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Multimodal
Side-Tuning for Document Classification

Stefano Pio Zingaro Giuseppe Lisanti Maurizio Gabbrielli

Abstract

In this paper, we propose to exploit the side-tuning framework for multimodal
document classification. Side-tuning is a methodology for network adaptation recently
introduced to solve some of the problems related to previous approaches. Thanks to this
technique it is actually possible to overcome model rigidity and catastrophic forgetting of
transfer learning by fine-tuning. The proposed solution uses off-the-shelf deep learning
architectures leveraging the side-tuning framework to combine a base model with a
tandem of two side networks. We show that side-tuning can be successfully employed
also when different data sources are considered, e.g. text and images in document clas-
sification. The experimental results show that this approach pushes further the limit for
document classification accuracy with respect to the state of the art.

1 Introduction
Notwithstanding the many technological advances in computer vision and artificial intel-
ligence, which are contributing to the “digital transformation” of many companies and
industrial processes, there still exist a surprising number of tasks which are almost completely
carried out by humans. In particular, many tasks in different industries, from administrative
procedures to archival of old manuscripts, involve the human elaboration of a huge number
of paper documents, with consequent high costs for the companies and, ultimately, for
their clients. There are two main reasons for this situation: one is deeply connected to the
internal rules and processes of some companies, banks in particular, which have an important
number of legacy procedures and have big inertia for innovation. The second reason, that we
consider in this paper, is the lack of completely satisfactory (automatic) tools for document
classification, especially when documents contain different source of information such as
text, images, and handwritten parts. While some paper documents could be replaced by
electronic means, one cannot eliminate paper documentation, hence efficient and trustworthy
tools for document classification are essential.

As we discuss in the next section, document classification has been widely investigated
and methods can be roughly divided into three categories: those that are based on the textual
content of the document, often obtained from Optical Character Recognition (OCR), those
based on the visual structure of the image, and multimodal methods that use both text and
image. The latter family of solutions [1–8] have provided significant advances, yet dealing
with both textual and visual content in full generality remains an open problem [8].
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In this paper, we tackle the challenge by exploiting side-tuning [9] — a recent method-
ology for network adaptation — in multimodal document classification. In general, network
adaptation is a common technique that allows updating the weights of a pre-trained model
on a different task. This technique is opposed to training from scratch and allows, among
other benefits, a faster convergence. However, existing adaptation solutions may suffer from
catastrophic forgetting that is, the tendency of a network to abruptly lose previous knowledge
when learning new information. Side-tuning [9] addresses the problem of adaptation by
using a second network whose weights are never updated, so as to preserve the classification
capability of the original task. The output of the base network and the side network are then
merged into a specific layer. The fusion takes place using an appropriate sum operation of
the single outputs1. Similarly to other additive learning approaches, side-tuning does not
change the base model, rather it adapts it to a new target task by adding new parameters.
However, differently from other approaches, side-tuning does not impose any constraints
on the structure of the side network, whose complexity can be scaled to the difficulty of the
problem at hand, thus allowing also tiny networks when the base requires minor updates. This
provides an extreme flexibility of the model and it is one of the reasons for its good results.

Our research idea is to exploit side-tuning also in the field of multimodal document classi-
fication, based on the intuition that this enhanced flexibility could allow one to precisely tune
the model on different sources (i.e., textual and visual), while avoiding catastrophic forgetting
and model rigidity. We implement our idea by proposing a new method for multimodal learn-
ing with a deep neural network model, more precisely we present a side-tuned architecture
that uses off-the-shelf networks and consists of one base model with a tandem of two side net-
works. Our experimental results show that this architecture is effective in common document
classification scenarios and pushes further the limit for document classification accuracy.

The remaining of the paper is organized as follows, Section 2 reviews related work and
discuss the contributions of our solution. Section 3 explains the methodology and provides
details concerning the model implementation. In Section 4, we provide the results of the
experimental procedure used to assess the model validity and compare those results with
previous works discussing the implementation choices. Finally, Section 5 summarizes the
contributions and addresses some future directions for the presented work.

2 Related Work
Document classification has been widely investigated and several solutions have been pro-
posed over the years. These solutions can be categorized considering whether they analyze
the textual content of a document, its visual structure or both. A complete analysis on
text classification methods before the rise of deep learning solutions can be found in [10].
Recently, Kim [11] proposed to use Convolutional Neural Networks (CNNs) on top of a
pre-trained embedding to perform sentence classification providing an effective and portable
solution that has been widely used in many subsequent work [11–15]. In [16] the authors
give a thorough review on pre-trained models for natural language processing.

In the past, classification of a document based on its visual content has always been
addressed with the design of hand-crafted features. These features were used to extract

1Several notions of summation can be used, details can be found in [9].
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meaningful information about the image content or the document structure and then used as
input to classic machine learning techniques for classification. A thorough analysis of these
solutions can be found in the survey by Chen and Blostein [17]. However, the recent advances
in document image classification have been mostly led by solutions exploiting CNNs [18–25].
Kang et al [18] proposed the first solution based on CNNs for document images classification.
They designed a shallow architecture composed by two convolutional layers, max pooling and
two fully connected layers, with ReLU activations and dropout regularization. The network
was trained from scratch and the final results showed the superior performance of CNNs
compared to classic solutions [17]. The solutions proposed in [19,20] demonstrated that it is
possible to further improve this performance by exploiting transfer learning. In both articles,
the authors successfully fine-tuned a state-of-the-art architecture, such as AlexNet [26]
(previously trained on ImageNet [27]), to recognize the document type. Successively, the
authors of [22] performed a thorough analysis on how different image pre-processing steps
and architecture hyper-parameters may affect the final classification performance. They
performed several tests, training each networks from scratch, and obtained results comparable
to the previous solutions. In [23] several state-of-the-art very deep architectures, such as
VGG16, GoogLeNet and ResNet-50 have been trained and/or fine-tuned for recognizing
document images, achieving a huge boost in performance. Differently from the previous
approaches, the solution in [24] exploited pre-trained CNNs just to extract the features from
document images and then used extreme learning machines (ELMs) for classification. The
solution in [25] performed two steps of fine-tuning. In particular, given a pre-trained VGG16
architecture, a first fine-tuning is performed exploiting the whole visual content of document
images. Then a second transfer learning is performed on specific image regions. Finally, the
results is obtained as the combination of the predictions from all these neural network models.

Several papers proposed to combine both textual and visual features for documents
classification [1–8]. The method in [1] combined bag-of-words and bag-of-visual-words
representations exploiting SVM and a late fusion scheme. Similarly, in [2] the authors used a
bag-of-words representation with latent semantic analysis for the text and the visual descriptor
from [28] for images. Different classifiers with both early and late fusion schemes have
been used to combine the text and visual features in order to correctly classify a page stream.
In [3] the document was first processed by an OCR. Successively, the extracted words were
highlighted in the original document image through colored bounding boxes, following a
ranking algorithm. These newly generated images were used to train a CNN for classification.
The solution proposed in [6] tested two different fusion schemes, in particular, a spatial
fusion and a features fusion scheme. In the spatial fusion, text and images are concatenated
and given as input to a VGG16 network for training. Whereas, in the features fusion, the
image feature obtained from a VGG16 network and text feature obtained through a text
ensemble network are stacked and fed to a fully connected layer for classification. Similarly,
the authors of [7,8] proposed two solutions, which differ mainly in the embedding used for
text and the CNN architectures used for images, InceptionV3 and MobileNetV2 respectively.
As in [6], the features extracted from text and image networks are concatenated and fed to
a fully connected layer for classification. Both architectures have been trained end-to-end
and have achieved state-of-the-art performance.
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Contributions
Differently from the previous approaches, we combine incremental learning and multimodal
features training to jointly learn from both representations, visual and textual. The resulting
model presents great flexibility and keeps high performance when used on both small and
large datasets. To the best of our knowledge, our approach is the first that successfully at-
tempts to apply side-tuning by using different sources of input during training. We thoroughly
evaluate our approach on two publicly available datasets [19, 29] and two different deep
learning architectures in order to assess the validity of the proposed model. The final model
performance is competitive with state-of-the-art solutions on both datasets.

3 Methodology
In this section, we provide the details of a multimodal document classification model that
takes advantage of side-tuning to properly combine visual and textual features. In the side-
tuning framework, architectural elements are combined to produce a new representation
of the target [9]. A side-tuning architecture generally presents a base model with fixed
weights and a side model whose weights are unlocked to allow updating. In principle,
different architectures can be selected for the base and side models to allow modularity of
the components. For example, the authors of [9] use the concept of knowledge distillation
for neural networks [30] to properly initialize the weights of the side component architecture.

In the implementation discussed in this paper, the base model consists of a Convolutional
Neural Network (CNN) for image classification, pre-trained on the ImageNet dataset. The
side component presents two different networks: the first one is identical to the base model
but with unlocked weights to allow update during training, while the second network is a
CNN for text classification. In defining the final model, we can rely on two strategies. The
first involves the distillation of a network, while the second uses networks as they are. We
choose the latter and select small network architectures so that we do not have to compress
the model for image classification.

In the remaining of the section we provide the networks details of the baseline models
for both images and text and then we describe the multimodal combination process.

3.1 Model for visual features
Deep Convolutional Neural Networks (DCNN) have proven to be effective when pre-trained
on large dataset and successively fine-tuned for a different task using a smaller set of data [31].
We considered two DCNNs pre-trained on the ImageNet dataset as the reference architectures
for the document image classification. As a first attempt in the definition of the model, we
choose the MobileNetV2 [32] neural network. The MobileNet networks family has been
originally designed to exploit Deep Learning on resource-constrained devices. Its relatively
simple architecture presents a smaller number of trainable parameters (about 3.5M) and
yet it achieves competitive classification performance with respect to more complex and
resource-greedy models [26,33–35]. The learning process of MobileNetV2 is based on the
principle of learning residuals and uses the combination of expansion levels and bottleneck
blocks to effectively encode the image features. Despite of the specific reasons to select the
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Figure 1: Multimodal side-tuning classifier for hybrid text and image classification. Base
model (a) and side model (b) reflects the same MobileNetV2 architecture, while (c) is a
CNN inspired from sequence text classification task. The final merge architecture combines
the output of the three networks into one new encoding as shown in (d).

MobileNetV2 architecture, we have also considered the ResNet50 model. In principle, we
could have employed any other popular DCNN, e.g. VGG16, InceptionV3, to accomplish
the image classification task.

We pre-process the network input by resizing the image to 384×384 and by replicating
the grayscale to respect the original network input that is, three channels RGB images. As
a consequence of the adoption of the ImageNet pre-trained model, we centre the input by
applying standardization using mean and variance values from the training dataset.

3.2 Model for textual features
The classification of documents from scans presenting hybrid text/image content involves the
creation of a corpus including the textual version of each input image. The corpus should then
be coded in an appropriate format using, for instance, an approach similar to the word2vec
model [36]. It is appropriate to carefully select the specific model to be used for words
vectorization since different implementation strategies could affect the quality of learning.
Such choices comprise the measure for calculating the similarity distance between the words
or the method for the vectors initialization. The analysis of corpora generation strategies lays
beyond the scope of this work, nevertheless, previous work addressed that this procedure is
key to obtain good results [8]. Furthermore, since this problem has already been addressed
in the reference literature, text versions of the datasets considered in this work already exist:
QS-OCR-Small for Tobacco3482 and QS-OCR-large for RVL-CDIP [8], obtained using the
Tesseract OCR 4.0 engine, which is based on LSTM [37].

In Natural Language Processing (NLP) practice, vector form encoding involves a to-
kenization procedure followed by the creation of a lookup table that associates a unique
numeric identifier to each word in the resulting vocabulary. This embedding procedure
aims to represent a text with a real-valued vector of numbers that is used in an end-to-end
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training to learn similarities among different words. In our case, the tokenization is carried
out separating words by white spaces without ignoring punctuation, nor removing digits or
OCR-produced artifacts. This way we aim at exploiting, on the one hand, the OCR “noise”
as a regularization factor for the training procedure and, on the other hand, the consistency
of the OCR to recognize similar patterns.

Similarly to the image case, text classification also benefits of weights initialization
from a large corpora of pre-trained models. In fact, the creation of the lookup table can be
replaced with an already existing vocabulary, which contains information on words similarity
previously computed with proper distance measurements, e.g. Levenshtein in the case of
GloVe [38] and ELMo [39]. Therefore, we choose a pre-trained model that contains em-
beddings for each word of our corpus, we combine all the vectors representing the words
of a single text document, and we 0-pad the encodings which contain less than 500 words,
as in [8]. Considering the characteristics described, we select FastText [12] among the
models in the literature. FastText is pre-trained on the Common Crawl dataset [14] and
generates embeddings of k = 300 real values per word. Remarkably, it is able to encode
every token in the datasets considered in this work. Indeed, we believe that avoiding models
with Out-Of-Vocabulary (OOV) words is crucial to exploit the embeddings in the procedure.

We carry out the baseline training for the text classification model with a simple archi-
tecture (about 1.8M parameters) inspired by a CNN for sentence classification [11]. The
network consists of three convolutional layers of dimension h×k, each starting from the same
input and acting in parallel. The convolutional layers use a window size of h=3,4,5 words,
no padding and a stride of 1. Each layer has 512 filters, uses ReLU activation function and a
resizing step with one-dimensional max-pooling. The resulting tensors are concatenated and
fed to a classification layer with Softmax activation. We also apply a dropout regularization
with a fixed probability of 0.5. As in the case of the model for visual features, we could have
chosen any other off-the-shelf architecture.

3.3 Combined model
To benefit from both representations we choose to combine image and text in a single, new,
encoding. In our setup, we use a network with locked weights and a side model, which is
composed of the two architectures described in Subsections 3.1 and 3.2 without the final
classification layer. The base and side networks that take the image as input are pre-trained
on ImageNet, while the weights of the side network for text classification are randomly
initialized. The combination of the three encodings can be addressed with different methods,
of which we list the two most significant. First, we can concatenate the outputs, delegating
the task of selecting the most significant weights to the fusion network. Second, we can
linearly combine the encodings so as to align the feature space and select the best coefficients.

The first concatenation method have been exploited in several works [7, 8, 40], all re-
porting an increase in accuracy performance with respect to the single baseline models.
The second method is less explored and advocates for a linear merging of the encodings.
Concretely, the combination of the base and side models in our architecture is performed as:

R(x)=α0B(x)+
N

∑
i=1

αiSi(x), (1)
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where R is the new representation for the given task, B and Si are respectively the base
and sides model encodings, and αi are coefficients of the equation, subject to the con-
straint ∑

N
i=0αi=1. In our case, where N = 2, the overall combination assumes the form

α0B(x)+α1S1(x)+α2S2(x). It is worth noting that some specific values for the alpha coeffi-
cients lead to well-known training procedures, that in our case corresponds to just the image
feature extraction (α0=1, α1=0, and α2=0), to the fine-tuning of the image architecture
(α0=0, α1=1, and α2=0), and finally to the training from scratch of the text network (α0=
0, α1=0, and α2=1). Setting properly these coefficients allows to easily switch between the
different modalities with a gain in flexibility and the possibility to explore their combination.

In order to perform the weighted sum of the network outputs each resulting vector must
have the same dimension. In case of different input sources, it may be necessary to use
an adaptation layer to make the output shapes compatible. In our case, we use such layer
to adapt the text output with the image one. Finally, the result of the linear combination
is passed to a classification layer. In addition to the architecture just described, we have
performed experiments by adding a fully connected layer after the fusion and before the
classification, to analyze the behavior of the model as the parameters increase. An overview
of the architecture is shown in Figure 1.

4 Experimental Results
We performed an analysis of the multimodal side-tuning architecture to assess the quality
of our methodology and to better understand how it contributed to the classification accuracy.
In the following, we first introduce the datasets used in our experiments, then we detail the
training procedure, and finally we provide a comparison of the performance with respect to
the state-of-the-art. We also give a brief analysis of the inference process running time.

4.1 Datasets
The Tobacco3482 dataset [29] comprises 3482 greyscale scans of documents divided un-
evenly in 10 categories, e.g. resume, email, letter, memo. The documents distribution among
the classes spans from 120 for the resume category to 620 for memo. It is a small subset of
the Truth Tobacco Industry Documents and collects many hybrid content documents. The
textual version of this dataset, namely QS-OCR-Small [8] reflects the same structure of the
original image dataset. In our setting, we random sampled three subsets to be used for train,
validation and test, fixing their cardinality to 800, 200, and 2482 respectively, as in [8,19].

The Ryerson Vision Lab Complex Document Information Processing (RVL-CDIP)
dataset [19] contains 399828 images divided into 16 categories from the Truth Tobacco
Industry Documents, e.g. scientific publication, scientific report, handwritten. Its textual coun-
terpart, QS-OCR-Large, was developed in the same work that released QS-OCR-Small [8].
Differently from Tobacco3482, RVL-CDIP comes with pre-built subsets for train, validation
and test that have respectively dimension of 319837, 39995, and 39996.
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(a)

(b)

Figure 2: Plot of the accuracy on the Tobacco3482 dataset for twelve combinations of the mul-
timodal coefficients. Base and first side component use MobileNetV2 (a) and ResNet50 (b)
architectures. Each trend corresponds to a different configuration of the side-tuned network.

Table 1: Baseline models and multimodal overall accuracy for Tobacco3482 using Mo-
bileNetV2 (visual features) and 1D CNN (textual features) architectures. Best result in bold.

Model #Params OA

Text ≈1.8M 67.8%
Image (fine-tuning) ≈3.5M 84.0%
Image (side-tuning) ≈7M 88.0%

Multimodal (side-tuning) ≈12M 90.5%

4.2 Training details
All the models are implemented using the PyTorch framework, version 1.4.0, and trained
using an NVIDIA Titan XP GPU. The hyper-parameters are selected from the experiments
performed on the Tobacco3482 dataset.

We set the maximum number of epochs to 100 and the batch size to 16 documents for
Tobacco3482 experiments while we chose to train, validate, and test with batches of 40 for
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RVL-CDIP for 10 epochs. We used the cross-entropy loss function in all the experiments.
We performed all tests using the Stochastic Gradient Descent (SGD) optimizer with a

momentum of 0.9 and an initial learning rate of 0.1, subject to a scheduled update at each
iteration that follows the scheme proposed in [23]:

LearningRatei=0.1∗

√
Epochi

MaxEpoch
(2)

4.3 Ablation Study
Table 1 reports the Overall Accuracy (OA) obtained on the Tobacco3482 dataset. As shown
in the table, the multimodal network outperforms the other combinations, proving that we are
able to combine efficiently the features space and benefit from side-tuning. The side-tuning
architecture used in Table 1 uses the MobileNetV2 as base model and side component
for visual features. The model is pre-trained on ImageNet, coefficients are α0 = 0.5 for
image-only side-tuning, while α0=0.2, α1=0.3, and α2=0.5 for the multimodal version.

The second analysis explores the behavior of multimodal side-tuning with respect to
different coefficients for the linear combination. Indeed, each αi plays a central role in
the balancing of the learning process for side-tuning. To assess their impact in our setting,
we train several models following twelve different alpha configurations. We select values
ranging from 0.1 to 0.5 to always be able to exploit each component of the framework
without excessively lowering the weights of the other networks. We also consider two
architectures for the image input (MobileNetV2 and ResNet50) and for both we tested two
different network configurations. The first inputs directly the combination of the base model
and side models to the classification layer, while the second considers an additional FC layer
before the classification one. We test two different dimensions for the latter. In Figure 2, we
analyze the behaviors of this set of experiments.

The coefficients are ordered so that the linear combination in the merging layer gives
incrementally more importance to the model component exploiting textual features (α2). The
accuracy increases with the progressive shift from the model that favors visual features, with
α0 or α1 greater than α2, to a more text-centered classifier. Small changes in the coefficients
affect the training for all the architectures. Nevertheless, those models with the additional fully
connected layers, both in MobileNetV2 and in ResNet50 show the best trends. In particular,
the best accuracy is reached by model with a dense layer of dimension 1024 for MobileNetV2
with the configuration α0 =0.2, α1 =0.3, and α2 =0.5 and the one with a dense layer of
dimension 512 for ResNet50 with the configuration α0=0.3, α1=0.3, and α2=0.4.

In Table 2 we present the best results for MobileNetV2 and ResNet50 architectures on
the Tobacco3482 dataset. First, we tested the two architecture in the side-tuning framework
using one side component and the same alpha configuration (α0=0.5 and α1=0.5). Next,
we take advantage of the second side component — the text classifier — to perform the
multimodal side tuning. Although very similar, both the experiments present better results
when the MobileNetV2 architecture is selected.

In Table 3 we report the experiments for RVL-CDIP dataset, presenting a different trend
with respect to Tobacco3482 experiments, in fact, ResNet50 has the best accuracy. This is
due to the fact that an architecture with a larger number of parameters (ResNet50) can benefit
from a bigger dataset (RVL-CDIP) while suffering from small inter-class variability.
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Table 2: Overall accuracy on the Tobacco3482 image dataset using two different off-the-shelf
architectures for both base and side model in the side tuning framework. Best result in bold.

Model (base architecture) #Params OA

Image (ResNet50) ≈51M 87.2%
Image (MobileNetV2) ≈7M 88.0%

Multimodal (ResNet50) ≈57M 90.3%
Multimodal (MobileNetV2) ≈12M 90.5%

Table 3: Overall accuracy on the RVL-CDIP dataset compared with the results from previous
works. Modalities of the data source are image (I), text (T), or both (I+T). The selected
alpha configuration for the multimodal side-tuning is a0 =0.3, a1 =0.2, and a2 =0.5 for
MobileNetV2 and a0=0.3, a1=0.3, and a2=0.4 for ResNet50. Best result in bold.

Model #Params Modality OA

CNNs [19] ≈62M I 89.8%
Audebert [8] ≈8M I+T 90.6%
AlexNet + SPP [22] ≈62M I 90.94%
VGG16 [23] ≈138M I 90.97%
VGG16 + ULMFit [6] ≈162M I+T 93.6%

Text ≈1.8M T 80.5%
Multimodal (MobileNetV2) ≈12M I+T 92.2%
Multimodal (ResNet50) ≈57M I+T 92.7%

Table 4: Overall and per-class accuracy on the Tobacco3482 dataset compared with the
results from [8]. The selected alpha configuration for the multimodal side-tuning is a0=0.3,
a1=0.2, and a2=0.5 for MobileNetV2 and a0=0.3, a1=0.3, and a2=0.4 for ResNet50.
Best results in bold.

Model OA Adve Email Form Letter Memo News Note Report Resume Scientific

Audebert 87.8% 93.0% 98.0% 88.0% 86.0% 90.0% 90.0% 85.0% 71.0% 86.0% 68.0%

Text 67.8% 93.3% 29.5% 77.0% 58.8% 49.7% 63.6% 68.7% 52.0% 60.7% 79.9%
Multimodal (ResNet50) 90.3% 96.1% 98.3% 90.8% 91.7% 93.5% 95.5% 87.6% 76.7% 89.4% 68.0%
Multimodal (MobileNetV2) 90.5% 94.8% 99.1% 88.7% 93.2% 93.0% 95.5% 89.7% 76.2% 95.3% 67.4%

4.4 Comparison with the state-of-the-art
We proved the effectiveness of multimodal side-tuning compared to the fine-tuning on images
and training from scratch on textual features.

In Table 3, we compare five different state-of-the-art solutions with the proposed multi-
modal approach in terms of overall accuracy on the RVL-CDIP dataset. All the experiments
have been carried out considering only the best configurations of alpha for both MobileNetV2
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and ResNet50.
The works considered are the CNN implementation of [19], the multimodal solution

from [8], the VGG16 network in [23], the AlexNet implementation of [22], and the VGG16 +
UMLFit of [6]. As it is possible to observe, performance on the RVL-CDIP dataset highlights
that the proposed solution slightly improves the classification performance with respect to
the methods proposed in [8,19,22,23] but obtains slighter lower results compare to [6]. This
is related to the difference in the networks complexity between our solution and the method
from [6], which has +150M parameters.

Finally, among these solutions, we select the one from [8], the most similar approach
to what we propose, and compare the per-class accuracy on the Tobacco3482 dataset. In
fact, the authors in [8] strived to use lightweight architecture as in our case but concatenated
the output of the networks used for the images and the text before the classification. This
also give us the chance to provide insights on the performance for the classes of interest in
the Tobacco3482 dataset. Table 4 shows that the gain of our model is consistent over all the
classes except for the scientific class. When compared with the solution proposed in [8], the
side-tuning model improves the overall accuracy of 2.7%.

4.5 Processing time
We now provide a discussion about execution time of our algorithm to analyze the perfor-
mance of the document classification system. Although some document analysis could be
conducted offline, critical applications require low latency in order to be performed as close
to real time as possible. We then averaged the timings of the multimodal MobileNetV2
version over five classification runs. The full inference process of our model on a single
document is carried on a Intel Xeon Silver 4208 CPU takes ≈1595ms. Of those, ≈910ms
(57%) are spent for Tesseract OCR image processing and text extraction2, ≈166ms (10.4%)
for evaluation of the base model, ≈ 202ms (12.7%) for the side model exploiting image
features, and ≈16ms (1%) are spent in the inference of the side component fed with textual
features. The timings for the image (≈119ms) and text load (≈182ms) from disk occupy
the remaining time (18.9%). On NVIDIA Titan Xp GPU, the side-tuning model runs in
≈1224ms — whit Tesseract OCR occupying 74.3% of the time. The base model is evaluated
in ≈8ms, ≈15ms for the image side model, and ≈5ms for the text model.

Compared to models with more complex architectures, the proposed system is able to be
used in real-time applications with latencies around the second. If the selected components
were to be replaced with heavier models, this would lead to an inevitable performance
impoverishment.

5 Conclusion
In this work we presented a multimodal approach for document classification that takes into
consideration both visual ant textual features classify a document. We leverage the work
done in the last state-of-art solutions for incremental learning and take advantage of the side-
tuning framework to develop an hybrid architecture that performs on par with existing more

2Average timing for Tesseract has been computed using four threads as in [8].
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complex solutions and outperforms similar lightweight approaches. To further improve the
performance, we aim at automatically tuning the coefficients used in the linear combination
of both the base and sides models. We also want to investigate the possibility of exploiting
an ensemble of text embeddings and combine them using the side-tuning framework.
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