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Choline-based eutectic mixtures as catalysts for effective synthesis of cyclic 
carbonates from epoxides and CO2 
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A B S T R A C T   

CO2 is a renewable, abundant and cheap C1-feedstock and its conversion to cyclic carbonates starting from 
epoxides has been widely explored in the last years. Nevertheless, conducting this reaction under mild and 
sustainable conditions is still a challenging task. Herein we present the use of choline-salt based eutectic mixtures 
as catalysts for the reaction of CO2 with epoxides to give cyclic carbonates. Choline chloride and choline iodide 
have been coupled with various hydrogen bond donors (HBDs), mainly cheap and bio-based carboxylic acids and 
polyols, to form two classes of eutectic mixtures. Very good yields were achieved under mild conditions (80 ◦C in 
7–22 h) for various terminal epoxides, with both classes of catalysts. While a pressure of 0.4 MPa of CO2 is 
required to obtain appreciable conversions using choline chloride-based mixture, atmospheric pressure of CO2 
(balloon) has been successfully used with choline iodide-based mixtures. Furthermore, the catalysts could be 
recycled without appreciable loss of the catalytic activity. The improved catalytic performance of both choline- 
based eutectic mixtures is attributed to the synergistic activity of the halide, responsible for the opening of the 
epoxy-ring, and the HBD that has a role in the stabilization of the alkoxide intermediate.   

1. Introduction 

The possibility to capture and reuse CO2 is a source of inspiration for 
numerous research studies [1,2]. CO2 is a renewable, abundant and 
cheap C1-feedstock, but its fixation into chemical products is a chal
lenging task because of its high thermodynamic stability [3]. CO2 con
version to cyclic carbonates starting from epoxides has attracted a lot of 
attention as an alternative pathway to the use of phosgene [4] and cy
anates, and a very large number of catalysts and conditions have been 
proposed to carry out this reaction [3,5,6]; among them, methods that 
involve the use of DBU-based organocatalysts, [7,8] organometallic 
catalysts, [9–13] alkali metal salts, [10] metaloxides [14] and phos
phonium salts [15] have been recently reported. The challenge for this 
kind of reaction is to develop methods that use CO2 at low pressure and 
temperature in sustainable solvents or under solventless conditions [16]; 
several good results have been achieved at room temperature (rt) or 
with CO2 atmospheric pressure, especially in the field of organocatalysis 
[17–20], and also using ionic liquid-type catalysts [21–27]. 

Quaternary ammonium salts are among the most studied organo
catalysts for the conversion of CO2 in cyclic carbonates, i.e. tetraethy
lammonium bromide (TEABr) is industrially used to promote the 

synthesis of ethylene or propylene carbonate from CO2 and epoxides 
since 1950s [28,29]. Their use in neat reactions, without any 
co-catalysts, usually requires high catalyst loading [30,31] or high 
temperature and CO2 pressure [32–34]. Recently many improvements 
and insights have been made in this context, above all in terms of re
action conditions, due to the growing attention towards sustainable 
synthesis [6]; to this purpose, some works describe as beneficial the role 
of an alcoholic or acid component that can be used as a co-catalyst or 
included in the aliphatic quaternary ammonium salt [35–42]. In fact, the 
role of both the hydroxyl group and the hydrogen bonds that can be 
formed in the stabilization of the intermediate after the epoxy-ring 
opening, proved to be crucial [43,44]. Choline (2-hydroxy-N,N,N-tri
methylethan-1-aminium) is a bio-based and non-toxic compound 
bearing both the ammonium and the alcoholic moieties. Choline chlo
ride, bromide or iodide have been largely used for the coupling of 
various terminal epoxides with CO2 [43,45–47]. However, Büttner et al. 
showed that choline halides are ineffective for the synthesis of cyclic 
carbonates in solventless conditions (2 h, 90 ◦C, 1 MPa) and an elonga
tion of the alkyl chains of the ammonium ion is required for reaching 
good conversions [39]. Amaral et al. obtained good results using Choline 
Iodide (ChI) when ethanol was used as solvent (6 h, 85 ◦C, 1 MPa) [45]. 
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Choline derivatives are able to form strong hydrogen bonds acting as 
hydrogen bond acceptors (HBAs), in the presence of a great variety of 
hydrogen bond donors (HBDs) [48]. The mixture of the two components 
(HDB and HBA) has a lower melting point than the components alone, 
and constitutes what is commonly called Deep Eutectic Solvent (DES) 
[49–52]. When the components derive from renewable resources, these 
solvents are called NaDESs (Natural Deep Eutectic Solvents) and they 
become particularly attractive in the field of sustainable materials and 
green media for reactions and extraction processes [53,54]. 

H-bonds have a crucial role in the stabilization of the reaction in
termediate formed in the epoxide-to-carbonate cyclization mechanism, 
so the presence of HBD could be useful to further improve catalytic ef
ficiency of choline salts. In fact, Wu et al. used a choline chloride- 
PEG200(poly ethylene glycole) DES to catalyze the carbonatation reac
tion using a CO2 pressure of 0.8 MPa and 150 ◦C [47], while Zhu et al. 
used choline chloride/urea supported on molecular sieves as heteroge
neous catalyst to promote the carbonatation reaction with a molar ratio 
of CO2: epoxide = 1.5–1.87 at 110 ◦C [46]. 

Following our interest in the study of new applications of ionic liq
uids and DESs [55,56], the aim of the present paper is to exploit the 
double ability of biobased, non-toxic, recyclable choline-based 
HBD-HBA pairs to form eutectic mixtures and catalyze under homoge
neous conditions the synthesis of cyclic carbonates from epoxides. The 
carbonatation protocols here developed foresee solventless reactions 
that work in mild conditions of temperature and CO2 pressure, thus 
combining efficiency and sustainability. To our knowledge this is the 
first time that all these aspects are combined together. A table 
comparing recent homogeneous/heterogeneous IL-type or 
ammonium-based catalysts appeared in the literature for the synthesis of 
styrene carbonate from CO2 and styrene oxide is reported in the sup
plementary material (Table S2). 

2. Experimental section 

2.1. Material 

All chemicals and solvents were purchased from Sigma-Aldrich or 
Alfa Aesar and used without any further purification. Particularly hy
groscopic reagents (quaternary ammonium salts, glycerol, ethylene 
glycol and carboxylic acids) were used after vacuum drying and kept in a 
dryer (see supplementary material, Table S1). CO2 with ≥ 99.5% purity 
was purchased from Siad, Italy. 

2.2. Synthesis of Choline Chloride (ChCl)-based DES 

Choline Chloride (ChCl) was mixed with various HBDs in the 
appropriate molar ratios, heated at about 80–90 ◦C (60 ◦C when the HBD 
was a dicarboxylic acid) [57] and magnetically stirred until homoge
neous liquids were obtained. DESs were cooled to rt before the use and 
stored in the fridge. 

2.3. Representative procedure for the synthesis of carbonates at 0.4 MPa 
of CO2 and at 0.1 MPa of CO2 (balloon) 

The reaction at 0.4 MPa was conducted in a stainless-steel, self-made, 
25 mL autoclave equipped with a heating mantle. The preformed 
eutectic mixtures, or the two components of the same (5 % mol in terms 
of ChCl respect to the epoxide), were weighed inside a 2 mL vial 
equipped with a magnetic stirring bar; then the epoxide (1.3 mmol) was 
added. The air in the reactor was firstly replaced with CO2, then the vial 
was placed inside the steel autoclave. The autoclave was heated and 
filled with CO2 (0.4 MPa), and the vial placed inside was kept stirring for 
the whole reaction time. After the completion of the reaction, the 
autoclave was cooled to rt and slowly depressurized. 

The reaction at 0.1 MPa was conducted in a 25 ml Schlenk tube 
equipped with a CO2 balloon. The two components of the eutectic 

mixture (5 % mol respect to the epoxide) were weighed and put inside 
the Schlenk with the epoxide (2.6 mmol). The air in the Schlenk tube 
was firstly replaced with CO2, then the Schlenk was placed in an oil bath 
heated at 80 ◦C. The CO2 of the balloon was then allowed to flow into the 
flask. After the completion of the reaction, the Schlenk tube was cooled 
to rt. 

In both cases crudes were weighted to check CO2 incorporation or 
any reagent loss, and then analyzed by Gas Cromatography–Mass 
Spectromentry (GC–MS) after dilution in ethyl acetate. Conversions re
ported in Tables 1 and 2 were calculated by GC–MS using a calibration 
curve of the starting material in 20-400 ppm range, whereas the selec
tivity was calculated as ratio between the chromatographic peak of 
carbonate and the peaks of all by-products detectable by GC-MS. Yields 
reported in Table 3 were calculated by 1H NMR using mesitylene as 
internal standard (see supplementary material for more details); isolated 
yields are also reported in Table 3. 1H and 13C NMR spectra of the pu
rified products have been acquired after purification of the crude by 
flash-column chromatography. All obtained carbonates are known, thus 
they were recognized by comparison with standards or through NMR 
and mass spectra, matching to what reported in NIST database. The 
formation of by-products was checked by GC-MS and NMR. 

2.4. Procedure for catalyst recycle 

The recycle of the catalyst was tested with the best performing 
mixture Choline Iodide (ChI): Glycerol (1:1) (5 mol%) in the conversion 
of benzyl glycidyl ether 1b (2.6 mmol) into the corresponding cyclic 
carbonate 2b at p(CO2) = 0.1 MPa (balloon), 80 ◦C, for 7 h. After the 
reaction was completed, ethyl acetate was added to the crude together 
with a small amount of water. The organic phase was collected to 
recover the product while the aqueous phase was collected to recover 
the catalyst after removal of water by distillation. The recovered catalyst 
was used for next runs without further purification. The organic phase 
containing the product was analyzed by GC-MS, after dilution as before. 

2.5. Instrumentation 

GC-MS analyses of reaction mixtures were performed using an Agi
lent HP 6850 gas chromatograph connected to an Agilent HP 5975 
quadrupole mass spectrometer. Analytes were separated on a HP-5MS 
fused-silica capillary column (stationary phase 5%-Phenyl)-methyl
polysiloxane, 30 m, 0.25 mm i.d., 0.25 μm film thickness), with helium 
as the carrier gas (at constant pressure, 36 cm s− 1 linear velocity at 
200 ◦C). Mass spectra were recorded under electron ionization (70 eV) at 
a frequency of 1 scan s− 1 within the 12–600 m/z range. The injection 
port temperature was 250 ◦C. The temperature of the column was kept at 
50 ◦C for 5 min, then increased from 50 to 250 ◦C at 10 ◦C min− 1 and the 
final temperature of 250 ◦C was kept for 12 min. Epiclorohydrin 1c and 
allyl glycidyl ether 1d (more volatile than the other substrates) were 
analyzed through the following thermal program: the temperature of the 
column was kept at 40 ◦C for 6 min, then increased from 50 to 250 ◦C at 
10 ◦C min− 1 until the final temperature of 250 ◦C. 1H NMR spectra were 
recorded on Varian 400 (400 MHz) spectrometers. 13C NMR spectra 
were recorded on a Varian 400 (100 MHz) spectrometers. Chemical 
shifts are reported in ppm from TMS with the solvent resonance as the 
internal standard (deuterochloroform: 7.26 ppm). Mesitylene (1,3,5 
trimethylbenzene) was used as internal standard (see Supplementary 
material for more details). 

3. Results and discussion 

The reaction between CO2 and epoxides catalyzed by eutectic mix
tures has been initially studied with styrene oxide 1a as model substrate 
at different temperatures and CO2 pressures. 

Under the tested reaction conditions, ChCl and ChI were both 
insoluble in styrene oxide, but their solubilization increased by coupling 
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them with a hydrogen bond donor (HBD). Thus, several choline-based 
eutectic mixtures were prepared and their ability to catalyze epoxides 
carbonatation was tested. Urea, glycerol, ethylene glycol, water and 
several carboxylic acids (oxalic, citric, maleic, malonic, tartaric, malic, 
fumaric, 3-hydroxybutyric, alpha-hydroxyisobutyric, crotonic, benzoic, 
octanoic, butanoic, and acetic acid), were all tested as HBD. Most of the 
chosen HBDs are non-toxic and biobased. 

3.1. Choline chloride-based catalysts 

The activity of ChCl-based catalysts was tested in stainless steel 
autoclave at maximum p(CO2) = 0.4 MPa and T = 80 ◦C (Table 1), as 
described in the experimental Section 2.3. Eutectic mixtures were 
initially screened in sub-stoichiometric amounts (5 mol% in terms of 
choline component with respect to the starting material). A 5% catalyst 
loading is quite common when carbonatation reactions are performed 
under mild conditions [31,58,59], and allowed us to easily carry out the 
subsequent recyclability tests on this small scale. 

As already observed [39], ChCl alone had no catalytic effect being 
very scarcely soluble in the reaction mixture (styrene oxide and CO2) 
within 8 h (entry 1); ChCl:Urea (1:2) eutectic mixture behaved slightly 
better than ChCl alone (entry 2) but definitely better results have been 
obtained with catalysts containing acidic or alcoholic groups as HBD. All 
dicarboxylic acids here tested had an excellent activity in terms of both 
conversion and selectivity; the only exception was oxalic acid (entry 7). 
All the other ChCl: acids mixtures gave an almost quantitative conver
sion of 1a into 2a (entries 8–20), with a very good selectivity for the 
formation of 2a. When polyols were used as HBD, different behaviors 
were observed: glycerol had an activity similar to that of carboxylic 
acids (entry 5), while ethylene glycol (entry 3) was less reactive and less 
selective. 

The activity of the catalysts when ChCl-eutectic mixture was pre- 
formed, as described in experimental Section 2.2 (entries 3, 5, 11, 13, 

the two components are separated by the colon “:”), in comparison to its 
formation in situ by adding the components separately inside the reac
tion mixture (entries 4, 6, 12, 14, the two components are separated by 
“and”), was also analyzed. In some cases, the differences in terms of 
conversion between the two strategies were negligible (entries 3 and 4, 
11 and 12), in other cases they were more relevant (entries 5 and 6, 13 
and 14). In terms of selectivity for 2a formation, the two strategies gave 
similar results with acids-based mixtures (entries 11 and 12, 13 and 14), 
but better results were achieved when polyol-based mixture were pre
formed than when they were formed in situ (entries 3 and 4, 5 and 6). 
The reaction between CO2 and 1a was also tested in presence of betaine, 
a zwitterion, containing both a quaternary ammonium salt, as choline, 
and an acidic group, but without the halide and hydroxyl groups. As 
ChCl tested alone (entry 1), also betaine was totally ineffective (data not 
shown). 

Variations of pressure, time and amount of catalyst were further 
tested by using ChCl: Malic acid (1:1) as catalyst. A decrease in CO2 
pressure proved to be detrimental (entries 10, 16, 17, 18) especially with 
the system operating at 0.1 MPa (balloon). The addition of the catalyst in 
the preformed eutectic mixture or as two separate components did not 
affect conversion if CO2 pressure was kept at 0.1 MPa (balloon) (entries 
17 and 18), whereas a slight decrease in both conversion and selectivity 
was observed by lowering the catalyst amount (entries 19 and 20). An 
in-depth study of the initial reaction rate demonstrated that 5–7 h were 
enough to get an almost quantitative conversion of 1a (Fig. 1). 

On the basis of previous literature studies [6] and the experimental 
evidences here found, a plausible mechanism was proposed for 
ChCl-HBD catalyzed reaction of epoxides with CO2 (Scheme 1). First, 
epoxide is activated via the hydrogen bond between the HBD and the 

Table 1 
Synthesis of styrene carbonate 2a catalyzed by ChCl-HBD catalysts.  

Entry 

Catalyst ChCl:HBD Conversion % e Selectivity % e 

2a:3a 

1 ChCl 0 - 
2a ChCl: Urea (1:2) 33 >99 
3a ChCl: Ethylene Glycol (1:2) 82 93:7 
4b ChCl and Ethylene Glycol (1:2) 80 89:11 
5a ChCl: Glycerol (1:2) 93 98:2 
6b ChCl and Glycerol (1:2) 72 92:8 
7a ChCl: Oxalic Acid (1:1) 76 93:7 
8a ChCl: Citric Acid (1:1) 95 98:2 
9a ChCl: Maleic Acid (1:1) 97 98:2 
10a,c ChCl: Maleic Acid (1:1) 91 99:1 
11a ChCl: Malonic Acid (1:1) 97 99:1 
12b ChCl and Malonic Acid (1:1) 92 99:1 
13a ChCl: Tartaric Acid (1:1) 95 95:5 
14b ChCl and Tartaric Acid (1:1) 83 95:5 
15a ChCl: Malic Acid (1:1) 97 99:1 
16a,c ChCl: Malic Acid (1:1) 91 98:2 
17a,d ChCl: Malic Acid (1:1) 26 98:2 
18b,d ChCl and Malic Acid (1:1) 22 98:2 
19a ChCl: Malic Acid (1:1) 1.5% 95 98:2 
20a ChCl: Malic Acid (1:1) 3% 96 98:2 

Reaction conditions: 1.3 mmol 1a (148.6 μL), p(CO2) = 0.4 MPa, neat. 
a Catalyst was pre-formed as eutectic mixture and then added to 1a. 
b Catalyst components were added separately in the reaction mixture. 
c p(CO2) = 0.2 MPa. 
d p(CO2) = 0.1 MPa (balloon). 
e Conversion and selectivity calculated by GC-MS (see experimental section). 

Fig. 1. Effect of the time on 1a conversion using 5 % ChCl:Malic acid (1:1), 
80 ◦C, p(CO2) = 0.4 MPa. 

Scheme 1. Proposed mechanism for ChCl-based eutectic catalysts.  
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oxygen of the epoxide, facilitating its ring opening that proceeds via 
nucleophilic attack of the choline halide with the formation of the 
alkoxide intermediate a. Then, intermediate a reacts with CO2 forming b 
that cyclizes to give the cyclic carbonate via chloride elimination. It is 
noteworthy how the HBD acts as a co-catalyst in the carbonatation re
action, helping the stabilization of the intermediates a and b, through 
hydrogen bonds and other weak interactions [17,60]. The role of the 
anion is relevant, since the halide is responsible for both opening the 
epoxy-ring and as leaving group after ring-closure. For this reason, being 
iodide a better leaving group than chloride, despite its worse nucleo
philicity in such an aprotic environment, ChI-based catalysts were 
tested. 

3.2. Choline iodide-based catalysts 

As done for ChCl-HBD mixtures, ChI-HBD mixtures were firstly 
tested on 1a (Table 2) as described in the experimental Section 2.3. ChI- 
based mixtures have higher melting points than ChCl-based ones; for 
avoiding any possible thermal degradation of the catalyst, that could 
happen when HBD and HBA were mixed at quite high temperature, the 
two components (ChI and HBD) were added separately in the reaction 
mixture (when the two components of the catalysts are added separately 
their names are divided by “and” instead of the colon, as in Table 1). 

From previous studies ChI proved to be ineffective as catalyst at low 
reaction times (2 h), even with a CO2 pressure of 1 MPa, in solventless 
system [39], while Amaral et al. instead demonstrated that it showed a 
good reactivity in reaction with protic solvents (1 MPa, 6 h) [45]. In our 

conditions ChI alone could effectively catalyze the reaction (5% mol, 
entry 1) giving a 95% conversion of 1a into 2a but at longer reaction 
times (22 h); the most commonly used TBAI (Tetrabutylammonium Io
dide) did not give a complete conversion in 7 h (entry 21). The coupling 
of ChI with a HDB forms a homogenous mixture in a short time, 
significantly decreasing the carbonatation time (entries 2-19, Table 2). 
Moreover, ChI-based mixtures proved to catalyze the reaction in milder 
conditions than what found with ChCl-based mixtures, allowing to 
decrease CO2 pressure from 0.4 MPa to 0.1 MPa (balloon). Notably, very 
good results and selectivity were found also by adding the components 
of the mixture separately inside the reaction system, being iodide a 
better leaving group than chloride, the product ring-closure is fastened 
despite the presence of water (Table 2, entry 14) [35,61]. 

Several HBDs were tested in combination with ChI. When dicar
boxylic acids were used as HBDs (entries 2, 3, 4, 5), better conversions 
(close to 90 %) than those achieved with ChI alone (entry 1) were ob
tained in shorter reaction times (5 h), demonstrating that the presence of 
the HBD enhanced ChI activity. High conversions were reached also 
with other hydroxy-substituted carboxylic acids (entries 6 and 7), cro
tonic acid (entry 8), benzoic acid (entry 9) and some aliphatic acids 
(entries 10, 11, 12). Among the various acids, acetic acid seemed to be 
the most effective. The carboxylic acids tested alone were ineffective 
(data not shown). When polyols (glycerol and ethylene glycol, entries 13 
and 15) or water (entry 14) were used as HBDs, very good results were 
obtained [35]. The best conversion (99 % in 7 h) was obtained with 
glycerol as HBD, whereas glycerol used alone (entry 20) was ineffective 
even after 22 h. By studying in more detail the effect of the catalyst 
amount, temperature and time it was found that: i) a slight decrease in 
product conversion was observed by decreasing the catalyst amount 
(entries 16 and 17); ii) the reaction did not run at rt (entry 18) and just 
50 % conversion was achieved at 50 ◦C after 7 h (entry 19); iii) a con
version of 90% was got after 3 h, becoming quantitative in 7 h (Fig. 2). 

3.3. Substrates screening 

The catalysts and conditions that gave the overall best results in the 
carbonatation of 1a (ChCl-Malic Acid under pCO2 = 0.4 MPa; ChI- 
Glycerol under pCO2 = 0.1 MPa) were used for substrate scope 
(Table 3). Although many other HBDs performed well with ChCl and 
others with ChI, Malic Acid and Glycerol have been chosen because they 
are bio-based, non-toxic, widely available and cheap. 

Due to the different volatility of the substrates, the reaction with 1c 
and 1d was carried out inside the steel autoclave, in the condition 
optimized for ChCl-based eutectic mixtures (pCO2 = 0.4 MPa, 80 ◦C); 
this approach guaranteed a greater insulation of the system than the 
Schlenk tube equipped with CO2 balloon. In this case it was not possible 
to carry out reactions inside the autoclave at lower pressures because the 
small size apparatus would have limited CO2 amount. 

Generally, terminal epoxides could be transformed into the corre
sponding cyclic carbonates with good to very good yields (entries 1–5); 

Table 2 
Synthesis of styrene carbonate 2a catalyzed by ChI-HBD catalysts.  

Entry 

Catalysts ChI:HBD Time 
(h) 

Conversion 
% a 

Selectivity 
% a 

2a:3a 

1 ChI 5 
7 
22 

16 
35 
95 

99:1 

2 ChI and Malic Acid (1:1) 5 
22 

88 
95 

99:1 

3 ChI and Maleic Acid (1:1) 5 
22 

87 
95 

99:1 

4 ChI and Fumaric Acid (1:1) 5 
22 

87 
96 

98:2 

5 ChI and Tartaric Acid (1:1) 5 
22 

85 
94 

99:1 
97:3 

6 ChI and 3-Hydroxybutyric 
Acid (1:1) 

5 
22 

86 
97 

99:1 

7 ChI and alpha- 
Hydroxyisobutyric Acid (1:1) 

5 
22 

77 
97 

99:1 

8 ChI and Crotonic Acid (1:1) 5 88 >99 
9 ChI and Benzoic Acid (1:1) 5 87 >99 
10 ChI and Octanoic Acid (1:1) 5 87 >99 
11 ChI and Butanoic Acid (1:1) 5 76 >99 
12 ChI and Acetic Acid (1:1) 5 90 98:2 
13 ChI and Ethylene Glycol (1:1) 5 91 >99 
14 ChI and H2O (1:2) 5 88 >99 
15 ChI and Glycerol (1:1) 5 

7 
96 
99 

98:2 
96:4 

16 ChI and Glycerol (1:1) 2% 7 90 97:3 
17 ChI and Glycerol (1:1) 4% 7 94 96:4 
18 ChI and Glycerol (1:1) 5%, rt 7 0 0 
19 ChI and Glycerol (1:1) 5%, 

50 ◦C 
7 50 93:7 

20 Glycerol 5% 22 0 - 
21 TBAI 5% 7 64 >99 

Reaction conditions: 2.6 mmol 1a (297.2 μL), p(CO2) = 0.1 MPa (balloon), neat. 
a Conversion and selectivity calculated by GC-MS (see experimental section). 

Fig. 2. Effect of time on 1a conversion using 5 % ChI:Glycerol (1:1), 80 ◦C, p 
(CO2) = 0.1 MPa (balloon). 
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more lipophilic substrate 1e required a prolonged reaction time. Con
versions were quantitative in most cases, just traces (<1 %) of the 
starting materials were visible at GC–MS. The non-quantitative yields 
were due to the formation of the corresponding diols of each species as 
by-product or 1,3-dichloropropan-2-ol for reaction of 1c. 

For internal epoxides (entry 6), no conversion and selectivity were 
obtained, even when the reaction time was prolonged to 23 h; this 
discouraged us from studying further non-activated, bio-based or more 
internal epoxides. 

3.4. Catalyst recycles 

The recycle of the catalyst ChI: Glycerol (1:1) (5 mol%) was tested in 
the conversion of 1b into 2b in the conditions described above (Table 3, 
entry 2). After the reaction was completed, ethyl acetate was added to 
the crude together with a small amount of water. The components of the 
eutectic mixture are very soluble in water and insoluble in ethyl acetate, 
in which the synthesized carbonate is soluble instead. The organic phase 
was collected to recover the product while the aqueous phase was 
collected to recover the catalyst after removal of water by distillation. 

The recovered catalyst was used for next run without further purifica
tion. The catalyst could be recycled over four times without appreciable 
loss of catalytic activity (Fig. 3). 

4. Conclusion 

Herein sustainable catalysts composed by eutectic mixtures of 
choline salts and various bio based HBDs have been proved to be 
effective and recyclable catalysts for the synthesis of terminal cyclic 
carbonates from CO2 and epoxides. The HBD, coupled with a choline salt 
has a dual role: 1) to form an eutectic mixture with the choline salt, 
soluble in the starting materials in our reaction conditions; 2) to be the 
co-catalyst in the cycloaddition reaction, being able to stabilize the 
alkoxide intermediate a (Scheme 1). Very good conversions of various 
terminal epoxides into the corresponding cyclic carbonates were ob
tained with choline chloride and choline iodide-based catalysts. With 
both catalysts carbonatation reactions were conducted under solvent- 
free conditions, at 80 ◦C, in 7–22 h. While using choline chloride- 
based mixtures, a pressure of 0.4 MPa of CO2 was required to obtain 
appreciable conversions, with iodide-based mixtures atmospheric pres
sure of CO2 (balloon) has been successfully used. 

The novelty of the present work in the wide panorama of previous 
studies about choline-based, ionic liquid- or DES- based catalysts is 
represented by the very mild conditions used (atmospheric CO2 pressure 
and temperature below 100 ◦C) and the simplicity of the catalysts used. 
In fact, the use of these mixtures presents several advantages: they are 
very easily synthetized from commercially available, inexpensive and 
bio-based, non-toxic chemicals and do not require any particular puri
fication step. 
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