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On finite-by-nilpotent groups

Eloisa Detomi, Guram Donadze, Marta Morigi, and Pavel Shumyatsky

Abstract. Let γn = [x1, . . . , xn] be the nth lower central word.
Denote by Xn the set of γn-values in a group G and suppose that
there is a number m such that |gXn | ≤ m for each g ∈ G. We prove
that γn+1(G) has finite (m,n)-bounded order. This generalizes the
much celebrated theorem of B. H. Neumann that says that the
commutator subgroup of a BFC-group is finite.

1. Introduction

Given a group G and an element x ∈ G, we write xG for the conju-
gacy class containing x. Of course, if the number of elements in xG is
finite, we have |xG| = [G : CG(x)]. A group is said to be a BFC-group
if its conjugacy classes are finite and of bounded size. One of the most
famous of B. H. Neumann’s theorems says that in a BFC-group the
commutator subgroup G′ is finite [6]. It follows that if |xG| ≤ m for
each x ∈ G, then the order of G′ is bounded by a number depending
only on m. A first explicit bound for the order of G′ was found by J.
Wiegold [10], and the best known was obtained in [5] (see also [7] and
[9]).

The recent articles [3] and [2] deal with groups G in which conju-
gacy classes containing commutators are bounded. Recall that multilin-
ear commutator words are words which are obtained by nesting commu-
tators, but using always different variables. More formally, the group-
word w(x) = x in one variable is a multilinear commutator; if u and v
are multilinear commutators involving different variables then the word
w = [u, v] is a multilinear commutator, and all multilinear commuta-
tors are obtained in this way. Examples of multilinear commutators
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include the familiar lower central words γn(x1, . . . , xn) = [x1, . . . , xn]
and derived words δn, on 2n variables, defined recursively by

δ0 = x1, δn = [δn−1(x1, . . . , x2n−1), δn−1(x2n−1+1, . . . , x2n)].

We let w(G) denote the verbal subgroup of G generated by all w-values.
Of course, γn(G) is the nth term of the lower central series of G while
δn(G) = G(n) is the nth term of the derived series.

The following theorem was established in [2].

Theorem 1.1. Let m be a positive integer and w a multilinear

commutator word. Suppose that G is a group in which |xG| ≤ m for

any w-value x. Then the order of the commutator subgroup of w(G) is
finite and m-bounded.

Throughout the article we use the expression “(a, b, . . . )-bounded”
to mean that a quantity is finite and bounded by a certain number
depending only on the parameters a, b, . . . .

The present article grew out of the observation that a modification
of the techniques developed in [3] and [2] can be used to deduce that
if |xG′

| ≤ m for each x ∈ G, then γ3(G) has finite m-bounded order.
Naturally, one expects that a similar phenomenon holds for other terms
of the lower central series of G. This is indeed the case.

Theorem 1.2. Let m,n be positive integers and G a group. If

|xγn(G)| ≤ m for any x ∈ G, then γn+1(G) has finite (m,n)-bounded
order.

Using the concept of verbal conjugacy classes, introduced in [4], one
can obtain a generalization of Theorem 1.2. Let Xn = Xn(G) denote
the set of γn-values in a group G. It was shown in [1] that if |xXn | ≤ m
for each x ∈ G, then |xγn(G)| is (m,n)-bounded. Hence, we have

Corollary 1.3. Let m,n be positive integers and G a group. If

|xXn(G)| ≤ m for any x ∈ G, then γn+1(G) has finite (m,n)-bounded
order.

Observe that Neumann’s theorem can be obtained from Corollary
1.3 by specializing n = 1. Another result which is straightforward from
Corollary 1.3 is the following characterization of finite-by-nilpotent
groups.

Theorem 1.4. A group G is finite-by-nilpotent if and only if there

are positive integers m,n such that |xXn | ≤ m for any x ∈ G.
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2. Preliminary results

Recall that in any group G the following “standard commutator
identities” hold, when x, y, z ∈ G.

(1) [xy, z] = [x, z]y [y, z]
(2) [x, yz] = [x, z][x, y]z

(3) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 (Hall-Witt identity);
(4) [x, y, zx][z, x, yz][y, z, xy] = 1.

Note that the fourth identity follows from the third one. Indeed, we
have

[xy, y−1, zy][yz, z−1, xz][zx, x−1, yx] = 1.

Since [xy, y−1] = [y, x], it follows that

[y, x, zy][z, y, xz][x, z, yx] = 1.

Recall that Xi denote the set of γi-values in a group G.

Lemma 2.1. Let k, n be integers with 2 ≤ k ≤ n be integers and let

G be a group such that [γk(G), γn(G)] is finite and |xγn(G)| ≤ m for any

x ∈ G. Then for every g ∈ Xn we have

|gγk−1(G)| ≤ mn−k+2|[γk(G), γn(G)]|.

Proof. Let N = [γk(G), γn(G)]. It is sufficient to prove that in
the quotient group G/N , for every integer d with k − 1 ≤ d ≤ n

|(gN)γd(G/N)| ≤ mn−d+1 for every γn−d+1-value gN ∈ G/N,

since this implies that gγd(G) is contained at most mn−d+1 cosets of N ,
whenever g ∈ Xn−d+1.

So in what follows we assume that N = 1. The proof is by induction
on n− d. The case d = n is immediate from the hypotheses.

Let c = n−d+1. Choose g ∈ Xc and write g = [x, y] with x ∈ Xc−1

and y ∈ G. Let z ∈ γd(G). We have

[x, y, zx][z, x, yz][y, z, xy] = 1.

Note that

[z, x] ∈ [γd(G), γc−1(G)] ≤ γd−1+c(G) = γn(G)

and

[y, z] ∈ γd+1(G) ≤ γk(G),

whence [z, x, yz] = [z, x, y[y, z]] = [z, x, y]. Thus,

1 = [x, y, zx][z, x, yz][y, z, xy] = [x, y]−1[x, y]z
x

[z, x, y][y, z, xy]

= [x, y]−1[x, y]z
x

(y−1)[z,x]y((xy)−1)[y,z]xy.
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It follows that

[x, y]z
x

= [x, y](x−1)y(xy)[y,z]y−1y[z,x].

Since xy ∈ Xc−1 and [y, z] ∈ γd+1(G), by induction

|{(xy)[y,z] | z ∈ γd(G)}| ≤ mn−d−1+1.

Moreover, [z, x] ∈ γn(G) an so |{y[z,x] | z ∈ γd(G)}| ≤ m. Thus,

|{[x, y]z
x

| z ∈ γd(G)}| = |{[x, y]z | z ∈ γd(G)}| ≤ mmn−d = mn−d+1

as claimed. �

Let H be a group generated by a set X such that X = X−1. Given
an element g ∈ H , we write lX(g) for the minimal number l with the
property that g can be written as a product of l elements of X . Clearly,
lX(g) = 0 if and only if g = 1. We call lX(g) the length of g with respect
to X . The following result is Lemma 2.1 in [3].

Lemma 2.2. Let H be a group generated by a set X = X−1 and let

K be a subgroup of finite index m in H. Then each coset Kb contains

an element g such that lX(g) ≤ m− 1.

In the sequel the above lemma will be used in the situation where
H = γn(G) and X = Xn is the set of γn-values in G. Therefore we
will write l(g) to denote the smallest number such that the element
g ∈ γn(G) can be written as a product of as many γn-values.

Recall that if G is a group, a ∈ G and H is a subgroup of G, then
[H, a] denotes the subgroup of G generated by all commutators of the
form [h, a], where h ∈ H . It is well-known that [H, a] is normalized by
a and H .

Lemma 2.3. Let k,m, n ≥ 2 and let G be a group in which |xγn(G)| ≤
m for any x ∈ G. Suppose that [γk(G), γn(G)] is finite. Then for every

x ∈ γk−1(G) the order of [γn(G), x] is bounded in terms of m, n and

|[γk(G), γn(G)]| only.

Proof. By Neumann’s theorem γn(G)′ has m-bounded order, so
the statement is true for k ≥ n + 1. Therefore we deal with the case
k ≤ n. Without loss of generality we can assume that [γk(G), γn(G)] =
1.

Let x ∈ γk−1(G). Since |xγn(G)| ≤ m, the index of Cγn(G)(x) in γn(G)
is at mostm and by Lemma 2.2 we can choose elements y1, . . . , ym ∈ Xn

such that l(yi) ≤ m−1 and [γn(G), x] is generated by the commutators
[yi, x]. For each i = 1, . . . , m write yi = yi 1 · · · yim−1, where yi j ∈ Xn.
The standard commutator identities show that [yi, x] can be written
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as a product of conjugates in γn(G) of the commutators [yij , x]. Since
[yij, x] ∈ γk(G), for any z ∈ γn(G) we have that

[[yij, x], z] ∈ [γk(G), γn(G)] = 1.

Therefore [yi, x] can be written as a product of the commutators [yij, x].
Let T = 〈x, yij | 1 ≤ i, j ≤ m〉. It is clear that [γn(G), x] ≤ T ′

and so it is sufficient to show that T ′ has finite (m,n)-bounded order.
Observe that T ≤ γk−1(G). By Lemma 2.1, Cγk−1(G)(yij) has (m,n)-
bounded index in γk−1(G). It follows that CT ({yij | 1 ≤ i, j ≤ m}) has
(m,n)-bounded index in T . Moreover, T ≤ 〈x〉γn(G) and |xγn(G)| ≤ m,
whence |T : CT (x)| ≤ m. Therefore the centre of T has (m,n)-bounded
index in T . Thus, Schur’s theorem [8, 10.1.4] tells us that T ′ has finite
(m,n)-bounded order, as required. �

The next lemma can be seen as a development related to Lemma 2.4
in [3] and Lemma 4.5 in [10]. It plays a central role in our arguments.

Lemma 2.4. Let k, n ≥ 2. Assume that |xγn(G)| ≤ m for any x ∈ G.

Suppose that [γk(G), γn(G)] is finite. Then the order of [γk−1(G), γn(G)]
is bounded in terms of m, n and |[γk(G), γn(G)]| only.

Proof. Without loss of generality we can assume that [γk(G), γn(G)] =
1. Let W = γn(G). Choose an element a ∈ Xk−1 such that the number
of conjugates of a in W is maximal possible, that is, r = |aW | ≥ |gW |
for all g ∈ Xk−1.

By Lemma 2.2 we can choose b1, . . . , br ∈ W such that l(bi) ≤
m − 1 and aW = {abi |i = 1, . . . , r}. Let K = γk−1(G). Set M =
(CK(〈b1, . . . , br〉))K (i.e. M is the intersection of all K-conjugates of
CK(〈b1, . . . , br〉)). Since l(bi) ≤ m − 1 and, by Lemma 2.1, CK(x) has
(m,n)-bounded index inK for each x ∈ Xn, the subgroup CK(〈b1, . . . , br〉)
has (m,n)-bounded index in K, so also M has (m,n)-bounded index
in K.

Let v ∈ M . Note that (va)bi = vabi for each i = 1, . . . , r. Therefore
the elements vabi form the conjugacy class (va)W because they are
all different and their number is the allowed maximum. So, for an
arbitrary element h ∈ W there exists b ∈ {b1, . . . , br} such that (va)h =
vab and hence vhah = vab. Therefore [h, v] = v−hv = aha−b and so
[h, v]a = a−1aha−ba = [a, h][b, a] ∈ [W, a]. Thus [W, v]a ≤ [W, a] and so
[W,M ] ≤ [W, a].

Let x1, . . . , xs be a set of coset representatives ofM inK. As [W,xi]
is normalized by W for each i, it follows that

[W,K] ≤ [W,x1] · · · [W,xs][W,M ] ≤ [W,x1] · · · [W,xs][W, a].
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Since s is (m,n)-bounded and by Lemma 2.3 the orders of all subgroups
[W,xi] and [W, a] are bounded in terms of m and n only, the result
follows. �

Proof of Theorem 1.2. Let G be a group in which |xγn(G)| ≤ m
for any x ∈ G. We need to show that γn+1(G) has finite (m,n)-bounded
order. We will show that the order of [γk(G), γn(G)] is finite and (m,n)-
bounded for k = n, n−1, . . . , 1. This is sufficient for our purposes since
[γ1(G), γn(G)] = γn+1(G). We argue by backward induction on k. The
case k = n is immediate from Neumann’s theorem so we assume that
k ≤ n−1 and the order of [γk+1(G), γn(G)] is finite and (m,n)-bounded.
Lemma 2.4 now shows that also the order of [γk(G), γn(G)] is finite and
(m,n)-bounded, as required. �

Proof of Corollary 1.3. Let G be a group in which |xXn(G)| ≤
m for any x ∈ G. We wish to show that γn+1(G) has finite (m,n)-
bounded order. Theorem 1.2 of [1] tells us that |xγn(G)| is (m,n)-
bounded. The result is now immediate from Theorem 1.2. �

Proof of Theorem 1.4. In view of Corollary 1.3 the theorem is
self-evident since a group G is finite-by-nilpotent if and only if some
term of the lower central series of G is finite. �
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