Supporting Information

Asymmetric Trifluoromethylthiolation of Azlactones under Chiral Phase Transfer Catalysis

Marina Sicignano,^a Ricardo I. Rodríguez,^b Vito Capaccio,^b Fabio Borello,^a Rafael Cano,^b Francesco De Riccardis,^a Luca Bernardi,^c Sergio Díaz-Tendero,^d Giorgio Della Sala^{a,*} and José Alemán^{b,*}

gdsala@unisa.it; jose.aleman@uam.es

^a Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy,

^b Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

^c Department of Industrial Chemistry ''Toso Montanari'' & INSTM RU Bologna, Alma Mater Studiorum University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy.

^d Chemistry Department, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

CONTENTS

General information	S2
Synthesis of azlactones 1a-o	S3
Typical procedure for the synthesis of racemic compounds 3e	S4
Optimization of reaction conditions	S4
Experimental and theoretical circular dichroism spectra of compound $3k$	S7
DFT calculations	S8
References	S9
Copies of NMR spectra	S10
Copies of chromatograms	S33

General information

All chemicals and solvents were purchased from commercial suppliers and used without further purification. *N*-(trifluoromethylthio)phthalimide **2** was prepared according the reported procedure.¹ Catalysts **I-XXV**, XXVIII-XXX² and catalysts XXVI, XXVII³ were prepared following the general procedure described in the literature.² Reactions were monitored by analytical thin layer chromatography (TLC) on precoated silica gel plates (0.25 mm) and visualized by UV light. Flash chromatography was performed on Silica Gel 60 (particle size: 0.040-0.063 mm). ¹H-, ¹³C- and ¹⁹F- NMR spectra were recorded on a Bruker Avance III 300 MHz spectrometer and a Bruker Avance-400 spectrometer at room temperature in CDCl₃. All NMR spectra were referenced to residual CHCl₃ (7.26 ppm, ¹H; 77.16 ppm, ¹³C). The following abbreviations are used to indicate the multiplicity in NMR spectra: s = singlet; d = doublet; dd = doublet doublet; t = triplet; q = quartet; m =multiplet. Coupling constants (J) are quoted in Hertz. Optical rotations were measured on a Perkin-Elmer 241 MC Polarimeter in 10 cm path length cells and are reported as follows: $[\alpha]_D^T = (c \text{ in } g/100 \text{ mL}, \text{ solvent})$. High resolution mass spectra (HRMS) were acquired using an Agilent Technologies 6120 Quadrupole LC/MS, and MassWorks software ver. 4.0.0.0 (Cerno Bioscience) was used for the formula identification. MassWorks is a MS calibration software which calibrates for isotope profile as well as for mass accuracy allowing highly accurate comparisons between calibrated and theoretical spectra. The samples were ionized in positive ion mode using a ESI ion source. Enantiomeric ratios were determined by chiral HPLC or by Supercritical Fluid Chromatography (SFC) using CHIRALPAK® AS-H (250 x 4.6 mm, 5 µm) and IB (250 x 4.6 mm, 5 µm) columns.

Synthesis azlactones 1a-o

The azlactones **1a-o** were prepared in two steps, slightly modifying synthetic procedures reported in the literature.

STEP 1.⁴ To a solution of amino acid **4** (1.0 eq., 15.0 mmol) in 2 M NaOH aqueous solution (18 ml), aroyl chloride was added (1.0 eq., 15.0 mmol). The resulting reaction mixture was stirred at room temperature until complete homogenization and then acidified to pH 2 by adding 1 M HCl aqueous solution. After 2 hours, the mixture was extracted with EtOAc (2 x 50 ml) and the combined organic phases were dried over Na_2SO_4 and concentrated under reduced pressure. The crude residue **5** was used in the next step without further purification.

STEP 2.⁵ *N*-aroyl amino acid **5** (1 eq., 15 mmol) and EDC (1.3 eq., 19.5 mmol) were dissolved in anhydrous CH_2Cl_2 (50 ml) under nitrogen atmosphere. The resulting reaction mixture was stirred at room temperature for 1 hour. The mixture was diluted with additional 50 ml of CH_2Cl_2 and washed with water (2 x 50 ml) and brine solution (30 ml). Then, the organic phase was dried over Na_2SO_4 and concentrated under reduced pressure. In all cases products were obtained in a form suitable for use without further purification.

The characterization data of the compound **1a-e**, **1g**, **1h**, **1j-l** and **1n-o** matched those previously reported.⁶ Characterization data of unknown azlactones **1f**, **1i** and **1m** are reported below.

2-(4-methoxyphenyl)-4-(naphthalen-2-ylmethyl)oxazol-5(4H)-one (1f): Obtained as a yellow solid (4.6 g, 92% yield), mp 116-117 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.8 Hz, 2H), 7.83–7.71 (m, 4H), 7.51–7.37 (m, 3H), 6.90 (d, J = 8.8 Hz, 2H), 4.75 (dd, J = 6.8, 4.9 Hz, 1H), 3.78 (s, 3H), 3.53 (dd, J = 14.0, 4.9 Hz, 1H), 3.33 (dd, J = 14.0, 6.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.9, 163.2, 161.5, 133.4, 133.3, 132.6, 129.8, 128.4, 128.0, 127.8, 127.8, 127.7, 126.1, 125.8, 118.1, 114.2, 66.6, 55.4, 37.6. HRMS (ESI) [M + H⁺] calcd for C₂₁H₁₈NO₃⁺ 332.1281, found 332.1286.

CI 4-(3,4-dichlorobenzyl)-2-(4-methoxyphenyl)oxazol-5(4*H*)-one (1i): Obtained as a yellow solid (4.6 g, 90% yield), mp 108-109 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 1.7 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.09 (dd, J = 8.2, 1.7 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 4.60 (dd, J = 6.8, 5.0 Hz, 1H), 3.83 (s, 3H), 3.28 (dd, J = 1.2 Hz, 1H), 5.28 (dd, J = 1.2 Hz,

14.1, 5.0 Hz, 1H), 3.07 (dd, J = 14.1, 6.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 177.3, 163.4, 161.8, 135.8, 132.3, 131.6, 131.3, 130.3, 129.8, 129.0, 117.7, 114.3, 65.9, 55.5, 36.4. HRMS (ESI) [M + H⁺] calcd for C₁₇H₁₄Cl₂NO₃⁺ 350.0345, found 350.0349.

4-(cyclohexylmethyl)-2-(4-methoxyphenyl)oxazol-5(4*H***)-one (1m): Obtained as a white solid (3.6 \text{ g}, 84\% yield), mp 115-114 °C. ¹H NMR (300 \text{ MHz}, \text{CDCl}_3) \delta 7.92 (d, J = 8.9 \text{ Hz}, 2H), 6.96 (d, J = 8.9 \text{ Hz}, 2H), 4.41 (dd, J = 8.6, 5.5 \text{ Hz}, 1H), 3.86 (s, 3\text{H}), 1.93 - 1.54 (m, 8\text{H}), 1.39-1.10 (m, 3\text{H}), 1.07-0.85 (m, 2H). ¹³C NMR (75 \text{ MHz}, \text{CDCl}_3) \delta 179.3, 163.1, 161.2, 129.8, 118.3, 114.2, 63.2, 55.5, 39.6, 34.3, 33.5, 32.7, 26.4, 26.1, 26.0. HRMS (ESI) [M + H⁺] calcd for C₁₇H₁₂NO₃⁺ 288.1594, found 288.1591.**

Typical procedure for the synthesis of racemic compound 3e

In a 4 ml vial, to a mixture of azlactone **1e** (1.0 eq., 0.10 mmol, 28.1 mg), *N*-(trifluoromethylthio)phthalimide **2** (1.2 eq., 0.12 mmol, 29.7 mg), TBAB (0.20 eq., 0.02 mmol, 6.4 mg), and K_3PO_4 (0.1 eq., 0.01 mmol, 2.1 mg) dichloromethane (1.0 mL) was added and the reaction mixture was stirred for 1 hour at -20 °C. Then, the mixture was filtered and concentrated *in vacuo*. The crude residue was purified by chromatography (10 g silica gel cyclohexane-ethyl acetate, 99/1 to 80/20) to afford the desired product **3e** (30.5 mg, 80 % yield) as a white solid.

General procedure for the enantioselective trifluoromethylthiolation of azlactones

In a 4 ml vial, to a mixture of the selected azlactone (1.0 eq., 0.10 mmol), *N*-(trifluoromethylthio)phthalimide **2** (1.2 eq., 0.12 mmol, 29.7 mg), catalyst **VIII** (0.20 eq., 0.02 mmol, 12.6 mg), and K_3PO_4 (0.1 eq., 0.01 mmol, 2.1 mg) dichloromethane (1.0 mL) was added and the reaction mixture was stirred for the indicated time at -20 °C. Then, the mixture was filtered and concentrated *in vacuo*. The crude residue was purified by chromatography (10 g silica gel cyclohexane-ethyl acetate, 99/1 to 80/20) to afford the corresponding product.

Optimization of reaction conditions

Base screening of asymmetric trifluoromethylthiolation of 1a

	Ph N Ph $+$ N $1a$	N-SCF ₃	PTC VII (20 mc base DCM		Ph 3
entry	Base	T (°C)	t (h)	yield (%) ^a	er ^b
1	K ₃ PO ₄ (aq.) 10%	RT	16	28	64:36
2	$K_{3}PO_{4}(s)$ 5.0 eq.	RT	1	42	57:43
3	$K_{3}PO_{4}(s)$ 5.0 eq.	0	2	45	59:41
4	$K_{3}PO_{4}(s) 0.1 eq.$	RT	5	64	65:35
5	$K_{3}PO_{4}(s) 0.1 eq.$	-20	65	74	72:28
6	$K_{3}PO_{4}(s) 0.1 eq.$	-40	65	35	62:38

^a Isolated yield. ^b Determined by HPLC on a chiral stationary phase.

Catalyst screening for asymmetric trifluoromethylthiolation of 1a

I R¹= allyl; R²= Ph; X= Br **3a:** 80%y; 51:49er II R¹= benzyl; R²= Ph; X= Br **3a:** 86%y; 52:48er III R¹= 1-adamanthyl; R²= Ph; X= Br **3a:** 72%y; 51:49er IV R¹= H; R²= Ph ; X= Br 3a: 91%y; 72:28er V R¹= H; R²= 4-OMe-Ph; X= Br **3a:** 78%y; 53:47er VI R¹= H; R²= 4-NO₂-Ph; X= Br 3a: 57%y; 77:23er VII R¹= H; R²= 3,5-(CF₃)₂-Ph ; X= Br 3a: 74%y; 72:28er IX R¹= H; R²= 4-CI-Ph ; X= Br 3a: 57%y; 75:25er X R¹= H; R²= 4-F-Ph ; X= Br 3a: 73%y; 75:25er XI R¹= H; R²= 4-CF₃-Ph ; X= Br 3a: 97%y; 76:24er XII R¹= H; R²= 4-*t*-Bu-Ph; X= Br 3a: 63%y; 68:32er XIII R¹= H; R²= 2-CF₃-Ph ; X= Br 3a: 47%y; 57:43er XIV R¹= H; R²= 2-NO-Ph; X= Br 3a: 57%y; 55:45er XV R¹= H; R²= 2-OMe-Ph ; X= Br 3a: 94%y; 63:37er XVI R¹= H; R²= 2-CN-Ph ; X= Br 3a: 69%y; 56:44er **XVII** R¹= H; R²= 2,3-(F)₂-Ph ; X= Br **3a:** 59%y; 70:30er XVIII R¹= H; R²= 3,4,5-(F)₃-Ph; X= Br 3a: 63%y; 78:22er XIX R¹= H; R²= 2,3,4,5,6-(F)₅-Ph; X= Br 3a: 80%y; 72:28er XX R¹= H; R²= 2,3,5,6-(F)₄-4-CF₃-Ph ; X= Br 3a: 80%y; 73:27er XXI R¹= H; R²= 9-anthracenyl; X= Br 3a: 27%y; 76:24er

XXII R¹=H; R²= Ph; X= Cl **3a:** 70%y; 58:42er XXIII R¹=Ph; R²= Ph; X= Br **3a:** 72%y; 50:50er XXIV R¹=Ph; R²= 2,3,4-(F)₃-Ph; X= Br **3a:** 88%y; 55:45er

XXV R¹=H; R²= 9-anthracenyl; X= Cl **3a:** 69%y; 65:35er

XXVI R¹= H; X= Br **3a:** 46%y; 62:38er **XXVII** R¹= Bn; X= Br **3a:** 85%y; 60:40er

VIII R¹= 3,5-(CF₃)₂-Ph; X= Br **3a:** 49%y; 82:18er XXVIII R¹= 4-NO₂-Ph; X= Br **3a:** 44%y; 78:22er XXIX R¹= 2,3,4-(F)₃-Ph; X= Br **3a:** 46%y; 70:30er XXX R¹= 3,4,5-(F)₃-Ph; X= Br **3a:** 34%y; 80:20er

Screening of reaction conditions for asymmetric trifluoromethylthiolation of 1e

	PMP	+ [[N-SCF3	PTC VIII (; base (10 n solvent, T (°;	x mol%) nol%) ────── C), t (h) PMP	Ph N SCF3	
	1e		2		<i>,,</i> , ,	3e	
entry	Base	solvent	(x mol%)	T (°C)	t (h)	yield (%) ^a	er ^b
1	K ₃ PO ₄	DCM	20	-20	1	84	94:6
2°	K_3PO_4	DCM	20	-20	4	89	75:25
3	K ₂ CO ₃	DCM	20	-20	1	80	83:17
4	Cs_2CO_3	DCM	20	-20	1	79	86:14
5	NaHCO ₃	DCM	20	-20	1	83	88:12
6	KF	DCM	20	-20	1	82	90:10
7	K-Phthalimide	DCM	20	-20	2	83	80:20
8	K ₃ PO ₄	CHCl ₃	20	-20	6	83	83:17
9	K ₃ PO ₄	Et ₂ O	20	-20	2	87	76:24
10	K ₃ PO ₄	THF	20	-20	1	85	67:33
11	K ₃ PO ₄	DCE	20	-20	3	88	72:28
12	K ₃ PO ₄	toluene	20	-20	6	88	83:17
13	K ₃ PO ₄	DCM	10	-20	1	86	90:10
14	K ₃ PO ₄	DCM	5	-20	1	87	89:11
15	K ₃ PO ₄	DCM	2	-20	1	89	86:14
16	K ₃ PO ₄	DCM	20	-40	3	82	91:9
17	K ₃ PO ₄	DCM	20	-70	6	85	87:13

^a Isolated yield. ^b Determined by HPLC on a chiral stationary phase. ^c Reaction performed with 5 mol% of K₃PO₄.

TBAB (20 mol%) K₃PO₄ (10 mol%) DCM, -20°C 2 3 1 yield (%)^a R t (h) entry $4-CN(C_6H_4)$ 168 Degradation 1 2 $4-CF_{3}(C_{6}H_{4})$ 168 Degradation 47 3 C_6H_5 96 4 $4-Cl(C_6H_4)$ 19 60 5 $4-OMe(C_6H_4)$ 80 1 ^a Isolated yield.

Trifluoromethylthiolation of azlactones 1a-e promoted by TBAB

Experimental and theoretical circular dichroism spectra of compound 3k

Electronic Circular Dichroism (CD) spectra were experimentally obtained at 25° C on a Jasco-815 CDspectrometer including a Jasco Peltier ETCT-762 temperature controller. Measurements were performed using quartz cuvettes (1cm), (c = 5.2E-5 in DCM spectroscopic grade). The CD spectra were also simulated by means of density functional (DFT) simulations. To this we optimized the geometry of compound 3k at the CAM-B3LYP/cc-pVTZ level of theory, i.e. with the long-range-corrected version of B3LYP using the attenuating method⁷. Solvent effects (dichloromethane) were included within the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEFPCM)⁸. The same method was used to compute the CD spectra⁹ within the time-dependent density functional theory (TDDFT)¹⁰. Figure S1 represents the experimental CD spectra of **3k** and the simulated one for both enantiomers, allowing to disentangle the chirality easily with the first two bands (transitions observed between 300 and 250 nm).

Figure S1. Experimentally measured CD spectra of compound 3k (red curve) and simulation for both enantiomers (black bars). We can conclude that the measured spectra correspond to the left one, i.e. the 3k R enantiomer.

DFT calculations

The density functional theory (DFT) calculations were performed using the M062x functional¹¹, specially developed to correctly reproduce non-covalent interactions, in combination with the 6-31++G(d,p) basis set, which includes both polarization and diffusion functions. Solvent effects (dichloromethane) were included within the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEFPCM)⁸. Atomic charges were computing within a Natural Bond Orbital analysis, using NBO version 3^{12} .

References

- 1. K. Kang, C. Xu and Q. Shen, Org. Chem. Front., 2014, 1, 294.
- 2. Y. Liu, B. A. Provencher, K. J. Bartelson and L. Deng, Chem. Sci., 2011, 2, 1301.
- 3. S.-s. Jew, B.-S. Jeong, M.-S. Yoo, H. Huh and H.-g. Park, Chem. Commun., 2001, 14, 1244.

4. C. Macovei, P. Vicennati, J. Quinton, M. C. Nevers, H. Volland, C. Creminon and F. Taran, *Chem. Commun.*, 2012, **48**, 4411.

5. A. D. Melhado, M. Luparia and F. D. Toste, J. Am. Chem. Soc., 2007, 129, 12638.

6. a) S. K. Nimmagadda, M. Liu, M. K. Karunananda, D.-W. Gao, Omar Apolinar, J. S. Chen, P. Liu and K. M. Engle, *Angew. Chem. Int. Ed.*, 2019, **58**, 3923; b) Y. Wang, Y. Chen, X. Li, Y. Mao, W. Chen, R. Zhan and H. Huang, *Org. Biomol. Chem.*, 2019, **17**, 3945; c) D. Uraguchi, Y. Ueki, A. Sugiyama and T. Ooi, *Chem. Sci.*, 2013, **4**, 1308; d) H. Hu, Y. Liu, J. Guo, L. Lin, Y. Xu, X. Liua and X. Feng, *Chem. Commun.*, 2015, **51**, 3835; e) T. Takafumi, T. Tsukushi, T. Taro, Y. Ryo and O. Takashi, *Org. Lett.*, 2018, **21**, 3541; f) T. Wang, Z. Yu, D. L. Hoon, C. Y. Phee, Y. Lan and Y. Lu, *J. Am. Chem. Soc.*, 2016, **138**, 265.

- 7. T. Yanai, D. Tew, and N. Handy, Chem. Phys. Lett., 2004, 393, 51.
- 8. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev., 2005, 105, 2999.
- 9. J. Autschbach, T. Ziegler, S.J.A. van Gisbergen, and E.J. Baerends, J. Chem. Phys., 2002, 116, 6930.
- 10. M.E. Casida, C. Jamorski, K.C. Casida, and D.R. Salahub, J. Chem. Phys., 1988, 108, 4439.
- 11. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- 12. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 1988, 88, 899.

NMR Spectra

2-(4-methoxyphenyl)-4-(naphthalen-2-ylmethyl)oxazol-5(4H)-one (1f)

4-(3,4-dichlorobenzyl)-2-(4-methoxyphenyl)oxazol-5(4H)-one (1i)

4-(cyclohexylmethyl)-2-(4-methoxyphenyl)oxazol-5(4H)-one (1m)

4-benzyl-2-(4-methoxyphenyl)-4-(trifluoromethyl)thio)oxazol-5(4H)-one (3e)

2-(4-methoxyphenyl)-4-(naphthalen-2-ylmethyl)-4-((trifluoromethyl)-thio)oxazol-5(4H)-one (3f)

4-(3,4-dimethoxybenzyl)-2-(4-methoxyphenyl)-4-((trifluoromethyl)thio)oxazol-5(4H)-one (3h)

4-(3,4-dichlorobenzyl)-2-(4-methoxyphenyl)-4-(trifluoromethyl)-thio)oxazol-5(4H)-one (3i)

4-(4-chlorobenzyl)-2-(4-methoxyphenyl)-4-(trifluoromethyl)thio)oxazol-5(4H)-one (3j)

S21

2-(4-methoxyphenyl)-4-phenethyl-4-((trifluoromethyl)thio)oxazol-5(4H)-one (3k)

2-(4-methoxyphenyl)-4-(2-(ethylthio)ethyl)-4-((trifluoromethyl)thio)oxazol-5(4H)-one (3l)

4-(cyclohexylmethyl)-2-(4-methoxyphenyl)-4-((trifluoromethyl)thio)oxazol-5(4H)-one (3m)

4-isobutyl-2-(4-methoxyphenyl)-4-((trifluoromethyl)thio)oxazol-5(4H)-one (3n)

4-isopropyl-2-(4-methoxyphenyl)-4-((trifluoromethyl)thio)oxazol-5(4H)-one (30)

4-benzyl-2-phenyl-4-((trifluoromethyl)thio)oxazol-5(4H)-one (3a)

Copies of chromatograms

Compound 3e

Compound 3f

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.730	MM	0.4720	1.96212e4	692.78754	15.3838
2	17.257	MM	0.8618	1.07924e5	2087.05786	84.6162
Tota	ls :			1.27545e5	2779.84540	

Compound 3g

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.077	MM	0.3750	3745.44946	166.44315	50.0312
2	21.151	MM	0.3947	3740.78394	157.94070	49.9688

Totals : 7486.23340 324.38385

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
						+
1	21.396	MM	0.4339	8715.18750	334.76059	14.2148
2	22.201	MM	0.9813	5.25954e4	893.33795	85.7852
Tota	ls :			6.13105e4	1228.09854	

Compound 3h

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.861	MM	0.2873	3.14877e4	1826.38391	49.6669
2	11.939	MM	0.3305	3.19100e4	1609.41138	50.3331

```
Totals : 6.33978e4 3435.79529
```


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.120	MM	0.2895	1.22045e4	702.67035	25.4240
2	12.148	MM	0.3896	3.57993e4	1531.41418	74.5760
T - t - ¹	12.5			1 00000 - 1	2224 00452	

Compound 3i

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.542	MM	0.3183	1257.09802	65.83231	50.6873
2	20.543	MM	0.3611	1223.00745	56.45263	49.3127

Totals :

2480.10547 122.28493

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.906	MM	0.5558	7.68340e4	2304.09839	80.6934
2	20.916	MM	0.5945	1.83832e4	515.37238	19.3066
Tota	ls :			9.52172e4	2819.47076	

S37

Compound 3j

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.639	MM	0.4344	1939.09045	74.39991	49.8113
2	16.822	MM	0.4453	1953.77966	73.13407	50.1887
Tota	ls:			3892.87012	147.53398	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.102	MM	0.4789	6.98096e4	2429.45972	81.3792
2	16.253	MM	0.4434	1.59736e4	600.45313	18.6208
Total	ls :			8.57832e4	3029.91284	

Compound 3k

Compound 31

Totals :

S40

5071.57300 157.55990

Compound 3m

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	16.904	MM	0.4760	4.19311e4	1468.31055	49.7204
2	18.617	MM	0.6081	4.24027e4	1162.21411	50.2796
Tota	ls :			8.43339e4	2630.52466	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
			ph.c.			
1	17.332	MM	0.4112	5415.05078	219.50145	9.2827
2	18.859	MM	0.6785	5.29198e4	1299.93848	90.7173
Total	s:			5.83348e4	1519.43993	

Compound 3n

S42

Compound 3o

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
					[]	
1	17.536	MM	0.4287	5.17185e4	2010.45935	49.7870
2	19.724	MM	1.6709	5.21610e4	520.29285	50.2130
Total	ls :			1.03879e5	2530.75220	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 16.762 MM	0.4255	1744.70483	68.34391	100.0000
Totals :		1744.70483	68.34391	

Compound 3a

TT.	Fedr Name	OIL	ru hund	Wea the sect	Height (ha)	ruea.e	rieignua	Guaritity	DATE:	Resolution	Symmetry ractor	marning
1	Unknown	10	9.150	5723324	345713	49.481	52.014	N/A	6943	3.951	1.267	
2	Unknown	10	10.974	5843411	318946	50.519	47.986	N/A	8144	N/A	1.208	1

#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Height%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	9	9.313	8908785	525720	17.655	13.796	N/A	6824	4.931	1.292	
2	Unknown	9	11.066	41552503	3284902	82.345	86.204	N/A	28592	N/A	1.276	*

Compound 3d

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.153	MM	0.6748	4567.53711	112.80434	50.4055
2	20.363	MM	1.5635	4494.04297	47.90648	49.5945
Total	ls :			9061.58008	160.71082	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.338	MM	0.6323	3.36312e4	886.43542	28.1748
2	17.509	MM	1.6781	8.57351e4	851.51392	71.8252
Tota:	ls :			1.19366e5	1737.94934	