electricity generation, gross energy 

consumption and the second model on 
sectorial energy consumption [121] 

Employing two models of ANN model Turkey 

Ekonomou [122] Examination of the long-term energy demand 
in a residential area 

employing ANN, inputs are yearly 
electricity consumption and total 

domestic generation and power potential 

Greek 

García-Ascanio and 
Maté [123] 

prediction of monthly electricity demand per 
hour 

Employing vector autoregressive (VAR) 
and internal multi-layer perception model 

Spain 

Kankal et al. [124] Prediction of energy consumption based on 
GDP, demographic data and employment and 

the number of exports and imports 

Employing ANN and regression models 
with the calibration of RMSE 

Turkey 

Limanond et al. 
[125] 

Prediction of the gas requirements for 
transportation 

Employing ANN and linear regression 
and using by historical and demographic 

data and quantity of vehicles 

Thailand 

 

 

4.2.1.9. Grey prediction models 



Grey models (GM) are based on the concepts of “lack of information” and interdisciplinary, cutting across 
specialised fields to fill the gap between them. Their popularity in energy fields is due to simplicity since in energy 
forecasting and appraisal modelling, these models can calculate the energy demand by a few data points (Table 
10).    

   Table 10: Summary of Grey prediction models in energy planning 

Model 
developed by 

The main aim of the model Methodology  Studied location 

Mu et al. 
[126] 

Examination of the relation of biofuels 
consumption on rural household 

Employing multivariate GM analysis China 

Yao and Chi 
[127] 

Calculation of electricity demand Optimizing the inputs through GM China 

Zhou et al. 
[128] 

Prediction of the Electricity demand Employing GM and trigonometric residual 
modification 

China 

Akay and 
Atak  [129] 

Prediction of the gross energy demand and 
in the industrial sector 

Employing an approach of GM with rolling 
mechanism (GPRM) 

Turkey 

Lu et al. 
[130] 

Prediction of the transportation vehicles’ 
energy consumption 

Employing GM considering the number of 
vehicles, vehicle kilometres of travel and GDP 

Taiwan 

Lu et al. 
[131] 

Analysis of the relation between the 
number of vehicles, energy usage, and 

emission 

Employing multivariate GM Taiwan 

Bianco et al. 
[132] 

Prediction of the non-residential 
electricity usage 

Examining GDP and cost analysis Romani 

Lee and 
Tong [133] 

Prediction energy demand employing grey prediction model and genetic 
algorithm 

China 

Lee and Shih 
[134] 

Prediction of the cost of renewable energy 
technologies and the effects of cost on 

power production 

Employing a multivariate GM  China 

Pao and Tsai 
[135] 

Prediction of the interrelation between 
pollution energy intensity and emission 

Employing GM and calibration by ARIMA Brazil 

Hamzacebi  
and Avni Es 

[136] 

Prediction of Electricity demand and 
supply until 2025 

Developing Optimized Grey Modeling technique 
for both direct and iterative manners 

Turkey 

Wang et al. 
[137] 

Investigation of the relationship between 
urbanization, energy consumption, and 

CO2 emissions 

Using panel unit root tests, panel cointegration 
test, and panel Granger causality test 

China 

4.2.1.10. Metaheuristic models  

As heuristic means finding by error, meta-heuristic means high-level discovery. Metaheuristic algorithm employs 
a certain trade-off of randomisation and local search and can operate the optimisation even with a few or imperfect 
input data.  

• Genetic algorithm (GA): Genetic algorithm is a problem-solving procedure based on Darwinian 
evolution and natural selection. In mathematics, it starts from random models and finds more 
optimised solutions according to the minimisation or maximisation of a fitting function considering 
chromosome as a string of genes. In this model, mathematical genetics can calculate the rate of spread 
of a special gene. This model has been used frequently in Turkey to achieve different forecasting 
methods [138].   

• Fuzzy logic: Fuzzy logic is a method for carrying out calculations based on "degrees of truth" instead 
of the usual "true or false". Fuzzy logic, usually, is employed in short term electric load and wind 
speed forecasting  (Table 11)[139][140][141][142][143][144].  

• Particle swarm optimisation models (PSO): The concept of particle swarm optimisation originates 
from a series of evolutionary calculation methods, which are based on flocks of birds or any other 
similar bio-social behaviours. Specifically, the idea is based on the fact that when birds seek food, the 
birds that find food emit some signals to other birds, calling them toward the food [145]. In PSO, birds 
are the particles, the emitted signals are positions and velocities, and the solutions act as food. 
Therefore, it can be interpreted that positions and velocities correlate the indicators of solutions and 
the speed of particles toward the solutions [146].  

• Ant Colony Optimisation (ACO): Ant Colony Optimisation (ACO) is a paradigm for designing 
metaheuristic algorithms for combinatorial optimisation problems [147]. 



Table 11: Summary of metaheuristic models in energy planning 
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Model developed by The main aim of the model Methodology Studied 
location 

G
en

et
ic
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lg

or
ith

m
 

Padmakumari et al. [148] Prediction of the long-term 
distribution demand 

employing the Neuro-Fuzzy method - 

Ceylan and Ozturk [149] Examination of the coal, oil and gas 
demand 

Employing economic indicators based on 
a GA model 

Turkey 

Ozturk et al. [150] Prediction of future petroleum 
consumption 

Employing the GA specialized in Exergy Turkey 

Ceylan et al. [151] Examination of the transport energy 
demand 

Employing a specialized sort of GA 
named – HArmony Search Transport 

Energy Demand Estimation (HASTEDE) 

Turkey 

Cinar et al. [152] Analysis the electricity usage, GNP, 
primary energy intensity, installed 

potential, demographic data 

Employing ANN and GA Turkey 

Forouzanfar et al. [153] Prediction of the sectorial natural 
gas demand 

Employing GA and non-linear 
programming (NPL) 

Iran 

Fu
zz

y 
lo

gi
c 

Kucukali and Baris [154] Examination the short-term total 
annual electricity consumption 

Employing GDP as the mere parameter 
and validating it by comparing the results 

with regression-based forecasts and 
MENR projections (MAED) 

Turkey 

Zheng et al. [155] development of a national saving 
retrofit model through Monte Carlo 

simulation 

Employing fuzzy multiple attribute 
decision 

China 

Liu et al.[144] Development of a short-term 
forecasting model of wind power 

and speed  

Employing fuzzy and comparing the 
results with Support Vector Machine 

(SVM) and Neural Network (NN) 

Russia  

PS
O

 m
od

el
s  

Ünler [156] Prediction of energy demand 
 

(PSO) based energy demand forecasting 
(PSOEDF) based on the indicators such 

as Gross domestic product (GDP), 
population, import and 

export 

Turkey 

El-Telbany and El-Karmi 
[157] 

short term forecasting of Jordon’s 
electricity demand 

Employing PSO and then using the back-
propagation algorithm and autoregressive 
moving average method to compare the 

results 

Jordon 

AlRashidi  EL-Naggar 
[158] 

annual peak load forecasting in 
electrical power systems [159] [160] 

Employing PSO and then using the least 
error squares estimation technique for 

validation 

Kuwaiti and 
Egyptian 

A
C

O
 m

od
el

s  

Toksari [161] Prediction of the energy demand based on separated indexes such as GDP, 
demography data, and import and export 

amounts 

Turkey 

Toksari [162] Prediction of the electrical energy 
demand 

Employing Ant Colony Optimization Turkey 

4.2.1.11. Integrated models  

Integrated energy models have a high level of information consciousness, and this means that they can consider 
a high level of input data dependency. In integrated energy planning, they are defined as models that are able to 
calculate the optimisation for a wide range of criteria, such as socioeconomic, biological, and environmental 
criteria.  

• Bayesian vector autoregression (BVAR) model: Vector autoregression (VAR) is a kind of linear time-
series model that can identify the joint dynamics of multivariate time series [163]. Bayesian VARs 
(BVARs) with macroeconomic variables were first used in forecasting by Litterman [164] and Doan et 
al. (Table 12) [165].    

• Support vector regression: The support vector regression (SVR) is an efficient tool in real-value 
function estimation. As a supervised-learning method, SVR considers asymmetrical loss function, which 
can equally estimate high and low errors [166]. 



• MARKAL: The MARKAL (originated from the linkage of two words: MARKet and ALlocation) depicts 
both the energy supply and demand sides of the energy system. It is an analytical tool that can be adapted 
to model different energy systems at the national, state, and regional levels [167].  

• TIMES: TIMES (The Integrated MARKAL–EFOM System) is a predictive and modular linear 
programming model based on the partial equilibrium theory; it is also an energy system cost-
optimisation model (i.e. aiming to provide cheapest energy services) that minimises the sum of the 
annual net present value of annual costs minus revenues for the entire model time horizon [168]. 

• LEAP: The Stockholm Environment Institute in Boston developed the long-range energy alternatives 
planning system (LEAP) (Table 12). The tool can be employed both in bottom-up and up-down 
forecasting methods. 

Table 12: Summary of Integrated models in energy planning 

Integrated 
models 

Model 
developed by 

The main aim of the model Methodology Studied location 

BV
A

R
  

m
od

el
s 

Crompton and 
Wu [169] 

Prediction of energy demand for 
coal, oil, gas, hydro for 5 years 

Employing Bayesian Vector 
Autoregression (BVAR) model 

China 

Francis et al. 
[170] 

Examination of the growth in 
energy consumption and relation 
between it and energy generation 

in the residential sector 

Employing Bayesian Vector 
Autoregression (BVAR) model and 

Granger-causality 

Caribbean countries 

Heo at al. [171] Formulating a set of energy and 
carbon efficiency real retrofit 

decision-making situations and 
evaluating the role of calibration 

 

Using the BVAR model 
 

US 

SV
R

 m
od

el
s  

Fan et al. and 
Hong [172]  

[173] 

Prediction of the electricity 
consumption based on socio-

economic indexes 
 

Employing support vector model 
electricity load 

- 

Wang et al. 
[174] 

Prediction of the electricity 
consumption 

Considering SVF for each of the input 
variables to forecast the electricity 

consumption 

Turkey 

 E.Kontokosta 
and Tull [175] 

development of a predictive 
model of energy use at the 

building, district, and city scales 

Employing linear regression, random 
forest, and support vector regression 

(SVR) 

US 

 
M

A
R

K
A

L 
m

od
el

s  

Strachan and 
Kannan 

Calculation of residential energy 
consumption to achieve a 

reduction in carbon emission 
[176] [79, 82] 

Employing MARKAL UK 

Changhong et 
al. [177] [178] 

[179]  

Development of scenarios for 
reduction of air pollutant 

emission 

Employing MARKAL in various 
decisions 

China 

Chen [180]  Generation of the China’s 
reference scenario for energy 

demand and carbon 
emission through the year 2050 

Developing an integrated energy-
environment-economy model 

China 

Jiang et al.    
[88] 

Analysis of the reasons for the 
increase in natural gas 

consumption 

Employing MARKAL with an 
economic optimizer 

China 

Mallah et al.    
[89, 90] 

Presentation of scenarios to 
predict sectorial energy 
consumption patterns 

Employing MARKAL  India 

 
TI

M
ES

 m
od

el
s Rout et al. 

[168] 
Calculation of long-term 

Sourcewise and sectorwise 
energy consumption and CO2 

emission 

Employing TIMES G5 China 

TIMES-Canada 
[181] 

Analysis of possible futures for 
the Canadian integrated energy 

system on a 2050 horizon 

using the most advanced TIMES 
optimization modelling framework 

Canada 

 
LE

A
P 

m
od

el
s  

Kadian et al. 
[182] 

modelling the total energy 
consumption and associated 

emissions from the household 
sector 

Employing LEAP system to analyse 
different policies 

Delhi, India 

Kumar and 
Madlener [183] 

evaluation of the impacts of 
renewable energy consumption in 

electricity supply systems and 
calculation of the CO2 emissions 

developing various scenarios under the 
least cost approach using LEAP energy 

model 

India 



 

4.2.1.12. Deep learning  

Deep learning methods are based on artificial neural networks that aim to identify the hierarchical in forecasting algorithm 
to enhance computation and increase data size due to multi-layers information processing modules. deep neural networks, 
deep belief networks, recurrent neural networks, and convolutional neural networks are some of deep learning 
models[184].      
 

Table 13:Summary of deep learning models in energy planning 

Model developed by The main aim of the model Methodology  Studied 
location 

Coelho et al.[185] Household electricity demand forecasting 
mini/microgrid forecasting problem 

hybrid metaheuristic model Brazil 

Kim et al.[186] Estimation of the power consumption of 
individual appliances in the distribution system  

Utilizing advanced deep learning and long 
short-term memory recurrent neural network 

model 

South 
Korea 

Mocanu et al.[187] Prediction of building energy consumption By introducing two models, Factored 
Conditional Restricted 
Boltzmann Machine and Conditional Restricted 

Boltzmann Machine 

Netherlands  

Wang et al.[188] PV power forecasting deep convolutional neural network China  
 

4.2.2. Urban and district level 

To align the national level to the community scale in energy planning, up-down models must be downscaled. In 
this scale, the employed methods are the same as those at the national level; however, they are usually aimed at 
being sector-adapted to make policies more focused and accurate (Table 14).  

Table 14: Summary of models in urban and district energy planning 

Model 
developed by 

The main aim of the model Methodology  Studied location 

Hirst et al. [189] Development of an econometric model 
considering both technology and housing 

stock [190]  [191] 

Using econometric variables and a component 
for growth/contraction of the housing stock 

US 

Saha and 
Stephenson 

[190] 

Analysis of the total energy demand Developing a model based on space 
heating(SH), domestic hot water, and cooking 

New Zealand 

Nesbakken 
[192] 

Analysis of the sensitivity and stability 
across a range of income and pricing 

 

Two tier econometric models that examine the 
choice of the system (discrete) and utilization 

(continuous)   

Norway 

Bentzen and 
Engsted [193] 

Examination of the effects of income and 
price on energy consumption 

based on three different regression models in 
the residential sector 

Denmark 

Zhang [194] Calculation of the unit energy consumption 
(UEC) for different regions based on energy 

demand and the demography data, and a 
comparison between the Chinese UEC with 

those of other countries  

Using aggregate national residential energy 
values  

China 

Tornber and 
Thuvander[195] 

Development of an energy model for 
housing stock according to real datasets  

 

Employing the entire building register of 
Goteborg (68,200 buildings) and energy data 

from the largest energy supplier 

Goteborg 

Office of 
Integrated 

Analysis and 
Forecasting 

[196]  

Presentation of mid-term forecasting and 
policy analysis based on 5 components: 

housing stock forecast, technology, 
appliance stock forecast, building shell 

integrity, and distributed generation 
equipment. 

Employing the national energy modeling 
system (NEMS) with a current econometric 

energy model of the USA housing stock 

US 

Labandeira et 
al. [197] 

Analysis of the residential energy demand in 
a source wise condition 

 

Employing a regression model  Spain 

Apartsin and 
Sidler[198] 

Analysing ageing scenarios for prediction of 
power system development 

Employing nonclassical volterra equations Russia  

Balaras et al. 
[199] 

 

Identification of the effective energy factors 
that are employed for renovations  

Developing an assessment for Hellenic housing 
stock 

Greek 



Siller et al. 
[200] 

Analysis of the effects of renovating and 
new constructions on energy consumption 

and carbon emission 

Developing modelling matrices which account 
for the renovation of buildings and new 

construction of buildings 

Swiss 

Wu and 
Xu[201] 

prediction of energy consumption and 
CO2 emissions at a regional level 

Employing a fuzzy multiple objective 
programming models 

China 

Fang and 
Lahdelma [202] 

Prediction of the heat demand Employing SARIMA combined with linear 
regression  

 Finland 

 
4.3. Bottom-up methods 

Bottom-up models employ small-scale input data and can be classified into subsets of statistical and engineering 
models. Totally, bottom-up models could refer to every model, provided the model is adapted to consider buildings 
as an independent cell of a group. The advantage of these methods is the accuracy since they are based on accurate 
input data of buildings. However, providing these accurate data for buildings are not as easy as providing the 
required input data of the up-down methods.  

4.3.1. Statistical Methods 

Statistical methods are based on historical information, basically. This means they utilise end-user data to calculate 
energy consumption. In this paper, well-documented models that have been employed in recent years are mentioned 
(Table 15).    

 
• Regression: Regression method employs regression analysis to determine the effects of one or a group 

of parameters; therefore, after regressing the total energy usage into parameters, the variables with a 
negligible impact will be ignored to ease the calculation process [203].  

• Conditional demand analysis: The conditional demand analysis employs regression to regress the 
total energy consumption onto end-use appliances. There is an advantage to this method: the required 
data could be simply gained through energy billings (provided the methodology proceeds some 
datasets such as appliance ownership), although reliable results could be achieved only when a wide 
variety of prerequisite data from a huge number of buildings is available [204].  

• Neural network: A neural network is an interconnected assembly of simple processing elements, 
units or nodes, whose functionality is loosely based on the animal neuron. The function is exactly like 
regression models in terms of minimisation of errors; apparently, the NN models are rarely employed 
in modelling energy consumption. The reason might be the complexity of calculation, the prerequisite 
data, or even the lack of physical signs of the coefficients relating the dwelling characteristics to the 
total energy consumption [104].  

 
 

Table 15: Summary of Statistical models in energy planning 
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Model 
developed by 

The main aim of the model Methodology Studied 
location 

R
eg

re
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Hirst et al. [205] Examination of the weather and non-
weather sensitive elements of the 
household energy consumption of 

dwellings 

Employing Princeton scorekeeping model 
and regressing the energy billing data onto 

a non-weather dependent constant 

USA 

Tonn and White 
[206] 

Analysis of occupant behaviour Developing a regression model with four 
simultaneous equations 

- 

Douthitt [207] Development of a model of residential 
space heating fuel use 

Employing regressing in consumption as a 
function of present and historical database 

Canada 

Fung et al. [203] Determination of the impact on Canadian 
residential energy consumption due to 

energy price, demographics, and weather 
and equipment characteristics 

Employing a regression model - 

Raffio et al. 
[208] 

Assessment of the potential energy-
conserving changes 

Identifying energy conservation potential 
within a regional area 

 

Torabi 
Moghadam et 

al.  [209] 

Estimation of the energy consumption of 
several residential building stocks for 

heating space 

Employing a wide range of variables and 
based on a 2D/3D- Geographic Information 

System (GIS) and Multiple Linear 
Regression (MLR) 

Italy 



C
on

di
tio

na
l d

em
an

d 
an

al
ys

is 
 

Parti and Parti 
[210] 

Approximation of the occupant behaviour 
and determination of the use level of 

individual appliance 

Employing CDA and regression methods US 

Aigner et al. 
[211] 

Estimation of energy use of appliances in 
each hour of the day 

Employing CDA models US 
 

Caves et al. 
[212] 

Calculation of the electrical energy 
consumption of Los Angeles customers 

Developing a CDA model of the residential 
 

US 

Bartels and 
Fiebig [213] 

Determination of the estimates of certain 
end-uses based on occupant behaviour 

Proposing an alternative method based on 
the CDA model 

- 
 

LaFrance and 
Perron [214] 

determination of the changes in annual 
energy consumption 

Employing an extended CDA method by 
incorporating energy consumption data 

Quebec 

Hsiao et al. 
[215] 

Identification of  values which collaborate 
behavioural aspects better than a single 

EM estimation 

Employing the work [216] and [217] by 
utilizing sub-metered end-use energy 

consumption 

- 

Bartels and 
Fiebig [216] 

Enhancement of ‘‘efficiency’’ of 
submetering of the model by Hsiao et al. 

[219] 

Employing a review of the house appliance 
survey prior to the sub-metering 

measurement 

Norway 

Aydinalp-
Koksal and 

Ugursal [217] 

Analysis of the entire energy 
consumption of the Canadian residential 

sector 

Developing a national residential CDA 
model 

Canada 

N
eu

ra
l n

et
w

or
k 

 

Cetin and 
Novoselac [218] 

Analyzing the use of patterns of 
residential appliances and HVAC systems 

in single and multi-family households. 

Using HEMS US 

Issa et al. [219] Identification of the gap between actual 
energy consumption and the EPI rating 

Developing a NN model that uses energy 
performance index (EPI) and conditioned 
floor areas of a group of dwellings with 

billing data 

US, Florida 

Mihalakakou et 
al. [220] 

Development of an energy model of a 
house 

Using the NN methodology based on 
atmospheric conditions 

Greece 

Aydinalp et al. 
[221] 

Development of a comprehensive 
national residential energy consumption 

model 

Employing the NN methodology in three 
separate models: appliances, lighting, and 

cooling (ALC) 

- 

Aydinalp et al. 
[222] 

Analysis of socioeconomic elements Employing the NN model and using a 
dataset of alternative energy sources 

- 

 
4.3.2. Engineering (physics-based) Methods  

Engineering methods calculate energy consumption based on geometry, envelope fabric, equipment and 
appliances, climate characteristics, and indoor environment criteria. The advantage of this model is as follows: 
since new technologies do not have any historical data, the occupants’ behaviour must be considered to obtain 
an accurate model, which differs considerably case by case and is completely unpredictable (Table 16). 

Distributions: If the engineering models are developed based on appliance ownership and end-use 
distribution to forecast energy consumption, they are classified under the distribution sublet methods; 
even if their scales are national or regional, they will be classified under the bottom-up method due to 
their level of disaggregation.      

Sample: Employing actual building samples can show a wide variety of housing stock and could be a 
good indicator for ensuring that the sample size is large enough. Since these models require huge 
databases, the applicability is limited.    

Archetype: Archetypes, as a subset of engineering models usually employ various details to link a 
small group of buildings together. Archetypes modelling methodologies are based on a huge amount 
of details through computer-aided simulations. The advantage of this method is that due to the few 
number of archetypes, time efficiency can be enhanced through simulation, and the further the 
advancement in software, the more the applicability of these methods progresses    

   
Table 16: Summary of engineering models in energy planning 

EM 
Models 

Model 
developed by 

The main aim of the model Methodology  Studied 
location 

D
ist

r
ib

ut
i

on
s   

Capaso et al. 
[223] 

Calculation of the total electric demand Developing a model for a residential 
sector based on population and lifestyle 

of residents 

Italy 



Jaccard and 
Baille    [228] 

Calculation of the unit energy consumption Employing INSTRUM-R simulation 
based on the costs and behavioural 
parameters and historical data and 

technological distribution 

Canada 

Kadian et al. 
[182] 

Development of an end-use energy demand 
model of a residential sector 

Using a simplified endues consumption 
equation to incorporate the penetration 

and use factors of all households 

Delhi, India 

Saidur et al. 
[224] 

Analysis of the exergy by estimating the 
total appliance’s variable and the dividing 

of the efficiency 

Developing a model for non-space heat 
residential energy demand 

Malaysia 

Wu et al. 
[225] 

Design of an optimal retrofitting strategy 
for achieving maximal energy savings and 

maximal NPV (Net Present Value) 

Developing a TBT (time-building 
technology) framework 

 

Sa
m

pl
e 

Farahbakhsh 
et al 

CREEM [226] 

Calculation of the energy usage and 
calibration process 

Developing the Canadian Residential 
Energy End-Use Model (CREEM) based 

on 16 archetypes and comparing the 
billing data 

Canada 

Larsen and 
Nesbakken 

[227] 

Development of a model for housing stock Employing ERAD  Norway 

Ramirez et al.    
[228] 

Computation of the hourly energy usage of 
buildings 

Employing eQuest simulation software 
for a commercial region 

US 

Guler et al. 
[229] 

Analysis of the energy efficiency upgrades 
and GHG emissions 

Employing an economic residential 
energy model to study 

 

Swan et al.  
[230]  

Development of a residential energy model Employing a detailed database of nearly 
17,000 houses 

 

Canada 

Ascione et al. 
[231] 

Presentation of the energy behaviour of the 
explored building stock 

Developing SLABE model through Latin 
hypercube sampling to generate 

Representative Building Samples (RBSs) 

Italy 

Hoos et al. 
[232] 

Development a method to design retrofit 
scenarios 

Employing a method of sampling for 
categorization of the end-energy for heat 

use of the public building stock 

Luxembourg 

A
rc

he
ty

pe
 

  

MacGregor et 
al. [233] 

Development of a residential energy model 
based on the 27 archetypes 

by employing hourly analysis program 
(HAP) 

 

Nova Scotia 

Kohler et al. 
[234] 

Decomposition of the big databases into 
details and basic building elements 

considering materials and operations 

Developing energy, and monetary model Germany 

Huang and 
Broderick 

[235] 

Development of an engineering model for 
SH and cooling loads 

Employing prototypes in multifamily and 
single-family 16 various regions 

US 

Snakin [236]  Development a model to find the factors of 
conservation and alternatives for fuel 

Employing history databases and 
population and buildings features 

Finland 

Tornberg and 
Thuvander. 

[195] 

Prediction of many details such as building 
fabric, glazing, ventilation, water heating, 

space heating, and fuel costs 

Developing energy and environmental 
model to base on archetypes and 

employing GIS 

UK 

Shipley et al. 
[237] 

analysis of the impacts of building envelope 
improvements 

Developing a monetary and energy 
emission model based on archetypes and 

ASHRAE 

US 

Carlo et al. 
[238] 

Development of a model based on 
archetypes for commercial-buildings 

Employing some initial parameters such 
as building energy regression equation to 
be roof area ratio, facade area ratio, and 

internal load density 

Brazil 

Shimoda et al. 
[239] 

Identification of the insulation levels for the 
city scale 

Developing a residential end-use energy 
consumption model based on archetypes 

Osaka, Japan 

Wan and Yik 
[240] 

define different window areas facing the 
sun 

Developing archetypes based on floor 
plans 

Hong Kong 

Palmer et al.  
[241] 

Development of a model to calculate SH 
and DHW 

Employing BREDEM-8 (Building 
Research Establishment Tool) 

UK 

Nishio and 
Asano [242] 

Identification of the distribution and 
housing variables 

Developing a tool to generate archetypes 
to employing Monte-Carlo methodology 

Japan 

Petersdorff et 
al. [243] 

Developing a European building stock by 
considering 5 standards and 8 insulation 

standards 

Employing Ecofys’s BEAM for 
modelling heating demand in three 

different climate zones 

EU 

Clarke et al. 
[244] 

Development of a model to calculate the 
thermal energy demand 

Employing ESP-r in the Scottish building 
stock 

UK 

Ballarini et al. 
[245] 

Implementation of a cost-optimal analyses Developing a national building Typology 
for European building stock 

Italy 



Cerezo et al. 
[246] 

Development of the visions for a model Employing a standard input format 
 

US 

Yang et al.  
[247] 

Estimation of the energy performance Employing a clustering method to select 
representative buildings and normative 
model to calculate energy parameters 

China 

 
5. Comparative analysis and discussion 

In Section 4, methods in phase II of IEP with related samples in different geographical locations have been 
provided; however, to clarify the basis on which these methods are employed in different occasions, 
characterisations of these methods are required. Table 17 presents the comprehensive framework of 7 basic features 
of methods which are employed in IEP.  
SWOT analysis is an effective way that energy modelers can find out the weaknesses and strengths of the models 
and how the threads and opportunities can affect the requirements and outcomes of the calculation. Also, urban 
planners can understand compatible models that can be employed together. Thus, this SWOT table (Table 18) can 
be a guideline for energy modelers and urban actors to have smarter choices between potential models. 
Furthermore, SWOT analysis with meta-analysis together is an enhanced helpful approach for decision making 
because of its ability of presenting an extensive and critical comparison among models.    
   

Table 17: characterization of the methods based on 6 criteria 
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Ti
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or
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D
at
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eq
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ts

 

G
en

er
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Sp
ec

ifi
c 

Econometric Fo/Ex/Bc 
 

De/Su/I
m 
 

ME/EE
Q 
 

UD 
 

Na 
 

L 
 

Sh/Lo  
 

Quant/Ag 
  

Unit root test 
and 
cointegration 

Fo/Ex 
 

De/Su/I
m 
 

ME/MC 
 

UD 
 

Na 
 

L 
 

Sh/Lo  
 

Quant/Qu
alit/Ag 
 

Time series Fo/Ex 
 

De/Su/A
p/Im 
 

Opt 
 

UD 
 

Na 
 

L 
 

Sh/Lo  
 

Ag/Quant 
 

Regression Fo/Ex/Bc 
 

De/Su/A
p/Im 
 

ME/Opt 
 

UD
/B
U 
 

Na/Reg/
Lo 
 

L/NL 
 

Sh/Lo  
 

Ag/Disag 
 

ARIMA Fo/Ex 
 

De/Su/A
p 
 

ME/Opt 
 

UD 
 

Gl/Na 
 

L 
 

Sh/Lo  
 

Ag/Quant
/Qualit 
 

Input-output Fo/Ex 
 

De/Su 
 

ME/MC 
 

UD 
 

Na/Reg 
 

L 
 

Sh 
 

Ag/Disag/
Quant 
 

Decomposition  Fo 
 

De/Su/A
p 
 

ME/Opt 
 

UD 
 

Na 
 

L/NL/
MI 
 

Sh/Lo  
 

Ag/Disag/
Quant/Qu
alit 

Grey predictions  Fo 
 

De/Su/A
p 
 

ME/Opt 
 

UD 
 

Gl/Na 
 

L/NL 
 

Sh/Med/
Lo 
 

Quant/Ag
/Disag 

ANN Fo 
 

De/Su/I
m/Ap 
 

ME/Opt 
 

UD 
 

Na/Reg/
Lo 
 

NL 
 

Sh/Lo  
 

Disag/Qu
ant/Qualit 
 

Genetic 
algorithm  

Fo 
 

De/Su/A
p 
 

Opt 
 

UD 
 

Gl/Na/R
eg/Lo 
 

L/NL 
 

Sh/Lo  
 

Ag/Disag/
Quant 
 



Fuzzy logic  Fo/Ex 
 

De/Su/A
p 
 

Opt 
 

UD
/B
U 
 

Gl/Na 
 

NL 
 

Sh/Lo  
 

Quant/Dis
ag 
 

PSO Fo/Ex 
 

De/Su/A
p 
 

ME/Opt 
 

UD 
 

Na/Reg 
 

NL/MI 
 

Lo Disag/Qu
alit 
 

BVAR Fo/Ex 
 

De/Su/A
p 
 

ME/Opt
/MC 
 

UD 
 

Gl/Na/R
eg/Lo 
 

L/NL 
 

Sh/Lo  
 

Disag/Qu
alit 
 

SVR Fo/Ex 
 

De/Su/A
p 
 

Opt 
 

UD 
 

Na/Reg 
 

L/NL 
 

Sh/Lo  
 

Disag/Qu
alit 
 

ACO Fo/Ex 
 

De/Su/A
p 
 

ME/Opt 
 

UD 
 

Na/Reg 
 

NL 
 

Lo Disag/Qu
alit 
 

MARKAL  Fo/Ex 
 

De/Su/I
m/Ap 
 

ME/Opt
/Sp 
 

UD
/B
U 
 

Na/Reg 
 

L/D 
 

Lo 
 

Quant/Dis
ag 
 

TIMES Fo/Ex 
 

De/Su/I
m/Ap 
 

ME/Opt
/Sp 
 

UD 
/BU 

Na/Reg 
 

L/D 
 

Sh/Lo  
 

Quant/Dis
ag 
 

LEAP Fo/Ex 
 

De/Su/I
m 
 

De:ME 
Su:Simu 
 

UD 
/BD 

Gl/Na/R
eg/Lo 
 

L 
 

Med/Lo 
 

Ag/ 
Quant 
 

Conditional 
demand analysis 

Fo/Ex 
 

De/Im 
 

ME/Opt 
 

BU 
 

Reg/Lo 
 

L/NL 
 

Sh 
 

Ag/Disag 
 

Neural network  
 

 
Fo 
 

De/Su/I
m/Ap 
 

ME/Opt 
 

BU 
 

Na/Reg/
Lo 
 

NL 
 

Sh/Lo  
 

Disag 
 

Distributions Fo/Ex 
 

De/Su 
 

Opt/Sim
u 
 

BU 
 

Na/Reg/
Lo 
 

L/NL 
 

Sh/Lo 
 

Quant/Ag
/Disag 
 

Sample Fo/Ex 
 

De/Su/I
m/Ap 
 

Opt/Sim
u 
 

BU 
 

Reg/Lo 
 

L/NL 
 

Med/Sh 
 

Ag/Disag 
 

Archetype Fo/Ex 
 

De/Su/I
m/Ap 
 

Opt/Sim
u 
 

BU 
 

Reg/Lo 
 

L/NL 
 

Med/Sh 
 

Ag/Disag/
Quant/Qu
alit 
 

 

L=linear, Fo=Forecasting, Ex=Exploring possible scenarios, Bc=Backcasting from future to current situation, De=Demand, Su=Supply, 
Im=Impact evaluating, Ap=Appraisal , ME= Macro Econometric, Opt=Optimization, Sim=Simulation, Sp= Spreadsheet(Toolbox) 
Models, UD=Up-Down, BU=Bottom-Up, Na=national, Reg=Reginal, Lo=Local, L=Linear model, NL=Non-linear model, MI=Mix 
Integer Model, D=Dynamic model, Sh=Short-term, Lo=Long-term, Med=Medium-term, Quant=Quantitative model, Qualit=Qualitative 
model, Ag=Aggregated, Disag=Disaggregated    

 

 

 

 

 

 

 

 



Table 18: SWOT analysis of the three major methods in phase II of IEP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. A meta-analysis of the spatial energy models   
To sum up, a meta-analysis has been performed, meta-analysis is a statistical mechanism for analysing specific 
features in a series of studies. The main aim of the meta-analysis in this study is to examine the disciplines of 
employing various methods regarding 7 distinct variables of Table 16 in all 234 models. Through this analysis, 
by taking the advantages of commonly-employed methods in recent studies, the answer to the question of this 
study that which method most suits to a certain purpose or situation will be provided. Besides, this meta-
analysis can clarify the reason for the variation in the process of employing different methods and also 
overriding of one method in comparison to other methods To accomplish this, energy planning models (234) 
related to phase II of the UR-IEP applications from 157 published paper went through this mechanism. These 
models have been classified based on the employed method in 23 classes. In the next step, after characterisation 
of the methods based on the 7 distinct variables (Table 17), RevMan (version 5.3) is employed to perform a 
meta-analysis to discuss the approaches that were accomplished during the last decades. The output of RevMan 
is summarised in table 18, with two index of mean and standard deviation. The column Mean shows the average 
of models that include the description of 1. For example about the porpuse of the studied models, it shows that 
70% of the papers(164 models) are focused both on exploring future scenarios and forecasting, and specifically, 
68% of models(159 models) are focused on demand and supply with a very low deviation that shows most of 
the models are concentrated on demand and supply calculations. The same happened for time horizon that 
RevMan recognised that 68% of the models (160 papers) are focused on short-term planning. In contrast, the 
number of modelling that is carried out on the local scale is few. Accompanied by only 54 bottom-up models, 
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D
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ct

s 
Strengths Weaknesses   

• Economical and quick implementation  
• Typically, an acceptable accuracy 

(approximately ±5% [248]) 
• Easy to track changes in energy consumption  
• Identifying the effects of employed 

equipment  
• Flexibility in the prediction of all utilities 

(electric, gas, water, …) and non-utility cases 
such as production inputs  

• Appropriate for prediction of costs and 
facility performance 

• The gross analysis creates unknown 
aberration causes  

 

Opportunities  Threats 
• In need of long-term data and Needless of 

collecting detailed data  
• Capable of handling calculation both linear 

and nonlinear data in socio-economic and 
demographic aspects  

• In need of historical data to form a model but 
even extensive historical data cannot 
consider technology progresses  

• Incapable of output division in terms of 
technology, end use, etc. 

Bo
tto

m
-u

p  

C
om

m
un

ity
 

st
at

ist
ic

al
 

Strengths Weaknesses 
• Consideration of occupant behavior  
• The inclusion of socio-economic effects 

down to the level of individual building  
• Detecting any change in individual facility 

process  
• Extreme accuracy in modeling due to the 

exact data collection in small scales  
 

• Highly dependency on historical data and 
forecasting future trends without 
consideration of technology progresses  

• Unresponded to multicollinearity  
• Disregarding the variation of end-uses by 

selecting surveyed samples  

Opportunities  Threats 
• Utilizing billing data and simple survey 

information   
• In need of weather, billing or surveyed data 

En
gi

ne
er

in
g 

Strengths Weaknesses 
• Consideration of variation in end-uses  
• Flexibility and accuracy in simulation 

through softwares 
• Accommodating the effects of each process 

employing a linear or nonlinear submodel. 

• Disregarding the socio-economic aspects  
• In need of complicated energy modelling  
• Unable to generalize the model to other 

models      
 

Threats Opportunities 
• Needless of historical data  • In need of detailed weather, architectural, 

and technological data 



it is clear that this trend is not common; however, most of these models have been introduced in recent years 
and their number is increasing considerably.  

 Table 19: Results of Meta-analysis in collected variables 

 
6. Conclusion  

Integrated energy planning has been increasingly highlighted due to today’s energy considerations. This paper 
has attempted to classify existing models into IEP methods and analyse their functions; therefore, a systematic 
review of the models published from 1960 to 2018 has been provided. The conclusion aims at responding to the 
questions mentioned in the introduction section. To this effect, after a brief introduction of IEP and its phases in 
several levels, existing models were classified into 23 groups based on their methodologies and objectives, and 
seven basic features of these methods were compared in Table 17. It is noteworthy the classification of the 
employed methods has shown that so far some contemporary machine learning methods which already are 
common on individual building scale(e.g. Random forest) are not studied in IEP. The meta-analysis has shown 
that, although the majority of the models are focused on a national-scale up-down analytical approach, many 
models in IEP have recently been adapted to short-term and local scale. and if this intendancy continues in the 
future, the models in phase II of IEP are going to be increasingly focused on the local scale, this trend has begun 
relatively from 2010 due to progression of engineering software and also the convenience of providing data of 
individual buildings in large scales Thus, a review of the software that is employed in the calculation and 
simulation process of energy planning with a clear identification of their functions in every phase is essential 
complementary research for this review.  
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