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Abstract—The main challenge in the implementation of long-
lasting vibration monitoring systems is to tackle the constantly
evolving complexity of modern ’mesoscale’ structures. Thus, the
design of energy aware solutions is promoted for the joint opti-
mization of data sampling rates, on–board storage requirements,
and communication data payloads.

In this context, the present work explores the feasibility of
the rakeness–based compressed sensing (Rak–CS) approach to
tune the sensing mechanism on the second–order statistics of
measured data. In particular, a novel model–assisted variant
(MRak–CS) is proposed, which is built on a synthetic derivation
of the spectral profile of the structure by pivoting on numerical
priors. Moreover, a signal–adapted sparsity basis relying on the
Wavelet Packet Transform operator is conceived, which aims at
maximizing the signal sparsity while allowing for a precise time–
frequency localization.

The adopted solutions were tested with experiments performed
on a sensorized pinned-pinned steel beam. Results prove that the
rakeness–based compression strategies are superior to conven-
tional eigenvalue approaches and to standard CS methods. The
achieved compression ratio is equal to 7 and the quality of the
reconstructed structural parameters is preserved even in presence
of defective configurations.

Index Terms—Compressed Sensing, Model-assisted Rakeness,
Operational Modal Analysis, Structural Health Monitoring,
Wavelet Packet Transform

I. INTRODUCTION

THE evolving complexity of current Structural Health
Monitoring (SHM) scenarios introduces new challenges

for the integrity assessment of mesoscale structures [1], i.e.
structures with very complex and wide geometries such as
wind turbines, bridges, aircraft. Indeed, thanks to the recent
advancements in Structural Mechanics, increasingly larger
and more complicated infrastructures are built, implying the
adoption of novel monitoring technologies basing on the most
advanced research of the information and communication
engineering community [2]. In particular, real–time, long–term
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Fig. 1. Example of OMA–based processing flow and extracted modal
parameters (in red fonts): natural frequencies (f1, f2, f3,) correspond to the
frequency peaks in the spectral domain, whereas the absolute value of the
mode shapes (|Φ1|, |Φ2|, |Φ3|) can be computed by interpolating in spatial
domain the spectral peak values associated with each sensing position at a
given natural frequency.

and low–power functionalities are primary issues to be tackled
while designing a reliable and cost–effective SHM system [3].

It is worth noting that the spectral representation of vibration
data is sparse. This characteristic makes the Compressed Sens-
ing (CS) paradigm [4] applicable in this application domain.
CS approaches are based on the adoption of sensing matrices
which project data onto lower–dimensional signal subspaces.
As a result, CS could jointly optimize data sampling rates, on–
board storage requirements, and communication data payloads.

In Operational Modal Analysis (OMA) applications [5], the
integrity assessment task consists in the continuous monitoring
of frequency–based quantities referred to as modal parameters
(i.e. natural frequencies and mode shapes), as schematically
sketched in Fig. 1. In such cases, the benefit brought about
by the adoption of CS techniques is twofold. On one side,
compression allows to reduce the bandwidth requirements im-
posed by voluminous raw SHM data on the network, without
impinging on the quality of the maintenance process itself [6].
On the other hand, data analytics can also benefit from new
processing methods, which are capable to extract meaningful
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features directly from compressed measurements, hence min-
imizing the possible latency implied by the processing of big
data [7].

CS strategies can be fruitfully employed both for wired
and wireless architectures. In the former case, in particular
for multiplex wiring systems, the reduction of data packets to
be transmitted paves the way to an increase in the number of
sensors simultaneously connected to the same central unit. In
wireless communication systems, a CS approach is beneficial
not only to support the design of energy aware solutions by
extending battery life, but also to inherently tackle the problem
of data loss due to transmission fails [8]. However, the main
focus of this work is to exploit CS strategies as a means to
optimize the encoding mechanism.

A. Related works

In the last few years, many researchers investigated the
suitability of different CS techniques in the vibration–based
SHM context. Among the most representative examples, au-
thors in [9] explored the advantages of a combined spectro-
temporal compression approach (STCS) leveraging a bidirec-
tional feature transmission scheme. A distributed CS paradigm
was proposed, which involves several leaf nodes under the
orchestration of a master aggregating unit. Alongside, it has
recently been demonstrated that the data recovery problem
can be formalized into a standard supervised-learning task
[10], therefore featuring a tight interweaving between standard
CS operations and subspace learning techniques driven by
artificial intelligence [11]. Alternatively, a CS–based sparse
coding strategy was efficiently complemented with a non–
convex shrinkage algorithm to reconstruct the original data
from incomplete measurements in the field of large–span
structures [12]. Furthermore, Yang & Nagarajaiah explored
the possibility to extract mode shapes directly from low–rate
random measurements by tackling the modal identification
task with a CS–driven Blind Source Separation (BSS–CS)
approach [13].

All the mentioned CS solutions exploit standard compres-
sion matrix, whose entries can either be taken from common
Gaussian or Bernoulli distributions [14], or obey to random
sampling (RND–CS), namely the selection of an arbitrarily–
indexed subset of samples [15]. RND–CS–based sensing
strategies are inherently suitable to counteract the additional
loss of packets affecting the communication channel. Indeed,
assuming that data loss can be modeled as a random stochastic
process, its effect can be seen as the output of a random
sampler that arbitrarily selects few packets from the whole
payload.

Alternative solutions for data compression in OMA scenar-
ios are the power spectrum blind sampling (PSBS) and the
random demodulator (RD) approach, which are sub–Nyquist
techniques specifically suited for hardware implementations.
One noticeable example is the method proposed in [16],
which extracts second order statistics (i.e. modal information)
directly from multi–coset sampled data without any addi-
tional hypothesis on the nature of the involved phenomenon.
Conversely, in [17], random alternation of samples’ sign is

combined with low–pass filtering and low–rate sampling. Such
technique was proposed to account for data loss, and it is
based on accumulate and dump operations that can be readily
implemented in smart sensor platforms.

The compression of vibration signals can also be tackled
as a pure eigenvalue problem by applying the Principal Com-
ponent Analysis (PCA) [7]. Eigenvalue strategies compress
data by projecting them onto the signal subspace spanned
by the directions related to the most energetic components.
For example, authors in [18] stressed the potential of PCA
for feature compression and reconstruction in the context of
predictive maintenance and anomaly detection. These methods
show good recovery performances even under significant com-
pression ratios. However, their main limitation is in the huge
amount of data they require for the statistical characterization
of the input signal energy profile, which implies exhaustive
and accurate baseline measurement campaigns necessary to
characterize the structure in pristine conditions [19].

B. Contribution

In this work, a rakeness–based CS (Rak–CS) [20] approach
is considered, for its unique capability to adapt the statistical
distribution of the sensing mechanism in a way that maximizes
the total energy which may be ”raked” from the different
components of the input signal. To the best of the authors’
knowledge, this work represents the first attempt to map the
Rak–CS technique in the context of OMA–based vibration
diagnostics. The proposed method is inspired by the close
analogy between the sparse–and–localized signal assumption
which characterizes the Rak–CS paradigm and the energy
distribution of vibration data in the frequency domain, which is
concentrated around a few and highly localized modal peaks.
A distinctive advantage of Rak–CS consists of its relatively
soft exploration–localization trade–off [21], which prevents the
compression scheme to overspecialize data against potential
spectral variations, which are very likely to occur in real
scenarios.

Moreover, a novel model-assisted approach (MRak–CS) is
employed, in which numerical estimation of the structural
dynamics are exploited to design the compressive sensing
mechanism. This solution prevents the necessity to collect
large training datasets for the same task. In this sense, and in
line with the so–called theory–guided data science paradigm
[22], the knowledge derived by numerical simulations or
by semi-analytical methods is seamlessly blended with the
signal statistics characterization process. Finally, the design
of an application-specific representation basis to favor the
sparsification of vibration data is here presented.

The paper is organized as follows. In Section II, the
theoretical background behind Rak–CS data compression as
well as its model–assisted version are detailed. Thereafter,
the main principles of a novel algorithm targeted on the
design of a sparse representation domain are introduced. The
architectural characteristics of a low–power and miniaturized
monitoring network built on an inertial measurement platform
are described in Section III, hence discussing how the data
compression and reconstruction tasks could be efficiently
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distributed obeying to an ”edge computing” paradigm. Section
IV pertains to the experimental validation of the proposed
monitoring architecture, whilst results are discussed in Section
V. Conclusions are �nally drawn at the end.

II. BASICS OFCS

The enabling assumption behind the applicability of CS
strategies is the sparsity–compressibility condition of the un-
derlying signal in a speci�c domain [4]. In mathematical
form, the previous hypothesis states that a basis	 2 Rn � n

exists in which a signal instancex 2 Rn can be accurately
approximated by at mostk � n non-negligible components
belonging to the signal support, i.e.x = 	 c (c being the
n-dimensional coef�cient vector). Hence, by harnessing this
signal prior, the information hidden within raw acquired data
can be condensed into a more representative measurement
vectory 2 Rm deriving from the linear combination ofm � n
samples by means of a sensing matrixS 2 Rm � n , namely
y = S	 c.

The recovery stage can be accomplished by solving a convex
optimization problem, such as the Basis Pursuit Denoising
(BPDN) problem [14], the solution of which consists of the
set of sparsest coef�cient vector̂c guaranteeing the highest
accuracy between the sensed and the currently predicted
measurement vector̂y = S	^c. The original signal is �nally
reconstructed aŝx = 	^ c. Convex or gradient–based solvers
are available to this purpose, such as the SPGL11 algorithm
employed in this work.

A. Rak–CS: a model–assisted approach

With respect to standard CS theory [14], that adopts a mea-
surement matrixS whose entries are instances of independent
zero-mean Gaussian random variables, the Rak–CS approach
[21] generates each rows of the measurement matrixS as
a zero-mean random vector, but with a correlation pro�le
Cs = E[ssT ] tightly matched to the second–order statistic
Cx = E[xx T ] of the raw input vectorx. The method relies
on the maximization of the rakeness quantity

� (s; x) = tr( CsCx ) (1)

which measures the average energy of the projections of
instances ofx over independently drawn rows ofS (tr( �)
stands for the matrix trace operator) [20]. The analytical
solution of the Rak–CS problem discussed in [20] yields the
correlation pro�le of the sensing matrix to coincide with

Cs =
n
2

�
Cx

tr( Cx )
+

I n

n

�
(2)

whereI n indicates ann � n identity matrix.
In the rakeness approach, a fundamental step is the com-

putation of the correlation matrixCx of the vectors to be
acquired. This matrix is typically estimated from a suf�ciently
large number of signal instances which are expected to be
representative of the different measured realizations [21].
Alternatively, for MRak-CS,Cx is synthetically derived by

1https://www.cs.ubc.ca/� mpf/spgl1/index.html
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Fig. 2. Spectral pro�les of the Rak–CS (red) and MRak–CS (blue) com-
pression matrices superimposed to the energy distribution of the input signal
(black curve).

hinging ona priori considerations. If an approximate model of
the dynamic response of the structure is available, a condition
that usually holds for the majority of industrial and civil plants,
a simpli�ed correlation pro�le can be analytically designed, as
detailed in the following.

Let's assumeP modes are expected to identify the spectral
signature of the structure. Coherently,P rectangular frequency
bins are designed, whose spectral widthWp is related to the
modal frequencyf p so that the quality factorQ = f p=Wp is
constant. Then, sinceCx should approximately be a positive
semi–de�nite Toeplitz matrix, the value on itsi -th diagonal is
computed as

Cx [i ] =
PX

p=1

Z f p +(1 � � )W p

f p � �W p

cos(2�f i )df (3)

where � is a parameter which can be used to offset the
central frequency of the bin w.r.t. the modal frequency. Such
parameter is introduced to adapt the sensing matrix to the
typical evolution of the spectral content in vibration signals.
Indeed, in many practical scenarios, the modal frequencies
tend to downshift by effect of the stiffness reduction induced
by damages. In these cases, it is suggested to select this
parameter so that0:5 < � < 1. Conversely, when it is
impossible to predict how the modal frequencies will evolve,
the best option is to select� = 0 :5. Under this circumstance,
the central frequency of the bin will be coincident withf p.

Once the input matrix correlation pro�le is de�ned, the
eigenvalues and eigenvectors ofCs are computed as illustrated
in [20]. In Fig. 2, the Power Spectral Density (PSD) of the
Rak–CS (red line) and MRak-CS (blue line) compression
matrices for a simple problem are enclosed, to show how the
two design procedures may adapt to the second–order statistics
of the input signal (black dotted curve).

The described strategy can be extended to the case of
multiple, closely spaced modal frequencies. If this condition

https://www.cs.ubc.ca/~mpf/spgl1/index.html
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applies, the input signal correlation matrix in Eq. (3) can be
constructed by selectingf p as the central frequency of the
bandBp in which the modal frequencies are expected to be
located, while� andWp are selected so that the spectrum of
the sensing matrix is �at inBp.

The pros and cons of the data compression methods dis-
cussed in this paper w.r.t. the MRak–CS strategy are summa-
rized in Table I. In essence, MRak-CS is a hybrid approach
between the purely random sampling which characterizes the
conventional CS and the data compression based on an ex-
tensive preliminary characterization of the structural response,
as in PCA methods. There is a trade-off involved in the
MRak-CS implementation, that is related to the de�nition
of the frequency bin span: the larger the span, the closer
the compression performance will be to the (relatively poor)
one achieved with standard CS strategies. Conversely, by
narrowing the span, the attainable compression level can be
improved, but the risk is to loose the capability to track the
changes in the structural dynamics. Noteworthy, the same risk
characterizes PCA-based compression procedures.

Nonetheless, as it will be shown in the results section,
the MRak–CS approach has great potentialities for SHM
implementations thanks to its adaptability, at least when the
numerical modeling of the structure can be implemented with
suf�cient accuracy.

B. Structurally-shaped sparsity basis

The selection of the optimal sparsity basis plays a crucial
role in boosting compression performance as much as possible.
Vibration signals with low damping factors are sparse in the
Fourier domain [24]. For these reasons, the Discrete Cosine
Transform (DCT) or the Discrete Fourier Transform (DFT)
matrices have been conventionally chosen as sparsifying bases
[10], [25]. Alternatively, Wavelet bases have been proposed
[26] to better track non-stationary phenomena.

More recently, several approaches were explored to specif-
ically design a best-adapted signal domain representation,
including sparse coding [27] and dictionary learning [28].
The Wavelet Packet Transform (WPT) is particularly suited to
perform this adaptation to the signal characteristics in a very
�exible way [29]. The WPT is conceived as a nested �ltering
operator applied to both the detail (i.e. high-frequency) and
approximation (i.e. low-frequency) components. The sequence
(tree) of �ltering stages can be purposely pruned to match
the intrinsic multi-scale nature of the signal; in these terms,
the WPT operator can provide an ef�cient representation for
signals speci�cally localized at distinct sub–bands distributed
over the entire spectrum. Thereby, it can be effectively com-
bined with the Rakeness–based CS method which leverages
the signal localization property for the sensing matrix design.
Such optimization can be performed by learning the most
suited representation from uncompressed [30] or compressed
data [31]. Even if these methods proved to be robust and
promising for an effective signal recovery process, they require
a consistent amount of data to be used during the training
phase.

In this work, we took advantage of structural numerical
models to shape the WPT decomposition process according

Fig. 3. System architecture for vibration–based SHM. In light–gray back-
ground, a schematic representation of the signal processing procedures neces-
sary for the compression and decompression stages; conversely, the dark–gray
box refers to the pure OMA feature extraction process.

with the PSD of vibration signals. The WPT adaptation
procedure is organized around two successive phases, and
returns the decomposition level and the frequency interval for
each wavelet packet:

1) select the decomposition levelj as the maximum value
allowing one wavelet packet to capture the �rst modal
frequency while keeping the corresponding frequency
bin � f = Fs=2j +1 below the distance� min

f between
the closest modal frequencies. The minimum span of
the WPT frequency bin has an inferior bound given by

the length of the frame size (n): � min
f =

Fs

2log 2 n +1 .
In turn, n is limited by the memory space available
in embedded sensors; thus, attainable values for� min

f
range from one to few tenths of Hertz, depending on the
adopted sampling rate. In typical OMA applications, such
values are usually suf�cient to locate strongly coupled
modal frequencies in separated WPT bins. The over-
complete wavelet tree is then created up to depthj ,
yielding to 2j successive wavelet packets, each of them
being identi�ed by a corresponding frequency interval
and width. De�ne with B � the ensemble of packet
bands falling outside the frequency region of interests

W =
PS

p=1
Bp =

PS

p=1
[f p � �W p; f p + (1 � � )Wp], i.e.

B � \ W = ; .
2) climb back the full tree level–by–level. At each �ltering

stage, merge those children packets associated with a
father node whose frequency band belongs toB � . Repeat
this procedure until the dyadic grouping is permitted.
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TABLE I
COMPARISON BETWEEN DIFFERENT METHODS FOROMA–BASED DATA COMPRESSION: 3 AND 7 INDICATE WHETHER THE CORRESPONDING STRATEGY

IS IMPLEMENTED IN AN UNSUPERVISED OR SUPERVISED MANNER, RESPECTIVELY.

Method Advantages Drawbacks Type Ref.

STCS
� Well–balanced resource distribution
� Sparsity adapted at acquisition time

� Additional payload due to the transmission of coor-
dination variables

� High computational complexity of the data recovery
algorithm

3 [9]

RND–CS
� Straightforward implementation of the decoder
� Suitable for data loss recovery � High sensitivity to input noise level 3 [23]

BSS–CS � Mode shapes recovered from low–rate measurements
� High computational complexity
� Number of observable modes inferior to the cluster

size 3 [13]

PSBS

� Modal parameters extracted directly from com-
pressed data

� Low computational complexity of the encoder

� High computational complexity and memory require-
ments for the decoder 3 [16]

RD

� Low computational cost of the encoder
� Low memory requirements
� Data loss inherently handled

� Poor performance in the recovery of noisy acquisi-
tions

� Short frame length is required
3 [17]

PCA

� Adaptation to the input signal energy pro�le
� Straightforward decoding process
� Low computational cost for the encoder

� Large and suf�ciently representative training set is
required

� Spectral deviations hardly captured 7 [7]

MRak–CS

� Soft adaptation process to the input signal energy
pro�le

� Robustness with respect to structural variations
� Low computational cost for the encoder

� Structural models are required to design the sensing
matrix 7 This

work

III. SHM A RCHITECTURE

A low–power and low–cost Smart Sensor Network (SSN)
[32] was used to experimentally validate the proposed ap-
proach. Each peripheral sensor node is equipped with a
microcontroller unit (MCU) and a tri–axial Micro-electro-
mechanical System (MEMS) inertial measurement unit. Pe-
ripheral Sensor Nodes (leaves) are connected to a Cluster
Head (CH) node in charge of data management and feature
extraction.

The data storage capabilities of the leaf nodes are limited to
40 KiB SRAM and256 KiB FLASH memory so it is funda-
mental to develop effective compression compatible with the
available computational resources. The framework depicted
in Fig. 3 features a balanced distribution of the embedded
resources of the network for streaming data compression.
Each leaf node (Nodei ) independently performs the data
compression procedure by operating over successive segments,
each comprisingn samples of the acquired signal. The sensing
matrix S, which is populated with digitized Rak–derived
antipodal entries (i.e.Si;j 2 f� 1; 1g) [21] to ease the entailed
vector–matrix operations, is stored in the MCU node memory
during the network start–up phase. Thanks to the relatively
loose Rak–based adaptation procedures, it is not necessary to
updateS even in case of strong environmental variations.

The signal recovery and modal feature estimation stages are
performed by the CH, which �rst recovers node–related data
in a sequential way and then processes them in a centralized
manner to extract the sought modal features. The estimated
parameters can be �nally forwarded to a remotely connected
station or stored in a cloud database for further analysis.

IV. EXPERIMENTAL VALIDATION

A. Materials

A pinned–pinned steel beam was instrumented with a chain
of six nodes mastered by a CH, as schematically depicted in
Fig. 4. The beam is characterized by the following mechanical
and geometrical properties: material density� = 7880 kg=m3,
Young's modulusE = 200 GPa, beam heighth = 10 mm.
The three fundamental modes of such structure are localised
at the following frequencies:f 1 = 5 :52 Hz, f 2 = 22:08 Hz
and f 3 = 49:68 Hz. These values can be predicted either by
a Finite Element Model (FEM) analysis or by the following
closed analytic formula [33]:

f p =
� p

L

� 2 �h
4

s
E
3�

(4)

Frequency components above100 Hzwere neglected in the
following structural integrity characterization.

B. Methods

Each time series was acquired at a data rate ofFs = 200 Hz
over a sampling period of75 s(i.e. 15 000 samples in each iter-
ation). The beam was left to oscillate under pure environmental
noise (i.e. ground motion excitation), therefore mimicking the
classical exciting mechanism required by output–only modal
analysis. Moreover, since the bounding conditions force the
structure to vibrate along the vertical direction, devices were
programmed to collect accelerations only on thez axis.

The frame size was �xed ton = 512 samples, a quantity
that corresponds to the best compromise between the necessary
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