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Rayleigh waves in locally resonant metamaterials

Farhad Zeighamia,1, Antonio Palermoa,1, Alessandro Marzania,∗

aDepartment of Civil, Chemical, Environmental and Materials Engineering - DICAM, University of Bologna, 40136 Bologna,
Italy

Abstract

The design of metamaterials for surface waves control is an emerging field of research which can impact
several technical applications, from electronic devices based on surface acoustic waves (SAW) to wave barriers
for seismic isolation. So far, studies on the interaction of surface waves with locally resonant metamaterials
have been limited to the context of metasurfaces, i.e., thin resonant interfaces or structures attached to the free
surface of a waveguide.

In this work we remove this constraint by formulating an original dispersion relation for vertically polarized
surface waves of the Rayleigh-type existing in resonant metamaterials. We consider the case of a resonant
layer of thickness H coupled to a non-resonant half space. To easily account for the resonant material while
setting the dispersion relation we propose a mixed dynamic-static homogenization approach, valid in the long
wavelength regime. We show the existence of a band gap in the spectrum of the Rayleigh surface waves and
relate its width to the region of negative effective density of the resonant metamaterial. We highlight how the
thickness of the resonant layer affects the frequency stop-band and the magnitude of wave attenuation. We next
derive and discuss the limit cases of a fully resonant half-space, i.e. a resonant layer with thickness H >> λ
where λ is the wavelength of the Rayleigh wave, and of the metasurface for small values of H << λ. In the
latter case, we prove that our formulation properly model metasurfaces recovering previous formulations.

As case study, we analyse the propagation of seismic Rayleigh waves across a deep barrier of meter-size
resonators embedded in the soil. The barrier is modeled using the proposed analytical approach. By means
of high fidelity finite element simulations and Bloch analyses, we validate our novel findings including the
homogenization approach and the derived dispersion relations.

Our work extends the knowledge on mechanical waves in metamaterials providing an analytical framework
for the study of vertically polarized surface waves in resonant and partially resonant waveguides.

Keywords: Resonant metamaterial, Rayleigh waves, Band gap, Effective mass density, Effective moduli

1. Introduction

The term “Metamaterial” has emerged in recent years to indicate an artificial composite material that
exhibits properties not commonly observed in natural materials. Introduced in optics around two decades ago
[1, 2], metamaterials have later found their counterparts also in acoustics and mechanics [3, 4]. In mechanics, the
so-called locally resonant metamaterials were initially conceived to filter and control the propagation of elastic5

bulk waves by exploiting the collective resonance of subwavelength inclusions embedded in a solid matrix [5].
Examples of this type of mechanical metamaterials can be realized by an arrangement of heavy solid inclusions
coated with a layer of soft material and embedded in an elastic matrix [6]. This composite medium presents
low-frequency band gaps around the inclusion resonance frequencies, which inhibit the propagation of elastic
waves. The existence of band gaps is related to the manifestation of an “effective” negative mass density of the10

composite material around specific frequency bands.
Resonant induced band gaps can be found also in other elastic mechanical waveguides equipped with dis-

tributed resonators, like discrete mass-in-mass spring systems [7, 8, 9], trusses [10] and beams [11, 12, 13],
resonant plates [14, 15, 16] and membranes [17], chiral lattices [18, 19] and architected 3D media [20, 21].
The description of the resonant units has been recently enriched to account for viscoelastic material behavior15

[22, 23, 24, 25], nonlinearity [26, 27, 28], hierarchical geometry [29, 30] and time-dependent mechanical properties
[31, 32, 33].

When the resonant units are arranged at the free surface of an elastic waveguide, to form a so-called
metasurface, the propagation of waves confined at the material surface can be controlled. For surface waves
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traveling in a half-space, examples of elastic metasurfaces comprise arrays of pillars or beams [34, 35, 36] and20

resonant inclusions [37] attached at or embedded close to the free surface of the half-space. Surface waves
conversion [38, 39, 40], waveguiding [41], lensing [42, 43], rainbow trapping [44], tunable and uni-directional
filtering [45, 46] are some of the unique dynamic effects obtained by using these metasurfaces. The above-
mentioned effects can be predicted by deriving ad-hoc dispersion laws formulated by considering the metasurfaces
as a boundary condition for the elastic waveguides.25

Despite the numerous applications of metasurfaces, the scenarios where resonators are distributed through
the whole medium depth or within a thick surface layer overlying a homogeneous half-space are still unexplored.
Understanding the dynamics of these systems is fundamental to ease the development of novel devices to
control and mitigate the propagation of surface waves, like barriers and foundations, recently conceived for
ground vibrations and seismic waves [37, 47, 48].30

Therefore, in this work we investigate the dynamics of surface waves of the Rayleigh-type propagating in
a finite-thickness resonant layer overlying a homogeneous non-resonant half-space. The resonant layer consists
in random distribution of discrete resonators in an elastic matrix. Such composite is modelled as an isotropic
homogeneous material with effective mass density and elastic moduli able to replicate its dynamic response in
the low-frequency regime. We use this description to derive an original dispersion relation which predicts the35

existence and extension of band gaps for vertically polarized surface waves.
As a case study, we apply our analytical framework to investigate the propagation of seismic waves through

a deep barrier of resonators embedded in the soil, modelled as an equivalent resonant layer. In detail, we begin
our investigation by considering the limit case of a resonant layer of depth much larger than the wavelength
of interest, namely a resonant half-space. Next, we extend our study discussing the variation in dispersion40

properties and band gaps with respect to the resonant layer thickness. We verify the derived analytical disper-
sion relations by means of numerical simulations, exploiting finite element models (FEM), and Bloch’s theorem
[49]. Finally, numerical models are used to discuss the attenuation of Rayleigh-like waves propagating across a
resonant layer of finite thickness and length.

45

The paper is organized as follows. In Sec. 2, we derive the dispersion relation of a finite-depth resonant layer
laying over a homogeneous half-space. In Sec. 3 we investigate the dispersive properties of a seismic barrier,
modelled by using the developed analytical framework. The results are validated against Finite Element (FE)
simulations where the exact geometry of the resonant barrier is employed. In Sec. 4, harmonic analyses,
performed via finite element simulations, are used to calculate the transmission coefficients of different resonant50

layer configurations and to compare their attenuation performances. Finally, some conclusions are drawn in
Sec. 5.

2. Dispersion relation for vertically polarized surface waves propagating in a resonant layer cou-
pled with a homogeneous non-resonant half-space

In what follows, we derive the dispersive properties of vertically polarized surface waves in a resonant layer55

of finite thickness H coupled to a homogeneous, isotropic, and elastic non-resonant half-space. Without loss of
generality, we restrict our interest to waves propagating in the x− z domain assuming plane-strain conditions.

2.1. Resonant layer and effective medium description

The resonant layer is composed of local resonators randomly distributed in the host medium (see Fig. 1).
Each resonator consists of a rigid mass (mr) suspended by horizontal and vertical springs with identical axial60

stiffnessK. This yields to the existence of degenerate resonant modes with an angular frequency ωr,x = ωr,z = ωr
along the axes x − z. The local resonators have dimensions significantly smaller than the wavelength of the
propagating surface waves (λ) in the low-frequency range of interest. Additionally, we assume the host material
to be isotropic and homogeneous with Lamé parameters λh and µh and density ρh.
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Figure 1: Schematic of a resonant layer made of randomly distributed resonators overlying a non-resonant homogeneous semi-infinite
medium. The inset shows a detail of the reference volume element.

Under these assumptions, the dynamics of such resonant metamaterial can be appropriately described by65

means of an “effective” medium approach. The effective description aims at defining the properties of an equiv-
alent homogeneous material with frequency-dependent mass density and bulk waves speeds able to approximate
the dynamic response of the composite medium in the long-wavelength regime. Our purpose is to derive simple
effective density and bulk speeds expressions for the resonant material and use them to obtain an analytical
formulation of the dispersion laws for surface waves existing in the layered resonant medium. The analyti-70

cal formulation should provide an accurate description of the low-frequency dynamics of the layered resonant
medium.

For the definition of the effective density, we consider an ensemble of n discrete resonators embedded in the
host material within a reference volume V = St, where S = L2 is the surface area of the 2D plane-strain model
(see inset in Fig. 1), and t is the unitary out-of-plane thickness. For this configuration, the effective density can
be adequately represented by a scalar frequency-dependent function [50]:

ρeff (ω) =
mh + nmr

V
+
nmr

V

ω2

ω2
r − ω2

= ρ0

(
1 + α

ω2

ω2
r − ω2

)
(1)

where ω is the angular frequency, mh is the mass of host material enclosed in the reference volume, ρ0 =
(mh + nmr)/V is the static (ω = 0) density, and α = nmr/(V ρ0) is the ratio between the resonator mass per
unit volume and the static density.75

Given our interest in the low-frequency response of the resonant metamaterial, we resort to a static homog-
enization of its elastic parameters. Hence, for the definition of the effective elastic response of the composite
material, here assumed to be isotropic at the length scale of interest, we need to compute two effective elastic
parameters. For example, the reference volume material (or reference area in a 2D plane-strain model) can be
subjected to a constrained uniaxial strain state (Fig. 2a) and to a shear strain state (Fig. 2b) to estimate the
effective longitudinal modulus Meff = λeff + 2µeff and the effective shear modulus µeff , respectively. If so,
the two elastic parameters are calculated as:

Meff =
σxx
εxx

, µeff =
σxz
γxz

, (2)

where:

σxx =

∫
S
σxxdS

S
, εxx =

∫
S
εxxdS

S
, σxz =

∫
L
σxzdL t

Lt
, γxz =

∆u

L
(3)

In Eq. (3), σxx and εxx are respectively the average stress and average strain components associated to the
uniaxial constrained deformation state calculated within the host medium enclosed in the reference area S.
Similarly, σxz and γxz are respectively the average shear stress calculated along the top surface of the reference
volume element and the related average shear strain.

80
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Figure 2: Schematics of the reference volumes used for the calculation of the (a) effective longitudinal modulus Meff and (b)
effective shear modulus µeff .

At this stage, the effective bulk velocities of the homogenized composite can be obtained as:

cL,eff (ω) =

√
λeff + 2µeff
ρeff (ω)

(4)

cT,eff (ω) =

√
µeff

ρeff (ω)
(5)

These velocities are utilized in the analytical framework developed in the next section to describe the dispersive
properties of surface waves in resonant materials.

2.2. Derivation of the dispersion relation

We now analyze the propagation of vertically polarized (Rayleigh-like) surface waves in a semi-infinite domain85

(x − z plane, for z > 0), composed of a resonant layer of depth H overlying an elastic isotropic non-resonant
half-space (see Fig. 1). The dynamics of the resonant layer is described by exploiting its frequency-dependent
effective properties, namely ρeff , cL,eff and cT,eff , as derived in Sec. 2.1, whereas the isotropic, homogeneous
half-space is characterized by mass density ρs and longitudinal and shear waves speed cL,s, and cT,s, respectively.

We consider a plane harmonic wave propagating along the x-axis with a wavenumber k and angular frequency
ω. For a wave polarized in the x− z plane, the displacement vectors in the resonant layer u1 and the half-space
u2 read:

uj = [uj , vj , wj ] j = 1, 2 (6)

where v1 = v2 = 0 are null displacement components. The displacement fields can be expressed in terms of the
potential functions Φj , and Ψy,j :

uj =
∂Φj
∂x
− ∂Ψy,j

∂z
, wj =

∂Φj
∂z

+
∂Ψy,j

∂x
j = 1, 2 (7)

where Φj is the scalar dilatation potential while Ψy,j is the y-component of the distortional vector potential Ψ.90

These potentials should satisfy the wave equations in both the resonant layer and the half-space:

∇2Φ1 =
1

(cL,eff )2
∂2Φ1

∂t2
, ∇2Ψy,1 =

1

(cT,eff )2
∂2Ψy,1

∂t2
,

∇2Φ2 =
1

(cL,s)2
∂2Φ2

∂t2
, ∇2Ψy,2 =

1

(cT,s)2
∂2Ψy,2

∂t2
.

(8)
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Solutions of Eqs. (8) can be provided in the form:

Φ1(x, z, t) = (ad1e
ikr1z + au1e

−ikr1z)ei(ωt−kx),

Ψy,1(x, z, t) = (bd1e
iks1z + bu1e

−iks1z)ei(ωt−kx),

Φ2(x, z, t) = (ad2e
ikr2(z−H) + au2e

−ikr2(z−H))ei(ωt−kx),

Ψy,2(x, z, t) = (bd2e
iks2(z−H) + bu2e

−iks2(z−H))ei(ωt−kx).

(9)

where rj and sj , for j = 1, 2, are given by:

r1 =

√(
ω

kcL,eff

)2

− 1, s1 =

√(
ω

kcT,eff

)2

− 1,

r2 =

√(
ω

kcL,s

)2

− 1, s2 =

√(
ω

kcT,s

)2

− 1.

(10)

and where adj , b
d
j , a

u
j , and buj , for j = 1, 2, denote the amplitudes of the downgoing (upperscript d) and upgoing

(upperscript u) body waves, respectively. We restrict our interest to the derivation of surface wave solutions by
assuming inhomogeneous potentials within the elastic half-space as:

Φ2(x, z, t) = ad2 e
−kr∗2 (z−H)+i(ωt−kx)

Ψy,2(x, z, t) = bd2 e
−ks∗2(z−H)+i(ωt−kx)

(11)

where:

r2 = ir∗2 , r∗2 =

√
1−

(
ω

kcL,s

)2

, s2 = is∗2, s∗2 =

√
1−

(
ω

kcT,s

)2

, (12)

and considering waves with phase velocity c = ω
k < cT,s < cL,s. Note that the exponentially increasing waves

in the half-space have been eliminated by imposing au2 = 0, and bu2 = 0. Via simple algebraic manipulations,
the potential functions in both the resonant and homogeneous half-space are rewritten as:

Φ1(x, z, t) =

(
A1 cos(kr1z) +A2 sin(kr1z)

)
ei(ωt−kx)

Φ2(x, z, t) = A3 e
−kr∗2 (z−H)+i(ωt−kx)

Ψy,1(x, z, t) =

(
A4 cos(ks1z) +A5 sin(ks1z)

)
ei(ωt−kx)

Ψy,2(x, z, t) = A6 e
−ks∗2(z−H)+i(ωt−kx)

(13)

where Aj , for j = 1, ..., 6, are constants which can be derived from auj , adj , b
u
j , bdj (e.g., A1 = ad1 + au1 ).

Substituting Eq. (13) into Eq. (7), and dropping the common propagating term ei(ωt−kx), the horizontal and
vertical displacement functions in the resonant layer can be derived as:

u1 = −k

[
i

(
A1 cos(kr1z) +A2 sin(kr1z)

)
+ s1

(
−A4 sin(ks1z) +A5 cos(ks1z)

)]

w1 = −k

[
r1

(
A1 sin(kr1z)−A2 cos(kr1z)

)
+ i

(
A4 cos(ks1z) +A5 sin(ks1z)

)] (14)

Similarly, the displacements in the half-space are obtained as:

u2 = −k
(
iA3 e

−kr∗2 (z−H) − s∗2A6 e
−ks∗2(z−H)

)
w2 = −k

(
r∗2A3 e

−kr∗2 (z−H) + iA6 e
−ks∗2(z−H)

) (15)

By exploiting linear elastic isotropic constitutive relations, the stress components within the layers are expressed

5



as:

σzx,j = µj

(
∂wj
∂x

+
∂uj
∂z

)
, σzz,j = λj divuj + 2µj

∂wj
∂z

. j = 1, 2. (16)

We substitute the displacements of the layered systems, Eq. (14) and Eq. (15), into Eq. (16), to obtain the
tangential and normal stresses in the resonant layer:

σzx,1 = ρeffω
2

[
ir1γ1

(
A1 sin(kr1z)−A2 cos(kr1z)

)
− δ1

(
A4 cos(ks1z) +A5 sin(ks1z)

)]
,

σzz,1 = ρeffω
2

[
δ1

(
A1 cos(kr1z) +A2 sin(kr1z)

)
+ iγ1s1

(
A4 sin(ks1z)−A5 cos(ks1z)

)]
,

(17)

where, γ1 = 2
(
kcT,eff/ω

)2
and δ1 = γ1 − 1. Similarly, the stress components in the half-space are derived as:

σzx,2 = ρsω
2

[
ir∗2γ2A3 e

−kr∗2 (z−H) − δ2A6 e
−ks∗2(z−H)

]
σzz,2 = ρsω

2

[
δ2A3 e

−kr∗2 (z−H) + γ2is
∗
2A6 e

−ks∗2(z−H)

] (18)

with, γ2 = 2
(
kcT,s/ω

)2
and δ2 = γ2 − 1.95

At this stage, the governing boundary problem for the layered medium is obtained by imposing the following
boundary conditions:

σzx,1 = 0, σzz,1 = 0 for z = 0, (19)

u1 = u2, w1 = w2 for z = H, (20)

σzx,1 = σzx,2, σzz,1 = σzz,2 for z = H. (21)

namely, zero stresses at the medium free surface, Eq. (19), and continuity of displacements and stresses at the
interface between the resonant layer and the half-space, Eq. (20), and Eq. (21), respectively. By exploiting the
identities A2 = −A4δ1/(ir1γ1) and A5 = A1δ1/(is1γ1), we can reduce the boundary problem to a set of four
independent equations. In particular, the continuity of displacements at the interface can be rewritten as:

i(cosP − δ1
γ1
cosQ)A1 − (

δ1
r1γ1

sinP + s1sinQ)A4 − iA3 + s2
∗A6 = 0

(r1sinP +
δ1
s1γ1

sinQ)A1 + i(− δ1
γ1
cosP + cosQ)A4 − r2∗A3 − iA6 = 0

(22)

where P = kr1H and Q = ks1H. Similarly, the equilibrium condition on the tangential and normal stresses at100

the interface can be reformulated as:

i(r1γ1sinP +
δ1

2

s1γ1
sinQ)A1 + δ1(cosP − cosQ)A4 −

ρs
ρeff

(
ir2
∗γ2A3 − δ2A6

)
= 0

δ1(cosP − cosQ)A1 + i(
δ1

2

r1γ1
sinP + s1γ1sinQ)A4 −

ρs
ρeff

(
δ2A3 + is2

∗γ2A6

)
= 0

(23)

The system of equations (22) and (23), can be rearranged in matrix form:
i(cosP − δ1

γ1
cosQ) − δ1

r1γ1
sinP − s1sinQ −i s2

∗

r1sinP + δ1
s1γ1

sinQ i(− δ1
γ1
cosP + cosQ) −r2∗ −i

iρeff (r1γ1sinP + δ1
2

s1γ1
sinQ) ρeffδ1(cosP − cosQ) −iρsγ2r2∗ ρsδ2

ρeffδ1(cosP − cosQ) iρeff ( δ1
2

r1γ1
sinP + s1γ1sinQ) −ρsδ2 −ρsiγ2s2∗



A1

A4

A3

A6

 =


0
0
0
0

 (24)

which can be written in a compact fashion as D(k, ω)A = 0.
Non-trivial solutions of Eq. (24) are found by imposing the det(D(k, ω)) = 0. Solutions of such nonlinear
equation in the variables ω and k provide the dispersive properties of surface waves propagating in the layered

6



resonant medium.105

2.3. Limit case: Dispersion relation of a full resonant half-space

Let us consider a configuration where the resonant layer extends along the whole depth of the medium,
namely the case of a resonant half-space. For this configuration, it is necessary to specify only the potential
functions in the resonant layer. As in the previous derivation, we restrict our search to wave solutions confined
to the surface by assuming potentials with the form:110

Φ1(x, z, t) = a1e
ikr∗1zei(ωt−kx),

Ψy,1(x, z, t) = b1e
iks∗1zei(ωt−kx)

(25)

where:

r∗1 =

√(
1− ω

kcL,eff

)2

, s∗1 =

√(
1− ω

kcT,eff

)2

(26)

The dispersion relation of a resonant half-space can be obtained by expressing the stress components in the
resonant medium, Eqs. (16), as functions of the potentials in Eqs. (25) and imposing the free-stress boundary
conditions at the surface of the half-space, Eq. (19). The procedure yields a system of two homogeneous
equations:  −2i

√
1−

(
ω

kcL,eff

)2
2−

(
ω

kcT,eff

)2(
ω

kcT,eff

)2 − 2 −2i
√

1−
(

ω
kcT,eff

)2
[a1

b1

]
=

[
0
0

]
. (27)

Non-trivial solutions of Eq. (27) provide the dispersion law for Rayleigh waves in a resonant half-space:(
2−

(
ω

kcT,eff

)2
)2

− 4

√
1−

(
ω

kcT,eff

)2
√

1−
(

ω

kcL,eff

)2

= 0. (28)

Note that Eq. (28) has the same form of the classical expression of Rayleigh waves in a homogeneous medium115

[51], here adapted with the “effective” velocities of the elastic half-space.
In the following section, we utilize the obtained analytical formulation in Eqs. (24) and (28) to evaluate and

discuss the dispersive properties of surface waves propagating through resonant layers with different thicknesses.

3. Case study: Dispersive properties of seismic barriers

To validate our analytical framework and discuss the fundamental dispersive features of surface waves in120

resonant materials, we consider the scenario of an array of meter-size resonators, known as metabarrier [37],
embedded in the soil to attenuate the propagation of seismic surface waves and ground vibrations. The vali-
dation of our approach, which comprises the effective medium description and the related dispersion relations,
is performed by comparing the predictions of the analytical models with the numerical outcomes of finite ele-
ment models, where the resonant unit cells are modeled accounting for their exact geometries and mechanical125

parameters.
The configuration of interest is displayed in Fig. 3a. It comprises a layer of resonators embedded in the

soil and arranged periodically in a square lattice of spacing a, for an overall depth H. Each unit cell consists
in a resonator attached to the host medium via elastic connectors, modelled as discrete springs, with identical
horizontal and vertical stiffness K, as schematically shown in Fig. 3b. For our numerical calculations we130

consider a unit cell (see Fig. 3b) with length a = 1 [m], with a square hole of length av = 0.6 a enclosing a
resonator of dimensions ar×ar = 0.25 a2. The host medium is a soft soil with mass density ρh = 1500 [kg/m3],
and bulk longitudinal and shear velocities of cL,h = 335 [m/s], and cT,h = 120 [m/s] [37], respectively. The 2D
plane-strain model has an out-of-plane thickness t = 1 [m]. The mass of the resonator is mr = ρra

2
rt, where

ρr = 2400 [kg/m3] is the mass density, and ωr = 2πfr is the angular resonant frequency of the resonator, with135

fr = 5 Hz.

7
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Figure 3: (a) Schematics of the resonant layer with a regular grid of embedded resonators overlying a homogeneous half-space. In
the inset is shown a representative strip of the bilayered half-space. (b) Barrier unit cell.

In accordance with the assumptions of the analytical model (Sec. 2), we restrict our analysis to the low-
frequency range where the dimensions of the resonators are much smaller than both the wavelength and the
penetration depth of the fundamental surface mode. In this scenario, the density of the resonant unit can be
adequately described using the approach discussed in Sec. 2. Similarly, we approximate the elastic response140

of the composite material as an effective isotropic medium. In doing so, we neglect the orthotropic behaviour
induced by the square lattice arrangement of the resonators. Still, we demonstrate that this approach can
capture the fundamental physics of the considered problem.

3.1. Effective resonant layer model of the seismic barrier

To characterize the elastic properties (Meff and µeff ) of the unit cell, we utilize the procedure discussed145

in Sec. 2. The calculation of the average stresses is performed via FE simulations using the software Comsol
Multiphysics [52]. In more detail, we model a unit cell of the barrier under plane-strain conditions using
Lagrange quadrilateral elements to discretize the host material and truss elements for the springs connecting
the host material to the resonator. For the calculation of the longitudinal modulus, we impose a unitary lateral
pressure load to the unit cell restraining its top and bottom boundaries along the vertical direction (see Fig. 4a).150

Fig. 4c and Fig. 4e depict the obtained longitudinal stress and strain distributions obtained, respectively. We
calculate the average stress σxx and strain εxx components within the host medium, and estimate an effective
longitudinal modulus Meff = σxx/εxx = 36.37 [MPa].

For the calculation of the shear modulus µeff we impose a unitary horizontal displacement at the top surface
of the unit cell, restraining the bottom boundary along the horizontal direction (Fig. 4b). Additionally, we155

impose continuity conditions along the unit cell lateral boundaries to simulate the effect of neighboring unit
cells. Fig. 4d and Fig. 4f show the obtained shear stress and strain distributions, respectively. From the average
stress σxz we estimate an effective shear modulus µeff = σxz/γxz = 3.66 [MPa].
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Figure 4: (a) Schematics of the FE model used to calculate the longitudinal modulus Meff , and (b) shear modulus µeff of the
resonant barrier. Longitudinal strain (c) and stress (e) components associated with the uniaxial constrained deformation state.
Shear strain (d) and stress (f) components associated with the pure shear deformation state.

For the calculation of the unit cell effective mass density (EMD) we utilize Eq. (1). Given the regular
arrangement of the resonators, we consider as reference volume the one of a unit cell which encloses a single160

resonator, i.e., V = a2t = 1 [m3] and n = 1 in Eq. (1). As a result, the static density of the homogenized
medium is ρ0 = (mh + mr)/V = 1560 [kg] with mh = ρh(a2 − a2v)t = 960 [kg] being the mass of the external
host medium enclosed in a unit cell; whereas the mass ratio α = mr/(V ρ0) = 0.384.

The value of the effective density calculated as per Eq. (1) is reported in Fig. 5a in terms of normalized
density ρ′ = ρeff/ρ0 and normalized angular frequency ω

′
= ω/ωr. As shown in literature, the effective density165

assumes negative values in the interval ω
′ ∈ [1, (1/(1 − α))1/2] due to the out-of-phase motion between the

internal oscillator and the host medium. Conversely, in the long-wavelength (low-frequency) limit, the density
recovers its static value ρeff (ω = 0) = ρ0, while in the high frequency limit it approaches ρeff (ω =∞) = mh/V ,
namely the resonator mass does not contribute to the unit cell effective inertia.

Knowledge of the effective density and effective longitudinal and shear moduli allow us calculating the bulk170

velocities of the resonant layer to approximate the dynamics of the seismic barrier in the low-frequency range.
In Fig. 5b, the values of the bulk velocities, which are normalized by the shear velocity of host medium cT,h,
are reported in the normalized frequency range ω′ = [0, 3]. As expected, in the frequency range where the
effective mass density of the cell assumes negative values, the effective bulk velocities have null real components
(Fig. 5b) and non-null imaginary values with an asymmetric profile (Fig. 5c) characteristic of a resonant type175

frequency band gap (BG). Note that the BG of both the bulk modes occurs within the same frequency region
due to the isotropic behavior of the resonators.
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Figure 5: Effective properties of the resonant barrier. (a) Effective mass density. (b) Effective velocities of propagating bulk waves
and (c) evanescent bulk waves. Shaded areas indicate the band gap associated with negative EMD and purely imaginary values of
the effective velocities.

3.2. Dispersive properties of a deep seismic barrier modelled as a resonant half-space

We start our investigation considering a configuration where the depth of the barrier, namely the depth of
the resonant layer, has a thickness H >> λ. For this scenario, we can neglect the presence of the homogeneous180

substrate and exploit the analytical relation derived for the case of a resonant half-space, Eq. (28), to predict
the dispersive properties of Rayleigh-like waves.
In particular, we seek for the complex wavenumbers k = <(k) + i=(k) of Eq. (28) in the dimensionless angular
frequency range ω′=[0, 2.5], where the resonance modes of the unit cell should be found. The real <(k′) vs.
ω′ and imaginary =(k′) vs. ω′ dispersion curves, calculated using a bisection root-finding scheme, are shown185

in Fig. 6a, and Fig. 6b, respectively, by continuous black lines. The black dashed line in Fig. 6a denotes the
non-dispersive roots of the Rayleigh wave solutions in the homogeneous soil (hosting medium).

We observe that the resonant half-space is characterized by a BG for the surface waves in the frequency
range where the EMD is negative. This result can be interpreted by recalling that a Rayleigh wave stems from
the interaction between the bulk longitudinal and shear waves. Hence, in the frequency range where bulk waves190

are impeded by the resonant metamaterial, the Rayleigh solutions cannot propagate too.
Additionally, we observe that the Rayleigh mode in the resonant medium decay with an attenuation, i.e.,

=(kR,eff ), that is comparable to the one of a shear wave (=(kT,eff )) and greater than the one of the longitudinal
bulk mode (=(kL,eff )), see Fig. 6b. This occurs because the imaginary component of the wavenumber is
inversely proportional to the imaginary component of the velocity, namely =(k) = ω

=(c) . Thus, the ratio195

=(kR,eff)
=(kL,eff )

is equal to the ratio of the velocities =(cL,eff)=(cR,eff) (compare Fig. 5b to Fig. 6d). Interestingly, the ratio of

the velocities do not vary within the gap and is equal to the ratio of the real components
<(cL,eff )
<(cR,eff )

, calculated

at any frequency outside the gap (compare Fig. 6c to Fig. 5a). Since the latter ratio is always larger than 1

for any material, the same result applies to the ratio =(kR,eff)=(kL,eff )
. Similar arguments apply to the comparison

between Rayleigh and shear waves.200
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3.2.1. Rayleigh-like mode shapes in the resonant half-space

We now exploit the effective medium description to reconstruct the Rayleigh-like mode shapes within the
resonant half-space as [51]:

ur = −ikB1e
−ηz +B2ζe

−ζz

wr = −ηB1e
−ηz − ikB2e

−ζz (29)

where ur and wr are the amplitudes of the horizontal and vertical components of the eigenmode, respec-
tively, η = (k2 − (ω/cL,eff )2)(1/2), ζ = (k2 − (ω/cT,eff )2)(1/2), and z is the coordinate depth of the resonant
half-space. The constants B1 and B2 are arbitrarily chosen to satisfy Eq. (29), for example B2 = 1 and
B1 = (−2iζk)/(ζ2 + k2).205

Examples of Rayleigh-like mode shapes propagating within the resonant half-space at the normalized fre-
quency ω ′ = 0.8 and ω ′ = 1.5 corresponding to the in-phase (lower) and the out-of-phase (upper) dispersive
branches are shown in Fig. 7a and 7b, respectively. The reader can compare these eigenshapes with those of
the Rayleigh wave propagating in the homogeneous host medium (uh,wh), i.e., soil with no resonators (dashed210

lines in Fig. 7). The displacements are normalized by their corresponding absolute value at z = 0 and are repre-
sented along the normalized depth coordinate z/λ0, where λ0 = 2πcR,h/ωr, and cR,h = 113.5 [m/s] denotes the
Rayleigh velocity of the host material. Comparison between Rayleigh modes in the resonant and non-resonant
half-spaces propagating at a frequency slightly lower than the BG, reveals that the mode is more confined to
the surface due to the lower effective velocity. In analogy, modes above the band gap are less confined due to215

the larger effective velocity.
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3.2.2. FE Validation

To verify the analytical predictions provided by the proposed effective medium approach, we develop a bi-
dimensional Finite Element (FE) model to compute the roots of the dispersion relation. To this aim, we model
a representative strip of the resonant half-space in plane-strain condition, with a depth of 3λ0 and a width equal220

to that of the resonant unit cell a << λ0, as shown in Fig. 8a. The depth of the strip is adequate to simulate
a half-space domain in the frequency range around the unit cell resonance.

The base displacement of the strip in Fig. 8a is restricted both horizontally and vertically to prevent any
undesirable rigid motion. Bloch boundary conditions are applied along the side edges of the model to replicate
the dynamics of an infinite half-space in the x-direction. To accurately model the shortest wavelength at the225

highest frequency of interest, the domain is discretized by Lagrange quadrilateral elements with a minimum and
maximum dimensions of dmin = a/10 and dmax = a/5, respectively.

The eigensolutions of the FE problem for given real wavenumbers from zero to k′ = 0.4 are marked by dots
in Fig. 8b, whereas our analytical solutions of Eq. (28) are reported in continuous black lines. The numerical
model predicts a plethora of solutions that include several bulk-like modes. To discriminate between surface
solutions and the bulk modes, we use a selection criterion based on the position of the displacement shape
centroid Gr within the strip depth:

Gr =

∫ 3λ0

0
|w|z dz∫ 3λ0

0
|w| dz

< 0.9λ0 (30)

thus selecting only those modes with a displacement centroid located within the uppermost region of the model
depth. The analytical predictions well match the surface modes selected according to this criterion, which are
marked by blue dots in Fig. 8b. In addition, the numerical model predicts a flat branch of eigensolutions at230

ω′ = 1.72, resulting from the rotational motion of the resonators (see detail in Fig. 8d).
We now analyze some of the mode shapes obtained from the numerical model. For better visualization, we

display the wave field by replicating the eigenmode of the unit cell with a phase shift eikx along the direction of
wave propagation. The surface mode with angular frequency ω

′
= 0.91, and wavenumber k

′
= 0.3 is shown in

Fig. 8e. We note that each resonator moves in-phase with the motion of the host medium (the colour in Fig.235

8e denotes the w displacement amplitude), as observed along the acoustic branch of any resonant waveguide.
Conversely, the wave field at ω

′
= 2.11 and k

′
= 0.3 is characterized by an out-of-phase motion between the

resonator and the hosting medium, which is typical of the optical branch of resonant materials (see Fig. 8c).

12



0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

(b)

(e)

(c)(a)

(d)

23 a = λ0

23
 a

 =
 λ

0

3 
λ
0

ω
'

Re(k')

wmax

wmin

a

x

z

Bloch periodic 
boundary conditions

1

0

-1
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field (H = λ0) of a surface mode computed at ω
′

= 2.11 and k
′

= 0.3 showing an out-of-phase displacement between the internal

mass and the host medium; (d) rotating mode at ω
′

= 1.72 and k
′

= 0.3; (e) surface mode computed at ω
′

= 0.91 and k
′

= 0.3
with in-phase motion between the host medium and the internal resonant mass.

3.3. Dispersion of finite-depth seismic barriers

We now generalize our investigation by calculating and discussing the dispersive properties of Rayleigh-like240

waves traveling in a seismic barrier of depth H, modelled as a resonant layer of the same depth, overlaying a
half-space of homogeneous soil. Our aim is to find the roots of det(D(k, ω)) = 0, calculated as per Eq. (24),
within the frequency range where we expect to observe the surface wave band gap. To this purpose, we calculate
the determinant within the frequency range ω

′
= [0, 2.5] and wavenumber range k

′
= [0, 0.5], and visualize its

minimal values in Fig. 9a for a resonant layer of depth H = λ0. Note that this depth corresponds roughly to a245

barrier of 23 unit cells.
Differently from the resonant half-space scenario, the bilayer medium supports the propagation of multiple

surface modes (marked by blue lines in Fig. 9a). These surface waves are hybridized by the unit cell resonant
modes. The hybridization leads to the generation of a low-frequency resonant band gap, bounded between
the resonance frequency of the barrier ωr and the crossing point between the bulk shear velocity cT,h of the250

half-space and fundamental hybridized mode, marked as a continuous black line in Fig. 9a.
The half-space shear velocity identifies the ω

′
-k
′

domain, labelled as sound-cone and highlighted by a dark
gray area in Fig. 9a, where purely surface-confined modes cannot exist because s∗2 in Eq. (12) assumes imaginary
values. Inside this domain we should instead observe leaky surface modes, which radiate part of their energy into
the half-space. For example, by tracking the fundamental mode, i.e., by solving det(D(k, ω)) = 0 numerically for255

the unknown complex wavenumbers k = <(k) + i=(k), we can verify that a branch of this mode extends within
the sound-cone. Additionally, we observe that the same mode becomes evanescent <(k) = 0, and =(k) 6= 0,
within the frequency BG of the bulk modes, where both r1 and s1 in Eq. (10) assume imaginary values (see
Fig. 9b).
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We extend our investigation considering configurations with different resonant layer depths, H = [0.2, 0.5, 1, 2]λ0,260

with H = 0.2λ0 roughly corresponding to a barrier of five unit cells and H = 2λ0 corresponding to a barrier of
46 unit cells along the depth of the resonant layer, respectively. The related real dispersive properties are shown
in Figs. 10(a)-(d). A comparison between the analyzed scenarios shows that an increase in the thickness of the
resonant layer widens the frequency range of the BG. To quantify this behavior, we calculate the BG extension
for different depths of the resonant layer by visually inspecting the crossing point of fundamental surface mode265

and shear velocity of half-space.
The band gap evolution in terms of normalized angular frequency is shown in Fig. 10e for the normalized

variation depth (H/λ0) of the resonant layer. We observe a linear trend for resonant layers with H < 0.5λ0.
The BG extension reaches a maximum value ω

′

RL = 1.37 for H ≥ 0.5λ0, which is larger than the band gap of

a resonant half-space, whose upper edge ω
′

HS is indicated in Fig. 6a. The latter result can be interpreted by270

recalling that in the resonant layered system two attenuation mechanisms contribute to prevent the propagation
of surface waves. First, as in the case of a fully resonant half-space, the bulk modes within the resonant layer
are impeded within the frequency range where the effective density assumes negative values. As a result, the
surface modes which stem from the superposition of these bulk modes (see Eq. (9)) are inhibited. Second,
within an additional frequency range above the bulk waves BG, the apparent phase velocity of the surface275

modes assumes values c > cTh
. This condition allows only the existence of leaky modes that disperse their

energy in the half-space region, as discussed for the barrier with H = λ0.
Regarding the case of a thin resonant layer, we underline that its dispersive properties can be equally

predicted by treating the presence of the resonators as a stress boundary condition on the half-space (see
Appendix A). This description, widely employed in literature to describe the dynamics of metasurfaces, yields280

a closed-form estimation of the upper edge frequency of the BG [37]:

ω
′

MS = β +
√
β2 + 1, (31)

where:

β =
mres ωr

2ares ρh cT,h

√
1−

(
cT,h
cL,h

)2

. (32)

The reader can appreciate that this prediction, marked by a red dashed line in Fig. 10e, well matches the BG
extension of a thin H = 0.05λ0 resonant layer, i.e., approximately a single unit cell layer, calculated according
to our framework.

3.3.1. FE Validation285

To verify the dispersion results found analytically, we develop a dedicated finite element numerical model,
and perform numerical simulations.
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The FE model depicted in Fig. 11c consists of a strip of resonators with depth H placed on top of a
homogeneous soil. Following the procedure described for the derivation of the numerical dispersion of the
resonant half-space (Sec. 2), the numerical eigensolutions (marked by dots) are calculated and overimposed to290

the analytical dispersion curves for the two scenarios of thin (H = 0.2λ0) and thick (H = λ0) resonant layer
in Fig. 11a and b, respectively. Among all the numerical eigenmodes, surface solutions, highlighted by blue
dots, are selected using the identification criterion reported in Eq. (30). We note that the numerical model also
accounts for multiple rotational modes of the resonators as previously seen in the case of resonant half-space
(see Fig. 8b), which results in an additional flat branch around ω

′
= 1.72.295

It is evident that numerical and analytical results are in good agreement. In particular, numerical simulations
confirm the same variation of the BG width with respect to the resonant layer thickness found analytically.
Additionally, an insight on the dispersive properties of the fundamental surface mode confirms its “leaky”
behavior within the sound-cone domain, evident by visualizing the full wave field of the mode at k

′
= 0.08
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and ω
′

= 1.33, as shown in Fig. 11d. The same mode remains instead confined to the surface when computed300

outside the sound-cone region (see Fig. 11e).
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Figure 11: (a) FE surface modes (blue dots), discriminated according to the criterion reported in Eq. (30), and over-imposed to
the analytical dispersion relation (solid lines) for H = 0.2λ0 and (b) H = λ0. (c) A representative unit cell of a resonant barrier

on top of a homogeneous soil. (d) The vertical displacement wave field of a leaky surface mode corresponding to k
′

= 0.08 and

ω
′

= 1.33. (e) The vertical displacement wave field of the fundamental surface mode for k
′

= 0.18 and ω
′

= 1.54. Note that the
resonators move out-of-phase with respect to the host medium.

4. Surface waves transmission through a finite-length seismic barrier

Finally, we investigate the propagation of surface waves within a domain composed by a resonant barrier of
finite dimensions embedded within a homogeneous non-resonant half-space. Our aim is twofold: first, we want
to verify the accuracy of the effective medium description for harmonic analyses; second, we want to evaluate305

the attenuation properties of the finite length resonant barrier. To this end, we develop two dedicated finite
element models: the first model accounts for the true geometry and materials of the barrier, the second, instead,
utilizes an effective resonant medium to replace the barrier. In both the models, the domain of interest Lt×Ht,
depicted in Fig. 12a, has dimensions of 10λ0 × 3λ0, respectively. The barrier is located at a distance of 5λ0
from the input source, with a length of 2λ0 and a variable depth H. A vertical unitary displacement, applied310

at a distance ds = λ0 from the domain edge, is used as a point source to generate surface waves. An output
region of length Lout = 2λ0 is used to recover the signal amplitude after the resonant portion. Low reflecting
boundary conditions (LRBCs) are applied at the lateral and bottom edges to reduce wave reflections. Both the
domains are discretized by Lagrange quadrilateral elements with a minimum and maximum mesh dimension of
dmin = a/10 and dmax = λ0/5, respectively.315

Frequency-domain analyses are performed within the range of ω′ = [0.7, 2.5] for a resonant layer of thickness
H = λ0. We define a transmission coefficient calculated as [53]:

T (ω′) =

∫ Lout

0
|w r|dx∫ Lout

0
|w p|dx

(33)
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where wr is the vertical nodal displacement as calculated from the FE simulations along the output domain,
while wp is the vertical nodal displacement calculated within the same domain using a twin reference model
where the resonant domain is substituted by the homogeneous non-resonant material (cT,h, cL,h, ρh).320

The true barrier model and the effective resonant layer provide analogous values of the transmission coef-
ficient within the whole frequency range of interest (see Fig. 12b). Similarly, the vertical displacement wave
fields obtained by means of the two FE models (true barrier and effective layer) are in excellent agreement for
harmonic analyses within and outside the band gap region (see Fig. 13a,b for harmonic simulations at ω′ = 1
and Fig. 13c,d for harmonic simulations at ω′ = 1.3). In accordance with the prediction of the dispersion curve325

in Fig. 11b, the surface wave propagation is hindered through the resonant layer for a harmonic excitation
within the BG range (see Fig. 13b). In addition, Fig. 13d highlights the attenuation of a leaky surface mode,
which spreads part of its elastic energy below the barrier.

These results confirm the possibility of using the effective model within a FE approach. Thus, we perform a
parametric study and calculate the transmission coefficients of resonant layers with thickness H = [0.2, 0.5, 1]λ0.330

The results are displayed in Fig. 14 and prove that the barrier attenuation frequency range varies with the
barrier depth, as predicted by the proposed dispersion laws. Similarly, the attenuation efficiency of the resonant
layer increases with an increase of the barrier depth. For all the cases, the attenuation peaks are located in the
frequency range close to the metamaterial resonance, where the EMD assumes large negative values. Within
this frequency range, a negligible part of the energy is transmitted in the form of surface solutions traveling335

below the resonant layer (see Fig. 13a). Conversely, the transmission coefficients assume larger values outside
the negative EMD region, since surface waves are attenuated only due to energy leakage. Attenuation due to
leakage is indeed much less effective than attenuation due to negative EMD (see Fig. 14) and would require a
much longer barrier to significantly reduce the surface wave amplitude.
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Figure 12: (a) Schematic of the FE model used for the calculation of the transmission coefficients. (b) Comparison of transmission
coefficients T (ω′) calculated for the seismic barrier and homogenized layer with an identical depth of H = λ0.
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5. Conclusions340

In this work we have proposed an original dispersion relation for vertically polarized surface waves in resonant
metamaterials. The metamaterial is modeled via a simple but rather effective homogenization approach, that
holds in long-wavelength regime, and yields an equivalent homogeneous material with proper effective elastic
parameters (longitudinal and shear bulk modulus) and density.

The developed formulation can handle the case of a fully resonant half-space, the case of finite-thickness345

resonant layer over a non resonant half space as well as the scenario of a thin resonant layer, also known as
metasurface. According to our model, in the fully resonant half-space a band gap in the spectrum of surface
waves of the Rayleigh-type opens in the frequency region where the phase speeds of the bulk waves become
imaginary.

To discuss the capabilities of our formulation, we have investigated the dynamics of a seismic barrier of meter-350

size resonators, modelled as a resonant layer of finite thickness. We have shown that a resonant layer of finite
thickness H supports the propagation of multiple surface waves. Still, these multiple modes get hybridized by
the localized resonances of the inclusions leading to the emergence of a low-frequency band gap. We have proven
that the band gap width is related to the thickness of the resonant layer, and we have shown that for thicknesses
H > 0.4/λ0, the width of the band gap is larger than the one of the full resonant half space. This unexpected355

result is due to the existence of a leaky surface mode with phase velocity higher than the shear velocity of the
host material in a narrow frequency region above the bulk band gap. All these observations have been confirmed
via numerical simulations, both in terms of dispersion properties and transmission coefficients. We recognize the

18



preliminary nature of the results discussed in this case study which discards some of the complexities typically
found in real soil, namely a more complex stratigraphy, the presence of a variable water table, as well as material360

non-linearities. However, these additional complexities are generally neglected (in the long wavelength, low
amplitude wave regime) to allow for the development of analytical formulations able to describe the fundamental
dynamics of the seismic problem. Overall, our approach provides the required analytical framework to extend
current studies on metasurfaces in different domains of applications by accounting for the effective depth of the
resonant layer.365
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Appendix A. A single-resonator barrier modeled as a locally resonant metasurface

The dynamics of a resonant layer with a very thin depth, for example, the case of a barrier with one unit cell
(H = a), can be adequately described as a resonant metasurface (see Fig. A.15a), an array of subwavelength375

mass-spring resonators attached to the free surface of a homogeneous elastic half-space. Such a configuration
can be analysed by modelling the presence of the resonator as a stress distribution applied on the free surface of
the half-space [54]. According to this description, the dispersion relation of the resonant metasurface interacting
with vertically polarized surface waves reads [38]:
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where A = art is an average area where each resonator exerts its stress. In Fig. A.15b, we compare the380

dispersive properties of a single layer H = a resonant barrier modelled according to the metasurface description
(Eq. (A.1), red dashed lines in Fig. A.15b) and the framework proposed in our work (Eq. (24), black lines in
Fig. A.15b).
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Figure A.15: (a) Schematic of the metasurface layer attached to the free surface of a homogeneous half-space. (b) Dispersion of
the resonant layer composed of a single unit cell embedded to the host material (RL) vs. locally resonant metasurface (MS).

It is evident that the two models provide analogous results in the case of a thin resonant layer.
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