Synergistic Palladium-Phosphoric Acid Catalysis in (3 + 2) Cycloaddition Reactions Between Vinylcyclopropanes and Imines

Vasco Corti ^{1,*}, Enrico Marcantonio ¹, Martina Mamone ¹, Alessandro Giungi ¹, Mariafrancesca Fochi ¹ and Luca Bernardi ^{1,*}

- ¹ Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna, Alma Mater Studiorum University of Bologna; V. Risorgimento 4, 40136 Bologna (Italy); <u>enrico.marcantonio@studio.unibo.it</u> (E.M.); <u>martina.mamone@studio.unibo.it</u> (M.M.); <u>alessandro.giungi3@studio.unibo.it</u> (A.G.); <u>mariafrancesca.fochi@unibo.it</u> (M.F.)
- * Correspondence: <u>vasco.corti2@unibo.it</u> (V.C.); <u>luca.bernardi2@unibo.it</u> (L.B.)

Supplementary Materials

Contents

-Assignment of the relative configuration of compound 4a by 1D NOESY NMR experiments	S1
-Copies of NMR spectra for compounds 4 and 5	.S8
-Screening of chiral catalysts and reaction conditions in the reaction between 1 and 2a	.S19
-Copies of the HPLC traces for racemic and enantioenriched 4a	S23

Assignment of the relative configuration of compound 4a by 1D NOESY NMR experiments.

Extensive chromatography on silica gel allowed to obtain the two diastereoisomers of **4a** in diastereoenriched form. This simplified the assignment of the relative configuration of the major and minor diastereoisomers obtained, which was carried out as follows:

-Major diastereoisomer (4a):

¹H NMR and 1D NOESY experiments:

Based on chemical shifts and multiplicities of the ¹H NMR spectrum:

-The signal at 5.80 ppm (ddd, J = 17.1, 9.8, 8.7 Hz, 1H) was assigned to H1'

-The signals at 2.54 (dd, J = 13.0, 7.1 Hz, 1H) and 2.36 (dd, J = 13.0, 7.8 Hz, 1H) were assigned to the two H4.

Then, 1D NOESY NMR experiments were performed:

a-Saturating the signal at 5.80 ppm (H1'), enhanced the signal at 2.36 ppm (dd). The latter signal corresponds to the proton *cis* to the vinyl group (H4A), and the signal at 2.54 ppm (dd) to the proton *trans* to the vinyl group (H4B).

b-Saturating the signal at 2.36 ppm (H4A), enhanced a singlet at 5.35 ppm. This singlet, superimposed in the ¹H NMR spectrum with the signals of H2', was assigned to H2 based on multiplicity.

c-Saturating the signal at 2.54 ppm (H4B), did not enhance the same singlet at 5.35 ppm (H2). It enhanced instead a signal at 5.23 ppm, a quartet, which could be assigned to H5.

On these grounds, H2, H4A and H1' should all be *cis* to each other. Therefore, the relative configuration of the major diastereoisomer of **4a** could be assigned as *trans*.

S3

-Minor diastereoisomer (4a):

Based on chemical shifts and multiplicities of the ¹H NMR spectrum:

-The signal at 6.41 ppm (ddd, J = 17.5, 10.3, 7.4 Hz, 1H) was assigned to H1'.

-The signal at 5.48 ppm (d, J = 17.3 Hz, 1H) was assigned to H2'A.

-The signal at 5.34 ppm (d, J = 10.2 Hz, 1H) was assigned to H2'B.

-The signal at 4.95 ppm (s, 1H) was assigned to H2.

-The signal at 4.82 ppm (q, J = 7.5 Hz, 1H) was assigned to H5.

-The signals at 2.55 ppm (dd, J = 13.1-7.8 Hz, 1H) and 2.44 ppm (dd, J = 13.2, 7.3 Hz, 1H) were assigned to the two H4.

Then, 1D NOESY NMR experiments were performed:

a-Saturating the signal at 6.41 ppm (H1'), enhanced the signal at 2.44 ppm (dd). The latter signal corresponds to the proton *cis* to the vinyl group (H4A), and the signal at 2.55 ppm (dd) to the proton *trans* to the vinyl group (H4B).

b-Saturating the signal at 2.55 ppm (H4B), enhanced the signal at 4.95 ppm (s), corresponding to H2, and the signal at 4.82 ppm, corresponding to H5.

c-Saturating the signal at 4.82 ppm (H5), enhanced the signals at 4.95 ppm (H2), and at 2.55 ppm (H4B).

On these grounds, H2, H4B and H5 should all be *cis* to each other. Therefore, the relative configuration of the minor diastereoisomer of **4a** could be assigned as *cis*.

Copies of NMR spectra for compounds 4 and 5

1',2'-diphenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4a** (*trans/cis* = 4.0 : 1)

2'-(naphthalen-1-yl)-1'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4b** (*trans/cis* = 3.0 : 1)

2'-(3,4-Dimethoxyphenyl)-1'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4c** (*trans/cis* = 1 : 4.2)

S10

2'-(4-Bromophenyl)-1'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4d** (*trans/cis* = 3.5 : 1)

2'-(3-Chlorophenyl)-1'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4e** (*trans/cis* = 10.0 : 1)

2'-Isobutyl-1'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4f** (*trans/cis* = 9.5 : 1)

1'-(4-Nitrophenyl)-2'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4g** (*trans/cis* = 4.8 : 1)

1'-(4-Methoxyphenyl)-2'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4h** (*trans/cis* = 1 : 1.2)

2'-Phenyl-1'-(m-tolyl)-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4i** (*trans/cis* = 1.6 : 1)

1'-(4-Chlorobenzyl)-2'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione **4j** (*trans/cis* = 1 : 9.2)

2'-(2',3'-Dimethoxy-[1,1'-biphenyl]-4-yl)-1'-phenyl-5'-vinylspiro[indene-2,3'-pyrrolidine]-1,3-dione 5 (*trans/cis* = 1 : 2.8)

Screening of chiral catalysts and reaction conditions in the enantioselective reaction between 1 and 2a

-Screening of chiral phosphoric acid catalysts: selected results

Conditions: VCP **1** (0.05 mmol), imine **2a** (0.06 mmol), Pd(PPh₃)₄ (5 mol%), chiral phosphoric acid (CPA) (10 mol%), toluene (0.2 mL), -30 °C.

* Conditions: VCP **1** (0.05 mmol), imine **2a** (0.06 mmol), Pd(PPh₃)₄ (10 mol%), chiral phosphoric acid (CPA) (5 mol%), toluene (0.6 mL), -30 °C.

-Screening of the two catalysts loadings: selected results

Entry ¹	Pd(PPh ₃) ₄ [x mol%]	3d [y mol%]	Yield [%]	trans/cis	ee (<i>trans</i>) [%]	ee (<i>cis</i>) [%]
1	5	10	81	3.2 : 1	42	11
2	5	15	64	2.0:1	52	11
3	5	20	57	1:1.8	52	23
4	5	5	88	5.3 : 1	58	15
5	10	5	66	7.0:1	60	35
6	10	2.5	low	n.d.	56	31
7	5	2.5	low	n.d.	60	32

¹ Conditions: VCP **1** (0.05 mmol), imine **2a** (0.06 mmol), Pd(PPh₃)₄ (x mol%), chiral phosphoric acid **3d** (y mol%), toluene (0.2 mL), -30 °C.

-Screening of additives/drying agents: selected results

Entry ¹	Additive	Yield [%]	trans/cis	ee (<i>trans</i>) [%]	ee (<i>cis</i>) [%]
1	none	66	7.0:1	60	35
2	5 Å MS	56	3.2 : 1	12	48
3	4 Å MS	89	2.2:1	10	53
4	3 Å MS	91	2.4 : 1	10	53
5	MgSO ₄	86	1.1 : 1	49	rac
6	AcOH	>95%2	12.5 : 1	24	n.d.
7	TBACl	<10	-	-	-

¹ Conditions: VCP **1** (0.05 mmol), imine **2a** (0.06 mmol), Pd(PPh₃)₄ (10 mol%), chiral phosphoric acid **3d** (5 mol%), toluene (0.2 mL), additive, -30 °C. ² Conversion.

-Effect of the dilution: selected results

Entry ¹	Toluene [M]	Yield [%]	trans/cis	ee (<i>trans</i>) [%]	ee (<i>cis</i>) [%]
1	0.25	66	7.0:1	60	35
2	0.5	>99	1.9:1	61	rac
3	0.125	80	14:1	62	n.d.
4	0.083	>95 ²	12.3 : 1	60	n.d.
5	0.0625	66	26:1	60	n.d.

¹ Conditions: VCP **1** (0.05 mmol), imine **2a** (0.06 mmol), Pd(PPh₃)₄ (10 mol%), chiral phosphoric acid **3d** (5 mol%), toluene (x mL), -30 °C. ² Conversion.

-Solvent screening: selected results

Entry ¹	Solvent	Conversion [%]	trans/cis	ee (<i>trans</i>) [%]	ee (<i>cis</i>) [%]
1	toluene	>95	12.3 : 1	60	n.d.
2	EtOAc	>95	18:1	32	n.d.
3	THF	>95	11:1	16	n.d.
4	CH_2Cl_2	>95	5.2:1	14	6
5	C ₆ H ₅ CF ₃	>95	4.6:1	50	rac

¹ Conditions: VCP **1** (0.05 mmol), imine **2a** (0.06 mmol), Pd(PPh₃)₄ (10 mol%), chiral phosphoric acid **3d** (5 mol%), solvent (0.6 mL), -30 °C.

-Phosphine ligands screening: selected results

-Temperature screening: selected results

Entry ¹	T [°C]	t [h]	Conversion [%]	trans/cis	ee (<i>trans</i>) [%]
1	-30	4	>95	12.3 : 1	60
2	-50	6	67	14:1	64
3	-70	18	>95	3.5 : 1	62

¹ Conditions: VCP **1** (0.05 mmol), imine **2a** (0.06 mmol), Pd(PPh₃)₄ (10 mol%), chiral phosphoric acid **3d** (5 mol%), solvent (0.6 mL), -30 °C.

-Preliminarily optimised conditions:

Copies of the HPLC traces for racemic and enantioenriched 4a

Enantioenriched 4a: integration values for the major *trans*-diastereoisomer:

Enantioenriched **4a**: integration values for the minor *cis*-diastereoisomer: