
19 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Trajectory-Based Spatiotemporal Entity Linking / Jin F.; Hua W.; Zhou T.; Xu J.; Francia M.; Orowska M.;
Zhou X.. - In: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. -
ELETTRONICO. - 34:9(2022), pp. 4499-4513. [10.1109/TKDE.2020.3036633]

Published Version:

Trajectory-Based Spatiotemporal Entity Linking

This version is available at: https://hdl.handle.net/11585/789283 since: 2023-01-11

Published:
DOI: http://doi.org/10.1109/TKDE.2020.3036633

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/789283
http://doi.org/10.1109/TKDE.2020.3036633

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Jin et al., "Trajectory-Based Spatiotemporal Entity Linking," in IEEE Transactions
on Knowledge and Data Engineering, vol. 34, no. 9, pp. 4499-4513, 1 Sept. 2022

The final published version is available online at
https://dx.doi.org/10.1109/TKDE.2020.3036633

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/TKDE.2020.3036633

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

1

Trajectory-Based Spatiotemporal Entity Linking
Fengmei Jin, Wen Hua, Thomas Zhou, Jiajie Xu, Matteo Francia, Maria E Orlowska,

Xiaofang Zhou, Fellow, IEEE

Abstract—Trajectory-based spatiotemporal entity linking is to match the same moving object in different datasets based on their
movement traces. It is a fundamental step to support spatiotemporal data integration and analysis. In this paper, we study the problem
of spatiotemporal entity linking using effective and concise signatures extracted from their trajectories. This linking problem is
formalized as a k-nearest neighbor (k-NN) query on the signatures. Four representation strategies (sequential, temporal, spatial, and
spatiotemporal) and two quantitative criteria (commonality and unicity) are investigated for signature construction. A simple yet effective
dimension reduction strategy is developed together with a novel indexing structure called the WR-tree to speed up the search. A
number of optimization methods are proposed to improve the accuracy and robustness of the linking. Our extensive experiments on
real-world datasets verify the superiority of our approach over the state-of-the-art solutions in terms of both accuracy and efficiency.

Index Terms—spatiotemporal entity linking, moving objects, signature, dimension reduction, k-NN search, weighted R-tree

F

1 INTRODUCTION

With the prevalence of location-capturing devices and
location-based services comes an ever-increasing amount
and variety of spatial trajectory data, such as vehicle trajec-
tories, sensor readings, telecom tokens, and location check-
ins. The mining of mobility patterns has become an impor-
tant research topic due to its utility in significant real-world
applications including transport management and urban
planning. One interesting problem to study is the extent
to which individual movements are unique and distinctive,
i.e., the possibility of identifying an individual based on her
movement patterns extracted from the historical traces. Such
study can benefit various real-world applications.
Scenario 1: A user may have multiple social network ac-
counts. By matching accounts across platforms (e.g., Twitter
and Facebook), a more comprehensive user profile can be
constructed, which potentially improves the performance of
personalized recommendation.
Scenario 2: User monitoring is possible by linking phone
numbers used by a single person. This is extremely impor-
tant for security control such as criminal tracking.
Scenario 3: A taxi driver can register with multiple Uber-
like companies. Once this information is combined together
through entity linking, different driving behaviors of the
same user could be observed, stimulating transformation of
operation patterns in the company.

A recent study on mobile phone users [1] has shown
that the uniqueness of human mobility is high enough that
4 randomly-sampled spatiotemporal points could uniquely
identify 95% of individuals. However, can the same method
be utilized to identify other types of moving objects? We
conducted a preliminary experimental study on a real-world
taxi dataset, and observed that only 15% of taxis could be
identified using the method proposed in [1]. This motivated
us to explore a better representation of mobility patterns for
accurate moving object linking. Unlike traditional methods
which discover mobility patterns to capture human’s collec-
tive [2] [3], sequential [4] [5] or periodic [6] [7] movement

behaviors, in this work, we aim at extracting patterns, here-
after referred to as signatures, for entity linking, i.e., match-
ing traces made by the same entity in different datasets such
as social media users and taxi drivers.

1.1 Challenges and Contributions

How to effectively represent and quantify the signature of a
moving object to guarantee the accuracy of object linking? Tra-
jectories are intrinsically spatial, temporal, and sequential.
Hence, the object signature should also capture these char-
acteristics. Existing trajectory pattern mining algorithms [4]
[5] [6] [7] extract sequential and temporal patterns from
trajectories, but ignore spatial features. However, our em-
pirical study on a real-world taxi dataset shows that spatial
patterns are the most effective for identifying individuals, as
opposed to the other two features. Additionally, signatures
need to encode patterns quantitatively to allow for simi-
larity calculations, which is a non-trivial task. Intuitively,
the quantitative signature should be able to encapsulate
behavior that is not only ubiquitous throughout the whole
trace of the individual but also highly discriminative from
one individual to another. In this paper, two metrics are
proposed to quantify a signature from an individual’s his-
torical trace: 1) commonality, the frequency of the signature
in the individual’s trace, and 2) unicity, the extent to which
an individual can be distinguished from others by their
signatures.

How to improve the efficiency of moving object linking? This
work reduces the task of object linking to a k-nearest neigh-
bor (k-NN) search problem: given a query object, we search
in a set of moving objects to find the top-k candidates based
on signature similarity. The most straightforward approach
is a linear scan which calculates all pairwise similarities one
by one. However, this is infeasible in practice due to the
following challenges:

Curse of dimensionality: The signatures can be extremely
large. In the worst case, when every point in an individual’s
historical trace contributes to her personalized profile, the

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

2

size of signatures could be as large as the number of distinct
points in the entire dataset (or even larger if sequential
patterns are considered). The computational complexity of
comparing two signatures is O(d) where d represents the
dimensionality of the signatures; When d is large, successive
comparisons will collectively incur an enormous time cost.
Although dimension reduction has been extensively studied
in the literature (e.g., PCA [8], LSH [9] [10], etc.), later exper-
iments show that existing methods significantly degrade the
linking accuracy when the dimensionality is highly reduced.

Curse of cardinality: In practice, the cardinality of the
object set, denoted as n, is usually massive: reaching mil-
lions of candidates. The complexity of the aforementioned
pairwise checking method is O(n × d) which includes lots
of unnecessary calculations, since most candidates are ac-
tually unpromising in regards to being a member of the k-
nearest neighbors for the query object. Various algorithms
(e.g., AllPairs [11], APT [12], MMJoin [13], L2AP [14]) and
indexing structures (e.g., k-d tree [15] [16] [17], R-tree [18]
[19] [20], hB-tree [21] [22]) have been proposed to scale up
the similarity search or k-NN search. Nevertheless, later
experiments show that directly applying these methods can
only achieve limited efficiency improvements.

Our major contributions in this paper include:
• An effective way to generate signatures from an object’s
moving history is proposed. Four representation strate-
gies (i.e., sequential, temporal, spatial, and spatiotempo-
ral) and two quantitative metrics (i.e., commonality and
unicity) are studied for their effectiveness in signature
construction. High accuracy is achieved for taxi trajecto-
ries, which are commonly believed as hard to personalize.
• A simple yet effective signature reduction method, CUT,
is developed with significantly better performance than
the existing algorithms including PCA and LSH based on
spatial shrinking of moving object footprints.
• The high-dimensional object linking problem is trans-
formed to a k-NN search in 2D space. A novel indexing
structure, WR-tree, is designed to speed up k-NN search
on signatures. A bulk-loading index construction method
is introduced based on a novel optimization criterion of
signature enlargement. This index mechanism can sup-
port updates (i.e., adding new objects).
• Two optimization schemes, re-ranking and stable mar-
riage, are proposed to refine the k-NN results and im-
prove the robustness of the linking algorithm.
• Extensive experiments are conducted on a real-world
taxi dataset, demonstrating significantly better accuracy
and efficiency by our proposal compared with the state-
of-the-art approaches. Object linkability is also shown to
be highly sensitive to the signatures, which opens a new
approach to trajectory privacy protection.

2 PROBLEM STATEMENT

This section introduces some preliminary concepts and for-
mally defines the problem of spatiotemporal entity linking.
Table 1 summarizes several key notations.

Definition 2.1 (Spatiotemporal Entity). A spatiotemporal
entity, denoted as o, is a moving object characterized by its
position in space that varies over time.

TABLE 1
Summarization of key notations.

Notation Definition
o a moving object
T (o) the historical trace of a moving object o
f(o) the (reduced) signature of a moving object o. d =

|f(o)| represents the dimensionality of the signature
sim(o1, o2) the signature similarity between objects o1 and o2
kNN(q,O) the k-nearest neighbors of query object q in the

candidate object set O, and n = |O| represents the
cardinality of the candidate object set

〈g, n(g)〉 g is a q-gram and n(g) is the frequency of g in object
o’s sequential signature f(o)

〈T, n(T)〉 T is a time interval and n(T) is the frequency of T
in object o’s temporal signature f(o)

〈p, w(p)〉 p is a spatial point and w(p) is the TF-IDF weight of
p in object o’s spatial signature f(o)

〈h,w(h)〉 h = (p, T) consists of a spatial location p and a time
interval T , and w(h) is the TF-IDF weight of h in
object o’s spatiotemporal signature f(o)

MBR(o) the minimum bounding rectangle over object o’s
spatial signature f(o)

Definition 2.2 (Trace). The trace of a spatiotemporal entity
(or “moving object”, interchangeably) represents its entire
movement history. It is a sequence of spatiotemporal points,
denoted as T (o) = 〈p1, p2, . . . , pn〉 where each p = (x, y, t)
consists of a location (x, y) (e.g., longitude and latitude)
at time t. Points in a trace are organized chronologically,
namely ∀i < j : pi.t < pj .t.

The collection of all moving objects is denoted as O =
{o1, o2, . . . , on} with its cardinality n = |O|. The historical
trace of a moving object o can to some extent reflect o’s
personalized movement pattern, which is valuable for object
identification. Logically, two objects with different IDs are
possibly the same real-world entity if they share highly
similar movement patterns (i.e., signatures).

Definition 2.3 (Signature). The signature of a moving object
o, denoted as f(o), is a quantitative representation of o’s
movement pattern, such that the similarity between two
objects o1 and o2 can be measured by the similarity between
their corresponding signatures f(o1) and f(o2).

It is assumed that each point in object o’s trace T (o) con-
tributes partially to the object’s personalized profile: f(o)
is constructed from o’s entire movement history. Various
strategies are proposed to quantify signatures f(o) and cal-
culate signature similarity between two objects sim(o1, o2)
(Section 3). For representation simplicity, f(o) is used here-
after to denote all types of signatures.

Given two sets of moving objects along with their sig-
natures, we aim to identify all pairs of objects that possi-
bly refer to the same real-world entity based on signature
similarities. We reduce this task to a k-nearest neighbor (k-
NN) search problem. In other words, for each object in one
dataset, a k-NN search is conducted in the other dataset to
find the matched object.

Definition 2.4 (Spatiotemporal Entity Linking). Given a
query object q and a collection of moving objects O = {o1,
o2, . . . , on}, find the top-k nearest neighbors for q with the
largest signature similarity sim(q, o).

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

3

3 SIGNATURE

Inspired by the unique characteristics of trajectories, we in-
troduce various methods for signature representation from
an object’s moving history and propose two heuristic met-
rics to quantify each signature, as described below:

Commonality. The signature should be representative of
an object’s movement profile, i.e., ubiquitous throughout the
whole trace of the moving object. We define commonality as
the frequency of the signature in the object’s historical trace.

Unicity. The signature represents an object’s personal-
ized movement profile, and should be highly discriminative
between candidate objects. We define unicity as the number
of unique objects containing the signature, which quantifies
the signature’s ability to distinguish an object from others.

Given the quantitative signatures of objects, we can
estimate their similarities accordingly. We will discuss the
technical details in the following sections.

3.1 Signature Representation
1) Sequential Signature
Moving objects visit locations in a particular order such
that their sequential behavior can become an identifying
feature of their historical trajectory. Many existing works
on trajectory pattern mining focus on identifying sequential
patterns (i.e., a common sequence of locations) from a set
of trajectories [4] [5], which are then used for real-world
applications including routing, location prediction, traffic
analysis, etc. This work explores the possibility of utilizing
sequential behavior for moving object linking. Specifically,
an object o’s historical trace T (o) can be regarded as a
document, and a set of q-grams is extracted from T (o). Each
q-gram can be associated with its weight in T (o) to identify
the most representative and distinctive sequential behaviors
of the moving object.

Definition 3.1 (Sequential Signature). The sequential sig-
nature of an object o is a collection of weighted q-grams
extracted from its historical trace T (o). Specifically, f(o) =
{〈g1, w(g1)〉 , 〈g2, w(g2)〉 , . . . , 〈gd, w(gd)〉}, where g is a q-
gram (i.e., a subsequence of q consecutive points), w(g) is
its weight in T (o), and d is the total number of distinct q-
grams in the entire dataset (i.e., the dimensionality of f(o))
which could be extremely large in practice. We adopt the TF-
IDF weighing strategy to calculate w(g), which can capture
both commonality and unicity of the sequential signature.

Given two moving objects o1 and o2 along with their se-
quential signatures f(o1) and f(o2), their similarity is mea-
sured using the cosine similarity between the corresponding
signatures. To simplify computation, we transform sequen-
tial signature into unit length by L2 normalization and then
calculate signature similarity by the dot product, i.e.,

sim(o1, o2) = cos(f(o1), f(o2)) =
f(o1) · f(o2)

||f(o1)|| × ||f(o2)||

= f(o1) · f(o2) =
d∑

i=1

wo1(gi)× wo2(gi)

(1)

where wo(g) represents the normalized weight of q-gram g
in signature f(o). In the rest of the paper, we use f(o) to
denote the L2 normalized sequential signature of object o.

2) Temporal Signature
An individual’s moving behavior exhibits some temporal
patterns. Consider vehicles: Private cars usually travel at
commuter time daily (e.g., 9am and 5pm) whereas taxis
might run uninterruptedly all day; Some taxi drivers carry
passengers during the daytime whereas others prefer to op-
erate at night. Evidently, temporal travel patterns can help
to distinguish moving objects to some extent, motivating the
following definition of a temporal signature.

Definition 3.2 (Temporal Signature). The temporal signa-
ture of a moving object o is a histogram over equal-size time
intervals: f(o) = [〈T1, n(T1)〉 , 〈T2, n(T2)〉 , . . . , 〈Td, n(Td)〉].
In particular, we divide one day into d intervals (or bins)
where d is the dimensionality of the temporal signature.
Each Ti represents a time interval of length ∆t = 24

d hours,
and n(Ti) counts the total number of points in o’s historical
trace T (o) whose timestamp falls into this interval, i.e.,
n(Ti) = |{p|p ∈ T (o) ∧ p.t ∈ Ti}|.

The similarity between two histograms can be measured
by various methods such as correlation, intersection, Chi-
square, Battachary distance, KL divergence, Lp-norm dis-
tance, Earth mover’s distance (EMD), etc. We adopt EMD
[23] in this work as it further takes into consideration cross-
bin information rather than simply conducting a bin-to-bin
matching. In order to apply EMD, we transform the tempo-
ral signature via L1 normalization (i.e., n(Ti) = n(Ti)∑d

j=1 n(Tj)
)

as EMD requires the two histograms have the same integral.
EMD measures the minimum cost (ci,j) to transform one
histogram to the other by transporting elements between
bins. Intuitively, the larger the distance between i-th bin
and j-th bin, the larger the cost ci,j . However, the dis-
tance between temporal intervals cannot be measured by
the number of bins in between. For example, 1:00-2:00 is
temporally close to 23:00-24:00 while their bin-wise distance
is quite large. Therefore, we design the cost ci,j as below:

ci,j =

{
|i−j|×∆t

12 , if |i− j| ×∆t ≤ 12
24−|i−j|×∆t

12 , otherwise

Given two objects o1 and o2 with corresponding temporal
signatures f(o1) and f(o2), we measure their similarity as:

sim(o1, o2) = 1− emd(f(o1), f(o2)) (2)

where emd(f(o1), f(o2)) is the EMD distance between the
two histograms f(o1) and f(o2).

3) Spatial Signature
In general, a trajectory can be regarded as a special type of
time series data whose element represents a geographical
location rather than a numeric value. Therefore, besides the
sequential and temporal features that exist in general time
series, spatial information is also relevant for moving object
identification. That is, different moving objects could have
different preferences for the locations they visit (residence,
restaurant, scenic spot, gas station, etc.). As discovered in
[1], 4 locations can identify 95% of the mobile phone users.

Definition 3.3 (Spatial Signature). We define the spatial
signature of a moving object o as a weighted vector over the
points in its entire historical trace T (o). More specifically,

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

4

f(o) = (〈p1, w(p1)〉 , 〈p2, w(p2)〉 , . . . , 〈pd, w(pd)〉), where d
represents the total number of distinct points in the entire
dataset (i.e., the dimensionality of f(o)) and w(p) is the
weight of point p reflecting its representativeness and dis-
tinctiveness.

In this work, we adopt the TF-IDF weighing strategy to
construct the spatial signature f(o) of moving object o and
estimate the importance of each point p in f(o):

w(p) = tf(p)× idf(p)

• Commonality measures the frequency of a point in
the object’s trace, i.e., tf(p) =

Np,T (o)

|T (o)| where Np,T (o)

is the total number of times p occurs in T (o) and
|T (o)| is the total number of points contained in T (o).

• Unicity measures how much discriminative informa-
tion a point provides, i.e., idf(p) = log |O||Op| where
|O| = n represents the total number of moving
objects (i.e., the cardinality of candidate object set O)
and |Op| represents the number of objects containing
p in their traces, namely Op = {o|p ∈ T (o)}.

Given two moving objects o1 and o2, their similarity can
be measured by the cosine similarity between the corre-
sponding spatial signatures f(o1) and f(o2). To simplify the
computation, we transform each spatial signature into unit
length by L2 normalization and then calculate the signature
similarity by the dot product, i.e.,

sim(o1, o2) = cos(f(o1), f(o2)) =
f(o1) · f(o2)

||f(o1)|| × ||f(o2)||

= f(o1) · f(o2) =
d∑

i=1

wo1(pi)× wo2(pi)

(3)

where wo(p) represents the normalized weight of point p in
signature f(o). In the rest of the paper, we still use f(o) to
denote the L2 normalized spatial signature of object o.

4) Spatiotemporal Signature
Naturally, we can combine multiple features to see if it can
achieve better performance. Our empirical results show that
sequential signatures are less valuable for object linking.
Therefore, we only consider combining spatial and temporal
features in this work, i.e., the spatiotemporal signature.

Definition 3.4 (Spatiotemporal Signature). We define the
spatiotemporal signature of a moving object o as a weighted
vector over spatiotemporal dimensions h = (p, T), where
p represents a spatial location and T is a time interval
described in Definition 3.2. We denote the signature as
f(o) = (〈h1, w(h1)〉 , 〈h2, w(h2)〉 , . . . , 〈hd, w(hd)〉).

As in Definition 3.3, we adopt the TF-IDF weighting
strategy to calculate w(h). The only difference is that we
need to count the total number of times location p occurs in
object o’s trace T (o) during the time interval of T . Combin-
ing the two signatures intuitively enlarges the feature space:
to alleviate the sparsity of spatiotemporal dimensions, we
construct the signature at a coarser granularity via a grid-
based spatial representation. That is, p in h = (p, T) repre-
sents a grid in the spatiotemporal signature.

All four features (sequential, temporal, spatial, and spa-
tiotemporal) are commonly believed to be very important

for various applications of moving object modeling. In this
work, we empirically evaluate the four signatures on a real-
world taxi dataset. Interestingly, sequential, temporal, and
spatiotemporal signatures are not as effective as the spatial
signature for moving object linking. Therefore, we will only
consider f(o) as the spatial signature hereafter.

3.2 Signature Reduction

Recall that f(o) = (〈p1, w(p1)〉 , 〈p2, w(p2)〉 , . . . , 〈pd, w(pd)〉).
The dimensionality d of the original signature is practically
huge considering the large number of points contained in
trajectories. This makes it very time-consuming to calculate
pairwise signature similarity. Various techniques have been
proposed for dimensionality reduction, including principal
component analysis (PCA), locality-sensitive hash (LSH),
which can be applied to speed up the calculation of cosine
similarity and obtain approximately similar signatures.

Both PCA [8] and LSH [24] [25] are applied in this work
for signature reduction in order to speed up the cosine
similarity calculation. However, our experimental results in
Section 6.2.2 reveal that we cannot achieve a satisfactory
object linking using PCA or LSH if we reduce the signa-
ture dimensionality too much (e.g., 10 to 100 dimensions).
Fortunately, we observe that signatures exhibit a power-law
distribution, meaning that only a small number of points
contribute to the majority of the total weights. Therefore,
we propose the CUT method (i.e., cutting the long tail)
which reduces the original signature by reserving its top-
m weighted points only (i.e., updating the weights of all the
other points to 0). According to the empirical evaluation in
Section 6.2.2, such a simple approach to signature reduction
can achieve an average accuracy of 80.6% for taxi linking
when the signature dimensionality is reduced from 160,000
to 10 (5% performance degradation), outperforming PCA
and LSH by 79.9% and 76% respectively.

The CUT method for dimension reduction naturally
results in the side effect of spatial shrinking for signatures:
the original signature could cover a huge spatial region
(vehicles, in particular taxis, could potentially traverse the
whole city), while the reduced signature after cutting the
long tail is scattered in several small regions (workplace,
shopping malls, residence, etc.), since the CUT method only
preserves unique locations visited frequently by a moving
object. To verify this, we conduct a statistical analysis on a
real-world taxi dataset, which compares the pairwise spatial
overlap ratio between original signatures with the ratio be-
tween reduced signatures. We observe that the overlapping
ratio decreases from almost 100% to 1% when the original
signatures are reduced to 10-dimension. Later sections also
discuss the improvement in moving object linking efficiency
due to spatial shrinking.

4 MOVING OBJECT LINKING

Signature reduction helps to eliminate the curse of dimen-
sionality and subsequently speeds up the cosine similarity
calculation. However, another issue to be considered is the
high cardinality of the candidate object set |O| = n. Recall
that for each object, we need to conduct a k-NN search in the
candidate set. The naive sequential scan approach is clearly

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

5

infeasible since n will be extremely large in real applica-
tions. In this section, we will first explore the possibility of
employing existing search and indexing algorithms to solve
the moving object linking problem, and then introduce in
detail our proposed indexing structure to further improve
the linking efficiency.

4.1 Baselines
Baseline 1. Our problem can be regarded as a cosine sim-
ilarity search problem. As a result, existing approaches to
speeding up cosine similarity search, such as AllPairs [11],
APT [12], MMJoin [13] and L2AP [14], can be easily adjusted
to solve this problem. Nevertheless, all these algorithms
target the curse of dimensionality, i.e., the time cost of cal-
culating cosine similarity based on full-sized vectors. They
reduce the number of compared elements at the beginning
of the vectors for early candidate pruning. After signature
reduction, we suffer more from the high cardinality of
the object set rather than the signature size, making these
algorithms inappropriate.
Baseline 2. k-NN search has also been extensively studied
in Euclidean space, and various spatial indices have been
proposed for speeding up k-NN search in a relatively high-
dimensional Euclidean space, such as R-tree [18] [19] [20]
[26], k-d tree [15] [17] [16], hB-tree [21] [22], etc. Can we
transform the k-NN search problem under cosine similarity
into that in the Euclidean space? The answer is positive
based on the following theorem:

Theorem 1. Given two vectors X = 〈x1, x2, . . . , xd〉 and
Y = 〈y1, y2, . . . , yd〉 under L2 normalization, their cosine
similarity cos(X,Y) is negatively correlated to their Eu-
clidean distance euc(X,Y).

Proof: Note that both X and Y have been L2 normal-

ized to unit length, meaning that ||X|| =
√∑

x2
i = 1 and

||Y || =
√∑

y2
i = 1. Therefore,

cos(X,Y) =
X · Y

||X|| × ||Y ||
= X · Y =

∑
xiyi

euc(X,Y) =
√∑

(xi − yi)2

=
√∑

x2
i +

∑
y2
i − 2×

∑
xiyi

=
√

2− 2× cos(X,Y)

It can be observed that the larger cos(X,Y) is, the smaller
euc(X,Y) will be. In other words, cos(X,Y) is negatively
correlated to euc(X,Y).

To address the object linking problem, we regard each
object’s signature f(o) as a d-dimensional point and utilize
the existing spatial indices to find the k-nearest neighbors
in O that minimize the Euclidean distance euc(f(q), f(o))
as the linking candidates for the query object q. However,
previous work has revealed that some spatial indices (e.g.,
R-tree and k-d tree) are practically efficient only when
the dimensionality d is not too large (e.g., d ≤ 20). In
a sufficiently high-dimensional situation (e.g., d > 20),
approximate algorithms, such as LSH [9] [10], are widely-
adopted alternatives which can obtain near-optimal results
for k-NN search with a high probability.

4.2 Weighted R-tree
In the above baselines, we regard a signature purely as a
weighted vector while ignoring the information associated
with each element. In fact, the signature is composed of a
collection of spatial points in the 2D space. In this section,
we present in detail our novel indexing structure which
we call Weighted R-tree (WR-tree), and show that better
efficiency can be achieved by taking both spatial and weight
information into consideration.

4.2.1 Pruning Strategies
We first introduce two pruning strategies which can help to
rule out unpromising candidates earlier.

1) Pruning by Spatial Overlapping
Our indexing scheme is based on the locality assumption
that each moving object usually travels in a limited region.
For example, individuals with a nine-to-five working pat-
tern are always subject to routes between residences and
workplaces during weekdays. Taxi drivers, although trav-
eling according to customers’ requirements, have the flexi-
bility to choose preferred riding regions. In other words, we
can bound an object o’s signature, in particular spatial points
in the signature, with a minimum bounding rectangle (MBR)
denoted as MBR(o). We say p ∈MBR(o) if point p is spa-
tially covered by MBR(o), and MBR(o1) ∩MBR(o2) 6= ∅
if two MBRs MBR(o1) and MBR(o2) spatially overlap
with each other. Note that MBR(o1) ∩MBR(o2) 6= ∅ only
specifies the spatial overlapping between two MBRs, which
does not necessarily mean the corresponding signatures
intersect with each other.

Theorem 2. Given two moving objects o1 and o2 and their
minimum bounding rectangles MBR(o1) and MBR(o2), if
MBR(o1) ∩MBR(o2) = ∅, then sim(o1, o2) = 0.

Accordingly, we can skip calculating the cosine similarity
between query q and the candidate object o if their MBRs do
not overlap with each other. Checking for MBR overlap is
intuitively faster in comparison to calculating cosine sim-
ilarity. Our statistical analysis about the spatial shrinking
effect of CUT signature reduction (i.e., only 1% overlapping
ratio between reduced signatures) suggests that the spatial
pruning strategy could be very effective for speeding up
moving object linking.
Baseline 3. A straightforward way of utilizing this pruning
strategy is to calculate the MBRs of all the candidate objects
using the R-tree indexing scheme. Given a query MBR, we
conduct a range query on the R-tree to find all the candidate
MBRs overlapping with the query MBR. We then calculate
the cosine similarities between these candidates and the
query object one by one, and determine k-nearest neighbors
based on the ranking of cosine similarities. This approach
can speed up k-NN search as it eliminates many unnec-
essary similarity calculations. Nevertheless, each point in
the object signature is associated with not only the spatial
information but also the weight. Is it possible to combine
both types of information to improve search efficiency?

2) Pruning by Signature Similarity
We introduce a method to further prune the k-NN search by
considering the signature similarity. Assume that multiple

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

6

signatures, f(o1), f(o2), . . . , f(om), are aggregated into one
signature denoted as f(o1, o2, . . . , om) such that:

• Point set of the aggregated signature is a union of
point sets of the constituting signatures, i.e., p ∈
f(o1, o2, . . ., om) iff ∃o ∈ {o1, o2, . . . , om}, p ∈ f(o);

• Each point weight in the aggregated signature is
the maximum value of the corresponding point
weights from the constituting signatures, i.e., w(p) =
max{wo1(p), wo2(p), . . . , wom(p)}.

Theorem 3. Given an aggregated signature f(o1, . . . , om)
and a query signature f(q), if f(o1, . . . , om) · f(q) < θ, then
∀o ∈ {o1, o2, . . . , om}, sim(o, q) < θ.

Proof: Consider any object o ∈ {o1, o2, . . . , om}. Based
on the signature similarity defined in Eq. 3,

sim(o, q) =
∑

wo(p)× wq(p)

≤
∑

max{wo1(p), wo2(p), . . . , wom(p)} × wq(p)

= f(o1, o2, . . . , om) · f(q) < θ

This ends the proof of Theorem 3.
Therefore, we can ignore checking objects o1, o2, . . . , om

if their aggregated signature is not a promising k-NN can-
didate for the query object q.

4.2.2 WR-tree structure and k-NN search
The basic idea of our indexing scheme is to cluster the
set of candidate objects into several disjoint subsets and
aggregate them into multiple hierarchies, so that we can
prune unpromising subsets earlier based on both spatial
overlapping and signature similarity. To this end, we pro-
pose the Weighted R-tree index, which incorporates point
weights into the R-tree structure.

Fig. 1 illustrates an example of the WR-tree. Each MBR
at the leaf describes a single moving object, while MBRs
at higher levels represent the aggregation of all the child
nodes. Leaf nodes store three fields: 1) object identifier, 2)
object signature, and 3) object MBR. MBRs are represented
using two points, e.g., MBR(o3) = (a, b). Intermediate
nodes also store three fields: 1) pointers to child nodes, 2)
aggregated signature of child nodes, and 3) MBR corre-
sponding to the aggregated signature. For example, since
p8 occurs in both f(o1) and f(o2) with different weights
0.3 and 0.5 respectively, the weight of p8 in f(A3) takes the
largest value 0.5.

Algorithm 1 describes the overall process of k-NN search
on the WR-tree considering both pruning methods. Given a
query object q along with its signature and MBR, we search
for k-nearest neighbors in the WR-tree using a “best-first”
strategy. In particular, we use a priority queue Q to arrange
candidate tree nodes in descending order of their signature
similarities with q. Note that the signature of a non-leaf node
is the aggregated signature whose similarity with f(q) could
be larger than 1. The priority queue is initialized with the
root node and similarity d (line 2. d is the dimensionality of
a signature vector, and hence the upper bound of signature
similarity). In each iteration, we pop the top tree node u
fromQwhich has the currently largest sim(u, q) (line 3) and
check whether u is a leaf node or an intermediate node. If u
is a leaf node, a moving object has been retrieved. We insert

Fig. 1. An example of the WR-tree.

Algorithm 1: k-NN search on WR-tree
Input: T : WR-tree, q: query object
Output: kNN : k-nearest neighbors

1 kNN = ∅, kSim = 0, Q = ∅;
2 Q.push(〈root(T), d〉);
3 while Q 6= ∅ do
4 〈u, sim(u, q)〉 = pop(Q);
5 if sim(u, q) ≤ kSim then
6 break;

7 V = child(u);
8 if V = ∅ then
9 kNN.insert(〈u, sim(u, q)〉);

10 kSim = kNN [k].sim;

11 else
12 for v ∈ V do
13 if MBR(v) ∩MBR(q) 6= ∅ then
14 sim(v, q) = f(v) · f(q);
15 if sim(v, q) > kSim then
16 Q.push(〈v, sim(v, q)〉);

17 return kNN ;

u into the list of k-nearest neighbors NN if sim(u, q) >
kSim, where kSim denotes the signature similarity of the
k-th neighbor with q, and then update kSim (lines 8-10). If
u is an intermediate node, we retrieve all its child nodes and
add promising children into the queue for further checking
(lines 11-16). During this process, the aforementioned rules
are used to identify unpromising child node v and prune
the corresponding search branch:

• Pruning by spatial overlapping: If MBR(v) ∩
MBR(q) = ∅, this branch can be pruned without
calculating the signature similarity (line 13);

• Pruning by signature similarity: If sim(v, q) ≤ kSim,
all its child nodes are unpromising for k-NN search
and can be pruned (line 15).

The k-NN search continues until the priority queue Q is
empty (line 3) or the top tree node in Q is unpromising
(lines 4-6, all the remaining nodes in Q and their children
are unlikely to achieve a similarity larger than kSim).

4.2.3 WR-tree Construction and Update
An important factor that needs to be carefully considered
when constructing WR-tree is how to hierarchically cluster
candidate objects to optimize pruning power. In traditional
R-trees, minimization of both coverage (i.e., MBRs do not

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

7

cover too much empty space) and overlap (i.e., MBRs do not
share too much common space so that fewer subtrees need
to be processed during search) is vital to the performance.

In the WR-tree, however, we should also consider the
size of the aggregated signature due to the following rea-
sons: 1) The aggregated signature is stored in every internal
node, which means we can reduce the storage cost of WR-
tree if the size of each aggregated signature is minimized;
2) An upper bound needs to be calculated when pruning an
internal node and the corresponding subtree by signature
similarity. The upper bound is defined as the cosine similar-
ity between the query object’s signature and the aggregated
signature stored in the internal node. Therefore, the size of
the aggregated signature will affect the computational cost
of k-NN search.

When constructing the WR-tree, we consider the follow-
ing heuristic criteria for optimization:

• Minimize the size of the aggregated signature.
• Minimize the area covered by the MBR.
• Minimize the overlapping between MBRs.

In other words, we further examine the signature enlargement
when merging two nodes, in addition to area enlargement
and overlapping enlargement. A natural way of reducing
signature enlargement is to maximize the number of com-
mon points between two signatures. As illustrated in Fig. 2,
the signature f(q) spatially overlaps with all the three signa-
tures f(o1), f(o2) and f(o3). Although combining f(q) and
f(o1) results in a smaller area enlargement than merging
f(q) and f(o2), the signature enlargement increases on the
contrary since f(q) shares less common points with f(o1)
than f(o2).

o1 o2

o3

q

Fig. 2. An example of signature enlargement. Rectangles represent
MBRs, dots and triangles represent points contained in the signature.
A dot and a triangle correspond to the same point when overlapping.

We propose a bulk-loading algorithm for building WR-
tree based on the strategy known as Sort-Tile-Recursive
(STR) [27]. It builds the WR-tree in a bottom-up manner
where tree nodes are recursively merged into upper levels.
The total number of leaf nodes is initialized as l = dnc e,
where n is the number of objects and c is the node capacity.
We spatially sort the objects based on the longitude (resp.
latitude) and divide them into several equal-size partitions
with the size of s = dnl e (resp. s = d n√

l
e). Objects in

each partition are merged into tree nodes. If the bulk size
s exceeds the node capacity c, they will be recursively bulk-
loaded using the same method. Algorithm 2 depicts our
implementation of the MergeNode() function. Given a bulk
of spatially ordered objects, each tree node is initialized
by the first unassigned object (line 10) and the remaining
c − 1 objects are selected from the bulk by minimizing

signature enlargement (i.e., maximizing the number of com-
mon points, lines 11-13). Compared with the insertion-based
index construction adopted in [28], this bulk-loading based
WR-tree performs significantly better, as demonstrated in
our experimental results in Section 6.3.2.

Algorithm 2: MergeNode()
Input: L: the list of spatially ordered objects in a bulk; c: node capacity
Output: N : newly created nodes

1 N = ∅;
2 if |L| < c then
3 node = createNode(L);
4 N.add(node);

5 else
6 n = d|L|/ce; // # nodes to be created
7 idx = 0;
8 while |N | < n do
9 node = createNode();

10 node.addElement(L.get(idx));
11 while node.size() < c do
12 e = MaxCommonPoints(node, L);
13 node.addElement(e);

14 N.add(node);
15 Update(idx, L); // get the index of next available element in L

16 return N ;

Algorithm 3: UpdateSubtree()
Input: node: root of the subtree to be updated; o: object to be inserted

1 Update(node, o);
2 C = child(node);
3 N = MaxCommonPoints(o, C);
4 if |N | > 1 then
5 N = MinArea(o,N);
6 if |N | > 1 then
7 N = MinOverlap(o,N);

8 Randomly select a node from N and regard it as target;
9 // Tree nodes are updated recursively until the leaf

10 if target.level = 1 then
11 Update(target, o);

12 else
13 UpdateSubtree(target, o);

A WR-tree is useful in practice only if it can append new
objects after construction while maintaining an acceptable
arrangement of the tree nodes to maximize pruning power.
We adopt an incremental strategy to update the WR-tree.
Specifically, when inserting a new object, we traverse down
to the leaf node by recursively choosing the most attractive
subtree based on the three heuristic criteria discussed above.
Algorithm 3 describes our implementation of the UpdateSub-
tree() function, where we select the subtree by maximizing
the number of common points between signatures and then
minimizing the area and overlapping between MBRs. Tree
nodes along the traversal path are updated with respect to
the corresponding aggregated signature and MBR. How-
ever, we observe that the WR-tree gradually becomes less
efficient with more and more new objects being inserted
beyond the initial bulk-loading. According to our empirical
results in Section 6.3.2, querying a WR-tree that has been
updated using incremental insertions for several times is
less efficient compared to a newly bulk-loaded tree indexing
the same objects. Therefore, a more practical solution would
be to periodically rebuild the WR-tree using bulk-loading so
that objects are arranged globally and evenly in the tree.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

8

5 ROBUSTNESS AND LINKABILITY

In this section, we introduce two optimization methods to
further improve the accuracy and robustness of object link-
ing. We also discuss the possibility of using our designed
signature for trajectory privacy protection.

5.1 Improving Linking Accuracy
The major motivation of signature reduction is to mitigate
the curse of dimensionality and thus improve the linking
efficiency. However, a drawback of using the reduced sig-
natures is an observed drop in the linking accuracy of the
k-NN search results. This is because the reduced signatures
essentially encode less information than larger signatures,
making it more difficult to link objects. We introduce two
optimization schemes to mitigate this drawback without
significantly impacting the efficiency. Note that these op-
timization schemes are generalized and can be applied to
any of the aforementioned linking approaches.

1) Re-Ranking Strategy
Naturally, the matched objects are much more likely to be
retrieved by a top-k (k > 1) NN search than a stricter top-
1 NN search. In other words, with the limited information
encoded in a reduced signature, the correct linking might
appear at a lower rank than the top-1 result, meaning that
a further refinement of the k-NN search results is needed.
To this end, we introduce a heuristic re-ranking strategy to
improve the accuracy of stricter linking queries. Specifically,
given a query object q, we first retrieve the top-k (k > 1)
candidate objects using signatures of small size (e.g., d=10),
and then re-order those objects by calculating their signature
similarities using larger and more informative signatures
(e.g., d=500). It is obvious that the pre-filtering phase is quite
efficient by k-NN search with small-size signatures, and the
extra computational cost is also acceptable by limiting the
re-ranking only in the top-k candidates.

2) Stable Marriage Algorithm
Our second optimization scheme extends the classic stable
marriage problem (SMP) [29]. Given two equal-size datasets,
stable marriage aims to find a one-to-one mapping between
the elements of each dataset. Elements are mapped based on
a given order of preferences for elements in their opposing
dataset, and the final mapping of elements must be stable,
i.e., no two unpaired elements would rather be paired with
each other.

In practice, a guaranteed stable marriage requires a com-
plete pairwise computation of the preference lists for every
element, incurring an unacceptable time cost. Additionally,
the problem requires two equally sized datasets, which may
not necessarily be the case. Hence, traditional algorithms
for stable marriage cannot be directly applied to our object
linking problem, even though signature similarity can nat-
urally be used to rank preferences. In this work, we modify
the stable marriage algorithm to explore the most similar
candidate for each object and guarantee a relatively stable
matching between two sets of moving objects. As shown in
Algorithm 4, our stable marriage method is based on each
object’s top-k NNs, which have been quickly generated by
using any of the aforementioned linking algorithms on the

Algorithm 4: k-NN Based Stable Marriage
Input: O,O′: two sets of objects to be linked together; kNN, kNN ′:

two sets of top-k NNs for each object from both sets;
Output: P : the stable matching pairs between two sets

1 P = ∅;
2 Q = ∅; // the set of unmatched objects
3 while O 6= ∅ do
4 oi = O.poll();
5 o′m = kNNi.poll();
6 if P.contains(o′m) then
7 oj = P.get(o′m);
8 if getRank(oi, kNN ′

m) > getRank(oj , kNN ′
m) then

9 P.add(oi, o
′
m);

10 if kNNj 6= ∅ then
11 O.add(oj);

12 else
13 Q.add(oj);

14 else
15 if kNNi 6= ∅ then
16 O.add(oi);

17 else
18 Q.add(oi);

19 else
20 P.add(oi, o

′
m);

21 // Handle the remaining objects which fail to be matched before
22 for oi ∈ Q do
23 P.add(oi, getTopOne(kNNi));

24 return P ;

reduced signatures. For each object, its set of top-k NNs
along with their signature similarities form a preference list
which will be used in the following proposal phase (line 8).
The process of proposal and engage repeats until no stable
match can be obtained further (lines 3-20). Finally, all the
unmatched objects will use the original k-NN results as their
linking (lines 21-23). Our empirical results in Section 6.2.4
verify that stable marriage can effectively improve accuracy
of the top-ranked object linking, while incurring limited
extra computational cost.

5.2 Trajectory Linkability

Trajectories can disclose highly-sensitive information of an
individual, such as personal gazetteers and social relation-
ships. Even when trajectories are anonymized (namely, IDs
removed), the possibility of object re-identification through
spatiotemporal entity linking, as studied in this work, still
exposes a high risk of privacy leaks. Although much effort
has been devoted to adapting the existing privacy protection
models to trajectory dataset, such as k-anonymity [30] [31],
l-diversity and t-closeness [32], differential privacy [33], and
plausible deniability [34], they either incur massive compu-
tational cost [31] or cannot achieve a satisfactory protection
against the linking attack.

In this work, we first explore the extent of linkability,
especially how much data is needed to achieve a reliable
linking. Our empirical result in Figure 3 shows that signa-
tures derived from about one-week trajectories are enough
to identify the majority of individuals (> 75%). Moreover,
we study the possibility of addressing this linkability attack
using our proposed signature design. We introduce a solu-
tion called signature closure, which iteratively suppresses the
reduced signature (i.e., the top-m TF-IDF weighted points)
of a moving object from its historical trace and releases the

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

9

modified trajectories. Our experimental results in Section
6.2.5 demonstrate that objects with modified traces cannot
be easily re-identified. It is worth noting that such modifica-
tion will not affect much of the utility as evidenced by Table
9, since only a very limited amount of information (i.e., a
small set of points) is removed from the original trajectories.

6 EXPERIMENTS

We conduct extensive experiments on a real-world dataset
to evaluate the performance of our algorithms. We report
the experimental results and analysis in this section.

6.1 Experiment Setting

Dataset. We use a real-life dataset of 359,666,430 GPS points
generated by 13,132 taxis in Beijing city over one month. In
order for the signature to capture enough information about
a taxi’s moving pattern, we remove taxis with less than 7,000
points and finally reserve 12,000 taxis. Each taxi is associated
with a trace which is a concatenation of all its trajectories in
chronological order. We use a commercial map of Beijing
to extract road intersections and align traces by trajectory
calibration [35]. 181,265 intersections are discovered, which
is regarded as the dimensionality of the original signature.
We then randomly sample 3000, 6000, 9000 taxis respec-
tively, from the original dataset, to evaluate the performance
of moving object linking on different sizes of datasets. We
also evaluate our proposals on another publicly available
dataset, Geolife [36], which contains check-ins generated by
178 users of the Geolife social networking service in a period
of over four years (from April 2007 to October 2011). After
pre-processing, 175 users are remained with 20,828,028 GPS
points in total. We report experimental results on the Geolife
dataset in our technical report [37] due to space limitation.
Evaluation metrics. We divide the original dataset into two
parts Q and D. Each taxi exists in both datasets and its trace
consists of only half of the original trajectory set. We assign
trajectories to Q and D alternately to eliminate the influence
of temporal dynamics (e.g., Q and D include all trajectories
in odd days and even days respectively, and each contains
15 days of trajectories). For each object q in dataset Q, we
conduct a k-NN search in dataset D and check if the same
object appears in the top-k neighbors. We run this operation
|Q| times, and report the average accuracy.

Acc@k =
|Q∗k|
|Q|

(4)

In Eq. 4, Q∗k represents the set of query objects that can
successfully find themselves in the corresponding top-k
results, namely, Q∗k = {q|q ∈ kNN(q,D)}.
Algorithms. Our performance evaluation has two parts: ac-
curacy and efficiency. For accuracy evaluation, we compare
the four signature representations introduced in Section 3.1:
sequential, temporal, spatial, and spatiotemporal. We then
report Acc@k achieved by the original spatial signature and
compare it with the signature reduction strategies discussed
in Section 3.2: CUT, PCA, and LSH (We control the reduced
dimensionality m of LSH by the number of hash functions).
We also evaluate the effectiveness of the optimization meth-
ods introduced in Section 5.1: re-ranking, stable marriage,

and their combined effect. For the efficiency evaluation, we
compare WR-tree with all baselines discussed in Section 4,
and report the performance of index build and update.

All the above algorithms are implemented in Java, and
all the experiments are conducted on a server with two In-
tel(R) Xeon(R) CPU E5-2630, 10 cores/20 threads at 2.2GHz
each, 378GB memory, and Ubuntu 16.04 operating system.

6.2 Effectiveness
6.2.1 Signature Representations
Table 2 shows the accuracy of moving object linking using
sequential, temporal, spatial and spatiotemporal signatures
respectively on the dataset Q and D with 3000 randomly
sampled taxis. We observe that the accuracy of sequential
signatures decreases with subsequence length q. Interest-
ingly, the sequential signature is the most effective when
q = 1 which actually corresponds to a geo-spatial point.
This reflects that the sequential feature is not helpful for
object linking, despite producing strong empirical results
for other applications such as location prediction. Temporal
signature performs much worse than the other two coun-
terparts, since it simply extracts a coarse distribution of an
object’s temporal moving behavior. Although the accuracy
increases gradually when a finer granularity (i.e., smaller
∆t) is used, the improvement is still insignificant. TF-IDF-
based spatial signature is quite effective in modeling an
object’s traveling behavior, which achieves a 85.5% accuracy
when linking objects to their top-1 nearest neighbors, and
the accuracy keeps enhancing when k rises. This verifies
the importance of spatial features in moving object mod-
eling and linking. As for the spatiotemporal signature, it
defeats the temporal signature thanks to the extra spatial
information. However, adding temporal information does
not improve performance versus a pure spatial signature
under any spatial resolution. This is reasonable since im-
portant locations in an object’s mobility patterns might be
visited at different times, making the patterns extremely
sparse. Hence, we only consider the spatial signature in the
remaining experiments.

6.2.2 Signature Reduction
Table 3 illustrates the accuracy of various signature re-
duction strategies (i.e., PCA, LSH, and CUT). The original
signature contains around 160,000 points, and we reduce it
to m = 10, 50, 100, 500, 1000 points respectively. We have
the following observations from Table 3: 1) Linking accuracy
degrades with m due to information loss when we reduce
the dimensionality of the original signature to m. 2) CUT
achieves consistently larger accuracy than LSH which in
turn outperforms PCA. Such superiority is extremely evi-
dent when the dimensionality is small (m ≤ 100). PCA is a
traditional dimension reduction algorithm and has been em-
pirically proven to be inferior to LSH in many applications.
Although LSH is widely-adopted for approximate nearest
neighbor search in high-dimensional space (e.g., multime-
dia search, gene expression identification, near-duplicate
document detection, etc.), a simpler method that cuts the
long tail of the signature vector has been demonstrated to
be more effective in object linking. 3) Our CUT algorithm
can successfully reduce the signature dimensionality from

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

10

TABLE 2
Effectiveness of signature representation (|D| = 3000).

Methods Sequential (q) Temporal (∆t) Spatial Spatiotemporal (# of grids)
Parameters 1 2 3 4 5 1h 2h 3h 4h 6h 8h 12h N/A 1002 2002 3002

Acc@1 0.855 0.804 0.773 0.737 0.704 0.127 0.123 0.104 0.087 0.042 0.018 0.004 0.855 0.535 0.567 0.583
Acc@2 0.904 0.862 0.838 0.811 0.791 0.169 0.167 0.145 0.124 0.074 0.033 0.007 0.904 0.587 0.613 0.630
Acc@3 0.928 0.892 0.871 0.848 0.829 0.195 0.186 0.172 0.150 0.092 0.046 0.009 0.928 0.612 0.640 0.651
Acc@4 0.940 0.913 0.891 0.872 0.854 0.216 0.205 0.198 0.174 0.113 0.057 0.011 0.940 0.632 0.659 0.681
Acc@5 0.948 0.924 0.905 0.887 0.869 0.233 0.220 0.216 0.192 0.131 0.071 0.013 0.948 0.647 0.673 0.693

TABLE 3
Effectiveness of signature reduction (|D| = 3000).

Methods PCA LSH CUT Original
m 10 50 100 500 1000 10 50 100 500 1000 10 50 100 500 1000 160,000

Acc@1 0.007 0.050 0.113 0.542 0.697 0.046 0.476 0.638 0.795 0.824 0.806 0.827 0.831 0.836 0.838 0.855
Acc@2 0.012 0.088 0.187 0.686 0.801 0.079 0.542 0.705 0.847 0.870 0.866 0.877 0.880 0.885 0.886 0.904
Acc@3 0.018 0.123 0.243 0.765 0.846 0.097 0.577 0.731 0.872 0.893 0.893 0.903 0.907 0.913 0.916 0.928
Acc@4 0.023 0.150 0.289 0.809 0.875 0.118 0.597 0.748 0.891 0.912 0.906 0.919 0.920 0.928 0.929 0.940
Acc@5 0.031 0.176 0.333 0.835 0.892 0.130 0.617 0.760 0.900 0.924 0.917 0.929 0.930 0.937 0.939 0.948

160,000 to 10 at a slight cost of linking accuracy (< 5%).
This verifies the possibility of identifying a moving object
based on several geo-spatial locations in its traveling history,
which is consistent with the phenomenon observed in [1].
We will use reduced signatures obtained by CUT algorithm
with m = 10 by default for the following experiments.

6.2.3 Quantitative Signature Metrics
To further understand the proposed spatial signature, we
also evaluate the respective contributions of the quantitative
signature metrics, i.e., commonality and unicity. The results
are reported in Table 4. We can observe that the TF-based
method performs consistently better than the IDF-based
counterpart (avg. 3% and 10% accuracy improvement for
reduced and original signature respectively), which reflects
that commonality of a signature is more important than
unicity for modeling an individual’s movement behavior.
Meanwhile, these two criteria perfectly complement each
other, resulting in a much higher accuracy of object linking
when combining them via the TF-IDF measure. Such a
phenomenon is especially notable for the reduced signature
(avg. 70% accuracy improvement) since only the most im-
portant locations in the historical trace are preserved in the
reduced signature. This verifies that a signature should be
both representative (i.e., high commonality) and distinctive
(i.e., high unicity) to effectively identify a moving object.

TABLE 4
Contributions of commonality and unicity (|D| = 3000).

Signature Reduced (m = 10) Original
Weighting Strategy TF IDF TF-IDF TF IDF TF-IDF

Acc@1 0.119 0.085 0.806 0.721 0.592 0.855
Acc@2 0.161 0.126 0.866 0.765 0.666 0.904
Acc@3 0.191 0.154 0.893 0.790 0.705 0.928
Acc@4 0.214 0.173 0.906 0.810 0.735 0.940
Acc@5 0.231 0.187 0.917 0.823 0.750 0.948

6.2.4 Accuracy and Robustness
Here we evaluate the robustness of our linking algorithm
and the performance of the two optimization schemes (i.e.,

re-ranking (RR) and stable marriage (SM)). Table 5 reports
the linking accuracy for different dataset sizes (i.e., number
of objects). The accuracy is very high for all datasets, which
clearly demonstrates the stability of our signature design.

TABLE 5
Effectiveness on different dataset size.

Signature Reduced (m = 10) Original
|D| 3000 6000 9000 12000 3000 6000 9000 12000

Acc@1 0.806 0.767 0.755 0.754 0.855 0.831 0.825 0.829
Acc@2 0.866 0.837 0.825 0.825 0.904 0.879 0.874 0.874
Acc@3 0.893 0.867 0.860 0.858 0.928 0.900 0.894 0.896
Acc@4 0.906 0.884 0.877 0.877 0.940 0.914 0.908 0.910
Acc@5 0.917 0.893 0.890 0.888 0.948 0.922 0.916 0.917

TABLE 6
Effectiveness of two optimization schemes on different dataset sizes.

Scheme × RR SM
m 10 50 100 500 original 10

|D| = 3000 0.806 0.823 0.828 0.834 0.841 0.845
|D| = 6000 0.767 0.792 0.797 0.805 0.814 0.813
|D| = 9000 0.755 0.789 0.794 0.799 0.811 0.802
|D| = 12000 0.754 0.791 0.798 0.803 0.815 0.803

TABLE 7
Extra time cost (s) of optimization schemes on different dataset sizes.

Scheme × RR SM
m 10 50 100 500 original 10

|D| = 3000 0.164 0.026 0.049 0.255 13.886 0.190
|D| = 6000 0.464 0.057 0.108 0.499 28.684 0.497
|D| = 9000 0.898 0.118 0.204 1.131 40.732 0.972
|D| = 12000 1.738 0.141 0.246 1.576 52.258 1.804

Table 6 reports the accuracy improvement using RR and
SM for Acc@1. For RR, we first use 10-dim signatures to
quickly find the top-k candidates for each object, then the
k candidates are re-ranked using larger signatures of sizes
50, 100, 500 and the full-size for a more accurate similarity
comparison. Algorithm 4 is used to apply stable marriage
reshuffle (k = 5 for all experiments here). From Table 6

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

11

we observe that two strategies are very effective. Compared
with the result of only using 10-dim signatures, the SM pro-
cess leads to a 4.5% increase of linking accuracy on average,
while the RR improvement depends on different sizes of
signatures that are used (ranging from 1.7% to 6.1%). The
additional time costs for applying RR and SM are shown in
Table 7. To put the cost for re-ranking into context, full-sized
signatures can have an average of 160, 000 points and the re-
ranking stage with full-sized signatures takes much longer
time with little accuracy gain (as shown above). The revised
SM process is slightly superior over the RR method, since it
achieves a larger accuracy improvement with a comparable
time cost (m = 500 for RR). Overall, it is worthwhile to
spend less than two more seconds for a nearly 5% accuracy
increase (in the case of |D| = 12000).

Furthermore, we examine whether the combination of
RR and SM can achieve even better accuracy. Table 8 shows
that applying SM on the sets of RR-improved top-5 candi-
dates maintains a significant improvement of about 4% for
Acc@1. As k increases, the accuracy gain diminishes. There-
fore, combining RR and SM is a good strategy to improve
linking accuracy, especially when the top-1 candidate is of
the main interest.

TABLE 8
Accuracy using RR and SM with different m (|D| = 3000).

Scheme SM RR Combination
m 10 50 100 500 50 100 500

Acc@1 0.845 0.823 0.828 0.834 0.864 0.869 0.874
Acc@2 0.883 0.873 0.875 0.876 0.898 0.901 0.902
Acc@3 0.904 0.898 0.896 0.901 0.908 0.907 0.917
Acc@4 0.915 0.909 0.910 0.911 0.916 0.919 0.921
Acc@5 0.923 0.917 0.917 0.917 0.923 0.925 0.926

6.2.5 Linkability and Signature Sensitivity

Now, we examine the impact of information size on link-
ability: how much data is needed for reliable linking? The
trajectories in query set Q are limited to d days of data, from
1 to 15 days (full data); Linking is performed with a constant
full 15-day dataset (Figure 3-a) and a similarly limited data
set using d days of trajectories (Figure 3-b). The d days are
chosen at random and the average accuracy is reported for
multiple runs. As depicted, the linking accuracy increases
significantly with the amount of data, and the accuracy is
significantly higher when searching on the full dataset. The
accuracy becomes more robust when d ≥ 7 in both cases. In
other words, the signatures become sufficient to guarantee
high linking accuracy with only one week’s data.

0 5 10 15

0.4

0.6

0.8

Acc@1

Acc@2

Acc@3

Acc@4

Acc@5

(a) d query days vs 15 days
0 5 10 15

0.4

0.6

0.8

Acc@1

Acc@2

Acc@3

Acc@4

Acc@5

(b) d days vs d days

Fig. 3. Effectiveness on different information size (|D| = 3000,m = 10).

While the signatures proposed in this paper can achieve
highly accurate linking, it is necessary to understand the im-
portance of the points in the signature closure (Section 5.2)
by examining if objects can still be linked after those points
in the signatures are removed. Table 9 reports the linking
accuracy using the 10-dim signatures. In the 1st round, the
signatures are generated using the entire dataset; in the
2nd round, a new signature for each object is generated
using the dataset with the points in the previous signatures
removed; and so on. In each iteration, we test both the
basic “Acc@1” and the “Best Acc@5” which is derived
from the combination of re-ranking and stable marriage
with 500-dim signatures (i.e., the best linking accuracy we
can achieve). In addition, we also measure the data utility
affected by removing the top-10 points from the signatures
by calculating the average percentage of data remaining, as
well as the average overlapping of objects’ MBRs and the
average percentage of cells in a uniform grid covered by the
trajectories before and after signature points are removed
(we use ‘small’ and ‘large’ grids which are of 85 × 85 and
423× 423 m2, respectively).

From Table 9 we observe a dramatic decrease of linking
accuracy each time when the points in the signatures from
the previous round are removed, while the data utility indi-
cators remain to be very high. After removing the signatures
for just one round (i.e., removing 10 points for each object
which has an average of 30,000 points originally), the best
linking accuracy drops from an initial 92.6% to an unusable
45%. Results in Table 9 clearly illustrate that the signature
points of an object generated using our approach are highly
representative and discriminative to the object. These points
are suitable as signature representations for object linking.
Conversely, it is a very promising approach to protect tra-
jectory data by removing a small number of points (i.e., the
points in the signature closure, or the first a few rounds of
it) such that the reidentification attacks can be prevented to
a large extent. Trajectory privacy protection is beyond the
scope of this paper, but we present some interesting and
exciting insights here for new ways to protect privacy of
trajectory data. By the suppression or anonymization of a
small number of points in the signature closure, we can
achieve strong results for preventing link-based attacks at
a very limited cost of data utility.

TABLE 9
Signature sensitivity (|D| = 3000,m = 10).

Round
Linking Accuracy Data

Remain
MBR

Overlap
Grid Coverage

Acc@1 Best Acc@5 Large Small
1 0.806 0.926 0.978 0.999 0.994 0.961
2 0.140 0.450 0.969 0.999 0.989 0.944
3 0.050 0.187 0.960 0.999 0.984 0.928
4 0.028 0.114 0.953 0.998 0.980 0.913
5 0.020 0.078 0.947 0.998 0.975 0.898

6.3 Efficiency

6.3.1 Object Linking Algorithms
Table 10 reports the efficiency of object linking algorithms
on datasets of various sizes. L2AP takes the longest time
for object linking (outperformed even by the naive linear

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

12

scan), though it is considered as an efficient approach to
cosine similarity search. It is designed for a really high-
dimensional space (e.g., million-level), hence is unsuitable
for handling reduced signatures as it wastes a large amount
of time for excessive bound checking and index construc-
tion. LSH is also proposed for speeding up k-NN search in
a high dimension (e.g., multimedia data). It only achieves
a minor performance improvement compared to the linear
scan when signature dimension is reduced to m = 10.
Overall, our approach works very well by transforming the
linking problem to 2D space and utilize R-tree and spatial
overlapping for search pruning, as illustrated in 2D R-tree
and WR-tree. More importantly, WR-tree outperforms 2D R-
tree by a large margin. This verifies the effectiveness of both
pruning strategies introduced in this work, namely spatial
overlapping and signature similarity. Table 10 also shows
the impact of dataset size |D|. As expected, the linking time
rises with |D|, but when the WR-tree is used the increase is
quite small (≈ 0.6s when |D| ranges from 3000 to 12000).

TABLE 10
Total time cost (s) of different linking algorithms (m = 10, k = 1).

|D| Linear L2AP LSH R-tree WR-tree
3000 2.269 3.090 1.769 0.364 0.059
6000 8.182 14.557 6.652 1.518 0.220
9000 19.733 36.541 15.642 3.597 0.387
12000 27.183 70.440 38.131 7.206 0.678

6.3.2 WR-Tree Construction and Update
Recall that we design a new criterion to optimize WR-tree
(i.e., signature enlargement), which motivates the introduc-
tion of bulk-loading and incremental algorithms for WR-tree
construction and update, respectively. Table 11 examines
whether the efficiency of WR-tree can be further improved
by considering signature enlargement in index construction.
We can see that both the linking cost and index size are
slightly reduced when the aggregated signature sizes at in-
ternal tree nodes are minimized by maximizing the number
of common points between signatures. Such improvement
increases with the growth of the signature size m. This is
because larger signatures will increase not only the cost
of similarity calculation but also the possibility of spatial
overlapping (recall that our CUT dimension reduction has a
natural side effect of “spatial shrinking”). Table 11 also em-
pirically demonstrates the superiority of the bulk-loading
index construction approach compared to the insertion-
based algorithm adopted in [28], with the linking efficiency
improved at least two-fold thanks to a global optimization
of the WR-tree structure. Although the index construction
time also increases if signature enlargement is incorporated
into the bulk-loading algorithm, it is still acceptable since
the index is usually constructed only once.

We then examine the efficiency of WR-tree updates. The
base WR-tree is built for the dataset with 9,000 objects. The
index update costs and the linking efficiency are studied
by repeatedly inserting 500 new objects one by one. Table
12 presents the cost to rebuild the WR-tree using the bulk-
loading method, the average cost of each update (i.e., ap-
pending one object), and the total time of object linking.
As expected, the update cost is extremely small compared

with the cost of rebuilding the WR-tree from scratch. It
verifies the effectiveness of our proposed incremental tree
maintenance. A slight decrease in both the tree update time
and the linking cost can be observed when the new criterion
of signature enlargement is considered in index update.
Compared with a newly-built tree, the linking cost of the
updated tree increases due to the imperfect tree structure
caused by the incremental updates. However, WR-tree is
still far superior over other linking methods as shown
in Table 10 in terms of the overall linking performance.
Clearly, incremental WR-tree maintenance is effective while
a periodic index reconstruction is still necessary. This fact
provides a solid base for balancing system throughput and
query response time when applying the WR-tree in practice.

TABLE 11
Performance of WR-tree construction w.r.t build time (s), linking time (s)

and index size (M) (|D| = 3000, k = 1).

Build Criteria Spatial Factors # Common Points
Cost Build Link Size Build Link Size

m = 10 0.078 0.077 3.650 1.278 0.059 3.571
m = 50 0.332 0.681 15.434 7.501 0.447 14.892
m = 100 0.604 1.759 29.067 15.694 1.232 27.642

TABLE 12
Efficiency (s) of the newly built WR-tree and the updated WR-tree with

different update criteria (m = 10, k = 1).

Newly Built Spatial Factors # Common Points
|D| Build Link Per Update Link Per Update Link
9500 9.642 0.399 0.0099 0.425 0.0096 0.404
10000 9.879 0.436 0.0107 0.477 0.0104 0.451
10500 10.062 0.471 0.0115 0.512 0.0113 0.498
11000 10.107 0.528 0.0135 0.623 0.0119 0.592
11500 10.278 0.566 0.0157 0.695 0.0126 0.664
12000 10.455 0.609 0.0175 0.824 0.0131 0.794

7 RELATED WORK

In this section, we briefly summarize the existing work in
several research areas that are related to our work.

Trajectory pattern mining: The existing works on trajectory
pattern mining can be divided into three categories based on
different definitions of patterns. Sequential pattern mining
[4] [5] identifies a common sequence of locations traveled
by a certain number of objects within a similar timeslot.
Another research branch [6] [7] [38] tries to discover periodic
activity patterns from the movement history, which are then
used for predicting the future behavior of a moving object.
Other works attempt to detect collective moving patterns,
namely, a group of objects that always travel together for
a certain period, such as convoy [39], swarm [2], traveling
companion [40], and gathering [3], etc. Unlike the described
traditional research, our work focuses on extracting patterns
that are both common and unique to a moving object to
support object identification.

Cosine similarity search: Given two sets of weighted vec-
tors and a threshold, the cosine similarity search finds all
vector pairs whose cosine similarity exceeds the threshold.
Existing work mainly focuses on quickly locating all nec-
essary candidate pairs by checking only a few elements at

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

13

the beginning of the vectors, which is well-known as the
pruning-verification framework. The AllPairs [11] algorithm
avoids computing similarity for unpromising vectors by
exploiting a dynamically-constructed inverted index. Exten-
sions to the AllPairs algorithm, such as APT [12], MMJoin
[13] and L2AP [14], further improve the efficiency by in-
troducing tighter similarity bounds. Alternatives also exist
that find approximate answers for cosine similarity search
using locality sensitive hashing (LSH) [9] [10]. However, the
semantics of vector elements are ignored in these methods,
which limits the efficiency in our problem. We show in this
work how the geographical information in object signatures
can be exploited to improve object linking efficiency.

Spatial indexing: Spatial index is designed for organiz-
ing spatial objects and optimizing a wide range of spatial
queries. Various indexing structures have been proposed
in the literature, including Quadtree [41], R-tree [18] [19]
[20] [42] [26] [43], k-d tree [15] [17] [16], hB-tree [21] [22],
etc. Specifically, R-tree [18] is a dynamic and balanced
tree structure that organizes minimum bounding rectangles
(MBRs) of spatial objects into leaf nodes and groups nearby
MBRs into internal nodes. The search algorithm determines
whether or not to search inside a subtree by checking MBRs.
A majority of nodes are pruned in this way, reducing I/O
cost. The construction method of R-tree, in particular how to
group MBRs into intermediate nodes, is indispensable to its
search performance in practice. Most of the R-tree variants,
e.g., R+ tree [19], R*-tree [20], Hilbert R-tree [42], X-tree [26],
PR-tree [43], etc., target at improving the merging strategy.
In this work, we extend the R-tree structure to combine
both spatial and weight information of each point for more
efficient moving object linking.

Trajectory privacy: Privacy-preserving trajectory publica-
tion aims to release individuals’ moving trajectories with-
out leaking their sensitive information. It has been exten-
sively studied in the literature, adapting various classic data
privacy protection models to trajectory data. k-anonymity
algorithms (e.g., W4M [30] and GLOVE [31]) cluster and
merge trajectories such that a trajectory is indistinguishable
with at least other k-1 trajectories. l-diversity and t-closeness
[32] further extend k-anonymity to prevent semantic attack
by considering sensitive attribute value distributions in
trajectories. Differential privacy (e.g., DPT [33]) and plau-
sible deniability [34] insert random noises into trajectories,
ensuring that the presence of an entity or trajectory in a
dataset can only be observed for a controlled amount of
certainty. Besides, some ad-hoc privacy models, such as
dummy [44] and mix-zone [45], have also been applied to
anonymize sensitive information for trajectory data. In this
work, we show that the TF-IDF-weighted signatures are
highly effective for protecting trajectory privacy, especially
the linkability attack, through the signature closure concept.

8 CONCLUSION

In this paper, we have studied the problem of spatiotempo-
ral entity linking based on trajectories. Different signature
representation strategies have been examined for their abil-
ity to capture the unique characteristics of trajectory data.
The linking problem is formalized as a k-NN query based
on signature similarity. A comprehensive suite of techniques

have been developed, including signature reduction and
WR-tree indexing with update support. Two optimization
schemes (i.e., re-ranking and stable marriage) are introduced
to enhance the linking accuracy. An empirical study on a
large taxi dataset demonstrates significantly better accuracy
and efficiency of our approach than the state-of-the-art
methods. In the future, we will extend our research to het-
erogeneous datasets over a long period of time to support
cross-domain spatiotemporal entity linking. The location
privacy projection issue will also be further investigated.

ACKNOWLEDGMENT

This work was partially supported by the Australian Re-
search Council (Grant No. DP200103650 and LP180100018).

REFERENCES

[1] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel,
“Unique in the crowd: The privacy bounds of human mobility,”
Scientific reports, vol. 3, p. 1376, 2013.

[2] Z. Li, B. Ding, J. Han, and R. Kays, “Swarm: Mining relaxed
temporal moving object clusters,” Proc. VLDB Endow., vol. 3, no.
1-2, pp. 723–734, Sep. 2010.

[3] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang, “On discovery of
gathering patterns from trajectories,” in ICDE ’13, April 2013, pp.
242–253.

[4] H. Cao, N. Mamoulis, and D. W. Cheung, “Mining frequent spatio-
temporal sequential patterns,” in ICDM ’05, Nov 2005.

[5] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory
pattern mining,” in KDD ’07, New York, NY, USA, 2007, pp. 330–
339.

[6] H. Cao, N. Mamoulis, and D. W. Cheung, “Discovery of periodic
patterns in spatiotemporal sequences,” IEEE TKDE, vol. 19, no. 4,
pp. 453–467, April 2007.

[7] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye, “Mining periodic
behaviors for moving objects,” in KDD ’10, New York, NY, USA,
2010, pp. 1099–1108.

[8] K. P. F.R.S., “Liii. on lines and planes of closest fit to systems of
points in space,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[9] P. Indyk and R. Motwani, “Approximate nearest neighbors: To-
wards removing the curse of dimensionality,” in STOC ’98, New
York, NY, USA, 1998, pp. 604–613.

[10] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in VLDB ’99, San Francisco, CA, USA,
1999, pp. 518–529.

[11] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in WWW ’07, New York, NY, USA, 2007, pp. 131–140.

[12] A. Awekar and N. F. Samatova, “Fast matching for all pairs simi-
larity search,” in 2009 IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent Technology, vol. 1, Sept 2009,
pp. 295–300.

[13] D. Lee, J. Park, J. Shim, and S.-g. Lee, “An efficient similarity
join algorithm with cosine similarity predicate,” in Proceedings
of the 21st International Conference on Database and Expert Systems
Applications: Part II, ser. DEXA ’10, Berlin, Heidelberg, 2010, pp.
422–436.

[14] D. C. Anastasiu and G. Karypis, “L2AP: Fast cosine similarity
search with prefix l-2 norm bounds,” in ICDE ’14, March 2014,
pp. 784–795.

[15] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517,
Sep. 1975.

[16] J. T. Robinson, “The K-D-B-tree: A search structure for large
multidimensional dynamic indexes,” in SIGMOD ’81, New York,
NY, USA, 1981, pp. 10–18.

[17] J. L. Bentley, “Multidimensional binary search trees in database
applications,” IEEE Transactions on Software Engineering, vol. SE-5,
no. 4, pp. 333–340, July 1979.

[18] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in SIGMOD ’84, New York, NY, USA, 1984, pp. 47–
57.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3036633, IEEE
Transactions on Knowledge and Data Engineering

14

[19] T. K. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-tree: A
dynamic index for multi-dimensional objects,” in VLDB ’87, San
Francisco, CA, USA, 1987, pp. 507–518.

[20] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R∗-tree: An efficient and robust access method for points and
rectangles,” in SIGMOD ’90, New York, NY, USA, 1990, pp. 322–
331.

[21] D. B. Lomet and B. Salzberg, “The hB-tree: A multiattribute in-
dexing method with good guaranteed performance,” ACM Trans.
Database Syst., vol. 15, no. 4, pp. 625–658, Dec. 1990.

[22] G. Evangelidis, D. Lomet, and B. Salzberg, “The hBπ-tree: A
multi-attribute index supporting concurrency, recovery and node
consolidation,” The VLDB Journal, vol. 6, no. 1, pp. 1–25, Feb. 1997.

[23] Y. Tang, L. H. U, Y. Cai, N. Mamoulis, and R. Cheng, “Earth
mover’s distance based similarity search at scale,” Proc. VLDB
Endow., vol. 7, no. 4, pp. 313–324, Dec. 2013.

[24] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” in FOCS ’06,
Oct 2006, pp. 459–468.

[25] J. Ji, J. Li, S. Yan, B. Zhang, and Q. Tian, “Super-bit locality-
sensitive hashing,” in NIPS ’12, USA, 2012, pp. 108–116.

[26] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The X-tree: An index
structure for high-dimensional data,” in VLDB ’96, San Francisco,
CA, USA, 1996, pp. 28–39.

[27] S. T. Leutenegger, M. A. Lopez, and J. Edgington, “STR: A simple
and efficient algorithm for r-tree packing,” in ICDE ’97. IEEE,
1997, pp. 497–506.

[28] F. Jin, W. Hua, J. Xu, and X. Zhou, “Moving object linking based
on historical trace,” in ICDE ’19. IEEE, 2019, pp. 1058–1069.

[29] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp.
9–15, 1962.

[30] O. Abul, F. Bonchi, and M. Nanni, “Anonymization of moving
objects databases by clustering and perturbation,” Information
systems, vol. 35, no. 8, pp. 884–910, 2010.

[31] M. Gramaglia and M. Fiore, “Hiding mobile traffic fingerprints
with glove,” in Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, 2015, pp. 1–13.

[32] Z. Tu, K. Zhao, F. Xu, Y. Li, L. Su, and D. Jin, “Protecting trajectory
from semantic attack considering k-anonymity, l-diversity, and t-
closeness,” IEEE Transactions on Network and Service Management,
vol. 16, no. 1, pp. 264–278, 2018.

[33] X. He, G. Cormode, A. Machanavajjhala, C. M. Procopiuc, and
D. Srivastava, “DPT: differentially private trajectory synthesis
using hierarchical reference systems,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1154–1165, 2015.

[34] V. Bindschaedler and R. Shokri, “Synthesizing plausible privacy-
preserving location traces,” in 2016 IEEE Symposium on Security
and Privacy, 2016, pp. 546–563.

[35] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou, “Calibrating
trajectory data for similarity-based analysis,” in SIGMOD ’13, New
York, NY, USA, 2013, pp. 833–844.

[36] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li, Geolife GPS trajectory
dataset - User Guide, July 2011.

[37] F. Jin, W. Hua, T. Zhou, J. Xu, M. Francia, M. E. Orlowska,
and X. Zhou, “Trajectory-based spatiotemporal entity linking,”
Technical Report, October 2020.

[38] Z. Li, J. Wang, and J. Han, “Mining event periodicity from incom-
plete observations,” in KDD ’12, New York, NY, USA, 2012, pp.
444–452.

[39] H. Jeung, H. T. Shen, and X. Zhou, “Convoy queries in spatio-
temporal databases,” in ICDE ’08, vol. 00, 04 2008, pp. 1457–1459.

[40] L. A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C. C. Hung,
and W. C. Peng, “On discovery of traveling companions from
streaming trajectories,” in ICDE ’12, April 2012, pp. 186–197.

[41] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for
retrieval on composite keys,” Acta Informatica, vol. 4, no. 1, pp.
1–9, Mar 1974.

[42] I. Kamel and C. Faloutsos, “Hilbert R-tree: An improved r-tree
using fractals,” in VLDB ’94, San Francisco, CA, USA, 1994, pp.
500–509.

[43] L. Arge, M. D. Berg, H. Haverkort, and K. Yi, “The priority R-tree:
A practically efficient and worst-case optimal R-tree,” ACM Trans.
Algorithms, vol. 4, no. 1, pp. 9:1–9:30, Mar. 2008.

[44] X. Liu, J. Chen, X. Xia, C. Zong, R. Zhu, and J. Li, “Dummy-based
trajectory privacy protection against exposure location attacks,” in

International Conference on Web Information Systems and Applications,
2019, pp. 368–381.

[45] X. Liu, H. Zhao, M. Pan, H. Yue, X. Li, and Y. Fang, “Traffic-aware
multiple mix zone placement for protecting location privacy,” in
2012 Proceedings IEEE INFOCOM. IEEE, 2012, pp. 972–980.

Fengmei Jin received her Bachelor of Engineer-
ing from Sun Yat-Sen University in 2016 and
Master of Engineering from Renmin University of
China in 2019. Currently, she is a PhD candidate
at The University of Queensland. Her research
interests include spatiotemporal databases, pat-
tern mining, and data integration.

Wen Hua is a Lecturer at The University of
Queensland. She received her PhD and Bach-
elor degrees in computer science from Ren-
min University of China in 2015 and 2010, re-
spectively. Her main research interests include
database systems, information extraction, data
integration, and spatiotemporal data manage-
ment.

Thomas Zhou received his Bachelor of Science
(Computer Science) degree with First Class
Honors from The University of Queensland in
2019. He is a Research Assistant at The Uni-
versity of Queensland.

Jiajie Xu received the MS degree from The
University of Queensland in 2006 and the PhD
degree from the Swinburne University of Tech-
nology in 2011. He is currently an Associate
Professor with the School of Computer Science
and Technology, Soochow University, China.
His research interests include spatiotemporal
database systems, big data analytics, mobile
computing, and recommendation systems.

Matteo Francia is a PhD candidate in Com-
puter Science at The University of Bologna, Italy.
He was a visiting scholar at The University of
Queensland in 2019. He received the MSc and
BSc with honors from the University of Bologna
in 2017 and 2014, respectively. His research
focuses on analytics of unconventional data, with
particular reference to trajectory, social, and sen-
sory data.

Maria E Orlowska is a Professor at Polish-
Japanese Academy of Information Technology in
Warsaw, Poland. She was Professor of Informa-
tion Systems at The University of Queensland
from 1988 to 2016. She is a Fellow of the Aus-
tralian Academy of Science. Her main research
interests include databases and business IT sys-
tems with a focus on modeling and enforcement
issues of business processes.

Xiaofang Zhou is a Professor of Computer
Science at The University of Queensland. He
received his BSc and MSc in Computer Sci-
ence degrees from Nanjing University in 1984
and 1987,respectively, and his PhD in Computer
Science from UQ in 1994. His research inter-
ests include spatial and multimedia databases,
high performance query processing, data min-
ing, data quality management, and machine
learning. He is a Fellow of IEEE.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 18,2021 at 10:21:12 UTC from IEEE Xplore. Restrictions apply.

