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Abstract—Power and thermal management are critical com-
ponents of High-Performance-Computing (HPC) systems, due to
their high power density and large total power consumption. The
assessment of thermal dissipation by means of compact models
directly from the thermal response of the final device enables
more robust and precise thermal control strategies as well as
automated diagnosis. However, when dealing with large scale
systems “in production”, the accuracy of learned thermal models
depends on the dynamics of the power excitation, which depends
also on the executed workload, and measurement nonidealities,
such as quantization. In this paper we show that, using an
advanced system identification algorithm, we are able to generate
very accurate thermal models (average error lower than our
sensors quantization step of 1◦C) for a large scale HPC system
on real workloads for very long time periods. However, we also
show that: 1) not all real workloads allow for the identification of
a good model; 2) starting from the theory of system identification
it is very difficult to evaluate if a trace of data leads to a good
estimated model. We then propose and validate a set of techniques
based on machine learning and deep learning algorithms for the
choice of data traces to be used for model identification. We also
show that deep learning techniques are absolutely necessary to
correctly choose such traces up to 96% of the times.

I. INTRODUCTION

High performance computing (HPC) systems are designed
to be at the cutting edge of computing capabilities. To achieve
this goal, HPC installations are characterized by high compu-
tational power density and as a consequence, by high power
density as well as large total power consumption. Indeed
HPC systems have 2-4x higher rack power density w.r.t.
server and industrial datacentre installations, with a per rack
power envelope ranging between 20-100 kW [1]. High power
density and envelope are obviously critical for HPC system
management and operation.

Today one of the most powerful supercomputers in Top500
is Sunway TaihuLight which consumes 15.3 MW for deliv-
ering 93 Petaflops. One of the previous first ones, Tianhe-2,
consumes 17.8 MW for “only” 33.2 Petaflops. However, the
power consumption increases to 24 MW when considering also
the cooling infrastructure[2]. Such an amount of cooling power
serves to prevent thermal issues. In fact, the performance of
the processing elements is actively controlled by the internal
firmware logic, which modulates chip voltage and frequency
for maximizing the clock speed while satisfying power and
thermal constraints. However these mechanisms are usually

reactive, threshold-based and take significant safety margins:
authors in [3] show that, for hot-water liquid cooled nodes,
the processors are incapable of employing thermal throttling
by using DVFS states to prevent the critical thermal threshold
to be reached.

To solve these issues, several works in the literature [4], [5],
[6], [7], [8], [9], [10], [11], [12] propose to take advantage
of proactive thermal and power management strategies. These
strategies all rely on the availability of compact predictive
power and thermal models, capable of predicting future power
consumption and temperature of the system and, even more
importantly, to build a clear understanding on the sensitivity
of these on workload parameters and hardware knobs that
can be controlled at run time. Such models allow to estimate
and model the power consumption of the entire CPUs and
their cores based on workload characteristics extracted through
performance counters and micro-architectural usage. Thanks
to that, an optimizer can leverage these models to find the
maximum clock frequency to apply based on the current
usage of the micro-architecture while satisfying a global power
budget or thermal constraints.

Compact models can be used in combination with optimiza-
tion and artificial intelligence techniques to select in a robust
fashion the optimal operating points from the target power
and temperature and the current conditions [4], [5], [6], [7],
[8], as well as to estimate hotspots and peak temperatures
[12]. Moreover, such compact models can be used also for
detecting anomalous changes in the behaviour of the system,
for example due to a failure. However, the strategies for
learning these models rely on design-time parameters [10]
that cannot cope with manufacturing variability, which makes
each chip different from the others. Moreover, differences
in deployment conditions and aging which can induce very
significant differences in compact model parameters even for
nominally identical nodes. In addition, such models have
been applied only to single node systems operating in a
test environment and therefore cannot easily be utilized at
the scale of a full system in production without causing
significant calibration costs of all its nodes (e.g. bringing
the HPC machine off-line periodically for power and thermal
characterization).

In case an identified compact thermal model needs to



be periodically updated during the lifetime of the system,
additional challenges arise concerned with identifying models
under production workloads, which cannot be calibrated to
the needs of the model identification process. In fact, it is
well known that the input signals may affect significantly the
results of an identification experiment [13], [14]. The choice
of a suitable input signal (when possible) has been extensively
treated in the system identification literature [13], [14]. In
many identification methods the input data are not available
but the type of input excitation is assumed to be known [15],
[16], [17]. When dealing with real workloads, as in our case,
it is critical to evaluate if a given input (workload) will lead to
a sufficiently accurate estimated model. However, even if [13],
[14] suggest that persistently exciting of sufficiently high order
as well as a low condition number is a requirement for high
estimation accuracy, very few previous works have verified if
these conditions are sufficient for discriminating real workload
traces that lead to good or bad identified models. To the best
of our knowledge, the only attempt to define a procedure of
data selection for system identification has been reported in
[18]. The authors investigate the usage of two metrics, one
connected to the model’s matrix condition number and the
other to the cross-correlation between input and output, and
they find that only a combination of the two metrics can
discriminate between good and bad windows for identification.
The method is however only applied to a single sequence in
a specific use-case, and therefore the general performance of
the model has not been assessed.

This paper aims at bridging the gap between the theoretical
identification of thermal models and their application to real
workloads on in-production large HPC system. The paper is
organized as follows. Sec. II presents a review with the state-
of-the-art and highlights the open problems. Sec. III describes
the theoretical foundations of our system identification models.
Sec. IV describes our deployment scenario, consisting of a
large HPC system under real workloads, and presents the
results of thermal identification on our data. Given the large
amounts of available data (14 days of continuous operation),
we divide it in time windows of 12 hours each, which also
enables us to highlight the problem of selecting the right
window of data for good model identification. Finally, Sec.
V explores the problem of window selection and it shows
that only by means of machine learning and deep learning
algorithms an accurate selection can be performed.

II. RELATED WORK

Several strategies have been proposed in the last decade for
extracting compact thermal models directly from a processor
chip’s thermal response to a given power/workload stress input
[19], [20], [21], [22], [8], [23], [24], [25], [26], [11]. The
simplest ones do not account for the multimodal nature of the
thermal transient caused by the different building materials
and their relative time-constants (i.e. die, heat-spreader and
heatsink) [8]. In [19], [20], a first order dynamic thermal
model is identified by solving a linear Least Squares (LS)
optimization problem. Sharifi et al. [27] show that, when a

model is available, it can be used effectively to filter out
measurement noise using a Kalman filter.

Coskun et al. [21] use an Auto-Regressive Moving Av-
erage (ARMA) technique for predicting the future thermal
evolution of each core. The derived model predicts future
temperature by using only its previous values. Since it does
not account directly for workload-to-power dependency, a
Sequential Probability Ratio Test (SPRT) technique is used
to rapidly detect changes in the statistical residual distribution
(average, variance) and, then, to re-train the model, when it is
no longer accurate. Juan et al. [22] uses a combination of a K-
means clustering and an Auto-Regressive (AR) model to learn
a compact model for fast thermal simulation. This approach
is effective only when starting from a highly accurate thermal
model of the HW. Moreover, the missing exogenous terms in
both of the above approaches leads to neglecting the direct link
between dissipated power and temperature. Then, the learning
of a large number of different models is required to capture
the characteristics of different functional units and program
phases.

Huang et al. [10] propose HotSpot, a simulation tool to
compute the thermal transients, thermal map and steady-
state temperature in electronics devices. Whereas the tool
allows to accurate model several thermal-related effects given
the chip floorplan and some tuning parameters, HotSpot it
is not suitable to on-line predict the temperature of a real
manufactured chip and a full system. Pagani et al. [12] propose
an approach to compute the peak transient temperature in
a chip floorplan by analytically solving the response of the
state-space dynamic model representing the heat dissipation.
The authors show that their approach can compute the peak
transient temperature quickly than HotSpot. To apply this
approach to a real manufactured chip it is required to extract
a thermal model tuned on the specific component.

Reda et al. [11] propose a method for estimating thermal
models and power consumption only from the measurements
of thermal sensors and total power consumption, without mak-
ing a-priori assumption on the core’s power consumption as
well as model structure/parameters. The results are promising
but, as in other works, to correctly identify the thermal model it
is required to excite the system with a controlled input (power
steps long enough to reach steady state conditions). Bartolini
et al. [8] present a distributed model learning approach based
on a set of Auto-Regressive eXogenous (ARX) models. Each
core executes its own model learning routine generating a local
thermal model. The model is used internally, in each core, by a
local model-predictive controller. However this approach has
been applied only to simulated systems and it is based on
the assumption that per-core power traces and thermal sensor
outputs are accurate and without noise.

Indeed, standard ARX models are suitable to represent the
so-called “process noise”1, but are based on the assumption
that input and output data are accurate and not affected by

1this is a stochastic process usually injected as additional (unknown) input
in order to represent unavoidable model approximations



measurement noise [14], [13]. Beneventi et al. [23] present
an Output Error system identification strategy that is robust
to quantization noise on the input temperature measurements.
This is achieved by adding to the basic optimization problem a
set of linear constraints that filter out the model parameters that
are not physically valid. The approach is validated on a quad-
core server platform. Unfortunately, the proposed methodology
cannot handle “process noise”.

Previous works have shown that the relation between the
core temperature and the dissipated power can be described
by a purely dynamic ARX model [25], [24]. ARX models
are widely used in system identification since they constitute
the simplest way of representing a dynamic process in the
presence of uncertainties [14]. Two important features of these
models are the possibility of obtaining asymptotically unbiased
estimates of their parameters by means of least squares and
the absence of stability problems of the associated optimal one
step-ahead predictors [14]. Nevertheless, it has been shown
in [24] that the classic MISO ARX model is not able to
describe properly the thermal dynamics of the system because
the estimated models are characterized by relevant negative
poles and/or complex conjugate poles. This is in contrast with
the physics of thermal systems, where only real positive poles
can exist. As explained in [24], this problem is due to the
presence of a significant level of measurement noise.

To take into account the presence of this noise, MISO ARX
models with noisy input and output have been considered [25],
[24]. These models belong to the family of errors-in-variables
models and cannot be identified by means of standard least
squares and prediction error methods [28]. In [25] Diversi et
al. introduced a bias compensated least squares approach for
identifying noisy ARX models, which has been extended in
[24] with a distributed implementation. These works have been
conducted on the Intel Single Chip Cloud computer test device
which featured “cheap” ring oscillators as thermal sensors. In
[26] a Frisch scheme-based approach is applied to a server
class processor operating in free-cooling with variable ambient
temperature and the built-in state-of-the-art thermal sensors are
affected by quantization noise. The obtained results prove the
robustness of the approach.

To extract the models all the above mentioned works
[25], [24], [26] rely on the capability of testing the system
with Pseudo Random Binary Sequences (PRBS) workloads,
where each core, synchronously with the thermal response
measurements (with a regular sub-second sampling time) can
be forced to execute at in ether a low workload/power (idle)
state or high workload/power (power virus) state to emulate
a Gaussian distribution of the power stimulus. The binary
workload is chosen as it allows to pre-characterize precisely
the power consumption of each of the two workload states and
thus to create input vectors not affected by measurement noise
in conjunction with an exciting workload.

In a realistic scenario, it is interesting to understand if the
previously mentioned approaches can be applied to generic
user workloads without a priori guarantees on the persistent
excitation of the workload as well as whiteness of its spectral

components. Indeed the system identification theory requires
to excite the system under test in all its modes to be capable
of correctly identify its model. However to track physical
parameter changes as well as to detect abnormal changes
in this parameters it is important to understand: (i) if real
workloads, with no guarantees on their excitation, can be
used to learn accurate models, and (ii) how to filter out
workload windows which would not lead to accurate model
identification.
Tackling these open problems is the main contribution of our
work. In particular, point (i) above is discussed in Sec. IV,
while point (ii) is the topic of Sec. V.

III. METHODS

The objective of our work is the development and ver-
ification of a thermal model methodology and its integra-
tion in a monitoring framework for large scale HPC cluster
(Tier0/Tier1) composed by several racks of computing nodes,
each of which embedding one or more processing elements
(i.e. multi-core CPUs). Such a model is targeting the applica-
tions of thermal control and anomaly detection. As far as the
requirements are concerned, it has to:
• be predictive in time;
• have good accuracy and be stable in all operating condi-

tions;
• provide temperature estimation at a core level, for most

powerful control;
• be able to be estimated on real workloads, in order not

to require down-time periods of the cluster for runs of
ad-hoc workloads for model estimation.

In order to meet all these requirements, we have decided to
extend the distributed and scalable monitoring framework that
we presented in [29], [30]. As far as the thermal model is
concerned, we have used a variation to the algorithm presented
in [26], which makes use of an identification algorithm (see
Sec. III-B).
As we discussed, in our conditions several challenges arise:
• the identification algorithms run under the assumption

that the system to monitor is stressed with a very exciting
(ideally white) input pattern; this condition is very likely
to be not verified in real workloads;

• models identification should rely on the fact that there can
be time windows where the above conditions for good
model identification are verified, but it is not clear how
to identify such windows.

In the following we describe in detail the derivation of the
models and their integration into the monitoring framework
[29], [30].

A. Power model

The thermal model [26] uses as input the power of all cores
in a package. Since in the architecture we considered there is
no available measurement of the power per core, but only at
a package level, the first step is to derive an estimate for the
cores’ powers. For this purpose, we have modified the model



TABLE I
CHOSEN METRICS

Metric name Description
freq · C0 (MHz) Actual core frequency multiplied by ratio

of core time in state C0
freq pkg · C0 pkg (MHz) Actual package frequency multiplied by

ratio of package time in state C0
1 - C0 pkg Ratio of package time in all states except C0

in [30] to obtain a power model at the core level and not at
the package level.

The power model is based on the measurement of appropri-
ate metrics derived from the performance counters provided by
the CPU architecture (Intel in our case). The procedure used
to select the appropriate metrics is explored in detail in [30],
here we report only the most relevant points for the paper to
be self-contained.

Starting from the performance counters, we have derived
a set of metrics by applying transformations and non-linear
combinations of different counters. Such metrics comprise
measurements of all cores in a package, and of the uncore
part. These measurements are meant to cover all phenomena
relevant to power consumption, from physical measurements
(like temperature and frequency), to the current power-saving
state, to the load on the system (eg., instructions per second,
cache utilization and others). To choose a subset of the metrics,
among all the available ones, we have calculated Pearson’s
correlation of the metrics with the measured package power,
and by retaining only the smallest subset with the highest
correlation we derived the ones reported in Tab. I. Note that the
set comprises both core metrics and CPU metrics, because our
power model needs to estimate also the power dissipated by the
uncore. We have verified that these metrics are the smallest
subset which gives good accuracy (a decrease from 97% to
91% for the number of points below the 9.7W threshold with
respect to the results in [30], see the results in Sec. IV-B),
and that the addition of other metrics does not increase the
model’s performance considerably. All used metrics have also
been rescaled in order to lie in the interval [0, 1], in order to
avoid numerical instabilities in the model.

The power model is then derived using a linear regression
algorithm directly on the chosen metrics. It can be cast in the
form:

Ppkg =
∑

i∈Munc

αimi +
∑
k∈C

∑
i∈Mcore

βi,kmi,k

+ λ

( ∑
i∈Munc

α2
i +

∑
i∈Mcore

β2
i,k

)
(1)

where Munc and Mcore are the sets of uncore and core metrics,
respectively, C the set of cores, mi and mi,k the values of
the metrics, αi and βi,k the regression coefficients and λ
the regularization parameter [31]. Such a formulation allows
us to partition the package predicted power in two sets of

contributions (ignoring the regularization term):

Ppkg = Punc +
∑
k∈C

Pk (2)

with obvious definitions of the symbols comparing with Eq. 1.
With this formulation we can easily extract the partial powers,
i.e., Punc is an estimate of the power dissipated by the uncore
and Pk is the power dissipated by core k. The regression
coefficients are derived through a least-squares procedure, and
to this purpose we have used the “ml” package from Apache
Spark 2.2.0.

Note that also for the derivation of the power model we
use real workloads, and this poses the same challenges we
discussed above and in [30]. However, since the accuracy
of the power model is not critical and the model itself is
relatively simple, we have verified that we are always able
to derive a model with relatively good stability and accuracy
if we use a long enough interval for the training data, in our
case generally 3 days as in [30]. Moreover, as we showed in
[30], the training of the power model and its evaluation can
be done very efficiently in our scalable framework and they
impose only a minimal overhead.

B. Thermal model of a core

The thermal dynamics of a single core of a node are
represented by means of a MISO model linking the core’s
temperature (model output) to the powers of all the node’s
cores (model inputs). Note that we have decided to model the
effects of the cores on each other exclusively through their
power consumption and not using directly their temperatures
at the previous time instant. This choice is justified both
by the facts that the measurements of the temperatures are
noisy and that power and temperature are inherently connected
measurements, being a change in temperature a consequence
of the dissipated power, and therefore including both quantities
is not expected to provide great additional information. This
is also a result of the time discretization, which makes power
of the neighbour cores a direct input to the core’s temperature.
As discussed in [26], a standard ARX (AutoRegressive eXoge-
nous) model is not suitable to describe the thermal dynamics
of a core because of the presence of a significant additive noise
corrupting the temperature readings. Therefore, we will adopt
the following MISO ARX model with additive output noise

T̄ (t) +

n∑
i=1

ai T̄ (t− i) =

Nc∑
k=0

n∑
i=1

bki Pk(t− i) + w(t) (3)

T (t) = T̄ (t) + v(t), (4)

where
– T̄ (t) is the actual (unknown) core temperature;
– n is the model order, i.e. the memory of the difference

equation;
– Nc is the number of cores of the CPU;
– P1, . . . , PNc

are the dissipated powers of all the cores of
the node and P0 denotes the uncore power Punc;



– w(t) is the equation error (process noise), assumed to be
a zero mean white process with variance σ2

w;
– T (t) is the measured core temperature;
– v(t) is the additive measurement error, assumed to be a

zero mean white process with variance σ2
v , uncorrelated

with w(t) .

By defining the vectors

ϕT (t)= [−T̄ (t− 1) − T̄ (t− 2) . . . − T̄ (t− n) ]T (5)
ϕP (t)= [P0(t− 1) . . . P0(t− n)P1(t− 1) . . . P1(t− n)

. . . PNc
(t− 1) . . . PNc

(t− n) ]T (6)

θA = [a1 a2 . . . an ]T (7)

θB = [ b01 · · · b0n b11 · · · b1n · · · bNc1 · · · bNcn

]T
(8)

model (3)-(4) can be rewritten in the compact form

T̄ (t) = ϕT
T (t) θA + ϕT

P (t) θB + w(t) (9)
T (t) = T̄ (t) + v(t), (10)

The identification problem to be solved consists in estimating
the model coefficients ai, i = 1, . . . , n, bki, k = 0, . . . , Nc, i =
1, . . . , n on the basis of N samples of the measured tem-
perature T (t) and of the powers Pj(t), j = 0, . . . , Nc. The
equation error variance σ2

w and the additive noise variance σ2
v

are also estimated.
The adopted identification algorithm is an evolution of that

presented in [26] and is essentially based on the following
equations

(Σ− Σ̃) θ̄ = 0 (11)
Σq θ̄ = 0 (12)

where

θ̄ =
[

1 a1 · · · an b01 · · · b0n · · · bNc1 · · · bNcn

]T
(13)

Σ̃ = diag [σ2
v + σ2

w σ2
v · · · σ2

v︸ ︷︷ ︸
n

0 · · · 0︸ ︷︷ ︸
(Nc+1)n

] (14)

Σ = E [ϕ(t)ϕT (t)] (15)

Σq = E [ϕq(t)ϕT (t)] (16)

and

ϕ(t)= [−T (t) . . . − T (t− n)P0(t− 1) . . . P0(t− n)

P1(t− 1) . . . P1(t− n) . . . PNc
(t− 1) . . . PNc

(t− n) ]T

(17)
ϕq(t) = [P0(t− 1) . . . P0(t− q) P1(t− 1) . . . P1(t− q)

. . . PNc
(t− 1) . . . PNc

(t− q) ]T . (18)

E[·] denotes the expectation operator. The integer q in (18)
is a user-chosen parameter. It can be noted that (11)-(12) is
a system of equations where the unknowns are the model

coefficients and the noise variances whereas the matrices Σ
and Σq can be directly estimated from the available data:

Σ̂ =
1

N − n

t=N∑
t=n+1

ϕ(t)ϕT (t) (19)

Σ̂q =
1

N − q

t=N∑
t=n+q+1

ϕq(t)ϕT (t). (20)

To apply the above mentioned identification approach, the
sample matrices Σ̂ and Σ̂q need to be non singular. This im-
plies that the dissipated powers (input signals) P0, P1, . . . , PNc

have to be persistently exciting of sufficiently high order.
Nevertheless, as pointed out in [24], the non-singularity of the
matrices is often not sufficient to get satisfactory results. For
this reason, the application of the algorithm proposed in [26]
can be difficult in the framework considered in this paper as
we use real workloads and not ad-hoc excitations. This means
that it is highly likely that the input is not highly exciting.
In [24] some metrics (like the matrix condition number) have
been proposed to evaluate the quality of the identified model,
and in this work we test such assumptions. In the framework
under study it is therefore necessary to include a block which
performs the window selection procedure. More precisely,
given a set of input-output data, the aim of this block is to
evaluate the goodness of the set w.r.t. the implementation of
the identification algorithm.

In order to evaluate the performance of the model, as in
[26], we rely on a Kalman filter for the prediction of the
temperature, using the identified thermal model. The filter is
based on the following state space representation of the model
(3)–(4):

x(t+ 1) = Ax(t) +B u(t) +Gw(t+ 1) (21)
T (t) = C x(t) + v(t) = T̄ (t) + v(t) (22)

where

A =



−a1 1 0 · · · 0

−a2 0
. . . . . .

...
...

. . .
...

... 1
−an 0 · · · · · · 0


B =


b01 · · · bNc1

b02 · · · bNc2

...
...

...
...

b0n · · · bNcn


C =

[
1 0 · · · 0

]
G = CT ,

and
u(t) = [P0(t)P1(t) . . . PNc

(t) ]T . (23)

The filter allows to compute, at each time step t, the state
prediction x̂(t + 1|t) and then the prediction ˆ̄T (t + 1|t) =
C x̂(t + 1|t) of the actual core temperature T̄ (t + 1). This
prediction can subsequently be compared with the measured
temperature T (t+ 1) and the prediction error (innovation)

ε(t+ 1) = T (t+ 1)− ˆ̄T (t+ 1|t) (24)

can be exploited as a model performance index.
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Fig. 1. Model-learning framework

An overview of the framework architecture, where the
power and thermal prediction modules and the window se-
lection block are highlighted, is presented in Fig. 1.

Remark 1: Model (3)-(4) refers to a single core of the CPU.
In order to model the thermal dynamics of the whole Nc-
core CPU, we rely on a multi-input multi-output (MIMO)
representation consisting in a set of Nc MISO ARX model
with additive noise of type (3)-(4) or (9)-(10). By denot-
ing the actual and measured temperatures of the i–th core
(i = 1, 2, . . . , Nc) as T̄i(t) and Ti(t) and with wi(t), vi(t)
the corresponding process and measurement noise, the MIMO
model representing the thermal dynamics of the CPU is
described by the following equations



T̄1(t) = ϕ1
T
T

(t) θ1A + ϕT
P (t) θ1B + w1(t)

T1(t) = T̄1(t) + v1(t)

T̄2(t) = ϕ2
T
T

(t) θ2A + ϕT
P (t) θ2B + w2(t)

T2(t) = T̄2(t) + v2(t)
...

T̄Nc
(t) = ϕNc

T

T
(t) θNc

A + ϕT
P (t) θNc

B + wNc
(t)

TNc
(t) = T̄Nc

(t) + vNc
(t)

(25)

where ϕi
T (t) is a vector of type (5) whose entries are samples

of T̄i(t), whereas the vectors θiA, θiB contains the coefficients
of the i–th core MISO model. To estimate the CPU thermal
model, the identification procedure previously described is
performed for each core.

IV. RESULTS

A. Test bed

For our experimentation, we implemented the framework
from Fig. 1 on 40 of the 516 nodes of a cluster in a working
production system (Galileo at CINECA [32]) as a case study.
Each node is equipped with two 8-cores Intel Haswell CPUs
(E5-2630 v3 @ 2.40GHz) and 128GB of DRAM. The nodes
have been monitored over a period of 17 days of normal
operation, and all metrics are acquired at a constant sampling
time of 2s. On the monitored nodes and during the entire time
period there were 117 active users and a total of 3612 jobs
were submitted, with an average of 31 users and 90 jobs per
node (note that each user can submit multiple jobs, each using

several nodes). The power prediction algorithms are instead
run on a separate service node (Intel Haswell E5-2670 v3
@ 2.30GHz, 24 cores, 128GB DRAM, 4 NVIDIA GeForce
GTX 1080 Ti), where the Apache Spark environment and all
processing utilities are installed.

We want again to stress out the fact that, unlike most of the
previous literature on power models (for example, [33], [34],
[35], [36], [37]) and our previous work on thermal models
([26], [24]), in this work we trained and applied our power and
thermal prediction models in a production environment while
the machine was fully operational and running user jobs, where
each node has a different workload which can drastically
change over time, and not on custom-defined workloads on
single nodes.

B. Power model

For the training of the power model, we have selected the
first 3 days of operation of all nodes, and these data have
not been used further in the definition of the thermal model.
A different model is trained for each node and package, to
reflect the variability between the nodes. The regularization
parameter λ is set to 0.001 as in [30], which has proven to be
a robust value to maximize accuracy.

To obtain an assessment of the model’s performance, we
have calculated the absolute error between the estimated and
measured total package powers for all remaining 14 days of
operation. For each node and package, we then calculate the
percentage of time instants where such error is below a certain
threshold. Fig. 2 then shows a summary between all nodes
and packages of the percentage of points where the power
error is below two thresholds (3.23W and 9.68W, equivalent
to the 1◦C and 3◦C errors we used in [30]). Each point on
the x-axis is a different number of nodes considered both for
training and testing, and for each of these and for both power
thresholds they are shown, between all considered nodes and
packages, the median number of points below the threshold
(circles) together with the 25% and 75% percentiles (error
bars). By comparing Fig. 2 with the results in [30], we note
that the new model performs slightly worse than the old one,
as expected because we use significantly less features and we
are estimating also the individual cores contributions. However
the additional error is not very significant, and anyways for
more than 90% of the points the error in package power is
below 10W, which corresponds to roughly 1W error per core
(assuming uniform distribution of the power) and about 10%
of the maximum power. As we will see in the following, these
errors are indeed small and do not prevent us from obtaining
very accurate thermal models.

C. Thermal model

For the identification and evaluation of the thermal models
we have used the 14 days of measurements remaining from
the power models training. We have then chosen to further
subdivide this data in shorter time windows and, for each node
and core, use each window to identify a different model. One
of the reasons behind this choice is to be comparable with
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Fig. 3. Average of the temperature error across all cores for one package in
the cluster, changing the window used for the thermal model identification.
The dashed horizontal line corresponds to 1.2◦C.

previous works [26] which have used relatively short windows
(∼1.5 hours) for the identification. Another reason is that,
since the workload can vary considerably during the entire
time frame, by comparing for each core the models identified
in various windows enables us to perform a thorough cross-
validation of our results. On the other hand, the time windows
cannot be too short, since the workloads have relatively large
time constants and a short time window would not be able
to easily capture all the possible states of the system. For all
these reasons, we have chosen to divide the time frame in
25 windows, each ∼12 hours long and consisting of ∼22k
samples (since we have a sampling time of 2 seconds).

For the model evaluation, instead, we have performed an
extensive per core cross-validation by calculating the temper-
ature prediction, using the Kalman filter, of each of the 25
core models (each one identified in a different window) on
the entire 14 days of measurements. This procedure allows us
to test if a model is able to retain a good performance in all
operating conditions of the system, much beyond the duration
of its identification dataset.

Going more into the details of the models, for each core of a
node, a MISO ARX model with additive output noise of order
n = 2 has been identified. The thermal dynamic of each core is
thus characterized by two poles. The suitability of this choice
has been proved in [26]. The estimated model on each window
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Fig. 4. Distribution of the temperature error for all cores of one package in
the cluster, changing the window used for the thermal model identification.

is then been used to compute the temperature predictions on all
the remaining data by means of a Kalman filter, as discussed
in Sec. III-B. We want again to stress the fact that, to assess
the model’s performance, we have performed a very strict
cross-validation, since we test the model on an amount of data
which is 25 times larger than the one used for identification.
Fig. 3 reports the average of the error between the predicted
and measured temperatures across all cores in one package
for the whole available time frame of 14 days, changing
the window used for the thermal model identification. It is
evident that there is a great variability between the models
identified in different windows. In particular, some of the
models have excellent performance, with an average error
often below 1.2◦C (the dashed horizontal line), which is only
slightly higher than the quantization step of 1◦C.

In order to analyze the data in more detail, Fig. 4 shows
the distribution of the error separately for all cores in the
package choosing two windows for the identification, one with
small error and one with high error. Moreover, Fig. 5 chooses
one of the cores and shows also the time trace of both the
predicted and the measured error in these situations. It is
once again evident that, if the model is identified correctly,
the performance is excellent, while, if the window chosen
for the identification has bad properties, applying a system
identification algorithm to real workload data can lead to poor
estimations.

This finding is confirmed also by comparing the results
presented in this work to what we obtained in [26], where
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Fig. 5. Time traces of the measured and predicted temperatures for one core
of one package in the cluster, changing the window used for the thermal
model identification.
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Fig. 6. Comparison between the distributions of the temperature error for
all cores of one package in the cluster, using for the identification the same
windows from Fig. 4 (solid lines), and of the temperature error reported in
[26] (dashed line).

we derived a similar thermal model for one package of the
same architecture considered here. In [26], however, we were
able to execute an ad-hoc synthetic workload on the machine,
specifically designed to be almost white, in order to rapidly
excite all possible states of the system. Fig. 6 shows then a
comparison between the results from Fig. 4 and from [26]. We
note in the best case an almost negligible decrease in accuracy
with respect to [26], which is an excellent result since in this
work we do not employ ad-hoc benchmarks and our testing
time of the model is much longer (14 days compared to 1.5
hours). On the other hand, once again a poor choice of the
identification window leads to a very inaccurate model. It is

therefore of utmost importance to devise a robust procedure for
the a-priori evaluation of an identified model, or even for the
choice of an appropriate window of data to use. This necessity
becomes even more prominent when the models are used for
control and anomaly detection.

V. WINDOW SELECTION

As we have discussed, an appropriate choice for the data
window to use for identification is of paramount importance.
Such a choice can be made in two ways:

1) a-priori, before the identification, basing the choice upon
the properties of solely inputs (powers) and outputs
(temperatures);

2) using the results of the identification, looking for exam-
ple at the poles, the condition number or the whiteness
of the residuals.

Ideally, method 1) above should be preferable, as long as
the algorithm for window selection is computationally very
efficient. On the other hand, it is not guaranteed that a good
window selection can be performed using only the results of
the identification.

In order to evaluate the model’s performance, we have
derived a ground truth a-posteriori by using a Kalman filter
on new data (see Sec. III-B). Such a method cannot be
used for the window selection, both because it is highly
computationally intensive and also since it might lead to delays
or problems in a system that is meant for control or anomaly
detection.
We have decided to perform the window selection on a per-
core basis, i.e., every core in the package has its own ensemble
of chosen windows, that can be (and likely in most cases will
be) shared across most cores in one package. Note that the
thermal model for one core uses as input also the estimated
powers of all other cores and of the uncore in the package, so
we expect that a selection on a per-core basis will still take into
account the relative difference in activity between the cores.

In the following we test multiple algorithms on both meth-
ods for window selection. All the algorithms lie in the field
of supervised machine learning, and therefore need to define
labeled training and test sets. The goal of the algorithms is to
perform a classification, calculating a likelihood of the win-
dows to be good (windows whose identified model has good
performance) or bad ones. Contrary to the identification of
the thermal models, where we have derived a different model
for each node and core to reflect their inherent variability, for
the window selection phase we derive a single model using
the data from all nodes and cores. Our choice is justified by
the fact that the properties that define whether a time window
is suitable for identifying a good thermal model should be
general and not dependent on the particular characteristics of
a single core.

The data used for training of all machine learning models
has been handled in the same way. All 25 windows per pack-
age have been divided by core, resulting in 16k total windows.
These have been randomly and independently reordered, and
the 80% of those has been used for the training phase, the



remaining for the test phase. A window has been labelled as
good if the average error of the Kalman filter on the entire
data using the parameters identified in that window is below
a threshold (1.2◦C in our case), its standard deviation is also
below a threshold (1.5◦C) and the poles are stable, real and
not too low (we set a threshold of 0.8 based on Fig. 8 and on
the results in [26]). For better robustness of the algorithm, we
have excluded from the training set the windows with medium
temperature error (between 1.2◦C and 1.5◦C) and standard
deviation (between 1.5◦C and 2◦C). All these thresholds have
been calibrated by inspection of the data, and the threshold
on the error standard deviation is necessary to exclude models
where the error distribution deviates too much from a normal
distribution (see for example Fig. 4).

The performance has been evaluated by classifying the
windows from the test set, identifying the predicted good
windows (i.e., the ones where the computed likelihood is
above a given threshold) and showing the average temperature
error that we would incur if we chose that window for the
identification. Note that the misclassified good windows (i.e.,
the windows that are predicted of being good while in fact
they are not) are the worst-case scenario, since in this case
we would use for temperature control a bad model, while the
misclassified bad windows are not as critical.

We should also note that the approach we follow, even
though verified on a particular system with one thermal model
in mind, is general, and therefore can be easily adapted to
any situation where a model, with a real-valued time series as
output, has to be identified on real data, where the inputs are
an arbitrary number of real-valued time series. This aspect is
further discussed in Remark 2 at the end of this section.

A. Selection based on time traces

For the selection based on time traces, we have then chosen
to use as input the time traces of the cores’ and the uncore
partial powers (as estimated by the model from Sec. IV-B)
and the core measured temperature. Since we have observed
in the previous section that the identified model performs badly
if the poles are very different between the cores, we have also
decided to include the time trace of the measured package
power, in order to obtain a measurement of similarity between
all cores in a package.

We have evaluated three choices of algorithms, which will
be presented in detail in the following part of this section.
In summary, two of them rely on custom-defined features
calculated on the time traces (namely, a classical SVM with
RBF kernel [38] and a fully connected neural network [39])
and the last one is a 1D Convolutional Neural Network (CNN)
[39] applied directly to the time traces. All neural network
models have been implemented in PyTorch [40], levering the
multi-GPU capability of our computing system.

As far as testing is concerned, the output of the neural
networks is a number in the interval [0, 1] which represents the
likelihood of the window being good. If we set the decision
threshold at 0.5, all windows will be classified either good
or bad. We can also decide to use a different threshold, for
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Fig. 7. Architecture of the Neural Networks used for window selection.

TABLE II
CHOSEN FEATURES FOR THE SVM AND NN ALGORITHMS USING THE

TIME TRACES, WHERE THE SIGNAL x CAN STAND EITHER FOR PACKAGE
POWER OR CORE’S TEMPERATURE OR PARTIAL POWER.

Feature definition Description
E [|corr (x)|] Average of the absolute value of the signal’s auto-

correlation with up to 100 samples delay
E [x̄] Average of the low-passed signal
std [x̄] Standard deviation of the low-passed signal
max [x̄]−min [x̄] Maximum span of the low-passed signal
E [‖fft (x)‖] Average of the norm of the signal’s FFT

example 0.8, and in this case only windows with likelihood
l > 0.8 are considered good. As for the remaining windows,
we have decided to leave all the ones with likelihood in the
range [0.2, 0.8] as unclassified. This allows us to define three
classes: (i) good windows l > 0.8, to be used for identification,
(ii) bad windows l < 0.2, to be discarded, (iii) unclassified
windows 0.2 < l < 0.8, for which we are not sure whether
they can be used or not, and they can be a pool to choose
from if no window gets classified as good.

Classification based on custom features: As already out-
lined, we have used both a SVM algorithm with radial
basis functions and a fully connected neural network. The
architecture of the network is shown in Fig. 7a and it has
been derived following the standard suggestions for neural
networks [39]. It consists of four fully connected layers each



followed by a rectified nonlinearity (ReLu) and finally a
softmax classification layer. The optimizer used for training
is Adam, with learning rate 0.001 and weight decay 10−4 and
using as loss function the binary cross-entropy. The training
phase was stopped after 3000 iterations, where the training
loss had converged to a value of 0.35.

Both algorithms use the same input, which consists in a
pre-defined set of features on the power and temperature time
traces. The features have been chosen in order to empirically
reproduce the characteristics that we have observed in good
windows. Some of the features are defined on a low-pass
version of the traces (denoted as x̄ for a signal x), where the
window signal has been further divided into 20 subwindows
and averaged. Tab. II reports a summary of the defined
features.

Classification based on CNN: The architecture of the cho-
sen CNN is shown in Fig. 7b, and it has again been derived
following the standard suggestions for convolutional networks
[39]. It is composed of four 1D convolutional layers, each one
doubling the number of channels of its input, followed by max-
pooling, and in the last layer an adaptive average pooling to
bring down the dimension of the time trace to one followed by
a softmax classification layer. In the training phase, a dropout
layer was also inserted before the average pooling, with a drop
probability of 0.5.
The optimizer used for training is again Adam, with learning
rate 0.001 and weight decay 10−5 and using as loss function
the binary cross-entropy. The training phase was stopped once
the training loss had been below a threshold (0.18) for at least
5 iterations.

B. Selection based on identification results

In order to understand if the choice of a machine learning
algorithm for the selection based on identification results is
appropriate, we have started considering only simple metrics,
i.e., the modulus of the maximum pole and the condition
number of the matrix R̂ for each core and window, where
(see Sec. III-B):

R̂ =
[
Σ̂T Σ̂T

q

]T
.

In fact, on the one hand, unstable models (where the poles
magnitude is greater than 1) do not comply with the physics
of the system and, on the other hand, we know from theoretical
considerations that very high condition numbers are undesir-
able [14], [13]. As Fig. 8 shows, these metrics can give very
good indications to classify between good and bad windows,
however there is still a large number of outliers. Our analysis
is compatible with the results presented in [18], where it is
shown that the condition number itself is not enough to choose
a window and the addition of other metrics is mandatory.
However, in our case, due to the much greater amount of
data with respect to [18], we have observed that no simple
combination of features is able to deliver a good window
selection. We have chosen therefore to resort to a machine
learning algorithm, considering all the available metrics that
we could derive from the identification algorithm.
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Fig. 8. Correlation between the condition number or the maximum pole mod-
ulus and the temperature error for all cores and windows. For the magnitude
of the maximum poles, we have calculated an average of 0.95± 0.03 for the
good windows and of 0.85± 0.17 for the bad ones.

TABLE III
CHOSEN FEATURES FOR THE SVM AND NN ALGORITHMS USING THE

RESULTS FROM THE MODEL IDENTIFICATION.
Feature definition Description
Re pi Real parts of the poles of the A matrix
Im pi Imaginary parts of the poles of the A matrix
σw Standard deviation of the equation error
σv Standard deviation of the measurement noise
corr (res) First four autocorrelations of the identification

residuals
log10

(
cond

[
R̂
])

Condition number of the matrix R̂

log10

(
min svd

[
R̂
])

Minimum singular value of the matrix R̂

As already outlined, we have used again both a SVM
algorithm with radial basis functions and a fully connected
neural network. The architecture of the network is shown
in Fig. 7c and it has been derived very similarly to the
one in Fig. 7a. It consists of four fully connected layers
each followed by a rectified nonlinearity (ReLu) and finally a
softmax classification layer. The optimizer used for training is
once again Adam, with learning rate 0.001 and weight decay
10−4 and using as loss function the binary cross-entropy. The
training phase was stopped once the training loss had been
below a threshold (0.15) for at least 5 iterations.
Both algorithms use the same input, which consists in a
set of features derived from the results of the identification
algorithm. These features are reported in Tab. III.
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Fig. 9. Cumulative distributions (ECDFs) of the average temperature error
for the windows chosen by the classification algorithm using either directly
the time traces or the features coming from the identification, and varying
the decision threshold for the neural networks. The chosen windows differ
between the algorithms, so the ECDFs do not have the same number of points.
The vertical dashed line is the 1.2◦C threshold.

C. Classification results

Initially we concentrate on the study of the misclassified
good windows, i.e., the cases where the algorithm classifies
the window as being good while in reality it is not. Fig. 9a
reports, for the SVM and CNN algorithms on the time traces
and varying the decision threshold for the CNN, the cumulative
distributions of the average temperature error on the entire data
when the model has been identified in a window that is chosen
by the algorithm as a good window. We immediately note that
the CNN performs much better than the SVM. Moreover, if
we raise the decision threshold to 0.8, the number of outliers
is almost zero.
A similar situation can be observed in Fig. 9b, which reports
the same results for the SVM and NN algorithms on the
identification results. Also in this case the SVM provides the
lowest accuracy, while the NN with decision threshold 0.8
gives excellent performance. Moreover, comparing Fig. 9a and
Fig. 9b, we note that the CNN on time traces and the NN on
identification results perform very similarly.

Finally, Tab. IV reports the percentages of correctly and
incorrectly classified windows for all cases. It also shows the
decrease in yield when the decision threshold is increased from
0.5 to 0.8. From the results reported in the table, we again
conclude that the best performance is achieved with the CNN
on time traces and the NN on identification results. Increasing

TABLE IV
CLASSIFICATION ACCURACY FOR BOTH ALGORITHMS, VARYING THE

DECISION THRESHOLD FOR THE CNN. NOTE THAT ALL PERCENTAGES
ARE NORMALISED BY THE NUMBER OF CLASSIFIED WINDOWS, EXCEPT

FOR THE LAST LINE (UNCLASSIFIED WINDOWS), WHICH IS NORMALISED
BY THE TOTAL NUMBER OF WINDOWS IN THE TEST SET.

Metric definition Algorithm Threshold Value

Percentage of misclassified
good windows

SVM trace - 7.6%

NN trace 0.5 10%
0.8 3%

CNN trace 0.5 4.6%
0.8 2%

SVM identification - 7.8%

NN identification 0.5 5%
0.8 1.8%

Percentage of misclassified
bad windows

SVM trace - 6.8%

NN trace 0.5 6.8%
0.8 2.9%

CNN trace 0.5 3.5%
0.8 1.3%

SVM identification - 3.2%

NN identification 0.5 4.2%
0.8 1.3%

Percentage of correctly
classified windows

SVM trace - 86%

NN trace 0.5 83%
0.8 94%

CNN trace 0.5 91%
0.8 96%

SVM identification - 89%

NN identification 0.5 90%
0.8 96%

Percentage of unclassified
windows (relative to the
size of the test set)

SVM trace - 0%

NN trace 0.5 0%
0.8 42%

CNN trace 0.5 0%
0.8 16%

SVM identification - 0%

NN identification 0.5 0%
0.8 18%

the decision threshold to 0.8 allows much better performance,
with the drawback of a relatively small decrease in yield.
Note that, even though the NN on identification results perform
very similarly to the CNN on time traces, the former needs also
to run the identification procedure before passing the results
through the neural network, while the latter works directly on
the raw signals.

Remark 2: As already mentioned, although in this paper we
focus our attention on the MISO ARX model with additive
output noise (ARX + noise) model (3)-(4), the proposed
window selection approach can be applied to a large class
of input-output models. For instance, the method can be
easily adapted to more classical models like ARX and Ouput
Error (OE), that have already been used for identifying the
thermal dynamics of many-core systems on chip [8], [23].
More precisely:
– The selection algorithms based on time traces described
in Subsection V-A are fully model-independent since the
involved features are the signal properties reported in Table II
or the signal themselves (as for the CNN). These algorithms
can thus applied to ARX and OE models without any variation.
– The selection algorithms based on identification results
described in Subsection V-B are not model independent, but
most of the features reported in Table III are quite general.



TABLE V
ESTIMATED DISCRETE-TIME POLES p1, p2 FOR ALL CORES OF ONE

PACKAGE.

ARX + noise ARX OE

core p1 p2 p1 p2 p1 p2

1 0.961 0.020 0.877 −0.443 0.954 −0.463

2 0.958 0.245 0.876 −0.456 0.972 −0.823

3 0.952 0.192 0.865 −0.452 0.968 −0.038

4 0.955 0.163 0.861 −0.456 0.871 0.143

5 0.954 0.031 0.870 −0.437 0.968 −0.037

6 0.950 0.055 0.867 −0.442 −0.996 0.897

7 0.959 0.140 0.886 −0.449 0.973 −0.178

8 0.953 0.308 0.880 −0.448 0.966 −0.516

For example, all the considered types of models (ARX+noise,
ARX, OE) lead to estimated poles, variance of the equation
error and sequence of residuals so that the proposed algorithms
can be easily applied to these models with small variations.
Finally, it is worth to remember that ARX and OE models have
not been considered in the paper as they do not lead to suitable
results for thermal modelling when the measured temperatures
are affected by significant additive noise, as discussed in [25],
[24], [26]. This is confirmed by the results described in Table
V, that reports the identified poles associated with ARX +
noise, ARX and OE models for all the eight cores of one
package. All models have been identified by using the input-
output sequences of a good data window. From Table V, it is
clear that only the poles associated with ARX + noise models
are compliant with the physics of thermal systems, where only
real positive poles can exist.

VI. CONCLUSIONS

In this work we have demonstrated the identification and
application of a thermal model, suitable for power and thermal
control and anomaly detection, to the nodes of an HPC cluster
in production. We have shown that the performance of the
model is excellent, with an average error on the temperature
predicted using a Kalman filter very close to the quantization
step. This result is even more relevant since the thermal models
have been identified using real workloads on the nodes, and
not ad-hoc excitations which would have required to put the
production machine off-line.

In order to achieve the best model performance, it is crucial
to accurately choose the data to use for the model identifi-
cation. To this purpose, we have analyzed and compared a
variety of approaches based on machine learning and deep
learning techniques that can reliably choose the appropriate
windows of data given real workloads. Our finding is that this
choice of window is indeed a non-trivial problem, which only
sophisticated deep learning algorithms can accurately address.

Our work paves the way to the application of thermal
models on an HPC cluster in a scalable and efficient way,

without requiring neither large computational overheads nor
down-times of the machines for model calibration.
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