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A B S T R A C T   

Minoan Linear A is still an undeciphered script mainly used for administrative purposes on Bronze Age Crete. 
One of its most enigmatic features is the precise mathematical values of its system of numerical fractions. The 
aim of this article is to address this issue through a multi-stranded methodology that comprises palaeographical 
examination and statistical, computational, and typological approaches. Taking on from previous analyses, 
which suggested hypothetical values for some fractions, we extended our probe into assessing values for some 
problematic ones. The results achieved, based, on the one hand, on a close palaeographical analysis and, on the 
other, on computational, statistical and typological strategies, show a remarkable convergence and point towards 
a systematic assignment of mathematical values for the Linear A fraction signs. This contribution sets the agenda 
for a combinatorial, novel, and unbiased approach that may help advance our comprehension of some standing 
issues related to ancient undeciphered writing systems.   

1. Introduction 

The aim of this paper is to shed light on the mathematical values of 
the Linear A writing system through a multi-stranded computational, 
statistical, typological, and palaeographical method. Linear A is a logo- 
syllabic script, still largely undeciphered, used on the island of Crete ca. 
1700-1400 BC (Duhoux, 1989). Together with Cretan Hieroglyphic, it is 
one of two writing systems created by the Minoan civilisation, which 
thrived during the Bronze Age. Upon its template, the Mycenaeans later 
created the Linear B syllabary to register their dialect of ancient Greek. 
Today, the Linear A corpus comprises more than 7400 signs on 1527 
inscriptions, 90% of which are clay documents of administrative nature, 
such as tablets, roundels, and nodules (Del Freo; Zurbach, 2011). 

As for numerical notations, Linear A employs a decimal system, with 
signs representing four magnitudes: units are written with vertical 
strokes, tens with horizontal strokes or dots, hundreds with circles, and 
thousands with circles surrounded by strokes. The system is cumulative 
and additive, and numbers are written from left to right with the powers 
in descending order: thus, e.g. ‘6352’ would be written with six ‘1000’ 

signs, three ‘100’, five ‘10’ and two ‘1’. Linear A also includes a set of 17 
signs that stand for fractions (Fig. 1). They are transcribed via capital 
letters: A, B, D, E, F, H, J, K, L, L2, L3, L4, L6, W, X, Y, and Ω (Godart and 
Olivier, 1985). Signs L2, L3, L4, and L6 have numbers because they 
consist of a basic semi-circular or triangular shape, called L, to which 
two, three, four, and six horizontal strokes (or dots) are added. However, 
the status of the basic L as a self-standing sign is uncertain, since it only 
appears joined to L2 (ZA 11a.4) and in other doubtful instances.2 The 
shape was not considered as an independent sign by Bennett (1950, p. 
206, Fig. 1; 1980), but it was distinguished in the standard Linear A 
corpus (Godart and Olivier, 1985) and later studies have treated it as a 
variable (Perna, 1990; Facchetti, 1994; Cash and Cash, 2011). 

To shed light on the values of the fractions, we had to select a 
coherent epigraphical sample. It needs to be noted that the evidence at 
our disposal is not equally consistent for all sites and periods (Middle 
Minoan II, Middle Minoan III, and Late Minoan I), and thus it is not 
possible to conduct a regional and diachronic development study. We 
therefore focused on a specific set of Linear A material, which is more 
substantially represented, dated to the Late Minoan I period (ca. 1600- 
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1450 BC), and more largely distributed in the west (Khania), central 
(Knossos, Tylissos, and Hagia Triada), and eastern portions of the island 
(Petras and Zakros). 

Fraction signs are mainly attested on records of commodities (ce-
reals, figs, wine, etc.), which are expressed using logograms that 
implicitly refer to units of measurement. Their amounts are represented 
by horizontal or vertical sequences of fraction signs, placed directly after 
the commodity if they were lower than one, and after signs for whole 
numbers if they were higher (e.g. OLIV 1 E in tablet HT 21.4). This shows 
that the notation of fractions was cumulative-additive and in descending 
order like the integers, with the larger values written to the left or above 
the smaller. At times, fractions appear also ligatured to commodity 
logograms, probably denoting fractions of the implicit unit of mea-
surement (Tables 1 and 2). 

Since Linear A seems not to have had distinct signs for units of 
measurement, except for weight AB 118, we cannot be sure if dry and 
liquid products were measured according to the same or different units 
(Schoep, 2002, p. 33). Nevertheless, on the ground of the comparison 
with other (ancient and modern) systems of measurement, the use of the 
unit of weight AB 118 for a limited range of products, and attestations of 
logograms ligatured with fractions, it seems more likely that different 
units of measurement were used depending on the nature of the products 

and the method and tools implied to measure them. In this case, the 
absolute quantities measured would have changed, but not the relative 
mathematical value of the fraction signs used to point them out. As no 
Linear A inscription containing totals of numeral phrases is without 
reading or calculation problems (Montecchi, 2009, 2013), it is difficult 
to deduce these mathematical values. This has led to diverging deci-
pherment attempts, summarised in Table 3. 

Bennett (1950, 1980; 1999) hypothesised that most Linear A fraction 
signs stood for fractions with numerator ‘1’ (1/2, 1/3, 1/4, etc.) via a 
comparison with the contemporary Egyptian script. He hypothesised 
their values through the frequency of signs and their combinations 
(Tables 1 and 2). With J as the most frequent sign both per se and as part 
of combinations, Bennett proposed its value to be 1/2. Since E is the 
second most common sign, and J is written above it or to its left, the 
notion that E = 1/4 still holds. Three Linear A texts support Bennett’s 
interpretation of J, E, F, as follows: 

Clay tablet HT 104 (Fig. 2): Contains a sum and its total: 45 + J + 20 
J ̣ + 29 = 95. We deduce that J = 1/2, assuming the damaged J cannot be 
followed by any additional fractional sign (cf. Bennett, 1980, p. 16; 
Facchetti, 2012). 

Clay tablet PE 1: Contains two entries, namely a sign-group followed 
by the logogram VIR/MUL (people) plus numerals, and the logogram 

Fig. 1. Linear A fraction signs and their standard transcription.  

Table 1 
Number of attestations of Linear A fraction signs on their own, as part of com-
binations, and in ligatures with logograms, based on the standard corpus (Godart 
and Olivier, 1985) and inscriptions published later. Uncertain readings are 
excluded from this table, which includes attestations from doubtful Linear A 
inscriptions (*180+B and *180+SA + B from tablet MA 4, and HHH from CHIC 
#068.r.A) that were not used in Simulation 2 (see Section 3). Combination A A 
follows our reading of tablet KH 86.2 (Godart and Olivier, 1976b, p. 101, read A 
B B).  

Single (also 
next to 
fracture) in 
numeral 
phrases 

Combination in 
numeral phrases 

Logogram + single Logogram +
combination 

J 101 J E 24 *303+D 20 GRA + K + L2 3 
E 52 D D 14 *303+E 12 GRA + L3+L3 1 
B 21 B B 5 GRA + F 4   
K 21 E F 5 *412VAS + E 3   
D 19 K L2 5 GRA + B 2   
H 15 E L2 3 *180+B 2   
A 13 J B 3 *412VAS + F 2   
F 9 J E L2 3 GRA + E 1   
L2 6 J L2 2 GRA + H 1   
W 4 A A 1 GRA + L2 1   
X 2 D D D D 1 *180+SA + B 1   
L3 2 E B 1 *303+K 1   
Y 1 E L4 1 *405+ Ω 1   
L 0 E L6 1 *4̣1 ̣4̣VAS + F 1   
L4 0 F K 1 *417VAS + L2 1   
L6 0 H H H 1 *418VAS + L2 1   
Ω 0 J A 1       

J E B 1       
J F 1       
J H 1       
J K 1       
L L2 1       
L2 L4 1       
Y Y Y 1      

Table 2 
Total number of attestations of Linear A fraction signs, based on the standard 
corpus (Godart and Olivier, 1985) and inscriptions published later.  

Sign J E D B K L2 F H A 

Total attestations 137 105 68 36 32 26 23 19 15 
Sign W Y L3 L4 L6 X L Ω  

Total attestations 4 4 3 2 2 2 1 1   
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GRA + PA (PA specifying the kind of cereal) plus numerals. The second 
entry registers 72 people and 36 GRA + PA, suggesting that each person 
is assigned or contributes 1/2 of grain. The same proportion appears in 
the first entry, where 50[ (i.e. 50 plus something) people are registered 
along with 26 J of GRA + PA. In this case, 26 J corresponds to 26 + 1/2 
and the damaged count of people is to be restored as double this amount, 
hence 53 (Tsipopoulou and Hallager, 1996). This supports the deci-
pherment of J as 1/2. 

Graffito on stucco HT Zd 156: Contains the inscription *319 1 *319 1 
J *319 2 E *319 3 E F tạ̣-jạ̣ K [. Sign *319 (I) is a possible separator and, if 
we consider only the numerical signs, we read 1, 1 J, 2 E, 3 E F. Next is 
the damaged syllabic sequence tạ̣-jạ̣ (though the doubtful tạ̣ may also be 
another instance of *319), fraction K, and, finally, a crack in the plaster. 
If we apply the value deduced for J (1/2) and those proposed for E and F 
(1/4 and 1/8), we obtain three steps of a geometric progression where 
each value is the previous one multiplied by 1.5: 1, 1+J = 1.5, 2+E =
2.25, 3+E + F = 3.375 (Pope, 1960, p. 204). The remainder of the 
inscription has been interpreted as another step in the progression, 5 +
1/16 (= 5.0625). In this way, K would be 1/16, but this relies on the 
questionable phonetic spelling of ‘five’ (tạ̣-jạ ̣) (Olivier, 1992). 

Given the difficulties in deciphering the mathematical values of the 
fractions uniquely through an analysis of the Linear A texts, we propose 
a new multi-stranded method for narrowing down their possible values. 
We combine logical constraints inferred from epigraphy (even if the 
Minoan scribes did not follow rules consistently), typological patterns 
garnered from numerical notations around the world, and computa-
tional approaches. Moreover, while previous studies have also included 

data from problematic inscriptions, we avoided uncertain readings as 
our starting point. 

2. Methods 

2.1. Points of departure for narrowing down the mathematical values of 
the signs 

We can deduce a set of premises constraining the possible mathe-
matical values of the Linear A fractions signs, as follows:  

(1) The values of J, E and F are 1/2, 1/4 and 1/8, respectively.  
(2) Combinations of fractional signs are additive.  
(3) The same fractional value cannot be represented by more than one 

sign, or by both a sign and a combination of signs. Although the 
opposite is possible, this premise assumes that the Linear A sys-
tem of fractions was economical. Conversely, we cannot exclude 
that more than one combination of signs expressed the same 
value. One implication is that Linear A would feature no special 
sign for 3/4, because this value is conveyed by J E (= 1/2 + 1/4). 

(4) Any fractional sign or sum of combined fractions (Table 1) in a nu-
meral phrase is less than 1. In numeral phrases containing signs for 
whole numbers (e.g. 9 J E B), any fractional signs equalling or 
surpassing a unit should be represented using signs for integers. 
This may have exceptions, as sometimes amounts may be notated 
cumulatively, without being totalled (e.g. J J possibly attested on 
tablets PH 9b and 22a, and E E possibly attested on PH 12.b and 

Table 3 
Mathematical values previously proposed for Linear A fraction signs and the inferable results for combinations. Bennett (1950) proposed D = 2/3 and D D = 1/6 but 
suggested that these assignments might be inverted by later investigations.  

Fraction Bennett (1950) Stoltenberg (1955) Was (1971) Facchetti(1994) Younger (2000–2020) Cash and Cash (2012) Schrijver (2014) 

J 1/2 1/2 1/4 1/4 1/2 1/2 1/2 
E 1/4 1/4 1/2 1/2 1/4 1/4 1/4 
B 1/12? 1/6 1/6 1/10 1/3? 1/5 1/6 
K <1/8 1/10   1/16 1/16? 1/16 
D 2/3 1/5   1/5? 1/6 1/5 
H 1/3 1/3   1/6? 3/10 1/3 
A <1/4 1/12   1/6? 1/20 1/12 
F 1/8 1/8 3/8 3/8 1/8 1/8 1/8 
L2 <1/4 1/9    3/20? 1/24? 
W       = BB?  
X      9/20  
L3      1/10 or 3/40? 1/36? 
Y        
L      >3/20 (17/40?)  
L4      3/40 or 1/40? 1/48? 
L6      1/80? 1/64? 
Ω        
J E 3/4 3/4 3/4 3/4 3/4 3/4 3/4 
D D 1/6 2/5   2/5? 1/3 2/5 
B B <2/4  1/12 1/12 2/3? 2/5 2/6 = 1/3 
E F 3/8 3/8 7/8 7/8 3/8 3/8 3/8 
K L2 <2/4     17/80? 5/48 
E L2 <2/4     2/5? 7/24? 
J B <3/4 2/3 5/12 7/20 5/6? 7/10 4/6 
J E L2 <1     9/10? 19/24 
J L2 <3/4 11/18    13/20? 13/24 
A A <2/4    2/6? 1/10 1/6 
D D D D 2/6 = 1/3 4/5   4/5? 2/3 4/5 
E B <2/4  2/3 3/5 7/12? 9/20 5/12 
E K <2/4 9/40   3/16 3/16? 3/16 
E L4 <2/4     13/40 or 11/40? 13/48? 
E L6 <2/4     21/80? 17/64? 
F K <3/8 7/20   3/16 3/16? 3/16 
H H H 1 1   1/2? 9/10 1 
J A <3/4 7/12   4/6? 11/20 7/12 
J E B <1 11/12 11/12 17/20 1 + 1/12? 19/20 11/12 
J F 5/8 5/8 5/8 5/8 5/8 5/8 5/8 
J H 5/6 5/6   4/6? 4/5 5/6 
J K <3/4 3/5   9/16 9/16? 9/16 
L2 L4 <2/4     9/40 or 7/40? 3/48  
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13.a.c, but these were excluded from our sample because they 
date to the Middle Minoan II period).  

(5) Any fraction is larger than the fraction placed to the right or below it. 
Accordingly, unproblematic inscriptions show the following re-
lationships: J > E > F > K > L2 > L4; J >A; J >H; E > B; L 
(?) > L2.3  

(6) The L series is divisive, so that e.g. L2 = L/2 (whatever the value of 
“L” is). We follow the premise that signs in this series are me-
chanically related: i.e. strokes or dots are added as modifications 
of the same basic value “L” (Schrijver, 2014, p. 22). Yet, the 
relationship cannot be multiplicative or additive, as that would 
imply L4 > L2 and L2 > L, which violates Constraint (5). A sub-
tractive mechanism can also be discounted because subtractions 
would lead to negative values. If we agree that the L series should 
be divisive, there would be various ways to design a divisive se-
ries, but the only solutions that appeared to show any reasonable 
sense are two: one with a divisive value to the horizontal lines 
(hl) = 10 (L2 = L/20, L3 = L/30, …) and the other with hl = 1 
(L2 = L/2, L3 = L/3, …). One can certainly devise a series giving 
other divisive values to the horizontal lines (hl = 2, 3, 4, 5 …), but 
this method will produce L series with implausible values. During 
the development of our work, we considered these two possibil-
ities, but for hl = 10 it would be very problematic to explain the 
absence of one single horizontal line (meaning L/10). Conversely, 
if hl = 1, it makes sense that we do not have L/1 (which would be 
equal to itself). For this reason, we chose the L-series with hl = 1. 

2.2. A solution-driven approach through constraint programming 

The literature on computational approaches to writing systems is 

substantial (e.g. Sproat, 2000; Rao et al., 2009; Winters and Morin, 
2019; Miton and Morin, 2019). Their application has led, for instance, to 
the decipherment of ratios in the metrological systems of Mesopotamian 
proto-cuneiform (Nissen et al., 1993). In this light, and to a similar end, 
we applied constraint programming to the Linear A fractions. This is a 
paradigm that allows us to express constraints over variables and find 
solutions that satisfy them. Thus, we represented Constraints 1–6 for the 
values of Linear A fractions in mathematical form and let the solver find 
the possible assignments for the signs. Even if these techniques try to 
reduce the search space, the general problem remains difficult to solve 
computationally, with solutions found only for a limited number of 
variables and constraints. We expressed the problem by means of the 
MiniZinc constraint programming language (Nethercote et al., 2007) 
and the Gecode solver (Gecode Team, 2006). 

2.3. Establishing the set of variables 

Unfortunately, no constraints help narrowing down the values of W 
and X. Since their shapes would appear to double the shapes of B and A 
(Fig. 1), respectively, they may be identical to the combinations B B and A 
A (Godart and Olivier, 1985, p. xxi, n. 2) (Fig. 1). Therefore, we did not 
include them in our analysis. Y and Ω were also excluded because they are 
rare signs (Table 1), used only in very early inscriptions,4 and our focus, 
as stated at the outset, is the bulk of the material dated to Late Minoan I. 

2.4. Defining the possible values: a typology-based approach 

Constraint programming requires us to select possible sign values, 
considering that larger sets lead to a higher number of solutions and 
more computation time. Thus, we limited the number of possibilities in 
three ways: (1) by defining a range 1/2 … 1/n for fractional values of 
numerator ‘1’, where n represents the lowest reasonable denominator; 
(2) by excluding implausible values within the range 1/2 … 1/n; (3) by 
including a limited number of plausible values with numerator(s) other 
than ‘1’. 

To achieve this, we resorted to typology. Linear A comprises fraction 
signs not based on the shapes used for whole numbers (henceforth 
‘special signs’), even though L2, L3, L4 and L6 have horizontal strokes or 
dots that match exactly the shape of the signs that stand for the tens, 
taken as possibly meaning ‘part 20’, ‘part 30’, ‘part 40’, ‘part 60’ 
(Schrijver, 2014, p. 22). This use of special signs makes Linear A com-
parable to ten other systems of fraction notation attested in the world 
(see Appendix A): they include four Egyptian systems (hieroglyphic, 
hieratic, ‘Eye of Horus’ and demotic), as well as Mesopotamian cunei-
form (Old Akkadian/Old Babylonian phases), Greek alphabetical, Coptic 
alphabetical, North African Fez/Rumi, the ‘vulgar’ Arabic system, and 
Indian Grantha. Notably, Linear B is not included, since it does not 
comprise signs for fractions, but only units of measurement (see below 
section 5). As the lowest fraction represented by a special sign in the 
world is 1/320 (Grantha), we fixed the range of fractions at 1/2 … 
1/320. We also included three typologically attested values with higher 
numerators, 5/6, 3/4, and 2/3. However, due to Constraint 1 we 
removed 1/2, 1/4 and 1/8 (represented by J, E, and F, respectively), as 
well as 3/4 (represented by J E). This range comprises 318 possible 
values, a figure that could make computation time-consuming and 
produce many implausible solutions. 

Yet it would be restrictive to reduce the set of possibilities to the 
typologically attested values: 5/6, 2/3, 1/5, 1/6, 3/20, 1/10, 1/16, 1/ 

Fig. 2. Linear A clay tablet HT 104 (Courtesy of the Heraklion Archaeological 
Museum and the Greek Ministry of Culture and Sport, Archaeological Re-
sources Fund). 

3 Possible exceptions: tablets HT 123a.3–4 and ZA 8.4 contain doubtful but 
possible cases of E J, which stand in contradiction to 28 examples of J E 
(Table 1). 

4 Y is only used twice on fragmentary inscriptions (PH 9a and 26) dated to the 
end of Middle Minoan II (ca. 1700 BC), once in the combination E Y Y Y, thus 
possibly implying that Y < 1/4. Ω is only attested on a doubtful Cretan Hiero-
glyphic or Linear A inscription (MA 10b.1) dated to Middle Minoan III (ca. 
1700/1650-1600 BC). In fact, Ω is identical in shape to the Cretan Hieroglyphic 
fraction sign 304 Λ (Godart and Olivier, 1985, p. xxi, n. 2). 
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20, 1/32, 1/40, 1/64, 1/80, 1/160, 1/320. Only two systems in our 
sample, the base-2 ‘Eye of Horus’ and the base-20 Grantha, comprise 
values lower than 1/10, but all systems in our sample contain fewer than 
the 13 signs of Linear A. Hence the Linear A fractions, which certainly 
included values smaller than 1/10, may have had a different base. 
However, we can infer the range of plausible fractional bases and in-
crease the set. All numerical notations in the world use a base of 10 or its 
multiples (base-20 and base-60 are attested) for representing natural 
numbers, and when they use sub-bases, these are divisors of the base 
(sub-bases 5 and 10 are attested) (Chrisomalis, 2010). Fraction systems 
do not necessarily use the same bases as the integers, but the only such 
case known to us, the base-2 ‘Eye of Horus’ system, still uses a divisor of 
10 (see Appendix A). 

To cover all possibilities we included: all typological values, including 
the base-2 values of the ‘Eye of Horus’ and those of base-20 Grantha; all 
powers of 10, and all products of 10 and the sub-bases 2 and 5; all mul-
tiples of 10 up to 100; sexagesimal values as represented by the divisors of 
240 (as 1/360 is excluded from our range) and the multiples of 12 (a 
possible sub-base of 60) up to 120; and 1/7 and 1/9, whose odd de-
nominator (following Schrijver, 2014, p. 21) is a possible cause for the 
lack of combinatorial power of sign D (which is only ever combined with 
itself). Thus, our set comprises: 5/6, 2/3, 1/3, 1/5, 1/6, 3/20, 1/7, 1/9, 
1/10, 1/12, 1/15, 1/16, 1/20, 1/24, 1/30, 1/32, 1/36, 1/40, 1/48, 1/50, 
1/60, 1/64, 1/70, 1/72, 1/80, 1/84, 1/90, 1/96, 1/108, 1/100, 1/120, 
1/160, 1/200, 1/240, 1/300, 1/320. We do not expect A, B, D, H, K to be 
very low fractions, because A, B, H, and K all combine with J, so the 
magnitude of their denominators should not be very disparate, and D is 
the third most attested sign. Moreover, B and K are higher than L2 
(Constraint 5), which in turn must be equal or higher than 1/107, because 
L2 = L6*3 (cf. Constraint 6) and the lowest possible fraction in our 
computation is 1/320, hence L2 ≥ (1/320)*3 = 3/320 ≈ 1/107. 

We were even less restrictive with the possibilities for the L series. 
The series must contain some of the lowest fractions, as Constraints 1 
and 5 imply that L2, L3, L4, and L6 are smaller than 1/9 (L4 < L2 < K <
F = 1/8). At the same time, according to Constraint 6, the series L, L2, 
L3, L4 and L6 is constructed in a specific divisive relationship: x, x/2, x/ 
3, x/4, x/6. This means that L3 must equal L2*1.5 and typological values 
are not helpful: no two signs lower than 1/9 in the ‘Eye of Horus’ or the 
Grantha systems have values in such proportion, so by logic L, L2, L3, L4, 
L6 cannot mirror them exactly. Thus, we defined all values between 1/2 
and 1/320 as possible for the L series. 

3. The status of sign L 

The scarce epigraphic evidence for L (Section 1) casts doubt on its 
status. Is it really an independent sign or is its only certain attestation (in 
a strange palaeographical combination LL2) something anomalous? To 

address this issue, before proceeding with our analysis, we performed 
two tests. 

3.1. Correlation between frequency and number of common divisors of 
fraction signs 

Bennett argued that the signs with the highest fractional values 
(lower denominator) in Linear A tend to be most frequent by themselves 
and in combinations. There is a mathematical basis to this. In a set of 
fractional signs that are combined to express certain values, like the 
Linear A one, the denominator of a given fraction is potentially a divisor 
of the denominators of other fractions represented in the set: for 
example, 1/2 equals 2*1/4, 3*1/6, 4*1/8, 5*1/10, … (and, as a fraction, 
1/2 is a multiple of the other fractions). Therefore, it is not just because 
1/2 has a low denominator that it is so frequent. Rather, it is because ‘2’ 
is a divisor of several numbers—indeed, all even numbers. The more 
common divisors a given fraction has within a system, the more it will be 
able to render other values. As a result, any fraction higher than 1/2, 
that is, 1/2+n, can generally be written with a sign standing for 1/2 plus 
only one or two more signs (depending on the value of n and the values 
represented in the system). This also means that even if the Minoans 
rarely used 1/2 by itself to measure goods, they could still employ a sign 
standing for it to express other fractions corresponding to 1/2+n. Thus, 
in such a notation system we will observe a correlation between the 
number of common divisors of a fraction and the frequency of use of that 
same fraction. 

This principle helps address the problem of the near-absence of L: we 
can estimate how frequent this sign should be, based on the number of 
common divisors for its value in any solution produced through constraint 
programming. Thus, after performing a first simulation (Simulation 1, 
with 2,172,836 solutions), we sorted the total attestations of each Linear A 
fraction sign (Table 1) listed in decreasing order. Given any solution, we 

Table 4 
Correlation between attestations and common divisors in 10 random solutions from Simulation 1. Signs are considered to have an anomalous rank (marked by **) if 
after E they deviate substantially from the descending order of values in terms of number of common divisors.  

Sign Total attestations Number of common divisors for each solution 

Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5 Sol. 6 Sol. 7 Sol. 8 Sol. 9 Sol. 10 

J 138 11 11 10 10 10 11 11 10 10 10 
E 105 6 6 6 8 6 8 8 8 7 6 
D 68 6 *1* *0* 6 *0* *0* 3 *1* 5 3 
B 36 6 6 6 2 5 4 2 *0* 2 2 
K 32 5 5 5 2 3 3 2 2 2 *5* 
L2 26 2 2 2 2 2 2 2 2 2 2 
F 23 2 1 3 *5* 1 3 *5* *5* *3* *5* 
H 19 1 *0* *0* *0* 2 *0* *0* *0* *0* 2 
A 15 *0* 1 1 *5* 0 *0* *5* *0* *0* 0 
L3 3 1 1 1 1 1 1 1 1 1 1 
L4 2 0 0 0 0 0 0 0 0 0 0 
L6 2 0 0 0 0 0 0 0 0 0 0 
L 1 *4* *4* *4* *4* *4* *4* *4* *4* *4* *4*  

Table 5 
Probability and significance values for the attestations of Linear A signs L and L6.   

Attestations 
of L 

P-value (signif.4) Attestations 
of L6 

P-value 
(signif.) 

Real attestations 1 4 * 10− 12 (***) 2 0.029 (− ) 
Hypothetical 

attestations 
2 2 * 10− 11 (***) 3 0.068 (− ) 
5 2 * 10− 9 (***) 5 0.254 (− ) 
10 7 * 10− 7 (***)   
15 0.00004 (***)   
20 0.00008 (***)   
26 0.010 (*)   
30 0.037 (− )   
35 0.124 (− )   

4 (***) p < 0.0001; (**) 0.0001<p < 0.001; (*) 0.001<p < 0.01; (− ) p > 0.01, 
no statistical significance. 
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computed for each Sign Assignment (e.g. sign J = 1/2) the number of other 
Sign Assignments (e.g. E = 1/4, F = 1/8, …) that can be considered a di-
visor of the latter, producing a list of divisors for each sign. 

Table 4 illustrates the correlation in terms of attestations and number 
of common divisors of the signs for 10 solutions selected randomly from 
Simulation 1. Some signs (D, B, F, H, A) display anomalous ranks in 
terms of common divisors in certain solutions, but L is always very 
anomalous in this regard. This implies that if L were the highest member 
of a divisive L series, and regardless of its exact value, it would not be as 
rare a sign as it is. 

For every solution, we used the Spearman’s Rank Correlation Coef-
ficient (SRCC) to measure the correlation between the two ranks—fre-
quency (f) and number of common divisors (ncd). This measure, 
G_FreqVSDiv = 1-SRCC(f,ncd), revealed that the lower (best) value for 
any solution in Simulation 1 was 0.14284. We performed a second 
simulation (Simulation 2) with the exclusion of L from the set. This 
simulation showed 3,794,740 solutions, of which 394,905 have values 
lower than 0.14284 (the better ones approach 0.00881, which is 16 
times better), confirming that the correlation is more respected when L 
is not treated as an independent sign. 

3.2. Implausible frequency of L 

The second test focuses also on the number of common divisors of L in 
any given solution. Considering the divisive relation between the signs in 
the L series (Constraint 6), we observe the following: whatever the 
number of divisors of L2 is, say nL2, L has a number of divisors at least 
equal to nL2+2, because it is also divisible by L2 and by L3 (which in such 
a series cannot be a divisor of L2). Thus, we can use Pearson’s χ2 
goodness-of-fit statistical test to evaluate whether the difference between 
the expected and observed frequencies of L is statistically significant. 

For our analysis of the frequency of L, we considered only the 
number of common divisors for signs within the subset L, L2, L3, L4, L6. 
Given Constraints 1–6, only other five signs (A, B, H, as well as prob-
lematic W, X) could conceal additional divisors of L and L2, and their 
existence would not dramatically change the ratio between the number 
of divisors of L and L2. It would be surprising if they were all additional 
divisors of the L series (e.g. L8 or L10) while not featuring the basic semi- 
circle shape. 

Considering the number of divisors of L and L2 within the L series, 
the probability of finding signs L and L2 when excluding all other signs 
is: P(L) = 2/3, P(L2) = 1/3. Table 5 shows the results of the test, 
including the probability values and the level of statistical significance 
(i.e. likelihood of the outcome not being random) for the real observed 
occurrences and for some hypothetical ones, if more instances of L and 
none of L2 were to be found. We use 0.01 as a threshold of statistical 
significance: p-values lower than 0.01 show a statistically significant 
discrepancy between the expected distribution and the observed 
frequencies. 

This statistical test strongly supports our argument that the proba-
bility of having frequency L = 1 is so low that it cannot be due to chance. 
Applying the same analysis to L2 and L6 gives us a P(L6) = 1/4, with P- 
values for the significance test as also shown on Table 5. This shows that 
the occurrence of L6 is not so improbable as to be statistically signifi-
cant, and that our line of reasoning applies equally to all L series signs. 

In conclusion, in light of the frequencies of the signs, the semi- 
circular shape is unlikely to correspond to a self-standing entity “L” if 
the L series is divisive ((L >) L2 > L3 > L4 > L6), for mathematical rea-
sons as well as epigraphic ones, since its reading is uncertain. We 
therefore propose that the sign shape documented as “LL2” is anomalous 
and thus exclude L from our analysis. 

4. Results 

4.1. Rationalisation of the set of solutions 

Using Constraints 1–6 and excluding W, X, Y, Ω and L, Simulation 2 
still yielded 3,794,740 solutions. Clearly a constraint-based approach 
cannot decipher the values of Linear A fraction signs on its own, mainly 
because the system is severely underconstrained. While this high figure 
encompasses all valid assignments of values for our set of 12 signs (J, E, 
F, K, D, B, H, A, L2, L3, L4, L6), not every solution fits the existing ev-
idence equally well. To narrow them down, we evaluated each solution 
according to four measures of goodness: 

Measure 1. Correlation between frequency and number of common 
divisors (G_FreqVSDiv) 

Introduced in Section 3.1. It measures each solution according to 
how suitable the frequency rank of its signs is when correlated to their 
number of common divisors within the same solution. 

Measure 2. Attested ambiguity (G_AmbCombs) 

No system of notation is operational if its signs are characterised by a 
high degree of ambiguity, so we do not expect the values of the fraction 
signs to produce a high number of redundant combinations. For any given 
solution, this measure counts the number of cases in which two attested 
combinations (Table 1) would yield the same fractional value. The higher 
the number of cases of attested ambiguity, the less likely the solution. 

Measure 3. Typological probability of values (G_Typ) 

Worldwide, systems of notation of fractions show certain tendencies 
in terms of the mathematical values they expressed using special signs 
(Appendix A). For example, no system represents 1/7 or 1/9 with a 
special sign. Linear A fractions certainly included some values unat-
tested typologically, especially values lower than 1/10, if it used a 
fractional base different from the ‘Eye of Horus’ and Grantha systems. 
However, we do not expect a huge proportion of unattested values. For 
each solution we counted how many Sign Assignments are not typo-
logically documented; the fewer the assignments, the lowest (and 
therefore better) value it receives in this metric. That all solutions in 
Simulation 2 have at least two unattested values confirms that this 
measure is not too severe. 

Measure 4. Optimality (G_Optimal) 

In a first instance, this measures the ability of a system to represent 
the fractional values corresponding to its own fractional base, by 
counting the number of values that cannot be expressed by any sign or 
combination of at most four signs,5 within the range 1/2 through (D-1)/ 
D. The fractional base or range is derived from the smallest value present 
in the system: e.g. for a solution corresponding to a system of notation 
where the lowest fraction represented by a sign is 1/80, the limit is 
defined by D (denominator) = 80 and N (numerator) =D - 
1 = 80–1 = 79, hence 79/80. 

However, simply counting the number of unrepresentable values in a 
solution creates a bias: the measure would penalise solutions containing 
signs with higher denominators. In other words, a system of fractions 
with a range 1/2–79/80 (where 1/80 is the lowest value of a sign) will 
have fewer unrepresented values than one with a range 1/2–119/120 
(where 1/120 is the lowest value of a sign). Thus, to make our metric 
proportional to the range of each solution, we assigned a lower impact to 

5 We used at most four signs because this is the length of the longest com-
bination in the Linear A corpus (D D D D, Table 1). 
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fractions with a higher denominator: if the value 2/3 could not be 
notated, this was deemed more severe than if sign 59/60 could not be 
represented. For the calculation, we considered each possible denomi-
nator in a given solution and calculated the incompleteness metric with 
respect to each denominator through the formula 1/(D-1) *I (where I =
number of unrepresented values with denominator D). For example, a 
system lacking 2/3 (3 being a denominator placed in a line of the table 
that has only two slots, 1/3 and 2/3) will have the metric 1/(3–1) * 1 =
1/2 for denominator 3. The metric value was then normalised by 
dividing the sum of incompleteness measures across all denominators by 
the total number of denominators in the system (Table 6). 

G_Optimal also measures the ability of any system to represent its own 
fractional base while producing a minimum number of redundant values 
in the combinations of signs (regardless of whether the possible combi-
nation is attested in Linear A or not). The greater number of redundant 
additions a solution yields, the less efficient it is considered. We thus 
counted the number of fractional values from the range 1/2 through (D-1)/ 
D that can, in principle, be represented by more than one sign or combi-
nation of up to four signs in the system. The procedure used for measuring 

the ambiguous values was the same: the number of ambiguous values for 
each denominator D was divided by D-1. Then, the sum of all the ambi-
guity measures for every denominator was divided by the total number of 
denominators in the system (Table 7). This makes the impact of ambiguous 
values inversely proportional to their denominator (thus redundancy in 
expressing 1/3 is more severe than redundancy in the representation of 1/ 
30). Finally, to extract the G_Optimal value, the values of the incom-
pleteness and the ambiguity components were summed. 

The four measures described above were implemented at different 
stages, because G_Optimal could not be applied to the 3,794,740 solu-
tions of Simulation 2: its complexity makes it computable in a reason-
able timeframe only for a relatively small number of solutions. Thus, 
first we reduced the number of solutions by determining which 5000 had 
the best values of G_FreqVSDiv, G_Typ and G_AmbCombs. In practice, 
these represent the 5000 least problematic solutions in terms of 

Table 6 
Method for calculating measure G_Optimal for incompleteness (example: U=Unrepresented, R =Repre-
sented). 

Table 7 
Method for calculating measure G_Optimal for ambiguity (example: U=Unambiguous, A = Ambiguous). 
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correlation between frequency and number of common divisors for each 
fraction sign, presence of typologically unattested sign values, and am-
biguity between attested combinations of signs. Thus, the individual 
results for these three measures were multiplied6 to achieve a single 
metric (MULT) for each solution, and then we selected the 5000 solu-
tions with the lowest MULT value. Afterwards, G_Optimal was applied. 

4.2. Decimal-sexagesimal values for K and the L series 

Once the 5000 solutions were sorted according to G_Optimal, two 
displayed the best value (0.67094). In these two solutions, seven signs 
have the same assignments: B = 1/5, D = 1/6, K = 1/10, L2 = 1/20, 
L3 = 1/30, L4 = 1/40, L6 = 1/60; differently, H and A take the values 1/ 
32 and 1/36, and vice versa. Does this set of values represent the optimal 
solution? Since the results of our calculations depend on several vari-
ables, of epigraphical, typological, and mathematical nature, it is crucial 
to see consistency, namely how frequently they appear in the solutions 
displaying the lowest G_Optimal. 

Assignments K = 1/10, L2 = 1/20, L3 = 1/30, L4 = 1/40, L6 = 1/60 
appear in the 48 solutions with the best G_Optimal metric (values between 
0.67094 and 0.75379) and in other 52 solutions, totalling 100 of the 5000 
possible systems filtered in the previous step. They yield a decimal- 
sexagesimal subset of fractions, in which the frequent combination K L2 
attains the mathematical value of 3/20, emerging from the sum of two 
fractions (1/10 + 1/20) whose denominators are both multiples of 10 and 
divisors of 60. The G_Optimal values of solutions containing these Sign 
Assignments strongly imply that they reflect the system best able to ex-
press values within its own fractional base (even discounting the values 
assigned to A, B, D, and H). In fact, it is clear that the L series is structurally 
important in the system, even if attested only 34 times (Table 2), because it 
combines not only with K, but also with the super-frequent J = 1/2 and 
E = 1/4 (Table 1). Thus, we filtered the 100 solutions containing K = 1/10, 
L2 = 1/20, L3 = 1/30, L4 = 1/40, L6 = 1/60. 

4.3. The values of D and B 

The majority (86) of the 100 solutions that comprise K = 1/10, 
L2 = 1/20, L3 = 1/30, L4 = 1/40, L6 = 1/60 also contain B = 1/5, 
D = 1/6, and this is the arrangement in the 28 solutions with the best 
G_Optimal metrics (0.67094–0.72676). These assignments rank far 
better and more consistently than the alternative B = 1/6, D = 1/5 (12 
solutions, G_Optimal ≤ 0.71724), B = 1/5, D = 1/12 (1 solution, 
0.79232) and B = 1/9, D = 1/6 (1 solution, 0.80510). This fact reflects 
the structural advantages of B = 1/5, D = 1/6 if the Linear A system had 
a decimal-sexagesimal base as determined by K = 1/10, L2 = 1/20 … 
L6 = 1/60. This is better illustrated by tabulating how the signs and 
combinations of signs attested in the Linear A corpus (Table 1) would 
have recorded the fractional values within the ranges 1/10–9/10, 1/ 
20–19/20, and 1/60–59/60 (Appendices B and C): 

If J = 1/2, E = 1/4, F = 1/8, K = 1/10, L2 = 1/20, L3 = 1/30, L4 = 1/ 
40, L6 = 1/60 and B = 1/5, D = 1/6:  

● Range 1/10–9/10: 1 value unattested.  
● Range 1/20–19/20: 3 values unattested.  
● Range 1/60–59/60: 35 values unattested, 1 uncertain (5/60 = 1/12 

might be represented by A A in solutions where A = 1/24). 

If J = 1/2, E = 1/4, F = 1/8, K = 1/10, L2 = 1/20, L3 = 1/30, L4 = 1/ 
40, L6 = 1/60 and D = 1/5, B = 1/6:  

● Range 1/10–9/10: 2 values unattested.  

● Range 1/20–19/20: 6 values unattested.  
● Range 1/60–59/60: 36 values unattested, 1 uncertain (5/60 = 1/12 

might be represented by A A in solutions where A = 1/24). 

Thus B = 1/5, D = 1/6 leads to fewer unattested values, especially in 
the decimal and vigesimal ranges. The latter would have been crucial to 
the Minoan scribes, judging from the greater frequency of K = 1/10 and 
L2 = 1/20 and comparatively scarce use of L3, L4 and L6. Moreover, 
since 5 is a divisor of 10 and 20, the sign representing 1/5 should 
combine often with other signs in such a system, and indeed sign B is 
relatively frequent in attested combinations (Table 1). 

4.4. The values of H and A 

The 28 solutions that contain B = 1/5, D = 1/6, K = 1/10, L2 = 1/20 
… L6 = 1/60 and the lowest G_Optimal values have these possible as-
signments for H and A:  

● H: 1/16, 1/24, 1/32, 1/36, 1/48, 1/64, 1/72, 1/84  
● A: 1/24, 1/32, 1/36, 1/48, 1/64, 1/72, 1/84 

The distribution of these assignments does not reveal any pattern, 
nor any arrangement repeating with a better G_Optimal metric. Those 
with the best value of optimality, H = 1/36, A = 1/32 and H = 1/32, 
A = 1/36 are not as consistent as the results achieved for B, D, K and the 
L series. Thus, specific values for H and A cannot be postulated through 
optimality. 

The key for the value of H may lie partly in systemics, partly in 
palaeography: the sign seems modelled or modified from the same 
crooked shape that is shared by J = 1/2, E = 1/4 and F = 1/8 (Fig. 1). If 
J, E, F and H formed an interrelated subset, then assigning H the value of 
1/16 would yield a binary series 1/2, 1/4, 1/8, 1/16. Notice that 1/16 is 
the only value possible for H (among the 28 most optimal solutions) that 
is not also possible for A. 

If H = 1/16, there are thus structural advantages in fixing the value 
of A as 1/24. While the arrangement H = 1/16, A = 1/24 has a worse 
G_Optimal metric than H = 1/16 and A = 1/36 or 1/64 or 1/72, the 
implications change if we consider as an element of the system also the 
combination A A (=X?). If A = 1/24, then A A = 2/24 = 1/12, and this 
last value would represent 5/60 = 1/12 in a system that can fraction up 
to 1/60 (Appendix C). There are two further structural arguments in 
favour of H = 1/16, A = 1/24: (1) these signs should not have very high 
denominators (Section 2.4), and 1/16 and 1/24 are their lowest possible 
values in these solutions; (2) along with the denominators of 1/2, 1/4, 
1/5, 1/6, 1/8, 1/10, 1/20, 1/30, 1/40 and 1/60, 16 and 24 are divisors 
of 240–and so is 12, the possible denominator of A A. In conclusion, 1/ 
16, 1/24 and 1/12 fit well in a fractional base involving a sexagesimal 
component, as the values of K and the L series show. 

5. Discussion 

Our results can be expressed by a simple hypothesis: given Con-
straints 1–6, if the Linear A fractions had values that are typologically 
attested or part of a typologically attested base or sub-base of numerical 
notations; and if Linear A fractions formed an optimal system, in which 
the documented combinations of signs represented the maximum 
number of values within its own fractional base, while at the same time 
generating a minimum number of redundant additions; then the correct 
values of Linear A signs comprise J = 1/2, E = 1/4, F = 1/8, B = 1/5, 
D = 1/6, K = 1/10, L2 = 1/20, L3 = 1/30, L4 = 1/40, L6 = 1/60 (Ta-
bles 8 and 9). The assignments H = 1/16 and A = 1/24 are tentative 
because they do not violate typology, but their optimality is not as 
consistent. 

Beyond the relatively consensual assignments for J, E, F, some values 
in our system had already been suggested (Table 3). Schrijver (2014, p. 
22) considered identical assignments for L2, L3, L4, L6 because these 

6 We multiply the three metrics because the multiplication is similar to the 
logical conjunction and we require that all the metrics have a low value, 
favouring balanced solutions. 
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signs comprise the same basic shape plus strokes of Linear A numerals 
‘20’, ‘30’, ‘40’ and ‘60’, but he assigned 1/24 to L2 from his reading of 
tablet HT 123b. This tablet, however, contains doubtful readings and 
scribal errors (Montecchi, 2009, pp. 37–38), thus we had to exclude it. 
Conversely, our approach, based on mathematical optimisation, has 
provided independent evidence for these values. 

Cash and Cash (2012) and Montecchi (2013) suggested D = 1/6 and 
B = 1/5. The latter value is supported by the proportion B:4 = J:10 
which may be inferred from tablet KH 7a. Previously, the value of D was 
proposed on two accounts that make its distribution very different: (1) it 
is never attested in combination with signs other than itself; (2) it occurs 
in double (D D) and quadruple (D D D D) combinations, though D D D is 
not attested. If D equals 1/5, then unattested D D D equals 3/5, which is 

not a problematic value; but if D equals 1/6, then D D D = 3/6 = 1/2, 
which can already be expressed by J. Thus, D as 1/6 might account for 
the absence of D D D, but this absence is not sufficient to exclude 1/5, as 
it might be accidental. Considering our optimal solutions, a potential 
disadvantage of D = 1/5 emerges from D D D D (attested once) = 4/5, 
which would express a value already reflected in J E L2 (attested three 
times) = 1/2 + 1/4 + 1/20 = 16/20 = 4/5. Yet, this cannot be proof that 
D = 1/5 is incorrect either because all possible solutions in Simulation 2 
have at least two redundant combinations. Schrijver (2014, p. 21) ar-
gues that the high frequency of D D demonstrates that D had an odd 
denominator and was probably 1/5, but this depends on his other as-
signments (H = 1/3, K = 1/16), which contrast with our results. 

The lack of combinatorial power of D cannot derive from the odd 
denominator of 1/5. The combinatorial ability of fraction signs is tied to 
their number of common divisors. In a system containing 1/5, 1/6, 1/10, 
1/20, 1/30, 1/40, and 1/60, the value 1/5 shows at least 1/10, 1/20, 1/ 
30 and 1/60 as common divisors, and 1/6 has common divisors in 1/30 
and 1/60. Hence, signs standing for 1/5 and 1/6 might combine with K, 
L2, L3, L4, and L6 to express higher fractional values. Combinations with 
other fractions are equally possible. For example, J+1/5 could be used 
to express 7/10 and, indeed, our results show that this combination 
corresponds to the attested J B (Table 1). We can therefore discard D 
being odd as a cause. In conclusion, its peculiar behaviour may have 
been due more to contextual than mathematical reasons. For example, 
D = 1/6 and the combinations D D = 1/3 and D D D D = 2/3 may have 
been used as a special subset of signs by the Minoan scribes. This would 
be consistent with our typological survey (Appendix A), which suggests 
that any system that has a special way of notating 1/6 also has a specific 
notation for 1/3 and 2/3. 

Table 8 
Optimal system of mathematical values for Linear A fractions.   

Optimal 
value 

Total 
attestations 

Single attestations in 
numeral phrases 

Common 
divisors 

J 1/2 137 101 10 
E 1/4 105 52 6 
D 1/6 68 19 2 
B 1/5 36 21 5 
K 1/10 32 21 4 
L2 1/20 26 6 2 
F 1/8 23 9 3 
H 1/16(?) 19 15 0 
A 1/24(?) 15 13 0 
L3 1/30 3 2 1 
L4 1/40 2 0 0 
L6 1/60 2 0 0  

Table 9 
Values of Linear A fraction combinations according to the proposed optimal system.   

Value Value in denominator10 Value in denominator 20 Value in denominator 40 Value in denominator 60 Attestations 

J E 3/4 – 15/20 30/40 45/60 24 
D D 1/3 – – – 20/60 14 
B B 2/5 4/10 8/20 16/40 24/60 5 
E F 3/8 – – 15/40 – 5 
K L2 3/20 – 3/20 6/40 9/60 5 
E L2 3/10 3/10 6/20 12/40 18/60 3 
J B 7/10 7/10 14/20 28/40 42/60 3 
J E L2 4/5 8/10 16/20 32/40 48/60 3 
J L2 11/20 – 11/20 22/40 33/60 2 
A A 1/12(?) – – – 5/60 1 
D D D D 2/3 – – – 40/60 1 
E B 9/20 – 9/20 18/40 27/60 1 
E L4 11/40 – – 11/40 – 1 
E L6 4/15 – – – 16/60 1 
F K 9/40 – – 9/40 – 1 
J A 13/24(?) – – – – 1 
J E B 19/20 – 19/20 38/40 57/60 1 
J F 5/8 – – 25/40 – 1 
J H 9/16(?) – – – – 1 
J K 3/5 6/10 12/20 24/40 36/60 1 
L2 L4 3/40 – – 3/40 – 1  

Table 10 
Comparison of Linear A fractions and Linear B units of measurement. The sign shape “L(n)” in the Linear A column represents the basic component in signs L2, L3, L4 
and L6.  

Linear A Linear B 

Fraction Sign shape Value Unit of measurement Sign Shape Value 

D D 1/3 *117/M 1/3 of LANA 

X = A A (?) 1/12 *116/N 1/12 of LANA 

K 1/10 *112/T 1/10 of highest dry unit 

L(n) 1/20–1/60 *111/V 1/60 of highest dry unit  
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There are also historical implications. Although Linear B was 
adapted from Linear A, the two scripts recorded quantities of com-
modities differently. Linear B employed no numerical fractions but used 
three special sets of logograms which stood for units of dry and liquid 
commodities and weights (Melena, 2014). Indeed, our optimal system of 
Linear A fraction values reveals possible relationships with the Linear B 
signs for measurements (Table 10):  

● The shape of the Linear A combination D D = 1/3 is identical to 
Linear B sign *117/M, which represents 1/3 of the largest weight 
measure for wool (*145/LANA).  

● The shape of Linear A K = 1/10 is identical to Linear B *112/T, which 
represents 1/10 of the largest dry capacity measure.  

● The shape of Linear A X, most probably equal to A A = 1/12, is 
identical to Linear B *116/N, which represents 1/12 of the largest 
weight measure for wool (*145/LANA).  

● The shape contained in the Linear A decimal-sexagesimal L series 
resembles Linear B *111/V, which represents 1/60 of the largest dry 
capacity measure. 

This implies that some Linear B signs for weights and measures may 
have been adapted from the Linear A fraction signs, and even though the 
two systems registered quantities differently, the Linear B system took 
inspiration from Linear A (cf. already Younger, 2005). It is not hard to 
imagine how the adaptation may have taken place. Measures were implicit 
in Linear A commodity logograms, and some of them were ligatured with 
fractional signs (Section 1): for example, GRA + F most probably meant 
roughly ‘one-eighth of the grain measure’. Some fractional signs in time 
were reinterpreted to note a certain part of a measure. The frequent use of 
K L2 as a measure for cereal (GRA) gives some support to the notion that 
the sign shapes of K and L(n) became associated with dry capacity mea-
sures, and the creators of Linear B may have reused them as such. Thus, it is 
striking to see a notable historical continuum with the redeployment of 
Minoan fractions in the Mycenaean measuring system. 

6. Conclusions 

The mathematical values of the Minoan Linear A fraction signs are 
still an object of scientific debate. This contribution set it as its main goal 
to unravel this issue through a novel perspective. Taking on from the 
state-of-the-art on the topic, we set out to address the values of Linear A 
fractions through: (1) a thorough palaeographical and epigraphic 
assessment of fraction signs as they appear on the tablets; (2) a constraint- 
based computational approach narrowing down the possible spectrum of 
values for each sign; (3) multiple tests on frequencies of signs and the 
plausibility of a problematic instance; (4) optimality-driven searches 
evaluating ambiguity and efficiency levels. The results achieved by 
applying these methods converge in a coherent and systematic fashion. 
The application of computational strategies in close combination with 
the traditional epigraphic analysis of texts have thus opened the way to 
notable progress in the assignment of values to the Linear A fraction signs, 
adding to previous efforts directed to this goal, and contributing to 
shedding new, unbiased and objective evidence on an important yet 
unresolved problem in the study of this undeciphered script. 
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Appendix A. Typological survey of systems of fraction notation that use special signs  

Feature Old Akk./Old Bab. 
cuneiform 

Egyptian 
hieroglyphic 

Egyptian 
hieratic 

‘Eye of 
Horus’ 

Demotic Greek 
alphabetical 

Coptic 
alphabetical 

Fez/ 
Rumi 

‘Vulgar’ 
Arabic 

Grantha 

5/6 x    x    x  
3/4  x       x x 
2/3 x x x  x x x x x  
1/2 x x x x x x x x x x 
1/3 x  x  x   x x  
1/4   x x x   x x x 
1/5          x 
1/6     x    x  
3/20          x 
1/8    x     x x 
1/10          x 
1/16    x       
1/20          x 
1/32    x       
1/40          x 
1/64    x       
1/80          x 
1/160          x 
1/320          x 
Signs based on 

integers 
x x x  x x x x x  

References: Old Akkadian/Old Babylonian cuneiform: Friberg (2007, pp. 4–5, 11, 374, Fig. 0.4.3, A4.2); Egyptian hieroglyphic: Gardiner (1957, pp. 196–197); Austin 
and Guillemot (2017): Egyptian hieratic: Möller (1927, nos. 667–668); Gardiner (1957, pp. 196–197); Egyptian ‘Eye of Horus’: Gardiner (1957, pp. 197–198); 
Egyptian demotic: Griffith (1909, p. 418), Sethe (1916, Tab. III); Greek alphabetical: Chrisomalis (2003); Coptic alphabetical: Stern (1880, p. 471); Fez/Rumi: Lazrek 
(2006); ‘Vulgar’ Arabic: Perceval (1858, p. 116); Sethe (1916, pp. 66–67, Table III); Grantha: Grünendahl (2001, p. 58). 
NB: The Romans employed a system of fractions whose base is 12 (a divisor of 60) and with values ranging from 1/12 to 12/12 = 1, but they represent units of the 
measure uncia ‘twelfth (of a pound)’ and the shapes of the signs reflect integers (Cagnat, 1898, p. 33; Chrisomalis, 2010). 
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Appendix B. Recording of fractional values in the ranges 1/10–9/10, 1/20–19/20 with attested Linear A signs and combinations of signs, 
if K ¼ 10, L2 ¼ 1/20, L3 ¼ 1/30, L4 ¼ 1/40, L6 ¼ 1/60    
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Appendix C. Recording of fractional values in the range 1/60–59/60 with attested Linear A signs and combinations of signs, if K ¼ 10, 
L2 ¼ 1/20, L3 ¼ 1/30, L4 ¼ 1/40, L6 ¼ 1/60. The aim of this table is twofold: (1) demonstrate that B ¼ 1/5, D ¼ 1/6 forms a more optimal 
base-60 system with K, L2-L6 than D ¼ 1/5, B ¼ 1/6; (2) that A would also take part in such system if its value was 1/24  

M. Corazza et al.                                                                                                                                                                                                                               



Journal of Archaeological Science 125 (2021) 105214

13

References 

Austin, D., Guillemot, M., 2017. Les ‘fractions egyptiennes’. Repères IREM 106, 49–76. 
Bennett, E.L., 1950. Fractional quantities in minoan bookkeeping. Am. J. Archaeol. 54 

(3), 204–222. https://doi.org/10.2307/500299. 
Bennett, E.L., 1980. Linear A fractional retraction. Kadmos 19, 12–23. https://doi.org/ 

10.1515/kadmos-1980-0104. 
Bennett, E.L., 1999. Minos and minyas: writing aegean measures. In: Deger-Jalkotzy, S., 

Hiller, S., Panagl, O. (Eds.), Floreant Studia Mycenaea. Akten des X. internationalen 
mykenologischen Colloquiums in Salzburg vom 1.-5. Mai 1995. Österreischischen 
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