Advanced Synthesis \& Catalysis

Supporting Information

Chemodivergent Preparation of Various Heterocycles via PhaseTransfer Catalysis: Enantioselective Synthesis of Functionalized Piperidines
Giulio Bertuzzi,** Filippo Silvestrini, Pierluigi Moimare, Daniel Pecorari, Andrea Mazzanti, Luca Bernardi,** and Mariafrancesca Fochi**

Supporting Information

Chemodivergent Preparation of Various Heterocycles via Phase-Transfer Catalysis: Enantioselective Synthesis of Functionalized Piperidines

Giulio Bertuzzi*a, Filippo Silvestrinia, Pierluigi Moimarea, Daniel Pecoraria, Andrea Mazzantia, Luca Bernardi*a and Mariafrancesca Fochi*a
Department of Industrial Chemistry "Toso Montanari" and INSTM RU Bologna Alma Mater Studiorum - University of Bologna V. Risorgimento 4, 40136 Bologna (Italy).
Table of Contents
General Methods and Materials S1
Additional screenings for the enantioselective sulfa-Michael/aldol reaction for the synthesis of piperidines 3 S2
Preparation of Starting Materials. S4
Preparation of \mathbf{O}-benzhydryl- N -benzylcinchonidinium bromide (Catalyst G) S7
Preliminary Structural Assignment of Compounds 4 and 5 S8
Stereochemical assignments S10
Computational Study S19
General procedure for the synthesis of products rac-3, 4 and 5. S25
General procedure for the synthesis of enantioenriched products 3 S29
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products 3,4 and 5 S35
Copies of HPLC traces of products 3 559
Calculation Coordinates S73

General methods and materials

General Methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 300, Mercury 400 or Inova 600 spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvents signals ${ }^{1}$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. ${ }^{13} \mathrm{C}$ NMR were acquired with 1 H broad-band decoupled mode. Chromatographic purifications were performed using 70-230 mesh silica gel. Mass spectra were recorded on a Waters Xevo Q-TOF spectrometer. Optical rotations were measured on a Perkin Elmer 241 Polarimeter provided with a sodium lamp and are reported as follows: $[\alpha]_{\lambda}^{T\left({ }^{\circ} C\right)}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL}$, solvent). The enantiomeric excesses of the products ($e e$) were determined by chiral stationary phase HPLC (Daicel Chiralpak AD-H and AS-H or Chiralcel OD-H columns), using a UV detector operating at 254 nm .

Materials. Analytical grade solvents and commercially available reagents were used as received, unless otherwise stated. Catalysts A-Q were synthesized following literature procedures. ${ }^{2}$ For catalyst \mathbf{G}, see the dedicated section. Racemic products $\mathbf{3}$ were prepared using $\operatorname{TBABr}(10 \mathrm{~mol} \%)$ instead of \mathbf{G} as catalyst.

[^0]
Additional screenings for the enantioselective sulfaMichael/aldol reaction for the synthesis of piperidines 3

Table S1 Additional bases and catalysts screenings. ${ }^{\text {a) }}$

Entry	R	Catalyst	Base	Conversion ${ }^{\text {b }}$	d.r. ${ }^{\text {b) }}$	$\mathrm{ee}^{\text {c) }}$
1	Me	B	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { (aq) }} 50 \% \mathrm{wt}$.	>99	80:20	36
2	Me	B	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }} 5 \% \mathrm{wt}$.	>99	80:20	38
3	Me	B	$\mathrm{NaHCO}_{3(\mathrm{aq})} 10 \% \mathrm{wt}$.	90	81:19	40
4	Me	B	$\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})} \mathbf{1 0 \%} \mathbf{~ w t}$.	>99	86:14	50
5	Me	H	$\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})} 10 \% \mathrm{wt}$.	33	80:20	6
6	Me	I	$\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})} 10 \%$ wt.	<5	n.d.	n.d.
7	Me	J	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }} 10 \%$ wt.	96	$>20: 1$	48
8	Me	K	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }} 10 \%$ wt.	90	>20:1	14
9	Me	L	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { (aq) }} 10 \%$ wt.	98	83:17	57
10	Me	M	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }} 10 \% \mathrm{wt}$.	97	82:18	60
11	Me	N	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }} 10 \%$ wt.	61	84:16	62
12	Me	O	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }} 10 \% \mathrm{wt}$.	>99	82:18	50
13	Me	P	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }} 10 \%$ wt.	>99	83:17	55
14	Me	Q	$\mathrm{K}_{2} \mathrm{CO}_{3(\text { aq) }} 10 \%$ wt.	97	84:16	46
15	Me	G	$\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})} \mathbf{1 0 \%}$ wt.	>99	83:17	68
16	iPr	B	$\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})} 50 \% \mathrm{wt}$.	72	90:10	44

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1}(0.05 \mathrm{mmol})$, $\mathbf{2 a}$ (1.2 equiv, 0.06 mmol), base ($100 \mu \mathrm{~L}$), catalyst (0.005 mmol$)$, PhMe ($1000 \mu \mathrm{~L}, 0.05 \mathrm{M}$), $18 \mathrm{~h} .{ }^{\text {b }}$) Calculated on the crude mixture by ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{\text {c }}$ Calculated on crude $\mathbf{3}$ by Chiral Stationary Phase (CSP) HPLC.

H

I

Figure S1. Catalysts screened in Table S1.
Different concentrations of the aqueous base, as well as NaHCO_{3} instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$ caused a detriment in the enantioselectivity (Table S1, compare entries 1-3 with entry 4) keeping almost the same high conversion and good diastereoselectivity.
A number of catalysts (H-P, compare entries 5-13 with entry 15), displaying different substitution at the " N " or " O " portion were screened, giving worse results compared to optimal catalyst \mathbf{G}. Quinine derivative \mathbf{Q} gave almost the same results than the analogue Cinchonidine B (compare entries 14 and 4). A substrate 1 showing a bulkiy ester, bearing an isopropyl group, underwent the desired reaction less efficiently (entry 16).

Preparation of Starting Materials

Substrates $\mathbf{1}$ used in the present study are reported in Figure S2.

Figure S2. Structures of substrates 1
Substrates 1a and 1d were prepared following unmodified literature procedures ${ }^{3}$ depicted in Scheme S1. Substrates $\mathbf{1 e} \mathbf{e}$ h were prepared following the same procedures with the appropriate α-bromo acetophenones. For these substrates, characterization is given below.

Scheme S1. Preparation of substrates 1a and 1d-h.
Substrates $\mathbf{1 b}^{4}$ and $\mathbf{1} \mathbf{c}^{5}$ were prepared following unmodified literature procedures (Scheme S2).

[^1]

Scheme S2. Preparation of substrates $\mathbf{1 b}$ and $\mathbf{1 c}$.

Methyl (E)-4-((N-(2-(4-methoxyphenyl)-2-oxoethyl)-4-methylphenyl)sulfonamido)but-2enoate

$$
\begin{aligned}
& \text { Following the reported procedure (employing 2-bromo-4'- } \\
& \text { methoxyacetopehenone), product } 1 \mathbf{e} \text { was obtained as a light } \\
& \text { brown solid in } 95 \% \text { yield }(792 \mathrm{mg}, \text { reaction run on } 2.0 \mathrm{mmol} \\
& \text { scale). }{ }^{\mathbf{1} \mathbf{H} \text { NMR }\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.91-7.81(\mathrm{~m}, 2 \mathrm{H}),} \\
& 7.76-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 2 \mathrm{H}), \\
& 6.78(\mathrm{dt}, J=15.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dt}, J=15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=5.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s},
\end{aligned}
$$ 3H), $2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=191.8,165.9,164.1,143.7,142.3,136.6$, 130.3 (2C), 129.6 (2C), 127.7, 127.5 (2C), 123.8, 114.0 (2C), 55.5, 52.0, 51.7, 48.7, 21.6. ESI-MS: $440\left[\mathrm{M}+\mathrm{Na}^{+}\right]$.

Methyl (E)-4-((N-(2-(3-bromophenyl)-2-oxoethyl)-4-methylphenyl)sulfonamido)but-2enoate 1f

Following the reported procedure (employing 2,3'dibromoacetopehenone), product $\mathbf{1 f}$ was obtained as a light yellow solid in 50% yield (233 mg , reaction run on 2.0 mmol scale). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.97(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{ddd}, J$ $=7.8,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dt}, J=15.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}$, $J=15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{dd}, J=5.9,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.69 (s, 3H), $2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=192.4,165.9,143.9,142.1,136.8$, 136.4, 136.3, 131.0, 130.5, 129.7 (2C), 127.4 (2C), 126.5, 124.0, 123.2, 52.5, 51.8, 48.8, 21.6. ESI-MS: $488\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}^{+}\right], 490\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}^{+}\right]$.

Methyl (E)-4-((N-(2-(thiophen-2-yl)-2-oxoethyl)-4-methylphenyl)sulfonamido)but-2enoate 1 g

Following the reported procedure (employing 2-bromo-1-(thiophen-2-yl)ethan-1-one), product $\mathbf{1 g}$ was obtained as a light yellow solid in 25% yield (393 mg , reaction run on 4.0 mmol scale). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.80-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.27$ (m, 2H), 7.16-7.13 (m, 1H), $6.77(\mathrm{dt}, \mathrm{J}=15.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dt}, \mathrm{J}=15.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=5.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=186.8,166.1,144.1,142.2,141.1,136.5,134.85,132.8,129.9$ (2C), 128.7, 127.7 (2C), 124.2, 52.6, 51.9, 49.0, 21.8. ESI-MS: $416\left[\mathrm{M}+\mathrm{Na}^{+}\right]$.

Methyl (E)-4-((N-(2-(hapthalen-2-yl)-2-oxoethyl)-4-methylphenyl)sulfonamido)but-2enoate 1 h

1h

Following the reported procedure (employing 2-bromoacetonaphthone), product $\mathbf{1 h}$ was obtained as a yellow solid in 40% yield (351 mg , reaction run on 2.0 mmol scale). ${ }^{1} \mathbf{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.42(\mathrm{~s}, 1 \mathrm{H}), 8.05-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.78-7.73(\mathrm{~m}$, $2 \mathrm{H}), 7.68-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dt}, \mathrm{J}=15.7$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dt}, \mathrm{J}=15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{dd}, \mathrm{J}$ $=5.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=193.6,166.1,144.0,142.5,136.8,136.1,132.5,132.1$, 130.1, 129.9, 129.8 (2C), 129.2, 129.0, 128.0 (2C), 127.7, 127.31, 124.1, 123.5, 52.6, 51.9, 49.0, 21.8. ESI-MS: $460\left[\mathrm{M}+\mathrm{Na}^{+}\right]$

Preparation of O-benzhydryl- N-benzylcinchonidinium bromide (Catalyst G)

The following procedure is adapted from the literature, ${ }^{6}$ optimized for the specific preparation of G. A Schlenck tube equipped with a magnetic stirring bar and under N_{2} flow is charged with $466 \mathrm{mg}(1.0 \mathrm{mmol})$ of N-benzylcinchonidinium bromide and 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Aqueous potassium hydroxide ($625 \mu \mathrm{~L}, 50 \% \mathrm{wt}$.) is then added and the resulting biphasic mixture is vigorously stirred for 5 min . Then, benzhydryl bromide ($2.23 \mathrm{~g}, 2.5 \mathrm{mmol}$) is added in one portion. Note that if benzhydryl bromide is added before the KOH solution, the undesired formation of \mathbf{G}, which is very difficult to separate from \mathbf{G}, is generally observed. The mixture is vigorously stirred for 1 h , then diluted with 5 mL of water and stirred for 5 min . After separation of the phases, the organic phase is washed with a solution of 300 mg of sodium bromide in 3 mL of water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered using the minimum quantity of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a rinse. This solution is immediately added dropwise (2 min) into a stirred mixture of n-hexane and $\mathrm{Et}_{2} \mathrm{O}(1: 5,15 \mathrm{~mL})$ producing, over 1 h of stirring, a fluffy mass. Note that prolonged standing of the crude $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution results in the undesired formation of \mathbf{G}^{\prime}. After stirring for 1 h , the solids are collected by filtration, washed with 10 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 10 mL of n-hexane and dried under vacuum to afford $316 \mathrm{mg}(0.50 \mathrm{mmol}$, 50% yield) of O-benzhydryl- N-benzylcinchonidinium bromide as a fluffy off-white powder. $[\boldsymbol{\alpha}] \mathbf{D}^{25}=-31\left(\mathrm{c}=0.5 \mathrm{in} \mathrm{CH}_{3} \mathrm{OH}\right) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.87(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.22-8.17$ (m, 1H), $8.13-8.07$ (m, 1H), 7.93 (ddd, $J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80$ (m, 2 H), $7.58-7.27$ (m, 15H), 6.35 (s, 1H), 5.66 (ddd, $J=17.3,10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53$ (s, 1H), 5.09 (dt, $J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dt}, J=10.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ - $4.12(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.40-$ $3.32(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.93(\mathrm{~m}$, $1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=149.5,147.7,141.3,140.6$, $139.8,137.1,133.3,130.4,130.2,129.3$, 129.3, 129.2, 128.9, 128.4, 128.3, 127.5, 126.4, $125.8,125.4,122.2,120.2,116.3,81.6,70.1,67.9,63.3,60.8,51.3,37.4,26.6,24.7,21.8$. HRMS: calculated for $\left[\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}^{+}\right]$: 630.2246; found: 630.2245.

[^2]
Preliminary Structural Assignment of Compounds 4 and 5

The structure of compound 3aa, along with the relative and absolute stereochemistry, are reported in the dedicated section.
The structure of compound $\mathbf{4 a}$ was confirmed by means of DEPT NMR experiments. Indeed, it is possible to distinguish between the two possible isomers ($\mathbf{4 a}$ and $\mathbf{4} \mathbf{' M}^{\prime} \mathbf{a}$), simply by counting the number of CH and CH_{2} carbons in the aliphatic region.

Figure S3. Possible structures 4a and 4' \mathbf{a}.
In a 135 DEPT experiment, structure 4 a should have 3 negative signals $\left(3 \mathrm{xCH}_{2}\right)$ and 4 positive signals (1 CH and $3 \mathrm{xCH}_{3}$). On the other hand, structure 4 '' a should have 2 negative signals $\left(2 \mathrm{xCH}_{2}\right)$ and 5 positive signals $\left(1 \mathrm{CH}\right.$ and $\left.3 \mathrm{xCH}_{3}\right)$. The spectrum shown in Figure S4 clearly shows structure $\mathbf{4 a}$ to be the correct one.

Figure S4. Expansion of the 135 DEPT NMR and ${ }^{13} \mathrm{C}$ NMR experiments of product $\mathbf{4 a}$ in CDCl_{3}.

The structure of compound $\mathbf{5 a}$ was confirmed by means of DEPT NMR experiments as well. Indeed, it is possible to distinguish between the three possible isomers (5a and 5'a and 5', $\mathbf{5}$), simply by counting the number of CH and CH_{2} carbons in the aliphatic region. It is also possible to exclude the presence of a mixture of structural isomers.

Figure S5. Possible structures 5a, 5'a and $\mathbf{5}^{\prime}{ }^{\prime} \mathbf{a}$.
In a 135 DEPT experiment, a mixture of two diastereoisomers with structure 5a should have 6 negative signals ($3 \mathrm{xCH}_{2}$ each) and 8 positive signals (1 CH and $3 \mathrm{xCH}_{3}$ each).
A mixture of two diastereoisomers with structure 5'a should have 6 negative signals $\left(3 \mathrm{xCH}_{2}\right.$ each) and 10 positive signals (2 CH and $3 \mathrm{xCH}_{3}$ each).
A mixture of two diastereoisomers with structure 5', should have 4 negative signals $\left(2 \mathrm{xCH}_{2}\right.$ each) and 12 positive signals (3 CH and $3 \mathrm{xCH}_{3}$ each).
Any mixture of structural isomers should have an odd number of positive or negative signals. The spectrum shown in Figure S6 clearly shows structure 5a to be the correct one. Moreover, the presence of four signals in the ${ }^{13} \mathrm{C}$ NMR indicated as quaternary carbons (by comparison with the DEPT spectrum) confirms this assignment.

Figure S6. Expansion of the 135 DEPT NMR experiment of product 5a in DMSO- d_{6}.

Stereochemical assignments

Compound 3aa

Figure S7. Compound 3aa numbering

Relative configuration

Full assignment of the hydrogen chemical shifts of compound 3aa was obtained by 2D COSY experiments, starting from the $\mathrm{H}-4$ hydrogen at 2.32 ppm (doublet, numbering as from Figure S7). H-5 was found at 3.57 ppm by correlation with H-4. H-6' and H6" were found at 3.87 and 2.25 ppm by COSY from H-5. The remaining H-2' and H2" were found at 3.50 and 2.23 ppm . The diastereotopic pairs were then confirmed by HSQC. Careful investigation of the coupling constants value showed that a very large coupling constant takes place between H-4 and H-5 (12.4 Hz). H-5 has also a very large J-coupling with H-6" (12.3 Hz). This combination suggests that H-4, H-5 and H-6" occupy three axial position of the six-membered ring of piperidine, than can be conformationally related to a cyclohexane. Thus, the COOMe and the SPh moiety occupy two equatorial positions on the ring. The very large values of the coupling constants also suggest that the compound has a strongly preferred conformation. This hypothesis is further supported by the observation of a small ${ }^{4} \mathrm{~J}$ coupling between $\mathrm{H}-6$, and H-2' hydrogens, i.e. those in the C-2 and C-6 equatorial positions. The ${ }^{4} \mathrm{~J}$ takes place because of the "W" disposition between the two hydrogens.
NOE spectra were recorded to assign the relative stereochemistry of the quaternary carbon in position 3. On saturation of the methyl signal at 1.15 ppm (assigned by HMBC correlation with the sp^{3} quaternary carbon) yields strong NOE on H-2', H-2" and H-4 (Figure S9, control signals) but no enhancement was observed on H-5.

Figure S8. ${ }^{1} \mathrm{H}$ aliphatic region of compound 3aa (600 MHz in $\mathrm{CD}_{3} \mathrm{CN}$)

This implies that H-5 is far from the methyl. Being H-5 in the axial position, the Methyl has to be placed in the equatorial position of the ring. As a whole, the J coupling analysis and NOE allow to assign the relative stereochemistry of $\mathbf{3} \mathbf{a}$ as $3 R^{*}, 4 R^{*}, 5 R^{*}$.

Figure S9. DPFGSE-NOE spectra of compound 3aa (600 MHz in $\mathrm{CD}_{3} \mathrm{CN}$). Bottom: control spectrum. Top: NOE spectrum on saturation of the Methyl in position 3.

NOE spectra were also acquired to investigate the disposition of the SPh and tosyl exocyclic substituents (Figure S10). On saturation of the ortho hydrogens of the tosyl group, NOE enhancement were observed for all the hydrogens in position 2 and 6 . This outcome suggests that the preferred conformation has the phenyl ring in a pseudo-axial position (see below for 3D structures). Saturation of the ortho hydrogens of the SPh moiety yields strong NOE only on H-5 and H-6', whereas NOEs on H-4 and H-6" are small. This suggest that the phenyl ring is mainly located in a pseudo equatorial disposition.

Figure S10. DPFGSE NOE of 3aa. Left: NOE spectrum on saturation of the ortho hydrogens of the SPh moiety. Right: NOE spectrum on saturation of the ortho hydrogens of the tosyl moiety. Bottom is reported the control spectrum

The minor diastereoisomer 3' aa could not be isolated. However, in the second fraction of the column chromatography performed for the purification of rac-3aa a certain amount of this compound could be recovered as inseparable mixture with 3aa. The structure was assigned on the basis of the great similarity of the H-5 signals. Being these two almost identical in shape and value of the J coupling constants, it is assumed that the relative configuration of $\mathrm{H}-4$ and $\mathrm{H}-5$ should be the same for both 3aa and $\mathbf{3}^{\prime} \mathbf{a a}$. Therefore, the relative configuration of $\mathbf{3} \mathbf{\prime} \mathbf{a a}$ is $3 R^{*}, 4 S^{*}, 5 S^{*}$.

Figure S11. $\mathrm{H}-5$ signals of 3aa and $\mathbf{3}$ ' aa in the ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}.

Conformational analysis

Starting from the assigned relative configuration of 3aa, a complete conformational analysis was performed in order to find all the low-energy conformations. A full scan of the potential energy surface (PES) was performed using molecular mechanics and the MMFF force field (Macromodel, MMFF force field, SPMC method). All the energy minima enclosed in the lowest $10 \mathrm{kcal} / \mathrm{mol}$ range (52 conformations) were then optimized using DFT calculations at the B3LYP/6-31G(d) level of theory including the solvent (acetonitrile) with the SMD approach. ${ }^{7}$ Frequency analysis was performed to check whether they corresponded to energy minima (no imaginary frequencies observed). After this step, the energies of 16 conformations comprised within the $3 \mathrm{kcal} / \mathrm{mol}$ energy range from the global minimum were calculated at the SMD-B3LYP/6-311++G(2d,2p) level. The final energies for the evaluation of the conformational ratio were then obtained by adding the thermal correction to enthalpy extracted from the B3LYP/6-31G(d) calculation to the electronic energy at the higher calculation level. The enthalpic correction was preferred to the free energy because of the presence of many low-energy vibration that hamper a correct evaluation of the entropic factor. ${ }^{8}$ After the second DFT step, 14 conformations were found to be enclosed in a ≈ 2.5 $\mathrm{kcal} / \mathrm{mol}$ range, and 6 within the first 1.5 kcal threshold (Table S2). Those accounts for a 80% population and were considered for the following analysis.

Table S2. relative energies of the conformations of 3aa.

	SMD-B3LYP/6-31G(d)			SMD-B3LYP/6-311++g(2d,2p) SP			
Conf. \#	\mathbf{H}° (a.u.)	$\begin{gathered} \text { Rel H}^{\circ} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	$\underset{\text { (a.u.) }}{\mathbf{H}_{\text {corr }}}$	$\begin{gathered} \hline \mathbf{E E} \\ \text { (a.u.) } \end{gathered}$	$\begin{gathered} \text { EE+H_corr } \\ \text { (a.u.) } \end{gathered}$	Rel. E (kcal/mo I)	$\begin{gathered} \text { Pop } \\ \% \end{gathered}$
\#5	-2042.055604	0.00	0.46485	-2042.999012	-2042.534162	0.00	47
\#27	-2042.055486	0.08	0.463819	-2042.996971	-2042.533152	0.63	16
\#13	-2042.054612	0.63	0.463783	-2042.996484	-2042.532701	0.92	10
\#1	-2042.053761	1.16	0.4646	-2042.996842	-2042.532242	1.20	6
\#29	-2042.052883	1.71	0.464681	-2042.996544	-2042.531863	1.44	4
\#2	-2042.052782	1.77	0.464602	-2042.996405	-2042.531803	1.48	4
\#11	-2042.05412	0.93	0.464612	-2042.996188	-2042.531576	1.62	3
\#15	-2042.052935	1.68	0.464561	-2042.995726	-2042.531165	1.88	2
\#45	-2042.053354	1.42	0.463851	-2042.994908	-2042.531057	1.95	2
\#3	-2042.051499	2.58	0.464714	-2042.995756	-2042.531042	1.96	2
\#4	-2042.051499	2.58	0.464713	-2042.995755	-2042.531042	1.96	1
\#32	-2042.052109	2.20	0.463695	-2042.994449	-2042.530754	2.14	1
\#8	-2042.052405	2.01	0.464668	-2042.995211	-2042.530543	2.27	1
\#17	-2042.054227	0.87	0.464804	-2042.995281	-2042.530477	2.31	1

All the low-energy conformations have the six-membered ring with chair shape, where the $\mathrm{SPh}, \mathrm{COOMe}$ and the Me moieties are in the equatorial position, as experimentally suggested by J-coupling analysis and NOE spectra. Within the most stable conformations, the differences are due to the different relative dispositions of the SPh and the tosyl moieties,

[^3]while the spatial disposition of the COOMe group is kept fixed by the intramolecular hydrogen bond with the OH (Figure S12), with the exception of conformation \#29. Conformation \#5 and \#13 are in a very good agreement with the experimental data from NOE.

\#5

\#1

\#27

\#29

\#13

\#2

Figure S12. The six best conformations of 3aa. Geometry optimization at the SMD-B3LYP/6-31G(d) level.

Absolute configuration.

All compounds $\mathbf{3}$ are amorphous solids and every attempt of crystallization failed, giving in some case gelatinous mixtures or amorphous solids. Thus, anomalous dispersion X-ray crystallography ${ }^{9}$ is unfeasible. For this reason, the absolute configuration of compound 3aa was determined by the theoretical simulations of chiro-optical spectra. ${ }^{10}$ In the present case, the theoretical calculation of the ECD spectra of 3aa was selected for the absolute configuration assignment.

[^4]

Figure S13. UV and ECD spectrum of 3aa in acetonitrile.

The ECD spectrum of 3aa was acquired in HPLC-grade acetonitrile solution $\left(1 \cdot 10^{-4} \mathrm{M}\right)$ with a cell path of 0.2 cm in the $190-400 \mathrm{~nm}$ region by the average of 16 scans at $50 \mathrm{~nm} / \mathrm{min}$ scan rate (Figure S13). Albeit rather weak, the experimental ECD spectrum exhibits two negative Cotton effects centred at 255 and 228 nm , a positive branch at 216 and a negative one at 200 nm . The TD-DFT simulations of the ECD spectra were performed using the geometries of the best 6 conformations (Table S1). Calculations were performed with CAM-B3LYP ${ }^{11}$ that includes long range correction using the Coulomb Attenuating Method and the 6$311++\mathrm{G}(2 \mathrm{~d}, \mathrm{p})$ basis set, that is known to yield good performances at a reasonable computational cost. ${ }^{12}$ The results of the TD-DFT calculations for CAM-B3LYP, assuming the $3 S, 4 S, 5 S$ absolute configuration are shown in Figure S14.

[^5]

Figure S14. Left: TD-DFT simulated spectra calculated for the six conformations of 3aa, ($3 S$, $4 S, 5$ absolute configuration) using CAM-B3LYP/6-311++G(2d,p) basis set. For each conformation, the first 50 excited states were calculated, and the spectra were obtained using a 0.25 eV line width at half height. The red shift to be applied to simulations was evaluated on the UV spectrum as +7 nm . Scale factors were applied to the UV simulated spectrum (1.4•10${ }^{5}$) and to the ECD simulation (0.17) to match the experimental spectra (black lines in the right quadrants).

The simulation of the weighted spectrum was obtained by using the populations obtained from Boltzmann distribution using the population of Table S2. The simulated spectra were vertically scaled and red-shifted to get the best match with the experimental spectrum The simulation is in a good agreement with the experimental spectrum, and it correctly match the sign and sequence of the Cotton effects. It is thus safe to assign the $3 S, 4 S, 5 S$ absolute configuration to 3aa. It has to be underlined that the absolute configuration of the analogue compounds with the phenyl group in position 3 is $3 R, 4 S$, $5 S$ because of the change in the CIP priorities on changing from the 3 -methyl to the 3-phenyl moiety.

Relative configuration of 4a

$4 \mathbf{a}$

Figure S15. Atom numbering and the two possible chair conformations of $\mathbf{4 a}\left(2 R^{*}, 6 S^{*}\right.$ relative configuration)

The relative configuration of $\mathbf{4 a}$ was determined by NOE as for compound 3aa. Preliminary assignment of the hydrogens was achieved with 2D-COSY, HSQC and HMBC. The very large coupling constant of H-2 with H-3" (10.5 Hz) suggests that H-2 occupies mainly the axial position. On saturation of the methyl signal, strong NOE effects are observed on the two hydrogens H-5' and H-5", and a very small NOE on H-2. Saturation of H-2 yields strong NOE only on $\mathrm{H}-3^{\prime}$ and on the two hydrogens in position 7. These data imply that the methyl has to occupy the equatorial position, whereas the cyano group is in the axial one. In this conformation, the $\mathrm{CH}_{2} \mathrm{COOMe}$ and the methyl occupy both the equatorial position, whereas the less hindered CN moiety is in the axial position. This arrangement corresponds to the $2 R^{*}$, $6 S^{*}$ relative configuration.

Figure S16. DPFGSE-NOE spectra of compound $\mathbf{4 a}\left(600 \mathrm{MHz}\right.$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$. Bottom: control spectrum. Middle: NOE spectrum on saturation of the methyl in position 6. Top: NOE spectrum on saturation of the $\mathrm{H}-2$ signal.

Computational study

A computational study based on DFT calculations was performed to investigate the catalytic cycle. All the calculations were performed with the Gaussian 16 suite of programs ${ }^{13}$ on model compounds where the p-tolyl group of the tosyl moiety was replaced by a methyl (mesyl), in order to reduce the computational times. To the same aim, the ammonium ion of the organocatalyst was replaced by tetramethylammonium (TMA). Geometry optimization of the ground states (GS) and transition states (TS) were obtained using the B3LYP functional and the $6-31 \mathrm{G}(\mathrm{d})$ basis set. Each optimized structure was validated by frequency analysis showing no imaginary frequency for GS geometries, and a single imaginary frequency for the TS. Visual inspection of the corresponding normal mode was used to confirm that the wanted TS was found. Single point energies were then obtained with M06-2X/6-311+G(d) and the final energies to be compared for the determination of the best reaction pathway were obtained by adding the ZPE contribution to the Enthalpies evaluated at the lower calculation level to the single point energy. ${ }^{14}$ The choice to use enthalpy instead of the Gibbs free energy was dictated by the presence of many low-energy vibrators that hamper a suitable evaluation of the entropic factor, even if correction were applied. ${ }^{15}$ The use of enthalpy provides less accurate absolute energy for the TS with respect to GS, but a more reliable comparison within them.

Reaction with thiophenol.

The experimental outcome of the reaction is the exclusive formation of the piperidine ring, that derives from the Michael addition of PhS^{-}to the α, β-unsaturated system, followed by intramolecular cyclization. As a first attempt, the intramolecular TS was searched starting from the cyclized compound (with S, S, S absolute configuration) by a relaxed scan of the potential energy surface (PES) that accounted for the elongation of the C3-C4 bond. The geometry corresponding to the energy maximum was then used as input for the optimization of the TS geometry. The geometry of the transition state is shown in Figure S17. It was found that the reaction coordinate related to the imaginary frequency involved also the formation of the $\mathrm{S}-\mathrm{C}_{\beta}$ bond. The C3-C4 distance in the TS was $2.32 \AA$ and the C5-S was $1.91 \AA$. Starting from this geometry, an IRC calculation confirmed that the TS connect the cyclized compound and the starting reagents. Thus, DFT calculations suggest that the formation of the piperidine ring is due to a concerted, albeit asynchronous, reaction with a single TS. In the GS of the cyclized compound the C3-C4 bond distance is $1.61 \AA$ whereas the C5-S is $1.86 \AA$, thus the C-S bond is almost already formed when the cyclization starts. Several attempts were made to localize the TS for the alternative pathway where the PhS^{-}nucleophile adds to the ketone and

[^6]the intermediate then cyclizes to yield a morpholine derivative. However, we cannot find any effective geometry for this TS. This is in agreement with similar cases known in the literature. ${ }^{16}$

Figure S17. 3D structures of the cyclization TS for compound 3aa*. Distances in \AA.

Scheme S3. Possible pathways for the formation of compound 3aa*.
Once the TS for cyclization was found, we searched for the TS geometries leading to the three remaining diastereoisomers, in order to check whether the observed major diastereoisomer (R^{*}, R^{*}, R^{*} relative configuration) was indeed the one corresponding to the lowest energy TS.

[^7]All the three TS were successfully optimized (Figure S17) and a summary of the calculations is reported in Table S 3 . The TS for the $3 S, 4 S, 5 S$ configuration was calculated as the most stable one and, in agreement with the experimental outcome, the $3 R, 4 S, 5 S$ TS was calculated as the second in energy, with $0.7 \mathrm{kcal} / \mathrm{mol}$ difference with respect to the best one. This energy difference corresponds to a $78: 22$ ratio at $0^{\circ} \mathrm{C}$, in very good agreement with the experimentally observed dr (72:28).

Table S3. Summary of the relative energies of the four TS for the concerted cyclization to compound 3aa*.

	Opt (B3LYP) (a.u.)	H_corr (a.u.)	SP EE (M06- 2 X) (a.u.)	SP+H_corr (a.u.)	Rel. E. $(\mathrm{kcal} / \mathrm{mol})$
AC	-2025.174365	0.538571	-2024.994546	-	
2024.455975	-7.9				
R^{*}, R^{*}, R^{*}	-2025.154888	0.537665	-2024.981022	- 2024.443357	0.00
R^{*}, S^{*}, S^{*}	-2025.151895	0.537752	-2024.980034	- 2024.442282	0.7
R^{*}, R^{*}, S^{*}	-2025.146750	0.537872	-2024.976547	- 2024.438675	2.9
R^{*}, S^{*}, R^{*}	-2025.148712	0.538166	-2024.978309	- 2024.440143	2.0
$G S$ R^{*}, R^{*}, R^{*}	-2025.174669	0.539680	-2025.003465	- 2024.463785	-12.8
$G S$ R^{*}, S^{*}, S^{*}	-2025.151895	0.537752	-2024.995082	- 2024.457330	-8.8
$G S$ R^{*}, R^{*}, S^{*}	-2025.164061	0.539817	-2024.995752	- 2024.455935	-7.9
$G S$ R^{*}, S^{*}, R^{*}	-2025.148712	0.538166	-2025.002416	-	

[^8]

Figure S17. Available reaction pathways for the formation of the four diastereoisomers of 3aa*. Energies in kcal/mol.

Reaction with acetone cyanohydrin

In the case of the reaction with CN^{-}as nucleophile, a morpholine ring was obtained instead of piperidine. The two reaction pathways leading to the two possible compounds are sketched in Scheme S4. Pathway named A leads to the formation of the observed compound, while pathway B yields a piperidine derivative analogous to that observed with PhS^{-}as nucleophile.

Scheme S4. Possible reaction pathways. The A pathway is shown in blue, while B pathway is shown in orange.

The first reaction step for the formation of the morpholine ring involves the nucleophilic addition of CN^{-}to the ketone, followed by the nucleophilic addition of the oxygen on the β carbon of the α, β-unsaturated ester. The First TS for the formation of morpholine ($\mathbf{T S}_{\mathbf{1}}{ }^{\mathbf{A}}$) was successfully localized, and subsequent relaxed IRC calculation allowed to connect it with an
activated complex and to intermediate $\mathbf{I n t} \mathbf{1}_{1}{ }^{\mathbf{A}}$. The pathway to $\mathbf{I n t}_{1}{ }^{\mathbf{B}}$ by way of $\mathrm{TS}_{1}{ }^{\mathrm{B}}$ was modeled in the same way. Figure S18 shows the geometries of the two TS.

Figure S18. Optimized structures of $\mathbf{T S}_{\mathbf{1}} \mathbf{A}^{\mathbf{A}}$ and $\mathbf{T S}_{\mathbf{1}}{ }^{\mathbf{B}}$. Distances are reported in \AA A direct comparison of the energies of $\mathrm{TS}_{1}{ }^{\mathrm{A}}$ vs $\mathrm{TS}_{1}{ }^{\mathrm{B}}$ suggested that the former is much more stable than the latter $(5.4 \mathrm{kcal} / \mathrm{mol})$.

Table S4. Summary of the relative energies of the ground states and transition states for the two pathways reported in scheme $S 3$.

	Opt EE (B3LYP) (a.u.)	H_corr (a.u.)	SP EE (M06-2x) (a.u.)	SP+H_corr (a.u.)	Rel E (kcal /mol)
AC^{A}	-1488.151749	0.450066	-1488.014437	-1487.564371	0
AC^{B}	-1488.150941	0.449793	-1488.013469	-1487.563676	0.4
$\mathrm{TS}_{1}{ }^{\mathrm{A}}$	-1488.131421	0.449261	-1487.996377	-1487.547116	10.8
$\mathrm{TS}_{1}{ }^{\mathrm{B}}$	-1488.121723	0.448724	-1487.987185	-1487.538461	16.2
$\mathrm{TS}_{2(\mathrm{RS})}{ }^{\mathrm{A}}$	-1488.123089	0.448962	-1487.991059	-1487.542097	14.0
$\mathrm{TS}_{2(\mathrm{RR})}{ }^{\mathrm{A}}$	-1488.119706	0.449122	-1487.986434	-1487.537312	17.0
$\mathrm{TS}_{2}{ }^{\mathrm{B}}$	-1488.140398	0.449923	-1488.012121	-1487.562198	1.4
$\mathrm{Int}_{1}{ }^{\mathrm{A}}$	-1488.146006	0.449945	-1488.009194	-1487.559246	3.2
$\mathrm{Int}_{1}{ }^{\mathrm{B}}$	-1488.160677	0.450335	-1488.024988	-1487.574653	-6.5

When the two intermediates $\mathbf{I n t}_{\mathbf{1}}{ }^{\mathbf{A}}$ and $\mathbf{I n t}_{\mathbf{1}}{ }^{\mathbf{B}}$ are formed, subsequent cyclization leads to morpholine or piperidine. In the case of pathway A the two possible diastereomeric TS that yields the two diastereomeric morpholines have different energies, and the best one $\left(\mathbf{T S}_{\left.\mathbf{2}\left(\mathbf{R}^{*}, \mathbf{S}^{*}\right)^{\mathbf{A}}\right)}\right.$) has activation energy again lower than that of the first step of pathway B $\left(\mathbf{T S}_{\mathbf{1}}{ }^{\mathbf{B}}\right)$ (Figure S19). Comfortably, this transition state yields the experimentally observed diastereoisomer. The main reason for the higher stability of $\mathbf{T S}_{2\left(\mathbf{R}^{*}, S^{*}\right)^{\mathbf{A}}}$ has to be assigned to the lower steric hindrance of the cyano group with respect to the methyl in the pseudo-axial position of the six-membered-shaped transition state. On the contrary, the TS following Int ${ }^{\mathbf{B}}$ and yielding the piperidine compound have much lower energy with respect to $\mathbf{T S}_{1}{ }^{\mathbf{B}}$ (for this reason only the $\mathbf{T S}_{2}{ }^{\mathbf{B}}$ yielding the most stable diastereoisomer has been shown). However, this pathway is forbidden by the high energy of $\mathbf{T S}_{\mathbf{1}}{ }^{\mathbf{B}}$ in the first stage. After cyclization, the enolate can be protonated by a water molecule to obtain the final compound $\mathbf{4} \mathbf{a}^{*}$. Figure S20 summarizes the whole reaction pathway.

Figure S19. Optimized structures of $\mathbf{T S}_{2}{ }^{\mathbf{A}}$ and $\mathbf{T S}_{\mathbf{2}}{ }^{\mathbf{B}}$. Distances are reported in \AA

Figure S20. Available reaction pathways for the formation of $4 a^{*}$ and for the unobserved piperidine ring. Energies in $\mathrm{kcal} / \mathrm{mol}$.

General procedure for the synthesis of products rac-3, 4 and

 5In a test tube, equipped with a magnetic stir bar, substrates $\mathbf{1}(0.1 \mathrm{mmol})$ and $\mathrm{TBABr}(3.2 \mathrm{mg}$, $0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were suspended in toluene $(500 \mu \mathrm{~L})$ and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(40.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ and the corresponding nucleophile $(0.12$ mmol) were added in this order. The resulting suspension was vigorously stirred for 1 h at 0 ${ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, passed through a small plug of silica, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$ and evaporated in vacuo. The resulting crude mixture was analyzed by means of ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the diastereomeric ratio and finally purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right.$ mixtures) to obtain products rac-3, 4 or 5.

Methyl $\left(3 R^{*}, 4 R^{*}, 5 R^{*}\right)$-3-hydroxy-3-methyl-5-(phenylthio)-1-tosylpiperidine-4-
carboxylate rac-3aa

rac-3aa

Following the general procedure from substrate 1a and thiophenol 2a, product rac-3aa was obtained as a white solid in 77% yield (33.5 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=\right.$ from $50: 1$ to $\left.20: 1\right)$. The diastereomeric ratio was found to be $2.5: 1$ in the crude mixture; 2 fractions were isolated from the column chromatography, the first having $3.7: 1 \mathrm{dr}(82 \%$ of the isolated product) and the second having 1.5:1 $\mathrm{dr}(18 \%$ of the isolated product). Full characterization is given for enantioenriched 3aa in the corresponding section.

Methyl ($3 S^{*}, 4 S^{*}, 5 S^{*}$) and ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-methyl-5-(phenylthio)tetrahydro$2 H$-pyran-4-carboxylate 3ba

Following the general procedure from substrate $\mathbf{1 b}$ and thiophenol 2a, product 3ba (1.4:1 dr in the crude mixture and after column chromatography) was obtained as a colorless oil in 86% yield (24.3 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=80: 1\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.49-7.42(\mathrm{~m}, 2 \mathrm{H} \mathrm{M}+\mathrm{m})$, $7.34-7.27(\mathrm{~m}, 3 \mathrm{H} \mathrm{M}+\mathrm{m}), 4.11-4.09(\mathrm{~m}, 1 \mathrm{H} \mathrm{m}), 4.08-4.06(\mathrm{~m}, 1 \mathrm{H} \mathrm{M}), 3.81(\mathrm{~s}, 3 \mathrm{H} \mathrm{M})$, $3.81(\mathrm{~s}, 3 \mathrm{H} \mathrm{m}), 3.70-3.59(\mathrm{~m}, 2 \mathrm{H}$ M +m$), 3.38-3.12(\mathrm{~m}, 3 \mathrm{H} \mathrm{M}+\mathrm{m}), 2.62(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H} \mathrm{m}), 2.49(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{M}), 1.28(\mathrm{~s}, 3 \mathrm{H} \mathrm{m}), 1.13(\mathrm{~s}, 3 \mathrm{H} \mathrm{M}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=172.8(\mathrm{M}), 171.2(\mathrm{~m}), 133.8(2 \mathrm{C} \mathrm{m}), 133.3(2 \mathrm{C} \mathrm{M}), 132.2(\mathrm{~m}), 132.0(\mathrm{M}), 129.1$ (2 C m), 129.1 (2 C M), 128.3 (m), 128.1 (M), $76.5(\mathrm{~m}), 75.2(\mathrm{M}), 71.3(\mathrm{~m}), 71.1(\mathrm{M}), 69.8$ (m), $69.2(\mathrm{M}), 56.9(\mathrm{~m}), 55.0(\mathrm{M}), 52.15(\mathrm{~m}), 52.13(\mathrm{M}), 43.9(\mathrm{~m}), 43.0(\mathrm{M}), 24.1(\mathrm{M}), 22.3$ (m). ["M" stands for the major diastereoisomer ($3 S^{*}, 4 S^{*}, 5 S^{*}$) and " m " for the minor diastereoisomer $\left.\left(3 R^{*}, 4 S^{*}, 5 S^{*}\right)\right]$. HRMS: calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}+\mathrm{Na}^{+}\right]: 305.0818$; found: 305.0823.

Methyl (3S*,4S*,5S*)-3-hydroxy-3-methyl-5-(4-methoxyphenylthio) tetrahydro-2H-thiopyran-4-carboxylate 3cb

Following the general procedure, but using aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \%$ wt., $200 \mu \mathrm{~L}$) instead of solid $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, from substrate $1 \mathbf{c}$, 4methoxythiophenol $\mathbf{2 b}$ and catalyst \mathbf{F} instead of TBABr, product 3cb $(>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a colorless oil in 52% yield (17.1 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=60: 1\right) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83(\mathrm{~m}$, 2 H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.61$ (very broad s, 1H), $3.45(\mathrm{td}, J=12.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (ddd, $J=13.6,3.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.7,160.3,136.9$ (2C), 121.8, 114.6 (2C), 68.5, 57.4, 55.3, 51.9, 46.5, 40.4, 32.7, 28.5. HRMS: calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]: 351.0695$; found: 351.0698 .

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-phenyl-5-(phenylthio)-1-tosylpiperidine-4carboxylate rac-3da

rac-3da

Following the general procedure from substrate 1d and thiophenol 2a, product rac-3da ($>20: 1$ dr in the crude mixture and after column chromatography) was obtained as a white solid in 87% yield (43.2 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=50: 1\right)$. Full characterization is given for enantioenriched 3da in the corresponding section.

Methyl (2R*,6S*)-2-(6-cyano-6-methyl-4-tosylmorpholin-2-yl)acetate 4a

Following the general procedure from substrate 1a and acetone cyanohydrin, product 4 ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 90% yield $(31.7 \mathrm{mg})$ after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=\right.$ 70:1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.73-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ 7.32 (m, 2H), 4.41 (dtd, $J=10.6,6.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dd, $J=12.1$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (s, 3H), 2.54 (dd, $J=15.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (s, 3H) overlapped with 2.44 (dd, $J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dd, $J=11.7$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=169.4,144.5$, 132.6, 130.0 (2C), 127.8 (2C), 117.7, 70.6, 70.3, 52.6, 52.1, 48.3, 37.6, 24.3, 21.6. HRMS: calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}+\mathrm{Na}^{+}\right]: 375.0985$; found: 375.0991.

Methyl (2R*, $6 R^{*}$)-2-(6-cyano-6-methyl-1,4-dioxan-2-yl)acetate 4b

Following the general procedure from substrate 1b and acetone cyanohydrin, product 4 b ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a colorless oil in 86% yield $(17.1 \mathrm{mg})$ after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=\right.$ 70:1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.44(\mathrm{dtd}, J=10.5,6.5,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.96$ (ddd, $J=11.6,2.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H})$ partially overlapped with $3.26(\mathrm{dd}, J=11.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=15.9$,
$6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=15.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 169.8, 118.8, 72.6, 70.5, 69.8, 69.7, 52.0, 36.4, 31.6. HRMS: calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}+\right.$ $\left.\mathrm{Na}^{+}\right]:$222.0737; found: 222.0739 .

Methyl (2R*, $\mathbf{6 R *}$)-2-(6-cyano-6-methyl-1,4-oxathian-2-yl)acetate 4c

4c

Following the general procedure, but using aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \%$ wt., $200 \mu \mathrm{~L}$) instead of solid $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, from substrate 1c and acetone cyanohydrin, product $4 \mathbf{c}$ ($>20: 1$ dr in the crude mixture and after column chromatography) was obtained as a colorless oil in 50% yield $(10.7 \mathrm{mg})$ after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=\right.$ 70:1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.48(\mathrm{dtd}, J=9.3,6.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.74$ $(\mathrm{d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.46(\mathrm{~m}, 5 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 170.0, 118.5, 72.6, 72.3, 51.9, 40.7, 35.0, 29.7, 27.9. HRMS: calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}+\right.$ $\left.\mathrm{Na}^{+}\right]:$238.0508; found: 238.0508.

Methyl ($2 R^{*}, 6 S^{*}$)-2-(6-cyano-6-phenyl-4-tosylmorpholin-2-yl)acetate 4d

Following the general procedure, from substrate 1d and acetone cyanohydrin, product $4 d$ ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 92% yield (37.2 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=\right.$ 60:1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54-$ $7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{dtd}, J=$ $10.6,6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=12.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (ddd, $J=11.8,2.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (s, 3H), 2.69 (dd, $J=15.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ (dd, $J=15.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (s, 3H), partially overlapped with 2.41 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$) partially overlapped with 2.38 (dd, $J=$ $11.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=169.4,144.5,135.2,132.6,130.0$ (2C), 129.9, 129.0 (2C), 127.8 (2C), 125.2 (2C), 116.7, 75.7, 70.5, 54.3, 52.2, 48.4, 37.7, 21.6. HRMS: calculated for [$\left.\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}+\mathrm{Na}^{+}\right]$: 437.1142; found: 437.1144.

Methyl ($3 R^{*}, 5 R^{*}$)- and ($3 R^{*}, 5 S^{*}$)-2-(4,4-dicyano-5-hydroxy-5-methyl-1-tosylpiperidin-3$\mathbf{y l}$)acetate 5a

5a

Following the general procedure from substrate 1a and malononitrile, product 5 a (1.1:1 dr in the crude mixture and after column chromatography) was obtained as a colorless oil in 66% yield (28.8 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=60: 1\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=7.71-7.61(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}), 7.51-$ $7.40(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.87(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}), 3.66(\mathrm{dd}, J=12.2$, $1.1 \mathrm{~Hz}, 1 \mathrm{H})$ partially overlapped with $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=12.2,1.5 \mathrm{~Hz}$, 1 H), 3.01 (dddd, $J=11.2,7.3,6.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82 (dddd, $J=10.8,7.6,5.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.63-2.52(\mathrm{~m}, 2 \mathrm{H}+2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$ partially overlapped with $2.398(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 1 \mathrm{H}+1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) $\delta=170.5,170.4,144.7,144.4,133.2,132.8,130.6$ (2C), 130.5 (2C), 127.9 (2C), 127.8 (2C), 114.2, 114.0, 113.1, 112.8, 71.7, 71.2, 53.2, 52.51, 52.48, $52.2,50.8,48.6,46.6,46.1,37.0,35.3,34.3,34.2,24.3,22.8,21.49,21.46$. All peaks are
given without assignation. HRMS: calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}-\mathrm{H}^{+}\right]$: 390.1129 ; found: 390.1124.

Methyl (3R*,5R*)-2-(4,4-dicyano-5-hydroxy-5-methyltetrahydro-2H-pyran-3-yl)acetate

 5b

Following the general procedure from substrate 1b and malononitrile, product 5b (4.8:1 dr in the crude mixture and after column chromatography) was obtained as a colorless oil in 40% yield (9.5 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=50: 1\right) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.16(\mathrm{dd}, J=12.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=12.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22$ (bs, 1 H), $3.08-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=16.8,10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=169.9,112.8,112.7,71.6,71.3,67.1,52.4$, 36.0, 33.1, 29.7, 21.5. Only the NMR data of the major diastereoisomer are reported. The relative stereochemistry is given tentatively, in analogy with 4b. HRMS: calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}-\mathrm{H}^{+}\right]$: 237.0881; found: 237.0878.

Methyl 2-((3R*,5R*)-4,4-dicyano-5-hydroxy-5-phenyl-1-tosylpiperidin-3-yl)acetate

5d

Following the general procedure, from substrate 1d and malononitrile, product 5d (along with 7d, see main text) was obtained as a colorless oil in 41% yield (18.1 mg of $\mathbf{5 d}$, along with 13.9 mg of $\mathbf{7 d}$) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=50: 1\right)$. This compound was found to be unstable over silica, as a 1.3:1 mixture of 5d and 7d was recovered after column chromatography, while the crude mixture contained almost exclusively 5d. ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.73-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.10(\mathrm{~m}$, 2 H), 4.33 (ddd, $J=12.8,4.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.91$ (dd, $J=13.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 $(\mathrm{s}, 3 \mathrm{H}), 3.43-3.28(\mathrm{~m}, 1 \mathrm{H})$ partially overlapped with $3.31(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=$ $16.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$ overlapped with $2.55-2.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta=169.7,145.1,136.5,132.9,130.4$ (2C), $130.0,128.7$ (2C), 127.5 (2C), 126.0 (2C), $112.2,112.2,73.2,52.7,51.1,50.4,46.1,34.5,24.8,21.7$. Only the NMR data of 5 d are reported. HRMS: calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}-\mathrm{H}^{+}\right]$: 452.1286; found: 452.1287 .

General procedure for the synthesis of enantioenriched products 3

In a test tube, equipped with a magnetic stir bar, substrates $\mathbf{1}(0.1 \mathrm{mmol})$ and catalyst \mathbf{G} (6.4 $\mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were suspended in toluene (2 mL) and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Then, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(40.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ and the corresponding thiophenol $(0.12$ mmol) were added in this order. The resulting suspension was vigorously stirred for 1 h at 0 ${ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, passed through a small plug of silica, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$ and evaporated in vacuo. The resulting crude mixture was analyzed by means of ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the diastereomeric ratio and finally purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right.$ mixtures) to obtain products $\mathbf{3}$ as white amorphous solids.

Methyl (3S,4S,5S)-3-hydroxy-3-methyl-5-(phenylthio)-1-tosylpiperidine-4-carboxylate 3aa

Following the general procedure from substrate 1a and thiophenol 2a, product 3aa ($>20: 1 \mathrm{dr}$ after column chromatography, $8: 1$ in the crude mixture) was obtained as a white solid in 80% yield (34.8 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=\right.$ from $50: 1$ to $\left.20: 1\right)$. [a]d ${ }^{25}=-$ $89\left(\mathrm{c}=0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $88 \% \mathrm{ee} .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.62-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 5 \mathrm{H}), 3.88$ (ddd, $J=12.0$, $4.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (s, 3H), 3.58 (td, $J=12.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.50 (dd, $J=$ $12.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{bs}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25\left(\mathrm{dd}, J_{1}=J_{2}=\right.$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}$) partially overlapped with $2.23(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta=171.5,144.1,133.5,132.8$ (2C), 132.4, 129.7 (2C), 129.3 (2C), 128.2, 127.5 (2C), 69.1, 55.4, 55.2, 51.5, 50.3, 43.2, 24.9, 20.5. HRMS: calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}_{2}+\right.$ Na^{+}]: 458.1066; found: 458.1064. HPLC: OD-H (n-hexane/iPrOH 90:10, flow-rate 1.00 $\left.\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\text {maj }}=18.4 \mathrm{~min} ; \mathrm{t}_{\min }=30.4 \mathrm{~min}\right)$.

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(phenylthio)-1-tosylpiperidine-4-carboxylate 3da

Following the general procedure from substrate 1d and thiophenol 2a, product 3da ($>20: 1$ dr in the crude mixture and after column chromatography) was obtained as a white solid in 71% yield (35.3 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=50: 1\right)$. $[\alpha] \mathbf{D}^{25}=-24(\mathrm{c}$ $=1.0$ in CHCl_{3}) for 91% ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.62-7.58$ (m, 2H), $7.45-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H})$, 4.12 (ddd, $J=12.6,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (dd, $J=12.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$ overlapped with $3.80(\mathrm{bs}, 1 \mathrm{H}), 3.71$ (td, $J=11.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=12.7,11.5 \mathrm{~Hz}, 1 \mathrm{H})$ overlapped with $2.56(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, 3H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.0,143.6,141.6,134.6,132.9$ (2C), 131.7, 129.6 (2C), 129.3 (2C), 128.5 (2C), 128.3, 128.1, 127.6 (2C), 125.1 (2C), $73.3,55.5,54.4,52.1$, 50.4, 43.2, 21.6. HRMS: calculated for [$\left.\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: 520.1223 ; found: 520.1229 . HPLC: AD-H (n-hexane $/ \mathrm{iPrOH} 60: 40$, flow-rate $0.75 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{maj}}=69.2 \mathrm{~min} ; \mathrm{t}_{\mathrm{min}}=85.2$ min).

Methyl (3R,4S,5S)-3-hydroxy-3-(4-methoxyphenyl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ea

Following the general procedure from substrate 1e and thiophenol 2a, product 3ea ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 57% yield (30.0 $\mathrm{mg})$ after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=\right.$ $50: 1) \cdot[\boldsymbol{\alpha}] \mathbf{D}^{25}=-13\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $67 \% e e .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37$ $-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.10$ (ddd, $J=12.7,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$) overlapped with $4.06(\mathrm{bs}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, J=$ $13.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=$ $12.7,11.5 \mathrm{~Hz}, 1 \mathrm{H})$ overlapped with $2.50(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.1,159.3,143.5,134.6,133.7,132.9$ (2C), 131.8, 129.6 (2C), 129.3 (2C), 128.2, 127.6 (2C), 126.4 (2C), 113.8 (2C), 73.0, 55.7, 55.2, 54.4, 52.1, 50.3, 43.2, 21.5. HRMS: calculated for [$\left.\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: 550.1329 ; found: 550.1333. HPLC: OD-H ($n-$ hexane $/ \mathrm{iPrOH} 90: 10$, flow-rate $1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{maj}}=25.5 \mathrm{~min} ; \mathrm{t}_{\min }=38.6 \mathrm{~min}$).

Methyl (3R,4S,5S)-3-hydroxy-3-(3-bromophenyl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3fa

Following the general procedure from substrate $\mathbf{1 f}$ and thiophenol 2a, product 3fa ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 65% yield (37.4 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=100: 1\right)$. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-13\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for 59% ee. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.64-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.30(\mathrm{~m}$, 4H), $7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (bs, 1H) overlapped with 4.11 (ddd, $J=12.8,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=13.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{td}, J=11.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 1 \mathrm{H})$ overlapped with $2.53(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $172.8,144.0,143.7,134.6,132.9$ (2C), 131.6, 131.3, 130.0, 129.7 (2C), 129.3 (2C), 128.5, 128.4, 127.6 (2C), $123.8,122.9,73.1,55.4,54.1,52.2,50.3,43.2,21.6$. HRMS: calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: $598.0328\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}^{+}\right], 600.0308\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}^{+}\right]$; found $598.0328\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}^{+}\right], 600.0304\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}^{+}\right]$. HPLC: OD-H (n-hexane/iPrOH 90:10, flow-rate $1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\text {maj }}=16.3 \mathrm{~min} ; \mathrm{t}_{\text {min }}=20.4 \mathrm{~min}$).

Methyl (3R,4S,5S)-3-hydroxy-3-(thiophen-2-yl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ga

Following the general procedure from substrate $\mathbf{1 g}$ and thiophenol 2a, product 3ga ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 66% yield (33.2 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=100: 1\right)$. $[\alpha] \mathrm{D}^{25}$ $=-23\left(\mathrm{c}=0.6\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 67% ee. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.28-$ 7.22 (m, 3H), $6.95(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=3.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57$ (very broad s, 1H), 4.07 (ddd, $J=12.8,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (dd, $J=13.0,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60(\mathrm{ddd}, J=12.5,11.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J$ $=12.8,11.5 \mathrm{~Hz}, 1 \mathrm{H})$ overlapped with $2.57(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.1,147.0,143.6,134.8,132.9$ (2C), 131.6, 129.6 (2C), 129.3 (2C), 128.3, 127.6 (2C), 127.1, 125.5, 123.6, 72.5, 56.2, 55.5, 52.3, 50.2, 43.0, 21.6. HRMS: calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}_{3}+\mathrm{Na}^{+}\right]$: 526.0787; found: 526.0793. HPLC: OD-H ($n-$ hexane $/ \mathrm{iPrOH} 90: 10$, flow-rate $1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\text {maj }}=16.4 \mathrm{~min} ; \mathrm{t}_{\min }=26.1 \mathrm{~min}$).

Methyl (3R,4S,5S)-3-hydroxy-3-(naphthalen-2-yl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ha

Following the general procedure from substrate $\mathbf{1 h}$ and thiophenol 2a, product 3ha ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 87% yield (47.0 $\mathrm{mg})$ after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=\right.$ 100:1). $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=+15\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 86% ee. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.98(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.79(\mathrm{~m}, 3 \mathrm{H})$, $7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39$ - 7.31 (m, 3H), $7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{bs}, 1 \mathrm{H}), 4.15(\mathrm{ddd}, J=12.7,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (dd, $J=13.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{td}, J=11.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.62(\mathrm{dd}, J=12.8,11.5 \mathrm{~Hz}, 1 \mathrm{H})$ partially overlapped with $2.65(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta=173.1,143.6,139.0,134.7,133.0,132.9$ (3C), $131.8,129.6$ (2C), 129.3 (2C), 128.4, 128.3 (2C), 127.6 (2C), 127.5, 126.5, 126.4, 124.7, $122.8,73.5,55.5,54.1,52.1,50.4,43.3,21.6$. HRMS: calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: 570.1379; found: 570.1385. HPLC: OD-H (n-hexane $/ \mathrm{iPrOH} 90: 10$, flow-rate $1.00 \mathrm{~mL} / \mathrm{min}$; $\mathrm{t}_{\text {min }}=34.3 \mathrm{~min} ; \mathrm{t}_{\text {maj }}=50.1 \mathrm{~min}$).

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-methoxyphenylthio)-1-tosylpiperidine-4carboxylate 3db

3db

Following the general procedure from substrate 1d and 4methoxythiophenol 2b, product 3db ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 70% yield (36.9 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=50: 1\right)$. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25}=-28\left(\mathrm{c}=0.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for 81% ee. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.62-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H})$, $6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{ddd}, J=12.6,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$ partially overlapped with 4.03 (bs, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}, J=12.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{td}, J=11.6,4.7 \mathrm{~Hz}, 1 \mathrm{H})$ partially overlapped with 3.48 (s, 3H), 2.87 (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (dd, $J=12.6,11.6 \mathrm{~Hz}, 1 \mathrm{H})$ partially overlapped with $2.51(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=173.1,160.3,143.5,141.6,136.3$ (2C), 134.6, 129.6 (2C), 128.5 (2C), 128.1, 127.6 (2C), 125.1 (2C), 121.4, 114.8 (2C), 73.3, 55.5, 55.4, 54.3, 52.0, 50.2, 43.8, 21.6. HRMS: calculated for [$\left.\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: 550.1329 ; found: 550.1326. HPLC: OD-H ($n-$ hexane/ $\mathrm{iPrOH} 90: 10$, flow-rate $1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\text {maj }}=26.2 \mathrm{~min} ; \mathrm{t}_{\min }=27.7 \mathrm{~min}$).

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-chlorophenylthio)-1-tosylpiperidine-4carboxylate 3dc

3dc

Following the general procedure from substrate 1d and 4chlorothiophenol 2c, product 3dc ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 57% yield (30.4 mg) after column chromatography on silica gel
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=50: 1\right) .[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{25}=-3\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for 89% ee. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, 2 H), 4.06 (ddd, $J=12.6,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$) overlapped with 4.05 (very broad s, 1 H), $3.80(\mathrm{dd}, J$ $=13.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{td}, J=11.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.57(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=12.8,11.4 \mathrm{~Hz}, 1 \mathrm{H}) 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=172.9,143.7,141.4,134.6,134.5,134.3$ (2C), 130.2, 129.6 (2C), 129.5 (2C), $128.5(2 \mathrm{C}), 128.2,127.6$ (2C), 125.1 (2C), $73.3,55.4,54.4,52.1,50.2,43.5,21.6$. HRMS: calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClNO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]: 554.0833\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{Na}^{+}\right], 556.0804\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{Na}^{+}\right]$; found $554.0831\left[\mathrm{M}\left({ }^{35} \mathrm{Cl}\right)+\mathrm{Na}^{+}\right], 556.0804\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{Na}^{+}\right]$. HPLC: OD-H (n-hexane/iPrOH 90:10, flow-rate $1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\text {maj }}=15.2 \mathrm{~min} ; \mathrm{t}_{\text {min }}=23.2 \mathrm{~min}$).

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-fluorophenylthio)-1-tosylpiperidine-4carboxylate 3dd

3dd

Following the general procedure from substrate 1d and 4fluorothiophenol 2d, product 3dd ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 74% yield (38.1 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=100: 1\right) .[\boldsymbol{\alpha}]_{\mathbf{D}^{25}}=-6\left(\mathrm{c}=0.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $91 \% e e$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.39$ $(\mathrm{m}, 4 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.00(\mathrm{~m}$, 2 H), 4.07 (ddd, $J=12.6,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H})$ overlapped with $4.07(\mathrm{bs}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=12.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{td}, J=11.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J$ $=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=12.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=171.9,162.0(\mathrm{~d}, J=249.4 \mathrm{~Hz}), 142.6,140.5,134.9(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{C}), 133.5,128.6$ (2C), 127.5 (2C), 127.2, 126.6 (2C), 125.6 (d, $J=3.4 \mathrm{~Hz}$), 124.0 (2C), 115.4 (d, $J=22.0 \mathrm{~Hz}, 2 \mathrm{C})$, 72.3 , 54.4, 53.4, 51.1, 49.2, 42.9, 20.5. HRMS: calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FNO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: 538.1129; found: 538.1134. HPLC: OD-H (n-hexane $/ \mathrm{iPrOH} 90: 10$, flow-rate $1.00 \mathrm{~mL} / \mathrm{min}$; $\left.\mathrm{t}_{\text {maj }}=15.2 \mathrm{~min} ; \mathrm{t}_{\mathrm{min}}=21.0 \mathrm{~min}\right)$.

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(3-methylphenylthio)-1-tosylpiperidine-4carboxylate 3de

Following the general procedure from substrate 1d and 3methylthiophenol 2e, product 3de ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 71% yield (36.3 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=70: 1\right) .[\boldsymbol{\alpha}] \mathbf{D}^{25}=-29\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $91 \% e e .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.12$ (ddd, $J=12.6,4.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}$) overlapped with 4.10 (very broad s, 1H) 3.80 (dd, $J=13.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{td}, J=11.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}$, $J=12.6,11.6 \mathrm{~Hz}, 1 \mathrm{H})$ overlapped with $2.56(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~d}, J=$ $0.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.0,143.5,141.6,139.1,134.6,133.4$, $131.5,129.8,129.6$ (2C), 129.09, 129.08, 128.5 (2C), 128.1, 127.6 (2C), 125.1 (2C), 73.3, $55.5,54.3,52.0,50.4,43.1,21.5,21.3$. HRMS: calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: 534.1379; found: 534.1383. HPLC: OD-H (n-hexane $/ \mathrm{iPrOH} 90: 10$, flow-rate $1.00 \mathrm{~mL} / \mathrm{min}$; $\left.\mathrm{t}_{\text {maj }}=14.9 \mathrm{~min} ; \mathrm{t}_{\text {min }}=22.9 \mathrm{~min}\right)$.

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(2-bromophenylthio)-1-tosylpiperidine-4carboxylate 3df

3df

Following the general procedure (but running the reaction at room temperature and for 18 h) from substrate $\mathbf{1 d}$ and 2-bromothiophenol $\mathbf{2 f}$, product 3df ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 68% yield (39.2 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=70: 1\right)$. $[\boldsymbol{\alpha}] \mathrm{D}^{\mathbf{2 5}}$ $=-20\left(\mathrm{c}=1.0 \mathrm{in} \mathrm{CHCl}_{3}\right)$ for $71 \% \mathrm{ee} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.64-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{bs}, 1 \mathrm{H}), 4.11(\mathrm{ddd}, J=12.8,4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$ partially overlapped with $3.90(\mathrm{td}, J=11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=13.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (s, 3 H), $3.00(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=12.8,11.4 \mathrm{~Hz}, 1 \mathrm{H})$ overlapped with $2.61(\mathrm{~d}, J$ $=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=172.8,143.7,141.5,134.5$, 133.7, 133.5, 132.3, 129.7 (2C), 129.0, 128.5 (2C), 128.3, 128.2, 127.6 (2C), 126.6, 125.1 (2C), $73.4,55.6,53.8,52.2,50.2,42.7,21.6$. HRMS: calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrNO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: $598.0328\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}^{+}\right], 600.0308\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}^{+}\right]$; found $598.0329\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{Na}^{+}\right]$, $600.0303\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{Na}^{+}\right]$. HPLC: OD-H (n-hexane $/ \mathrm{iPrOH} 90: 10$, flow-rate $1.00 \mathrm{~mL} / \mathrm{min}$; $\left.\mathrm{t}_{\text {maj }}=23.5 \mathrm{~min} ; \mathrm{t}_{\mathrm{min}}=40.9 \mathrm{~min}\right)$.

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(naphthalen-2-ylthio)-1-tosylpiperidine-4carboxylate 3dg

Following the general procedure from substrate $\mathbf{1 d}$ and 2naphthalenethiol $\mathbf{2 g}$, product $\mathbf{3 d g}$ ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 84% yield (45.9 mg) after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=50: 1\right) .[\alpha]_{\mathbf{D}^{25}}=-34\left(\mathrm{c}=0.6\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for $94 \% e e$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.77$ $(\mathrm{m}, 3 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.27(\mathrm{~m}$, $3 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{ddd}, J=12.7,4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$ overlapped with 4.15 (very broad s, 1H), $3.91-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=12.8$, $11.5 \mathrm{~Hz}, 1 \mathrm{H})$ partially overlapped with $2.58(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.1,143.5,141.6,134.6,133.6,132.7,132.1,129.7,129.5$ (2C), 128.97, $128.96,128.5(2 \mathrm{C}), 128.1,127.7,127.62,127.56$ (2C), 126.80, 126.76, 125.1 (2C), 73.4, 55.5, 54.4, 52.1, 50.4, 43.2, 21.5. HRMS: calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}\right]$: 570.1379 ; found: 570.1385. HPLC: OD-H (n-hexane $/ \mathrm{iPrOH} 90: 10$, flow-rate $1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{maj}}=21.7 \mathrm{~min} ; \mathrm{t}_{\mathrm{min}}$ $=27.5 \mathrm{~min})$.

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(thiophen-2-ylthio)-1-tosylpiperidine-4carboxylate 3dh

3dh

Following the general procedure from substrate 1d and 2-thiophenethiol 2h, product 3dh ($>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 71% (35.7 mg) yield after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=50: 1\right)$. $[\alpha] \mathbf{D}^{25}$ $=-18\left(\mathrm{c}=0.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ for 83% ee. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{dd}, J=3.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (dd, $J=5.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=12.5,4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=12.9$,
$1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{td}, J=11.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (dd, $J=12.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=13.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=171.8,142.6,140.6,136.3,133.6,130.7,128.6$ (2C), 127.5 (2C), 127.1, 127.0, 126.9, 126.6 (2C), 124.0 (2C), 72.4, 54.4, 53.0, 51.1, 48.9, 43.0, 20.5. HRMS: calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}_{3}+\mathrm{Na}^{+}\right]: 526.0787$; found: 526.0793. HPLC: OD-H (n-hexane/iPrOH 90:10, flow-rate $1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\text {maj }}=21.1 \mathrm{~min} ; \mathrm{t}_{\text {min }}=25.0 \mathrm{~min}$).

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(benzylthio)-1-tosylpiperidine-4-carboxylate

 3di

3di

Following the general procedure from substrate $\mathbf{1 d}$ and benzylthiol $\mathbf{2 i}$, product 3di $(>20: 1 \mathrm{dr}$ in the crude mixture and after column chromatography) was obtained as a white solid in 67% yield $(34.2 \mathrm{mg})$ after column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}=100: 1\right)$. $[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 5}}=-4\left(\mathbf{c}=1.0 \mathrm{in} \mathrm{CHCl}_{3}\right)$ for 37% ee. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31$ $-7.25(\mathrm{~m}, 7 \mathrm{H}), 4.02(\mathrm{ddd}, J=12.4,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H})$ overlapped with $3.80(\mathrm{bs}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=12.7,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$ overlapped with $3.44-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=172.8$, $143.6,141.6,137.5,134.3,129.7$ (2C), 128.8 (2C), 128.7 (2C), 128.4 (2C), 128.1, 127.5 (2C), 127.4, 125.1 (2C), $73.1,55.5,54.7,52.0,50.7,40.2,36.3,21.6$. HRMS: calculated for [$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}_{2}+\mathrm{Na}^{+}$]: 534.1379; found: 534.1377. HPLC: AS-H (n-hexane/iPrOH 90:10, flow-rate $\left.1.00 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{maj}}=12.3 \mathrm{~min} ; \mathrm{t}_{\mathrm{min}}=34.7 \mathrm{~min}\right)$.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products 3,4 and 5
Methyl (3S,4S,5S)-3-hydroxy-3-methyl-5-(phenylthio)-1-tosylpiperidine-4-carboxylate 3aa (CD3CN)

Methyl ($3 R^{*}, 4 R^{*}, 5 R^{*}$) and ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-methyl-5-(phenylthio)tetrahydro$2 H$-pyran-4-carboxylate 3ba (CDCl_{3})

| 10 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

Methyl ($3 R^{*}, 4 R^{*}, 5 R^{*}$)-3-hydroxy-3-methyl-5-(4-methoxyphenylthio)tetrahydro-2H-thiopyran-4-carboxylate 3cb $\left(\mathrm{CDCl}_{3}\right)$

Methyl (2R*, $6 S^{*}$)-2-(6-cyano-6-methyl-4-tosylmorpholin-2-yl)acetate 4a (CDCl_{3})

Methyl (2R*,6R*)-2-(6-cyano-6-methyl-1,4-dioxan-2-yl)acetate 4b (CDCl ${ }_{3}$)

Methyl ($2 R^{*}, 6 R^{*}$)-2-(6-cyano-6-methyl-1,4-oxathian-2-yl)acetate 4c (CDCl 3)

Methyl (2R*,6S*)-2-(6-cyano-6-phenyl-4-tosylmorpholin-2-yl)acetate 4d

Methyl ($3 R^{*}, 5 R^{*}$)- and ($3 R^{*}, 5 S^{*}$)-2-(4,4-dicyano-5-hydroxy-5-methyl-1-tosylpiperidin-3yl)acetate 5 a (DMSO- d_{6})

| 10 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

Methyl ($3 R^{*}, 5 R^{*}$)-2-(4,4-dicyano-5-hydroxy-5-methyltetrahydro-2H-pyran-3-yl)acetate 5b ($\mathbf{C D C l}_{3}$)

| 10 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 1 |
| :--- |

Methyl (3R*,5R*)-2-(4,4-dicyano-5-hydroxy-5-phenyl-1-tosylpiperidin-3-yl)acetate 5d (${ }^{1} \mathrm{H}$ NMR crude)

Methyl (3R*,5R*)-2-(4,4-dicyano-5-hydroxy-5-phenyl-1-tosylpiperidin-3-yl)acetate 5d and methyl 4,4-dicyano-3-(((2-oxopropyl)amino)methyl)butanoate 7d (${ }^{1} \mathrm{H}$ NMR after column chromatography)

Methyl ($3 R^{*}, 5 R^{*}$)-2-(4,4-dicyano-5-hydroxy-5-phenyl-1-tosylpiperidin-3-yl)acetate 5d and methyl 4,4-dicyano-3-(((2-oxopropyl)amino)methyl)butanoate 7d (${ }^{13} \mathrm{C}$ NMR after column chromatography)

[^9]Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(phenylthio)-1-tosylpiperidine-4-carboxylate 3da (CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-(4-methoxyphenyl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ea (CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-(3-bromophenyl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3fa (CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-(thiophen-2-yl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ga (CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-(naphthalen-2-yl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ha(CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-methoxyphenylthio)-1-tosylpiperidine-4carboxylate 3db (CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-chlorophenylthio)-1-tosylpiperidine-4carboxylate 3dc (CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-fluorophenylthio)-1-tosylpiperidine-4carboxylate 3dd (CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(3-methylphenylthio)-1-tosylpiperidine-4carboxylate 3de (CDCl_{3})

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(2-bromophenylthio)-1-tosylpiperidine-4carboxylate 3df (CDCl_{3})

[^10]Methyl ($3 R, 4 S, 5 S$)-3-hydroxy-3-phenyl-5-(naphthalen-2-yl)-1-tosylpiperidine-4carboxylate 3dg (CDCl_{3})

Methyl
(3R,4S,5S)-3-hydroxy-3-phenyl-5-(thiophen-2-yl)-1-tosylpiperidine-4carboxylate 3dh (CDCl_{3})

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(benzylthio)-1-tosylpiperidine-4-carboxylate 3di $\left(\mathbf{C D C l}_{3}\right)$

Copies of HPLC traces of products 3

Methyl ($3 S^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-methyl-5-(phenylthio)-1-tosylpiperidine-4carboxylate rac-3aa

Methyl (3S,4S,5S)-3-hydroxy-3-methyl-5-(phenylthio)-1-tosylpiperidine-4-carboxylate $3 a \mathbf{a}$

Methyl
$\left(3 R^{*}, 4 S^{*}, 5 S^{*}\right)$-3-hydroxy-3-phenyl-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3da

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(phenylthio)-1-tosylpiperidine-4-carboxylate 3da

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-(4-methoxyphenyl)-5-(phenylthio)-1-tosylpiperidine-4-carboxylate 3ea

Methyl (3R,4S,5S)-3-hydroxy-3-(4-methoxyphenyl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ea

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-(3-bromophenyl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate rac-3fa

Methyl (3R,4S,5S)-3-hydroxy-3-(3-bromophenyl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3fa

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-(thiophen-2-yl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate rac-3ga

Methyl (3R,4S,5S)-3-hydroxy-3-(thiophen-2-yl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ga

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-(naphthalen-2-yl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate rac-3ha

Methyl (3R,4S,5S)-3-hydroxy-3-(naphthalen-2-yl)-5-(phenylthio)-1-tosylpiperidine-4carboxylate 3ha

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-phenyl-5-(4-methoxyphenylthio)-1-tosylpiperidine-4carboxylate rac-3db

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-methoxyphenylthio)-1-tosylpiperidine-4carboxylate 3db

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-phenyl-5-(4-chlorophenylthio)-1-tosylpiperidine-4carboxylate rac-3dc

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-chlorophenylthio)-1-tosylpiperidine-4carboxylate 3dc

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-phenyl-5-(4-fluorophenylthio)-1-tosylpiperidine-4carboxylate rac-3dd

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(4-fluorophenylthio)-1-tosylpiperidine-4carboxylate 3dd

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-phenyl-5-(3-methylphenylthio)-1-tosylpiperidine-4carboxylate 3de

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(3-methylphenylthio)-1-tosylpiperidine-4carboxylate 3de

Methyl ($3 R^{*}, 4 S^{*}, 5 S^{*}$)-3-hydroxy-3-phenyl-5-(2-bromophenylthio)-1-tosylpiperidine-4carboxylate rac-3df

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(2-bromophenylthio)-1-tosylpiperidine-4carboxylate 3df

Methyl $\quad\left(3 R^{*}, 4 S^{*}, 5 S^{*}\right)$-3-hydroxy-3-phenyl-5-(naphthalen-2-yl)-1-tosylpiperidine-4carboxylate rac-3dg

Methyl
(3R,4S,5S)-3-hydroxy-3-phenyl-5-(naphthalen-2-yl)-1-tosylpiperidine-4carboxylate 3dg
 carboxylate rac-3dh

Methyl
(3R,4S,5S)-3-hydroxy-3-phenyl-5-(thiophen-2-yl)-1-tosylpiperidine-4carboxylate 3dh

Methyl $\left(3 R^{*}, 4 S^{*}, 5 S^{*}\right)$-3-hydroxy-3-phenyl-5-(benzylthio)-1-tosylpiperidine-4carboxylate 3di

Methyl (3R,4S,5S)-3-hydroxy-3-phenyl-5-(benzylthio)-1-tosylpiperidine-4-carboxylate 3di

Calculations Coordinates

All Calculation have been performed whit Charge $=0$ and Spin Multiplicity=1

Ciano-addition

Activated complexes A

C	2.02014	1.50898	-0.48139
C	2.8286	0.29824	-0.85337
C	3.96413	-0.06539	-0.24709
C	0.59114	1.12147	2.30819
C	0.34615	0.36914	0.99605
H	2.45734	-0.3026	-1.68182
H	2.44621	2.02172	0.38869
H	2.02232	2.20312	-1.32748
H	0.96634	-0.53506	0.96976
H	-0.68721	0.00117	1.01344
H	4.37585	0.4926	0.58988
C	4.72142	-1.25632	-0.70201
O	4.40873	-1.99295	-1.61655
C	0.54572	0.26958	3.54715
H	0.56759	0.90023	4.43867
H	-0.35638	-0.36422	3.51119
H	1.40788	-0.41122	3.56215
O	0.76971	2.33008	2.31705
O	5.8339	-1.42832	0.05112
C	6.64147	-2.56151	-0.30127
H	6.9926	-2.4773	-1.33341
H	7.48248	-2.54944	0.39267
H	6.07	-3.48791	-0.19719
S	-0.59016	2.0366	-0.9471
O	-1.83537	1.25766	-0.81713
O	-0.09897	2.41684	-2.27496
N	0.61627	1.13744	-0.21977
C	-0.83511	3.56165	-0.01234
H	-1.61988	4.11903	-0.5295
H	-1.12191	3.31791	1.00927
H	0.09909	4.12466	-0.0126
N	-4.41253	-1.44324	-0.7404
C	-5.12198	-2.61415	-0.10782
H	-4.61404	-2.81898	0.84345
H	-6.16798	-2.34035	0.04808
H	-5.05563	-3.46606	-0.78839
C	-4.49393	-0.26061	0.19939
H	-3.93248	0.56502	-0.2373
H	-5.54863	-0.00277	0.3207
H	-4.04563	-0.56838	1.14777
C	-2.96326	-1.8157	-0.9631

H	-2.93609	-2.64443	-1.67432
H	-2.44033	-0.94213	-1.35345
H	-2.55274	-2.10749	0.00687
C	-5.04285	-1.08655	-2.04919
H	-6.08733	-0.81656	-1.88048
H	-4.50215	-0.2414	-2.47895
H	-4.98505	-1.9467	-2.71927
C	-2.1263	-1.59981	2.49916
N	-3.042	-2.29258	2.22495

Activated complexes B

C	1.20531	0.49801	0.75812
C	-0.55601	2.31752	0.57935
C	4.45385	0.8822	0.51767
C	3.32587	0.98039	-0.5193
H	1.70095	1.11542	1.51471
H	0.83104	-0.39865	1.28584
H	2.97825	2.02136	-0.58722
H	3.74663	0.73168	-1.49956
H	-0.14947	2.908	1.39591
C	-1.7973	2.80622	-0.0509
O	-2.51924	2.17211	-0.81009
C	5.563	1.91004	0.38757
H	5.95279	1.93711	-0.6374
H	5.17694	2.9133	0.61001
H	6.36971	1.67269	1.08358
O	4.45767	0.02467	1.37816
O	-2.07377	4.07345	0.32835
C	-3.27074	4.64227	-0.22164
H	-4.14675	4.05804	0.07438
H	-3.32961	5.65142	0.18686
H	-3.21707	4.67219	-1.31321
S	2.1093	-1.4042	-0.96824
O	3.18191	-1.43975	-1.97204
O	0.71361	-1.61826	-1.38351
N	2.19504	0.11724	-0.26
C	2.4784	-2.57999	0.34106
H	2.5391	-3.56175	-0.13598
H	3.43199	-2.29545	0.78756
H	1.65898	-2.55276	1.07179
C	0.01994	1.18647	0.15049
H	-0.41334	0.66954	-0.7011
C	-0.40307	-2.1598	2.1236
N	-1.5012	-2.56299	2.27449
N	-3.68219	-1.59634	-0.15581
C	-4.72607	-1.18248	-1.14441
H	-4.46938	-0.19332	-1.52835
H	-4.7507	-1.90783	-1.9602

H	-5.69686	-1.1512	-0.64536
C	-3.99868	-2.95349	0.41957
H	-4.00194	-3.68066	-0.39537
H	-3.22214	-3.17824	1.16206
H	-4.98612	-2.90756	0.88486
C	-3.62342	-0.58948	0.96978
H	-2.86262	-0.93682	1.67583
H	-3.36666	0.38015	0.54048
H	-4.6082	-0.55402	1.44194
C	-2.3345	-1.65127	-0.83951
H	-2.38529	-2.38722	-1.64399
H	-2.12369	-0.66182	-1.24405
H	-1.58765	-1.93922	-0.09849

$\mathrm{TS}^{1}{ }_{B}$

C	1.22821	0.07012	1.55168
C	0.20314	2.25599	0.77644
C	4.1643	0.32383	-0.40937
C	2.63789	0.35138	-0.54712
H	1.91109	0.72092	2.10777
H	0.92142	-0.73648	2.21669
H	2.22205	1.35388	-0.38901
H	2.37111	0.03866	-1.55997
H	0.82997	2.86494	1.42094
C	-0.65359	2.90577	-0.15238
O	-1.54165	2.3919	-0.85202
C	4.77068	1.1117	0.73154
H	4.52733	2.17652	0.62667
H	4.34513	0.78138	1.68697
H	5.85427	0.97896	0.74558
O	4.84607	-0.32616	-1.18363
O	-0.38904	4.25899	-0.25312
C	-1.19613	4.96343	-1.18811
H	-2.25995	4.88966	-0.93652
H	-0.87252	6.00611	-1.13533
H	-1.05984	4.5819	-2.20642
S	1.38925	-1.99579	-0.16545
O	0.64467	-1.7728	-1.42263
O	0.69293	-2.67704	0.93587
N	2.02738	-0.55183	0.46163
C	2.8804	-2.91459	-0.5786
H	2.55183	-3.82718	-1.08104
H	3.51196	-2.31322	-1.23592
H	3.40395	-3.14844	0.34941
C	0.03163	0.86966	1.03713
H	-0.45505	0.35691	0.20619
C	-1.33417	0.44356	2.22254
N	-2.44786	0.29933	2.55961

N	-3.66853	-1.36078	-0.41677
C	-4.27055	-2.07267	-1.58797
H	-3.51441	-2.16238	-2.36976
H	-4.60091	-3.06456	-1.27335
H	-5.1203	-1.49535	-1.95692
C	-4.68622	-1.21192	0.68402
H	-5.02019	-2.20689	0.98628
H	-4.20787	-0.69097	1.51906
H	-5.52935	-0.63406	0.29982
C	-3.2017	0.01463	-0.84498
H	-2.83754	0.56	0.02168
H	-2.39667	-0.09164	-1.57058
H	-4.04715	0.54261	-1.28946
C	-2.4901	-2.15299	0.10017
H	-2.83486	-3.15779	0.35299
H	-1.7212	-2.19324	-0.67214
H	-2.10374	-1.65133	0.98653

$\mathbf{T S}^{1}{ }_{A}$

C	2.03853	1.09981	1.05189
C	3.11824	0.54406	0.16032
C	3.92503	-0.46486	0.51056
C	-0.85193	-0.89557	1.24505
C	0.10269	-0.27374	0.19418
H	3.23485	1.00985	-0.81574
H	2.00523	0.55364	2.00012
H	2.27025	2.14358	1.28754
H	0.92466	-0.9928	0.07102
H	-0.42957	-0.24096	-0.75459
H	3.84306	-0.95923	1.47553
C	4.9839	-0.95498	-0.4022
O	5.22113	-0.53528	-1.51727
C	-0.34817	-0.91762	2.68977
H	-1.14465	-1.27838	3.34566
H	0.48855	-1.62804	2.75319
H	-0.01807	0.06557	3.03598
O	-1.47381	-1.91039	0.81908
O	5.68071	-1.96561	0.17777
C	6.73469	-2.51558	-0.62423
H	7.47342	-1.74753	-0.87005
H	7.18633	-3.30162	-0.01777
H	6.33572	-2.92957	-1.55457
S	0.26453	2.34118	-0.55229
O	-0.70404	1.8496	-1.54161
O	1.50031	3.00687	-0.99251
N	0.68536	1.04982	0.46403
C	-0.58903	3.49364	0.53764
H	-0.8352	4.37046	-0.06637

H	-1.48625	3.0077	0.92237
H	0.08827	3.77477	1.3467
N	-4.65465	-1.31944	-0.75626
C	-5.11299	-2.50413	-1.54914
H	-6.05564	-2.86939	-1.13692
H	-5.25067	-2.20765	-2.59072
H	-4.35002	-3.28115	-1.48074
C	-4.48427	-1.73076	0.69318
H	-3.60529	-2.37055	0.78074
H	-4.29897	-0.82755	1.27381
H	-5.405	-2.22831	1.00627
C	-3.34448	-0.81839	-1.33379
H	-3.12018	0.14762	-0.88475
H	-2.55397	-1.51684	-1.0494
H	-3.46783	-0.72889	-2.415
C	-5.67007	-0.21399	-0.82759
H	-6.62106	-0.57959	-0.43385
H	-5.29724	0.61493	-0.22225
H	-5.7872	0.09274	-1.86911
C	-2.16288	0.60397	1.43164
N	-3.20011	1.15187	1.35967

Int $^{\mathbf{1}} \mathbf{A}$			
C	1.9991	1.44614	0.84439
C	2.95828	0.73201	-0.06979
C	3.92158	-0.0963	0.35112
C	-1.03059	-0.24472	1.94224
C	0.09527	-0.21883	0.84189
H	2.84532	0.91812	-1.13618
H	2.1929	1.18431	1.89041
H	2.14062	2.52547	0.74075
H	0.96282	-0.82289	1.13179
H	-0.3017	-0.64608	-0.08147
H	4.07513	-0.31159	1.40573
C	4.83861	-0.75655	-0.60618
O	4.80913	-0.65193	-1.81656
C	-0.43337	0.103	3.32934
H	-1.22633	0.05204	4.08088
H	0.38853	-0.56044	3.6304
H	-0.06875	1.13523	3.29302
O	-2.09805	0.50578	1.62921
O	5.74586	-1.52054	0.05372
C	6.68647	-2.20758	-0.78279
H	7.27079	-1.49533	-1.37213
H	7.33295	-2.76403	-0.1031
H	6.17026	-2.88846	-1.46546
S	-0.21244	2.09492	-0.57426
O	-1.04348	1.23174	-1.43587

O	0.80111	2.96114	-1.19598
N	0.58437	1.1416	0.56647
C	-1.31213	3.11798	0.41194
H	-1.96126	3.66357	-0.27803
H	-1.85334	2.41649	1.06188
H	-0.69532	3.81456	0.98389
N	-4.12764	-1.1531	-1.1351
C	-4.69875	-2.14818	-0.16029
H	-4.05216	-2.19016	0.71825
H	-5.70659	-1.82848	0.11119
H	-4.73166	-3.12858	-0.64043
C	-4.08001	0.21553	-0.48721
H	-3.7241	0.92302	-1.23722
H	-5.09651	0.46384	-0.17213
H	-3.36353	0.20239	0.36429
C	-2.72923	-1.58004	-1.51043
H	-2.79757	-2.47437	-2.13364
H	-2.23866	-0.76076	-2.03631
H	-2.18949	-1.80444	-0.59223
C	-4.97969	-1.10085	-2.36577
H	-5.97687	-0.75242	-2.09078
H	-4.52671	-0.40614	-3.07486
H	-5.04049	-2.0982	-2.80674
C	-1.475	-1.71487	1.96482
N	-1.98659	-2.75642	1.84013

$\operatorname{Int}^{1}{ }_{\mathrm{B}}$

C	1.64551	0.54483	1.32562
C	-0.01681	2.38957	0.55298
C	3.28907	0.52181	-1.4858
C	1.80505	0.34905	-1.17584
H	2.5177	1.19763	1.21114
H	1.84209	-0.11319	2.17682
H	1.29604	1.32565	-1.15621
H	1.34199	-0.23242	-1.97943
H	0.56927	3.29766	0.46092
C	-1.22646	2.30492	-0.10734
O	-2.10537	1.38332	-0.04497
C	3.60813	1.36978	-2.70117
H	2.98785	1.08643	-3.55973
H	3.38573	2.422	-2.48038
H	4.6657	1.27346	-2.95453
O	4.15937	0.0277	-0.79029
O	-1.45813	3.37757	-0.97083
C	-2.69678	3.37426	-1.65183
H	-3.54916	3.3689	-0.96095
H	-2.7153	4.29539	-2.24162
H	-2.79987	2.51352	-2.32703

S	1.43347	-1.92816	0.24165
O	1.10454	-2.44817	-1.0971
O	0.54447	-2.24331	1.37374
N	1.51073	-0.27509	0.10861
C	3.0673	-2.55217	0.6886
H	2.98255	-3.63903	0.75795
H	3.77921	-2.24589	-0.0763
H	3.34834	-2.13069	1.6554
C	0.36374	1.38668	1.60719
H	-0.45777	0.6692	1.70797
C	0.54154	2.02344	2.9326
N	0.70525	2.53859	3.96216
N	-3.212	-1.62141	-0.2396
C	-3.69354	-3.03462	-0.32666
H	-2.85543	-3.7028	-0.12192
H	-4.48288	-3.18932	0.41176
H	-4.08075	-3.21952	-1.33075
C	-4.34184	-0.65828	-0.49668
H	-5.10799	-0.80937	0.26686
H	-3.92206	0.35038	-0.44318
H	-4.75565	-0.8643	-1.48639
C	-2.13165	-1.38037	-1.26951
H	-1.8206	-0.33771	-1.14833
H	-1.30186	-2.06445	-1.08895
H	-2.56377	-1.55837	-2.2573
C	-2.65357	-1.35027	1.14021
H	-3.43295	-1.57821	1.87097
H	-1.77283	-1.97565	1.29437
H	-2.37803	-0.292	1.15579

$\mathrm{TS}^{2}{ }_{B}$

C	2.458	1.08659	-0.34974
C	1.6333	1.58753	0.86372
C	0.13437	1.34322	0.74088
C	-0.05446	-1.00017	0.17145
C	0.97305	-0.86436	-0.95547
H	2.00734	1.05217	1.74522
H	2.12974	1.6196	-1.24397
H	3.51641	1.29784	-0.1788
H	1.09418	-1.85634	-1.40603
H	0.5557	-0.19413	-1.7135
H	-0.40486	1.35933	1.68474
C	-0.55202	1.91596	-0.36601
O	-0.09766	2.22614	-1.47237
C	0.39778	-1.5128	1.52742
H	0.55963	-2.59715	1.44447
H	1.33042	-1.07323	1.88172
H	-0.38849	-1.33891	2.26768

O	-1.93088	2.05749	-0.14009
C	-2.60685	2.75045	-1.18448
H	-2.17513	3.74241	-1.35019
H	-2.56439	2.20515	-2.13416
H	-3.64642	2.85766	-0.8551
S	3.49435	-1.39523	-0.08203
O	2.95763	-2.75916	-0.1756
O	4.08264	-0.90214	1.17113
N	2.29665	-0.35297	-0.59103
C	4.77166	-1.23267	-1.35086
H	5.60875	-1.86854	-1.05341
H	4.35771	-1.56258	-2.305
H	5.09477	-0.19138	-1.40698
O	-1.24046	-1.22975	-0.19164
N	-4.40695	-1.05353	0.15029
C	-3.94	-2.47431	0.35144
H	-4.38503	-3.09921	-0.42562
H	-2.84852	-2.46297	0.28102
H	-4.2716	-2.80966	1.33639
C	-3.96358	-0.58047	-1.21607
H	-4.31162	0.44354	-1.35262
H	-2.87144	-0.62947	-1.24401
H	-4.41615	-1.2365	-1.96296
C	-3.77142	-0.18323	1.21082
H	-4.11847	-0.53269	2.18565
H	-2.69142	-0.2847	1.09844
H	-4.06593	0.85195	1.04208
C	-5.89838	-0.9818	0.25385
H	-6.34101	-1.61256	-0.51956
H	-6.20516	-1.33296	1.24087
H	-6.21342	0.05386	0.11468
C	1.94681	3.01726	1.09259
N	2.16961	4.14297	1.2797

$\mathbf{T S}_{2\left(\mathbf{R}^{*}, \mathbf{R}^{*}\right)^{\mathbf{A}}}$

C	0.51952	-0.01537	-0.31269
C	1.6725	-0.90977	-0.71338
C	3.44613	0.76335	-0.28737
C	2.39661	1.83335	0.12621
H	1.41641	-1.9431	-0.46689
H	0.34341	-0.00084	0.75931
H	4.37694	0.89923	0.26572
H	3.64053	0.87091	-1.36581
H	1.82831	-0.83202	-1.80137
N	2.90343	-0.56322	0.01698
O	1.17688	1.60813	-0.53114
S	3.99577	-1.7962	0.34885
O	5.01839	-1.23794	1.23606

O	3.21053	-2.97179	0.73392
C	-0.66092	-0.13249	-1.11469
H	-0.57453	-0.45997	-2.14692
C	-1.92646	0.22051	-0.67962
O	-3.01824	0.11126	-1.29821
O	-2.01566	0.72028	0.65436
C	-1.8946	2.14437	0.7232
H	-1.96871	2.41819	1.78058
H	-0.92792	2.46469	0.32114
H	-2.70507	2.63782	0.16646
C	4.81171	-2.19192	-1.21969
H	5.52817	-2.9916	-1.01914
H	4.06254	-2.53035	-1.93876
H	5.33281	-1.30534	-1.5873
N	-5.83408	-0.65481	0.17424
C	-5.24505	-1.75506	-0.67921
H	-4.26905	-1.40084	-1.0332
H	-5.15826	-2.65442	-0.06613
H	-5.92365	-1.9359	-1.51562
C	-5.89525	0.6156	-0.64263
H	-6.29849	1.40937	-0.0103
H	-4.87029	0.82862	-0.96997
H	-6.55604	0.44306	-1.49483
C	-7.20566	-1.04268	0.63182
H	-7.13856	-1.95824	1.22266
H	-7.61978	-0.23718	1.24122
H	-7.83819	-1.21007	-0.24186
C	-4.9432	-0.42061	1.37087
H	-3.95878	-0.08462	1.0261
H	-5.40964	0.34387	1.99627
H	-4.86372	-1.35652	1.92782
C	2.26755	1.92119	1.66375
H	2.00454	0.94197	2.07099
H	3.20715	2.24281	2.12612
H	1.48381	2.63924	1.92023
C	2.89788	3.14301	-0.37639
N	3.28837	4.16375	-0.76966
		0	

$\mathbf{T S}_{2\left(\mathbf{R}^{*}, \mathbf{S}^{*}\right)}{ }^{\mathbf{A}}$

C	-0.30228	0.56105	0.16334
C	-1.05885	-0.72853	0.38753
C	-3.28738	0.34854	0.716
C	-2.63181	1.75269	0.66519
H	-0.60949	-1.51512	-0.22337
H	-0.46274	0.99507	-0.82053
H	-4.28624	0.35915	0.27575
H	-3.35837	0.07807	1.78294
H	-0.97291	-1.01242	1.44973

N	-2.47042	-0.62153	-0.02172
O	-1.32431	1.71235	1.12489
S	-3.23037	-2.03978	-0.5067
O	-4.53652	-1.67461	-1.05594
O	-2.25703	-2.80688	-1.29057
C	-3.42564	2.71743	1.56961
H	-2.96208	3.7063	1.53248
H	-4.47365	2.80192	1.26009
H	-3.37723	2.35152	2.60004
C	-2.70721	2.27549	-0.74197
N	-2.73417	2.71595	-1.81667
C	1.03806	0.59801	0.64179
H	1.29867	0.03284	1.5338
C	2.003	1.51948	0.19673
O	3.20726	1.57429	0.57059
O	1.56367	2.38751	-0.7719
C	2.51048	3.32477	-1.26579
H	1.94313	4.00719	-1.90205
H	2.99042	3.8761	-0.45195
H	3.29293	2.83801	-1.86362
C	-3.5467	-2.99064	1.00585
H	-4.04093	-3.91729	0.70589
H	-2.59753	-3.21332	1.49834
H	-4.20064	-2.41497	1.6643
N	4.77637	-1.32684	0.0753
C	4.68824	-0.89102	1.52049
H	4.05341	0.00494	1.54597
H	4.26456	-1.71275	2.10133
H	5.69803	-0.66604	1.87048
C	5.28018	-0.16536	-0.74943
H	5.29476	-0.46861	-1.79822
H	4.60246	0.67832	-0.57142
H	6.29152	0.07534	-0.41495
C	5.71034	-2.49039	-0.05929
H	5.34303	-3.31478	0.55467
H	5.7497	-2.79618	-1.10657
H	6.70401	-2.19038	0.2781
C	3.40114	-1.72713	-0.40456
H	2.69114	-0.90937	-0.23021
H	3.46329	-1.96656	-1.46796
H	3.09021	-2.61112	0.15614

$\boldsymbol{I n t}_{2\left(\mathbf{R}^{*}, \mathbf{R}^{*}\right)} \mathbf{A}$

C	0.56182	0.30788	-0.27819
C	1.53844	-0.81778	-0.63219
C	3.46103	0.66877	-0.26737
C	2.47464	1.8031	0.11914
H		1.12408	-1.77183

H	0.33906	0.26761	0.79137
H	4.39253	0.75994	0.29346
H	3.67327	0.74895	-1.34533
H	1.68321	-0.84117	-1.72551
N	2.82494	-0.60733	0.05903
O	1.22677	1.60988	-0.54098
S	3.82108	-1.93582	0.31926
O	4.95008	-1.47026	1.12834
O	2.9593	-3.0322	0.76615
C	-0.68181	0.21943	-1.06775
H	-0.61551	-0.07725	-2.11121
C	-1.9169	0.57818	-0.59775
O	-3.03826	0.55321	-1.19269
O	-1.96159	0.98515	0.78064
C	-2.08642	2.39471	0.9215
H	-2.17008	2.60982	1.99213
H	-1.20249	2.90336	0.5155
H	-2.97989	2.77426	0.40528
C	4.48289	-2.40626	-1.30051
H	5.12566	-3.27557	-1.14529
H	3.65599	-2.66468	-1.96541
H	5.06637	-1.57714	-1.7066
N	-5.64565	-0.81267	0.10447
C	-4.94396	-1.66036	-0.93372
H	-4.04812	-1.10325	-1.24455
H	-4.69667	-2.62175	-0.47877
H	-5.63127	-1.80714	-1.76991
C	-5.91923	0.55111	-0.48722
H	-6.41263	1.16037	0.27324
H	-4.94531	0.96288	-0.78087
H	-6.57653	0.42413	-1.35013
C	-6.92664	-1.46592	0.51803
H	-6.70535	-2.44655	0.94388
H	-7.42258	-0.84107	1.26341
H	-7.56786	-1.57816	-0.35819
C	-4.74526	-0.646	1.30529
H	-3.83756	-0.1165	0.99793
H	-5.28848	-0.07159	2.05911
H	-4.50616	-1.63733	1.69575
C	2.33652	1.9431	1.64882
H	2.06635	0.98283	2.0928
H	3.28134	2.27283	2.09276
H	1.5615	2.67926	1.87825
C	3.01423	3.06998	-0.42963
N	3.4655	4.055	-0.8433

$\operatorname{Int}_{\left(\mathbf{R}^{*}, \mathbf{S}^{*}\right)} \mathbf{A}$

$\begin{array}{llll}C & -0.38364 & 0.69646 & 0.19472\end{array}$

C	-1.04284	-0.68531	0.26077
C	-3.22997	0.35746	0.75423
C	-2.53489	1.73682	0.70047
H	-0.57665	-1.34604	-0.4699
H	-0.45864	1.08251	-0.82733
H	-4.25213	0.41766	0.37653
H	-3.2492	0.05524	1.81535
H	-0.89479	-1.1025	1.27256
N	-2.47928	-0.59436	-0.06502
O	-1.17153	1.61399	1.05478
S	-3.26805	-2.00807	-0.51693
O	-4.62592	-1.63804	-0.91968
O	-2.36693	-2.73234	-1.41632
C	-3.16655	2.69721	1.71767
H	-2.65545	3.66183	1.67283
H	-4.23182	2.84742	1.51539
H	-3.04055	2.28296	2.72242
C	-2.68637	2.32157	-0.6653
N	-2.81432	2.8182	-1.70676
C	1.02256	0.65022	0.63649
H	1.25059	0.11199	1.55424
C	2.00668	1.51517	0.16885
O	3.22237	1.55831	0.53309
O	1.59311	2.37301	-0.84018
C	2.57815	3.24029	-1.37592
H	2.03919	3.93684	-2.02319
H	3.10676	3.78816	-0.58988
H	3.32299	2.69852	-1.97655
C	-3.42161	-3.01061	0.98747
H	-3.92282	-3.93843	0.70325
H	-2.42635	-3.22714	1.38145
H	-4.02343	-2.47199	1.72262
N	4.68736	-1.37299	0.09766
C	4.63379	-0.89322	1.53048
H	4.02207	0.02118	1.53406
H	4.19807	-1.68677	2.1411
H	5.655	-0.68573	1.858
C	5.20445	-0.24715	-0.76752
H	5.19054	-0.57908	-1.80771
H	4.54829	0.61709	-0.59435
H	6.2283	-0.02518	-0.45856
H	5.58907	-2.56243	-0.01923
C	5.21233	-3.36002	0.62391
H	2.97484	-2.61402	0.24114
H	6.60275	-2.89843	-1.05797
H	3.59591	-2.27894	0.29278
H	2.60151	-0.75036	-0.34674
H	3.33175	-2.01796	-0.17988
H	-1.40476		
H			

$\mathbf{I n t}_{2} \mathrm{~B}$

C	-2.52639	0.8793	0.06104
C	-1.65178	1.68915	-0.9239
C	-0.13782	1.32817	-0.83297
C	0.1235	-0.23467	-0.91232
C	-0.85866	-0.95101	0.05996
H	-1.98339	1.43346	-1.93708
H	-2.28615	1.1809	1.08871
H	-3.58048	1.07529	-0.1403
H	-0.78145	-2.02607	-0.10775
H	-0.54596	-0.71888	1.08691
H	0.37974	1.79067	-1.67779
C	0.49436	1.8683	0.435
O	0.07761	1.71112	1.56699
C	-0.14331	-0.70746	-2.36045
H	0.06763	-1.78131	-2.42049
H	-1.17388	-0.55399	-2.70071
H	0.53924	-0.19078	-3.04569
O	1.60171	2.60266	0.16821
C	2.22264	3.19965	1.31355
H	1.52003	3.85403	1.83616
H	2.57052	2.4326	2.01268
H	3.06372	3.77681	0.92578
S	-3.47871	-1.62289	0.26137
O	-3.05471	-2.95199	-0.18563
O	-4.7502	-1.04214	-0.18044
N	-2.26316	-0.54638	-0.16608
C	-3.51359	-1.66114	2.07332
H	-4.29084	-2.36992	2.36737
H	-2.54086	-1.99267	2.44251
H	-3.75229	-0.66431	2.45026
O	1.40483	-0.50259	-0.52874
N	4.28886	-1.28665	0.0789
C	3.58434	-2.39969	-0.66339
H	3.61252	-3.29684	-0.04069
H	2.55574	-2.03532	-0.83041
H	4.11785	-2.57696	-1.59998
C	3.53471	-1.02112	1.36196
H	4.03432	-0.20493	1.88884
H	2.5086	-0.75431	1.06201
H	3.56357	-1.92921	1.96855
C	4.23997	-0.03823	-0.77399
H	4.7767	-0.24168	-1.7035
H	3.16993	0.16801	-0.94547
H	4.73288	0.76812	-0.22642
C	5.70377	-1.66491	0.37285

H	5.71262	-2.56679	0.9884
H	6.22579	-1.85337	-0.56745
H	6.18902	-0.84605	0.90807
C	-1.88025	3.12944	-0.74403
N	-2.04408	4.26997	-0.59674

C	0.63454	0.54199-0.18882
C	0.96762	-0.78976-0.86259
C	3.29119	$-0.04706-1.12297$
C	2.89796	1.32507-0.49402
H	0.30497	-1.57077-0.47612
H	0.77913	0.439990 .89179
H	4.3191	$-0.31037-0.87102$
H	3.20622	$0.03877-2.21263$
H	0.78004	-0.70773-1.94181
N	2.39402	$-1.12711-0.70678$
O	1.50123	1.57593-0.69898
S	2.83382	-2.10665 0.59601
O	4.29349	-2.01747 0.7198
O	1.97635	$-1.856641 .76477$
C	-0.81015	0.89796-0.47253
H	-1.38663	-0.02929 -0.18831
C	-1.43197	2.054810 .25084
O	-2.53216	$2.51079-0.02548$
O	-0.70257	2.505111 .2926
C	-1.29023	3.571842 .0504
H	-0.56257	3.816082 .82501
H	-1.4776	4.439361 .41226
H	-2.23478	$3.2526 \quad 2.50045$
C	2.40605	-3.74197-0.03044
H	2.61352	-4.45287 0.7726
H	1.34436	-3.76276-0.28411
H	3.0234	-3.95182-0.90459
N	-4.93442	-0.8064 -0.34484
C	-4.06152	-0.35977-1.49519
H	-3.96132	0.72657-1.45487
H	-3.09137	-0.84094-1.34819
H	-4.5392	$-0.67616-2.42571$
C	-6.33483	$-0.33337-0.54893$
H	-6.94609	-0.65337-0.29724
H	-6.33434	0.75665-0.6147
H	-6.72838	-0.76229-1.47332
C	-4.86785	-2.31392-0.26566
H	-3.79418	-2.53697-0.08921
H	-5.50698	-2.64184 0.55802
H	-5.23426	-2.72477-1.20984
C	-4.36547	-0.24991 0.94273

H	-4.32618	0.83773	0.86353
H	-5.02012	-0.56152	1.76068
H	-3.35153	-0.70052	0.9976
C	3.29938	1.45269	0.98797
H	2.8646	0.64791	1.58496
H	4.3872	1.40482	1.09435
H	2.94205	2.41051	1.37545
C	3.59432	2.37896	-1.26722
N	4.17848	3.17803	-1.87267
H	-0.96876	1.05731	-1.54545
O	-2.02798	-1.74263	0.10448
H	-1.54906	-2.0756	0.88108

4a'			
C	-0.5876	0.87001	-0.61464
C	-1.21402	-0.51961	-0.77557
C	-2.59974	-0.08221	1.21043
C	-1.94051	1.30838	1.33236
H	-1.31429	-0.75458	-1.83758
H	-1.13271	1.6085	-1.21593
H	-3.63778	-0.04897	1.54515
H	-2.0258	-0.76123	1.86324
H	-0.54246	-1.25238	-0.29489
N	-2.5666	-0.50847	-0.18728
O	-0.63666	1.27923	0.76849
S	-3.59348	-1.77492	-0.62463
O	-4.85919	-1.55163	0.07726
O	-3.52769	-1.8869	-2.08186
C	-1.7634	1.70212	2.80351
H	-1.2797	2.67981	2.8678
H	-2.72981	1.74885	3.3141
H	-1.12645	0.96193	3.29629
C	-2.77534	2.33899	0.6512
N	-3.406	3.1768	0.15405
C	0.88702	0.78164	-0.98206
H	1.33175	0.00052	-0.33059
C	1.7103	2.0429	-0.90942
O	2.93055	2.05274	-0.86678
O	0.97566	3.16969	-0.94084
C	1.71005	4.40213	-0.89116
H	0.9575	5.19057	-0.91361
H	2.30046	4.45998	0.02726
H	2.38112	4.48527	-1.7505
C	-2.85058	-3.27903	0.06026
H	-3.47372	-4.11612	-0.26215
H	-1.83513	-3.39158	-0.32551
H	-2.84624	-3.21404	1.15037
N	4.61311	-1.50286	0.27427
		0	

C	4.23799	-2.84202	0.8661
H	3.1302	-2.80248	0.96128
H	4.57675	-3.6264	0.18437
H	4.7424	-2.94176	1.83068
C	4.08676	-0.42471	1.19749
H	4.26149	0.5476	0.73469
H	3.00318	-0.654	1.27049
H	4.6154	-0.51212	2.15026
C	6.08981	-1.37771	0.10469
H	6.445	-2.1725	-0.55537
H	6.31505	-0.40228	-0.33166
H	6.5697	-1.46583	1.08147
C	3.9216	-1.37283	-1.06312
H	2.86173	-1.57002	-0.87687
H	4.06661	-0.35474	-1.42862
H	4.36439	-2.10212	-1.74604
H	0.97314	0.40876	-2.01294
O	1.56547	-1.73609	0.61565
H	1.00108	-1.61277	1.39593

Solfur Addition

Activated Complex

C	3.06105	0.55037	-0.59828
C	2.14592	1.72075	-0.36665
C	1.59974	2.4629	-1.3371
C	1.91711	-2.24926	-1.60848
C	1.55594	-1.45307	-0.35369
H	1.95461	1.9697	0.67508
H	3.12613	0.29246	-1.66061
H	4.06404	0.83135	-0.25966
H	0.67193	-0.83303	-0.57703
H	1.23047	-2.14277	0.43144
H	1.78227	2.25628	-2.38783
C	0.73275	3.61951	-1.0345
O	0.26747	3.91185	0.05968
C	0.77392	-2.99948	-2.2469
H	0.35536	-3.73053	-1.54342
H	-0.04347	-2.30214	-2.47886
H	1.11879	-3.51075	-3.14805
O	3.05224	-2.24827	-2.0592
O	0.50429	4.34699	-2.1462
C	-0.32506	5.50638	-1.98692
H	0.07336	6.16246	-1.20877
H	-0.31601	6.00682	-2.95527
H	-1.34606	5.21448	-1.72369
S	3.6651	-1.23438	1.34782
O	2.87869	-2.18381	2.14169

O	4.31661	-0.07653	1.97159
N	2.62992	-0.61937	0.17938
C	4.95718	-2.17472	0.50385
H	5.61482	-2.57076	1.2813
H	4.49773	-2.97565	-0.07383
H	5.5086	-1.50514	-0.15807
C	-2.94112	-1.66378	-0.75534
C	-2.57206	-2.53954	0.29165
C	-3.3942	-3.59601	0.68816
C	-4.61943	-3.819	0.05689
C	-5.00472	-2.9653	-0.98185
C	-4.18558	-1.91052	-1.37915
H	-1.61794	-2.38514	0.79103
H	-3.07048	-4.2513	1.495
H	-5.25903	-4.64267	0.36334
H	-5.95397	-3.12456	-1.49022
H	-4.49444	-1.25837	-2.19162
S	-1.91188	-0.31163	-1.26705
N	-2.43806	1.88027	1.89634
C	-1.01677	1.37578	1.78574
H	-0.98862	0.6817	0.93557
H	-0.36685	2.23187	1.60119
H	-0.75862	0.87375	2.72065
C	-2.80696	2.60004	0.61983
H	-2.74224	1.86892	-0.19743
H	-3.8236	2.98482	0.7288
H	-2.09277	3.41076	0.46921
C	-3.36304	0.70538	2.08264
H	-3.08635	0.18797	3.00324
H	-4.38779	1.07608	2.15262
H	-3.25012	0.04284	1.2221
C	-2.55111	2.81776	3.05748
H	-2.279	2.28627	3.97155
H	-1.87104	3.6508	2.89776
H	-3.5799	3.17717	3.12747
		8	

Int $^{\mathrm{D}}$ (3R*,4S*,5S*)

C	-1.46586	0.61741	-0.53706
C	-1.16023	-0.62125	0.31345
C	0.34849	-0.93445	0.39982
C	1.20243	0.32823	0.85806
C	0.76584	1.55614	0.00694
H	-1.5156	-0.43471	1.33018
H	-1.19704	0.41903	-1.58295
H	-2.52783	0.85792	-0.47186
H	1.23168	2.44813	0.42823
H	1.13422	1.40131	-1.01597
H	0.50309	-1.71834	1.14637

S	-2.08907	-2.116	-0.29874
C	0.9256	-1.44389	-0.90773
O	0.86091	-0.89917	-1.9931
C	0.91481	0.60306	2.3522
H	1.53491	1.44721	2.67552
H	-0.12942	0.85587	2.56751
H	1.20035	-0.27249	2.94774
C	-3.77767	-1.71082	0.16114
C	-4.72512	-1.44284	-0.83571
C	-4.17618	-1.71263	1.50577
C	-6.05191	-1.17696	-0.49114
H	-4.41648	-1.44138	-1.87672
C	-5.49838	-1.42928	1.84656
H	-3.44943	-1.94172	2.27994
C	-6.43976	-1.16406	0.8491
H	-6.77924	-0.96941	-1.27166
H	-5.796	-1.42549	2.8919
H	-7.4708	-0.94889	1.11655
O	1.53992	-2.64576	-0.74428
C	2.07443	-3.21861	-1.94215
H	1.28879	-3.35932	-2.68954
H	2.84895	-2.57492	-2.37178
H	2.49582	-4.18146	-1.64755
S	-1.2842	3.28978	-0.30447
O	-0.45197	4.2384	0.44175
O	-2.73914	3.25746	-0.12408
N	-0.7004	1.75117	0.01483
C	-0.97863	3.59694	-2.06583
H	-1.34299	4.60235	-2.28794
H	0.09412	3.53234	-2.25936
H	-1.52331	2.85949	-2.65923
O	2.52967	0.08779	0.64662
N	5.53241	-0.31913	0.40342
C	5.22896	0.83834	1.32792
H	5.7038	1.734	0.92068
H	4.12719	0.91613	1.34635
H	5.64507	0.60788	2.31136
C	4.93289	-0.01376	-0.95066
H	5.13844	-0.85799	-1.61284
H	3.85281	0.12643	-0.77873
H	5.40985	0.88933	-1.33857
C	4.8638	-1.55884	0.95552
H	5.29363	-1.76615	1.93831
H	3.78728	-1.32061	1.01069
H	5.06925	-2.3882	0.27501
C	7.00686	-0.52645	0.28799
H	7.46555	0.38025	-0.11196
H	7.41582	-0.7428	1.27707
H	7.19859	-1.36592	-0.38364

$\operatorname{Int}^{\mathrm{B}}\left(\mathbf{3 R}^{*}, \mathbf{4 S}{ }^{*}, \mathbf{5 R}{ }^{*}\right)$

C	0.78114	-0.25428	1.23052
C	1.19185	-0.32387	-0.24877
C	0.88568	-1.6792	-0.90793
C	-0.70192	-1.93768	-0.74614
C	-1.01714	-1.923	0.78685
H	0.61143	0.40821	-0.81324
H	1.40203	-0.94216	1.81655
H	0.91165	0.76344	1.60109
H	-2.093	-2.05454	0.90933
H	-0.48704	-2.72015	1.32591
H	1.05034	-1.5888	-1.98377
S	2.98556	0.12376	-0.44912
C	1.73851	-2.81303	-0.39506
O	1.9423	-3.10142	0.77255
C	-1.0454	-3.34315	-1.29339
H	-0.77511	-3.39549	-2.35344
H	-0.54416	-4.16544	-0.76546
H	-2.12866	-3.49617	-1.2161
C	2.91311	1.91645	-0.3556
C	3.4641	2.58207	0.74722
C	2.35978	2.66765	-1.40339
C	3.45756	3.97763	0.80337
H	3.89484	2.00178	1.55757
C	2.34193	4.06055	-1.33701
H	1.95614	2.15454	-2.27172
C	2.89278	4.71925	-0.23467
H	3.8878	4.48343	1.66383
H	1.91182	4.63399	-2.15459
H	2.88525	5.80502	-0.18831
O	2.24662	-3.54872	-1.41639
C	3.0224	-4.68882	-1.02421
H	3.87948	-4.38332	-0.41781
H	2.41486	-5.3911	-0.44571
H	3.35672	-5.15018	-1.95451
S	-1.5869	0.11394	2.49191
O	-2.99529	-0.17881	2.17638
O	-1.14872	1.51105	2.61906
N	-0.64609	-0.60942	1.34183
C	-1.23308	-0.70099	4.06976
H	-1.85643	-0.23354	4.8353
H	-1.47404	-1.76224	3.97908
H	-0.17571	-0.5643	4.30663
O	-1.37132	-0.96244	-1.39498
N	-3.55386	1.24191	-1.62362
C	-2.99155	0.88416	-2.97796

H	-2.23761	0.10238	-2.81165
H	-3.81143	0.52617	-3.6055
H	-2.55434	1.78445	-3.41638
C	-2.4188	1.71317	-0.74203
H	-1.96938	2.5934	-1.20821
H	-2.81731	1.96165	0.24174
H	-1.72277	0.86297	-0.68919
C	-4.14637	-0.00825	-1.01294
H	-5.00381	-0.30895	-1.62027
H	-3.33084	-0.74686	-1.03077
H	-4.44531	0.21215	0.0124
C	-4.59191	2.30719	-1.74831
H	-4.13617	3.20245	-2.17693
H	-5.3958	1.95214	-2.39692
H	-4.98709	2.53207	-0.75596

$\operatorname{Int}^{\mathbf{C}}\left(\mathbf{R}^{*}, \mathbf{R}^{*}, \mathbf{S}^{*}\right)$

C	-1.36418	1.35322	-0.73853
C	-1.22582	-0.11635	-0.3155
C	0.23974	-0.57554	-0.34369
C	1.21119	0.37195	0.50842
C	0.94696	1.81711	-0.01072
H	-1.63633	-0.25625	0.68571
H	-1.11664	1.43941	-1.81123
H	-2.39255	1.686	-0.59324
H	1.5274	2.51138	0.59832
H	1.30761	1.86867	-1.0529
H	0.62577	-0.51238	-1.36755
S	-2.26736	-1.1597	-1.4637
C	0.35969	-2.01009	0.11063
O	-0.22014	-2.50401	1.05993
C	0.8837	0.31356	2.01791
H	1.5816	0.97861	2.53949
H	-0.13408	0.63659	2.26144
H	1.02635	-0.70089	2.40012
C	-3.75071	-1.44323	-0.4926
C	-4.99301	-1.07089	-1.02133
C	-3.68938	-2.08912	0.75145
C	-6.16535	-1.34214	-0.31282
H	-5.03656	-0.56509	-1.98137
C	-4.86367	-2.33485	1.46274
H	-2.72644	-2.39389	1.15157
C	-6.10342	-1.96803	0.93262
H	-7.12542	-1.0492	-0.73007
H	-4.80958	-2.82722	2.4304
H	-7.01557	-2.16874	1.48839
O	1.21921	-2.72521	-0.65836
C	1.34911	-4.10397	-0.28921

H	1.74382	-4.20173	0.72668
H	0.38078	-4.60959	-0.33635
H	2.04007	-4.54	-1.01336
S	-0.86538	3.81764	0.21839
O	0.0757	4.41015	1.17231
O	-2.31383	3.90447	0.42445
N	-0.4746	2.19236	0.07479
C	-0.51801	4.57071	-1.39533
H	-0.7579	5.6332	-1.31468
H	0.54046	4.4411	-1.63115
H	-1.14691	4.10189	-2.15538
O	2.50763	0.04346	0.26155
N	5.42778	-0.7169	-0.09925
C	5.30512	0.55795	0.70498
H	5.82681	1.35247	0.16629
H	4.22087	0.74976	0.79104
H	5.7753	0.39428	1.67738
C	6.86313	-1.08691	-0.28063
H	7.31992	-1.23882	0.6995
H	6.92398	-2.0078	-0.86433
H	7.37684	-0.27991	-0.80727
C	4.68409	-1.8124	0.6309
H	4.76385	-2.72885	0.04198
H	5.15468	-1.95065	1.60708
H	3.64217	-1.45729	0.71288
C	4.7611	-0.50183	-1.43944
H	5.29388	0.29791	-1.9594
H	4.83242	-1.43132	-2.00878
H	3.71479	-0.23271	-1.21317

TS ${ }^{\text {B }}$ (3R*,4S*,5R*)

C	-0.73874	-0.53498	1.09443
C	-0.87585	-1.13757	-0.31251
C	-2.11101	-0.78495	-1.05175
C	-1.58068	1.49667	-1.19151
C	-1.69996	1.67264	0.32953
H	-0.01554	-0.84169	-0.91904
H	-1.61133	-0.82292	1.68779
H	0.1751	-0.90083	1.5634
H	-1.58351	2.74067	0.54961
H	-2.67825	1.3386	0.69043
H	-2.08596	-1.00869	-2.11458
S	-0.65121	-3.04429	-0.14365
C	-3.41104	-0.88394	-0.45329
O	-3.71075	-0.84206	0.74623
C	-2.7851	1.95671	-1.99386
H	-2.69977	1.59195	-3.02051
H	-3.73532	1.61955	-1.57548

H	-2.78677	3.0581	-2.02842
C	1.13383	-3.16949	-0.01954
C	1.75612	-3.41804	1.21346
C	1.93661	-3.03443	-1.1654
C	3.14591	-3.52522	1.30032
H	1.142	-3.53037	2.10197
C	3.32617	-3.13345	-1.07554
H	1.45879	-2.8707	-2.1274
C	3.93541	-3.37943	0.15844
H	3.61129	-3.72104	2.26302
H	3.93312	-3.04308	-1.97402
H	5.01672	-3.46809	0.22669
O	-4.40892	-0.9409	-1.4113
C	-5.73659	-0.98239	-0.8949
H	-5.8898	-1.86298	-0.26252
H	-5.96521	-0.09175	-0.29945
H	-6.39268	-1.02848	-1.76744
S	0.16287	1.70928	2.27485
O	0.27916	3.13802	1.93427
O	1.38595	0.94582	2.57075
N	-0.61826	0.94866	1.01945
C	-0.90332	1.58993	3.73092
H	-0.38373	2.07003	4.563
H	-1.84379	2.10313	3.52011
H	-1.0819	0.53537	3.95046
O	-0.43652	1.54554	-1.71786
N	2.76637	2.22864	-1.42514
C	2.387	1.9826	2.86325
H	1.31841	1.75485	-2.88913
H	2.61107	2.88291	-3.43984
H	2.97684	1.14345	-3.23772
C	2.44607	0.99041	-0.6181
H	3.01259	0.15127	-1.02704
H	2.71038	1.16403	0.42549
H	1.36992	0.83254	-0.70868
C	1.94371	3.38117	-0.89843
H	2.21472	4.27833	-1.45969
H	0.89567	3.11353	-1.04507
H	2.14528	3.50805	0.1651
C	4.22409	2.54575	-1.31812
H	4.80083	1.69601	-1.68842
H	4.44331	3.4344	-1.91366
H	4.46692	2.72957	-0.27025

$\operatorname{TS}^{\mathrm{C}}\left(\mathbf{3 R}{ }^{*}, 4 \mathrm{R}^{*}, \mathbf{5 S}{ }^{*}\right)$

```
C 
C -1.21593 -0.23891 -0.39412
C 0.21298 -0.72652 -0.40544
```

C	1.37863	0.512190 .56638
C	0.91745	$1.85496-0.0428$
H	-1.64314	-0.37792 0.60029
H	-1.0508	$1.3382-1.86823$
H	-2.39501	$1.5391-0.71687$
H	1.43035	2.651580 .50362
H	1.25196	1.87878-1.09313
H	0.69178	-0.67274-1.38484
S	-2.29126	-1.27059-1.5533
C	0.38509	-2.04152 0.22499
O	-0.29443	-2.50853 1.12807
C	0.99543	0.366452 .03975
H	1.57148	1.10152 .61908
H	-0.06618	0.547492 .22692
H	1.25131	-0.63261 2.40338
C	-3.79985	-1.47924-0.60395
C	-5.02293	-1.07674-1.15592
C	-3.77725	$-2.097660 .65584$
C	-6.21276	-1.2924 -0.45748
H	-5.0375	-0.59206-2.12779
C	-4.96801	-2.28793 1.35658
H	-2.82894	-2.42368 1.07452
C	-6.18815	$-1.892080 .80214$
H	-7.15718	-0.97703 -0.89403
H	-4.94282	-2.75973 2.33572
H	-7.11363	-2.04962 1.334991
O	1.46985	-2.7273 -0.26571
C	1.68002	-4.00685 0.33846
H	1.89733	-3.91051 1.40705
H	0.79782	-4.64262 0.22278
H	2.53186	-4.4477-0.18534
S	-1.061	3.659270 .31156
O	-0.15166	4.272741 .28373
O	-2.50458	3.601160 .55296
N	-0.52893	2.087910 .05159
C	-0.82592	4.54218-1.25568
H	-1.16378	5.56968-1.10349
H	0.23419	4.53002-1.51836
H	-1.42531	$4.06212-2.03234$
O	2.62687	0.247960 .27328
N	5.55361	-0.55786-0.26369
C	5.40756	0.045771 .11432
H	6.03518	0.938281 .16566
H	4.34016	0.283881 .23191
H	5.74431	$-0.690981 .84692$
C	6.97995	$-0.92176-0.52354$
H	7.30555	$-1.646760 .22505$
H	7.0609	-1.35796-1.52116
H	7.59563	-0.0222-0.46069
C	4.6734	-1.78431-0.34695

H	4.76567	-2.20389	-1.35096
H	5.02614	-2.50558	0.39371
H	3.64638	-1.45699	-0.14017
C	5.07395	0.44726	-1.28527
H	5.70412	1.33654	-1.21163
H	5.17357	-0.00045	-2.27656
H	4.02468	0.66342	-1.03449

TS ${ }^{\text {D }}$ (3R*,4S*, 5S*)

C	-1.48299	0.51572	-0.63755
C	-1.18839	-0.73026	0.20691
C	0.27264	-1.11396	0.27061
C	1.33042	0.52352	0.80411
C	0.73373	1.56453	-0.15882
H	-1.54197	-0.54535	1.22447
H	-1.2017	0.32337	-1.67936
H	-2.54653	0.75049	-0.57754
H	1.15434	2.53663	0.11465
H	1.06134	1.30633	-1.17533
H	0.49127	-1.80732	1.08144
S	-2.22061	-2.18312	-0.41635
C	0.92946	-1.51574	-0.97334
O	0.71705	-1.09351	-2.10326
C	0.91527	0.69904	2.26522
H	1.38259	1.61742	2.64918
H	-0.16394	0.79532	2.40465
H	1.28766	-0.14227	2.85883
C	-3.86706	-1.75116	0.15602
C	-4.86287	-1.41054	-0.77015
C	-4.18999	-1.79497	1.52075
C	-6.15798	-1.1179	-0.33819
H	-4.6151	-1.37592	-1.82687
C	-5.48003	-1.4851	1.95033
H	-3.42802	-2.0795	2.24094
C	-6.46821	-1.14896	1.02194
H	-6.92169	-0.85547	-1.06588
H	-5.7167	-1.51593	3.01088
H	-7.47445	-0.91306	1.35797
O	1.93724	-2.427	-0.74693
C	2.61679	-2.85643	-1.92497
H	1.92398	-3.32218	-2.63238
H	3.10567	-2.0182	-2.4335
H	3.35758	-3.58919	-1.59352
S	-1.41682	3.18393	-0.28384
O	-0.56516	4.14454	0.42602
O	-2.845	3.0723	0.02508
N	-0.734	1.66542	-0.08646
C	-1.28975	3.57366	-2.05034

H	-1.73113	4.56156	-2.19971
H	-0.23658	3.5827	-2.3393
H	-1.84087	2.82445	-2.62269
O	2.60113	0.31894	0.60438
N	5.62851	-0.27341	0.49512
C	5.34635	0.84436	1.47182
H	5.87488	1.73799	1.13272
H	4.2569	0.98573	1.46935
H	5.71507	0.54165	2.45429
C	5.11212	0.13338	-0.86668
H	5.30646	-0.68474	-1.56322
H	4.0357	0.32107	-0.74999
H	5.65165	1.02934	-1.1819
C	4.88239	-1.50907	0.94731
H	5.24944	-1.78258	1.93905
H	3.81751	-1.24365	0.95993
H	5.08725	-2.3159	0.23643
C	7.09681	-0.54774	0.43137
H	7.61563	0.35626	0.10616
H	7.44873	-0.84116	1.42236
H	7.27791	-1.35571	-0.28021

TS ${ }^{\text {A }}$ (3R*,4R*,5R*)

C	0.53322	-1.01517	-2.10965
C	0.80245	0.29053	-1.3523
C	-0.11227	1.41268	-1.73938
C	-2.04014	0.63573	-1.41205
C	-1.91545	-0.60587	-2.31765
H	0.72818	0.10461	-0.28128
H	0.68925	-0.86398	-3.18576
H	1.24276	-1.77951	-1.78455
H	-2.86214	-1.15437	-2.27066
H	-1.73665	-0.32135	-3.36173
H	-0.08877	1.69673	-2.79179
S	2.62935	0.73792	-1.64355
C	-0.10859	2.5375	-0.82413
O	0.13583	2.49652	0.38222
C	-2.92857	1.71068	-2.04083
H	-2.87901	2.63359	-1.45882
H	-2.65622	1.93995	-3.07639
H	-3.96964	1.35522	-2.02539
O	-2.17558	0.40919	-0.15992
C	3.42207	0.17093	-0.1381
C	4.47386	-0.75229	-0.20935
C	3.04923	0.69602	1.11011
C	5.14572	-1.14628	0.95004
H	4.76199	-1.15892	-1.17447
C	3.71259	0.28278	2.26537

H	2.246761 .42782	1.1576
C	4.76399 -0.63529	2.19095
H	$5.96243-1.8608$	0.88191
H	3.420920 .69571	3.22865
H	5.2843 -0.94599	3.09336
O	-0.50566 3.70738	-1.42144
C	-0.57679 4.83936	-0.55602
H	0.394145 .04233	-0.09332
H	-0.87607 5.67783	-1.18841
H	-1.31387 4.68719	0.23967
S	-1.11055 -2.67239	-0.7527
O	-2.56164-2.83508	-0.58937
O	-0.26082-2.45936	0.43425
N	-0.83861-1.53236	-1.94848
C	-0.49459 -4.17984	-1.53812
H	-0.59936-4.9871	-0.80964
H	-1.09801-4.37831	-2.42484
H	$0.55642-4.05341$	-1.8043
N	-2.0727 0.04202	2.99521
C	-2.07399 -0.14926	4.47721
H	-3.10541-0.1765	4.83491
H	-1.5744 -1.09103	4.7122
H	-1.53984 0.68025	4.94466
C	-2.81862-1.09239	2.33029
H	-2.82253 -0.90129	1.25469
H	-2.29367-2.02326	2.54576
H	-3.8308 -1.11684	2.74128
C	-0.65077 0.07715	2.48172
H	-0.70133 0.30665	1.41812
H	-0.11605 0.86171	3.01934
H	-0.19634 -0.89949	2.64704
C	-2.74109 1.34537	2.63323
H	-2.71213 1.42032	1.5401
H	-3.76542 1.32351	3.01287
H	-2.18157 2.15959	3.09794

Int $^{\text {A }}$ (3R*,4R*,5R*)

C	0.64673800	-1.24585100	-1.88781900
C	0.94212500	0.06658000	-1.14873900
C	0.07822600	1.22746000	-1.65950200
C	-1.48623100	0.81760700	-1.58458500
C	-1.63446600	-0.49441000	-2.41478500
H	0.76381600	-0.06481300	-0.08229400
H	0.97686200	-1.16458800	-2.93190400
H	1.21542000	-2.05864400	-1.42964400
H	-2.67496600	-0.81761400	-2.35878700
H	-1.36876100	-0.35434400	-3.47351400
H	0.33749200	1.46621300	-2.69851400

S	2.75492200	0.46061700	-1.36118900
C	0.31108000	2.45609400	-0.81533200
O	0.50341900	2.47775900	0.38660700
C	-2.33330000	1.89680800	-2.30691000
H	-2.27246300	2.84869100	-1.77102300
H	-2.02940600	2.07347800	-3.34774500
H	-3.38195100	1.57569200	-2.29969500
O	-1.86939900	0.62215500	-0.30761200
C	3.47572000	-0.12980700	0.17280800
C	4.52366100	-1.05793100	0.12210600
C	3.06012100	0.37937300	1.41259200
C	5.15055100	-1.47432100	1.29851700
H	4.84214400	-1.45255000	-0.83838400
C	3.67730200	-0.05828800	2.58413300
H	2.26314400	1.11682400	1.44506900
C	4.72533400	-0.98133400	2.53246600
H	5.96411800	-2.19366600	1.24862700
H	3.34944200	0.33724100	3.54259700
H	5.20855400	-1.31147400	3.44834900
O	0.24630400	3.59165900	-1.55580600
C	0.42767500	4.81159400	-0.82711700
H	1.40136300	4.82192000	-0.32927300
H	0.36889500	5.60930300	-1.56903100
H	-0.35489600	4.93485500	-0.07247500
S	-1.36164400	-2.60828700	-0.71878100
O	-2.83007400	-2.56215100	-0.73085800
O	-0.62821200	-2.4649200	0.55269000
N	-0.78318400	-1.59064800	-1.92266300
C	-0.88588400	-4.22363500	-1.37923400
H	-1.18881800	-4.97360400	-0.64489700
H	-1.40547400	-4.37677500	-2.32590700
H	0.19601100	-4.25877400	-1.52124800
N	-2.71463300	0.42831700	2.65548100
C	-3.12830600	0.30872700	4.08429700
H	-4.18791200	0.55796300	4.17375500
H	-2.95966600	-0.71744500	4.41704500
H	-2.53298400	0.99656600	4.68851800
C	-3.52606400	-0.51409700	1.79380700
H	-3.20395000	-0.34829200	0.75724300
H	-3.31324000	-1.53723000	2.10531300
H	-4.58316200	-0.27987600	1.94366000
H	-1.24741700	0.09248500	2.50410400
C	-1.01235600	0.24311400	1.44391700
H	-3.32875600	2.51361000	2.76471600
H	-0.67988600	0.76595500	3.15001300
H	-1.09806900	-0.94823700	2.79234500
H	-2.92835500	1.83512100	2.15381900
H	-3.9997400	1.82950600	1.10424700
H	2.07697500	2.25077900	
H			

[^0]: ${ }^{1}$ H. E. Gottlieb, V. Kottlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512-7515.
 ${ }^{2}$ a) E. J. Corey, F. Xu, M. C: Noe, J. Am. Chem. Soc. 1997, 119, 12414-12415; b) E. J. Corey, M. C. Noe, Org. Synth 2003, 80, 38-45.

[^1]: ${ }^{3}$ a) F. Serpier, B. Flamme, J.-L. Brayer, B. Folléas, S. Darses, Org. Lett. 2015, 17, 1720-1723; b) F. Serpier, J.L. Brayer, B. Folléas, S. Darses, Org. Lett. 2015, 17, 5496-5499.
 ${ }^{4}$ G. H. Lee, E. B. Choi, E. Lee, C. S. Pak, J. Org. Chem. 1994, 59, 1428-1443.
 ${ }^{5}$ M. D. Brown, D. W. Gillon, G. D. Meakins, G. H. Whitham, J. Chem. Soc. Perkin Trans 1985, 1, 1623-1625.

[^2]: ${ }^{6}$ E. J. Corey, M. C. Noe, Org. Synth 2003, 80, 38-45.

[^3]: ${ }^{7}$ Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. J. Phys. Chem. B 2009, 113, 6378-6396.
 ${ }^{8}$ (a) R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2011, 115, 14556-14562; (b) S. Grimme, Chemistry-Eur. J. 2012, 18, 9955-9964; (c) M. L. Laury, S. E. Boesch, I. Haken, P. Sinha, R. A. Wheeler, A. K. Wilson. J. Comput. Chem. 2011, 32, 2339-2347. M. Mancinelli, R. Franzini, A. Renzetti, E. Marotta, C. Villani, A. Mazzanti RSC Adv. 2019, 9,18165-18175.

[^4]: ${ }^{9}$ For a review see: H. D. Flack, G. Bernardinelli, Chirality, 2008, 20, 681-690
 ${ }^{10}$ For reviews see: a) G. Bringmann, T. Bruhn, K. Maksimenka, Y. Hemberger, Eur. J. Org. Chem. 2009, 27172727. b)T. D. Crawford, M. C. Tam, M. L. Abrams, J. Chem. Phys. A 2007, 111,12057-12068. c) G. Pescitelli, L. Di Bari, N. Berova, Chem. Soc. Rev. 2011, 40, 4603-4625. d) A. Mazzanti, D. Casarini, D. WIRES Comput. Mol. Sci.2012, 2, 613-641 e) S. Superchi, P. Scafato, M. Górecki, G. Pescitelli. Curr. Med. Chem. 2018, 25, 287320.

[^5]: ${ }^{11}$ T. Yanai, D. Tewand, N. Handy, Chem. Phys. Lett. 2004, 393, 51-57.
 ${ }^{12}$ a) M. Meazza, M. E. Light, A. Mazzanti, R. Rios. Chem. Sci. 2016, 7, 984-988; b) P. Gunasekaran, S. Perumal, J. Carlos Menéndez, M. Mancinelli, S. Ranieri, A. Mazzanti, J. Org. Chem. 2014, 79, 11039-11050.

[^6]: ${ }^{13}$ Gaussian 16, rev A.03. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
 ${ }^{14}$ P. Yu, C. Q. He, A. Simon, W. Li, R. Mose, M. K. Thøgersen, K.A. Jørgensen, K. N. Houk. J. Am. Chem. Soc. 2018, 140, 13726-13735.
 ${ }^{15}$ a) Y. Zhao, D.G Truhlar, Phys. Chem. Chem. Phys. 2008, 10, 2813-2818; b) R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2011, 115, 14556-14562; c) S. Grimme, Chemistry-Eur. J. 2012, 18, 9955-9964.

[^7]: ${ }^{16}$ Reference 10 in the manuscript

[^8]: ${ }^{\mathrm{a}}$ B3LYP/6-31G(d). ${ }^{\mathrm{b}}$ SMD-M06-2X/6-311+G(d)

[^9]:

[^10]:

