ChemPlusChem

Supporting Information

Highly Emissive Water-Soluble Polysulfurated Pyrene-Based Chromophores as Dual Mode Sensors of Metal Ions

Marco Villa,* Myriam Roy,* Giacomo Bergamini, Paola Ceroni, and Marc Gingras

Table of contents:

1.	Characterization of compounds	2
	1a. Characterization and spectroscopic data for 2O, 2M and 2P:	2
	1b. Characterization and spectroscopic data for 1O, 1M and 1P	8
2.	Photophysical measurements	. 13
3.	References:	. 17

1. Characterization of compounds

The characterization data and synthetic procedures for **3O**, **3M** and **3P** were previously published^[1]

1a. Characterization and spectroscopic data for 2O, 2M and 2P

Figure S 1 HR-MS ESI of 2P. Ion detected atm/z 996.2731 and internal standard at m/z 920.5213 et m/z 1020.5738.

Figure S 2 FT-IR ATR (diamond) spectra of 2P (solid)

Figure S 3 ¹H-NMR spectra of 2P (CDCl₃, 399.78 MHz)

Figure S 4 ¹³C-NMR spectra of 2P (CDCl₃, 100.53 MHz)

Figure S 5 Elemental analysis for 2P. Calculated : 68.69%C 5.15%H 13.10%S Found: 68.42%C 5.05%H 13.02%S

Figure S 6 HR-MS ESI of 20. Ion detected atm/z 996.2731 and internal standard at m/z 920.5213 et m/z 1020.5738.

Figure S 9 ¹³C-NMR spectra of 2O (CDCl₃, 100.53 MHz)

Figure S 10 HR-MS ESI of 2M. Ion detected atm/z 996.2728 and internal standard at m/z 920.5213 et m/z 1020.5738.

Figure S 12 ¹H-NMR spectra of 2M (CDCl₃, 399.78 MHz)

Figure S 13 ¹³C-NMR spectra of 2M (CDCl₃, 100.53 MHz)

1b. Characterization and spectroscopic data for 1O, 1M and 1P

845 850 855 Инин-Бараанийн Сарантараан Алтан 815 820 825 830 835 840 나나 m/z 900 0-4 444 775 790 9444 810 860 770 895

Figure S 14 HR-MS MALDI- ToF (DTCB matrix, negative mode, laser 355 nm) of 1M

Figure S 16 ¹H-NMR spectra of 1M (DMSO-*d*₆, 399.78 MHz)

Figure S 17 HR-MS MALDI- ToF (DCTB matrix, negative mode, laser 355 nm) of 10

Figure S 18 FT-IR ATR (diamond) spectra of 10 (solid)

Figure S 19 ¹H-NMR spectra of 10 (DMSO-*d*₆, 399.78 MHz)

Figure S 20 HR-MS MALDI-ToF (DHB matrix, negative mode, laser 355 nm) of 1P

Figure S 21 FT-IR ATR (diamond) spectra of 1P (solid)

Figure S 22 ¹H-NMR spectra of **1P** (DMSO-*d*₆, 399.78 MHz)

2. Photophysical measurements

Figure S23 Absorption spectra (solid lines) and normalized emission spectra (dashed lines) in air-equilibrated THF solution (λ_{exc} = 400 nm) of 2P (black), 2O (red), and 2M (green).

Figure S24 Absorption spectra (solid lines) and normalized emission spectra (dashed lines) in air-equilibrated THF solution (λ_{exc} = 410 nm) of 1P (black), 1O (red) and 1M (green).

Figure S25 Absorption spectra (solid lines) and normalized emission spectra (dashed lines) in air-equilibrated aqueous solution at pH=8 (λ_{exc} = 390 nm) of **1P** (black), **10** (red) and **1M** (green).

Figure S26 Absorption (left) and fluorescence (right) of a 4.8×10^{-6} M solution of **1P** in air equilibrated NaOH 0.1mM water solution upon titration with a 3.73 mM water solution of Pb(NO₃)₂: red line (0 eq), black line (2 eq). Inset show the normalized absorption changes at 400 nm (black) and 470 nm (green) and emission intensity changes at 470 nm (green).

Figure S27 Absorption (left) and fluorescence (right) of a 3.3×10^{-6} M solution of **10** in air equilibrated NaOH 0.1mM water solution upon titration with a 3.73 mM water solution of Pb(NO₃)₂: red line (0 eq), black line (2 eq). Inset show the normalized absorption changes at 400 nm (black) and 470 nm (red) and emission intensity changes at 470 nm (green).

Figure 28 Absorption (left) and emission (right) spectra of a solution of **1M** in air-equilibrated aqueous solution (pH=8) (red line) upon addition of 2.5 eq of Pb(NO₃)₂ (green line) and 5 eq of EDTA (blue line). $\lambda_{em} = 390$ nm.

Figure S29 Absorption (left) and emission (right) spectra of a solution of **1P** in air-equilibrated aqueous solution (pH=8) (red line) upon addition of 2.5 eq of Pb(NO₃)₂ (green line) and 5 eq of EDTA (blue line). λ_{em} = 390 nm.

			Size (d.nm):	% Intensity:	St Dev (d.nm):
Z-Average (d.nm):	101.3	Peak 1:	181.6	100.0	129.1
Pdl:	0.473	Peak 2:	0.000	0.0	0.000
Intercept:	0.743	Peak 3:	0.000	0.0	0.000
Result quality :	Good				

Figure S30 Size distribution by DLS analysis on a 3.0×10^{-6} M solution of **1M** in aqueous solution (pH=8) upon addition of 2.5 equiv. of Pb(NO₃)₂.

Figure S31. Size distribution by DLS analysis of scattered intensity of a 3.0×10^{-6} M solution of **1M** in air-equilibrated aqueous solution (pH=8) (red) upon addition of 2.5 equiv. of Pb(NO₃)₂ (green) and 5 equiv. of EDTA (blue).

3. References:

[1] M. Villa, M. Roy, G. Bergamini, M. Gingras, P. Ceroni, *Dalton Trans.* **2019**, *48*, 3815-3818.