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Objective: Assessing brain connectivity from electrophysiological signals is of great

relevance in neuroscience, but results are still debated and depend crucially on how

connectivity is defined and on mathematical instruments utilized. Aim of this work is to

assess the capacity of bivariate Transfer Entropy (TE) to evaluate connectivity, using data

generated from simple neural mass models of connected Regions of Interest (ROIs).

Approach: Signals simulating mean field potentials were generated assuming two, three

or four ROIs, connected via excitatory or by-synaptic inhibitory links. We investigated

whether the presence of a statistically significant connection can be detected and if

connection strength can be quantified.

Main Results: Results suggest that TE can reliably estimate the strength of connectivity

if neural populations work in their linear regions, and if the epoch lengths are longer than

10 s. In case of multivariate networks, some spurious connections can emerge (i.e., a

statistically significant TE even in the absence of a true connection); however, quite a good

correlation between TE and synaptic strength is still preserved. Moreover, TE appears

more robust for distal regions (longer delays) compared with proximal regions (smaller

delays): an approximate a priori knowledge on this delay can improve the procedure.

Finally, non-linear phenomena affect the assessment of connectivity, since they may

significantly reduce TE estimation: information transmission between two ROIs may be

weak, due to non-linear phenomena, even if a strong causal connection is present.

Significance: Changes in functional connectivity during different tasks or brain

conditions, might not always reflect a true change in the connecting network, but rather

a change in information transmission. A limitation of the work is the use of bivariate TE.

In perspective, the use of multivariate TE can improve estimation and reduce some of

the problems encountered in the present study.

Keywords: bivariate transfer entropy, connectivity, neural mass models, excitatory and inhibitory synapses,

information transfer, causality, non-linear neural phenomena, Trentool software

INTRODUCTION

Cognitive phenomena originate from the interaction among several mutually interconnected,
specialized brain regions, which exchange information via long range synapses. Consequently,
the problem of assessing brain connectivity during different cognitive tasks is playing a crucial
role in neuroscience nowadays, not only to understand mechanisms at the basis of normal
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cognitive functions, but also to identify alterations in pathological
states. Connectivity is often estimated from fMRI neuroimaging
techniques (Horwitz, 2003; Friston, 2009; van den Heuvel
and Hulshoff Pol, 2010). However, thanks to their higher
temporal dynamics, electrophysiological data, obtained from
electro- or magneto-encephalography, joined with methods
for cortical source localization (Koenig et al., 2005; Astolfi
et al., 2007; Sakkalis, 2011; Rossini et al., 2019) are receiving
increasing attention.

The problem of assessing connectivity from data, however, is
a difficult one, since the concept of connectivity has ambiguous
definitions (see Horwitz, 2003) and results depend crucially
on how connectivity is defined and on the mathematical
instruments utilized.

Although there are different ways to define connectivity,
in the following we will refer to functional connectivity (FC)
defined as “the statistical dependence or mutual information
between two neuronal systems” (Friston et al., 2013). A distinct
definition of connectivity, stronger than FC (see Valdes-Sosa
et al., 2011; Friston et al., 2013), is effective connectivity: it refers
to the influence that one neural system exerts on another and is
based on an explicit model of causal inference, usually expressed
in terms of differential equations. The most popular method
to evaluate effective connectivity is dynamical causal modeling
(DCM). DCM assumes that the signals are produced by a state
space model (see Table 1 in Valdes-Sosa et al., 2011, for a
list of possible equations used in recent papers). However, this
framework requires strong a priori knowledge about the input
to the system and the connectivity network. To overcome this
limitation, the more suitable network is often chosen among
various possible alternatives using Bayesian selection methods
(Penny et al., 2004).

However, despite these dichotomous definitions, the
fundamental interest in all FC research is still “understanding
the casual relationship among neural entities,” as stressed by Reid
et al. (2019) recently. Although the kind of causal inference that
can be inferred with FC methods is limited and only indirect,
several FC measures can provide some useful information regard
to causality (recent assessment papers are Wang et al., 2014;
Bastos and Schoffelen, 2015; Reid et al., 2019). Indeed, among
the different ways to calculate FC, some of them are based on the
concept of causality (although without using state-space models),
as originally introduced by Wiener (1956) and subsequently by
Granger (1980). According to their definition, we can say that a
temporal series X has a causal influence on a second temporal
series Y if the prediction on the future of Y is improved by
knowledge on the past of X. Interestingly, the technical links
between Granger causality and DCM have also been recently
incorporated in the state space framework (Bajaj et al., 2016) with
reference to functional magnetic data in resting states. Results
of these authors indicate a qualitative consistency between
Granger causality and DCM, and show that both can be used
to estimate directed functional and effective connectivity from
fMRI measurements in a reliable way.

One of the most promising method to infer FC from data
is Transfer entropy (TE). TE implements the causal principle
expressed above within the framework of information theory, by

using conditional probabilities (Schreiber, 2000; Vicente et al.,
2011, for more details): if a signal X has a causal influence on
a signal Y, then the probability of Y conditioned on its past is
different from the probability of Y conditioned on both its past
and the past of X. The same idea can be expressed observing that
entropy on the present measurement of Y is reduced if knowledge
of the past of X is added to knowledge of the past of Y. A great
advantage of TE compared with the other methods is that it
does not require any prior assumption on data generation (i.e.,
it is model-free).

For this reason, TE is largely used in neuroscience today
to assess connectivity from EEG/MEG data sets in conditions
lacking any prior assumption. Also some variants of TE (such
as Phase Transfer Entropy, Lobier et al., 2014) have been
proposed recently.

Nevertheless, the use of TE to assess connectivity may also
exhibit some drawbacks, besides definite advantages. First, as
recognized in several papers (Schindler et al., 2007; Vicente et al.,
2011; Wollstadt et al., 2014), estimation of TE from data can
be affected by various elements of the estimation procedure;
among the others: the embedding dimension and the delay in the
reconstruction of the state space, the quantity of data samples
available, the method adopted to estimate high-dimensional
conditional probabilities.

Second, it is unclear how much TE is affected by spurious
information, such as that arising from shared inputs or from
a cascade among several populations, or due to a redundancy
in the population processing (Wibral et al., 2014). To reduce
the previous aspects, multivariate TE methods have also been
proposed recently (Montalto et al., 2014).

Third, and maybe more important, TE is not a direct measure
of coupling strength, and should be used with extreme caution to
measure a coupling parameter (such as the weight of synapses
among two neural populations). Actually, TE measures how
much information is transferred from X to Y: this concept is
of the greatest value to understand how the brain performs
its computation by exchanging information between different
regions (see also Lizier and Prokopenko, 2010), but in some
conditions may be intrinsically different from causal strength.

Once established that TE is a valid tool to investigate
the computational aspects of the brain, i.e., the transfer of
information between different areas, in the present study we
wish to critically analyse how good it may be at estimating a
biophysical coupling property too, i.e., the connection strength
between Regions of Interest (ROIs). To this end, a powerful
way is to challenge TE with the use of simulated data. These
should mimic real neuroelectric signals (especially for what
concerns their frequency content), and should be generated via
biologically inspiredmodels with assigned coupling terms among
neural units.

Indeed, many such studies have been published in the
last decade, to compare FC estimated values with a “true”
connectivity topology incorporated in simulation models,
providing quite a large set of validation information. In the
following, we will first encompass a synthetic analysis of
the recent literature, to point out the present major gaps
and elements which, in our opinion, deserve further analysis
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(especially, with reference to TE). Then, the aim of this work
is better delineated, as it emerges from the absences in the
present literature.

LITERATURE CRITICAL REVIEW

Summary of Previous Studies
Several studies have been performed in recent years, to compare
the results obtained with the FC estimation methods, with the
“true” connectivity values incorporated in simulation models
(used as a sort of “ground truth”). However, most of these
studies were aimed at exploring whether FC can discover
the presence of connectivity links (ON/OFF), using receiver
operating characteristic (ROC) curves. Just in a few of them, the
relationship between the FC index and the connectivity strength
was explored, although generally in rather a qualitative way.

Two main classes of studies will be considered in the
following, depending on the simulation model adopted:
those which use spiking neurons, mainly aimed at analyzing
connectivity in neural cultures, and those using neurons with
continuous outputs, more oriented to the analysis of connectivity
among larger regions of interest. As to the studies with spiking
neurons, in the following we will limit our analysis just to those
which use TE. A wider approach is used for the selection of
studies simulating larger cortical ROIs.

Studies With Spiking Neurons
Ito et al. (2011) applied the TE with multiple time delays to
a network model containing 1,000 Izhikevich’s neurons. They
observed that their measures generally increase with synaptic
weights, but there is substantial variability in the obtained results.
Moreover, in their work the synaptic weights were bimodally
distributed around just two values (0 and a positive one).

Garofalo et al. (2009) compared the estimation obtained
with various methods (Transfer Entropy, Joint Entropy, Cross
Correlation, andMutual Information) first in a neuronal network
model made up of 60 synaptically connected Izhikevic neurons,
and then in cultures of neurons. In the model they also included
inhibitory connections. The comparison was performed with
ROC curves. Their results suggest that TE is the best method,
both with the excitatory and excitatory+inhibitory models, but
it recognizes also some strong indirect connections not classified
as true positive. Moreover, it exhibits problems in identifying
inhibitory connections.

Orlandi et al. (2014) also used realistic computational models
that mimicked the characteristic bursting dynamics of neural
cultures, and extended previous works by attempting the
inference of both excitatory and inhibitory connectivity via TE.
The quality of the reconstruction was quantified through a ROC
analysis. They showed that the most difficult aspect is not the
identification of a link, but rather its correct labeling (excitatory
or inhibitory). Hence, they suggested a two-step analysis (for
instance before and after the use of pharmacological blocking
inhibitory connections).

Timme and Lapish (2018) analyzed the strength of
information theory methods using both small networks of
neurons and larger 1,000 neuron models of Izhikevich type (800

excitatory, 200 inhibitory). They concluded that TE can be used
to measure information flow between neurons. More important,
they suggested the use of partial information decomposition
to move beyond pair of variables to group of variables, and
found that this method can be used to break down encoding
by two variables into redundant, unique and synergistic parts.
The last aspect will be commented in section Discussion of the
present paper.

All previous studies suggest that TE can be a powerful
instrument to infer the existence of connections among neurons.
However, the application of these studies is limited to cultures of
about a thousand of units. Of course, the neuroelectric dynamics
of an entire ROI, resulting from millions of neurons, is largely
different. To study this aspect, higher levels models, with just
a few states variables per ROI, are generally used, particularly
neural mass models (NMMs).

Studies Using Neural Mass Models
A pioneering study which evaluated functional connectivity
using neural mass models was performed by David et al. (2004).
The authors used cross-correlation, mutual information, and
synchronization indices (hence, they did not evaluate TE). For
simplicity, they used a symmetric configuration and did not
consider the problem of inhibitory connections among ROIs.
The results suggest that each measure is sensitive to changes in
neuronal coupling, with a monotonic dependence between the
functional connectivity measures and the coupling parameter,
and that the statistical power of each measure is an increasing
monotonic function of the signal length.

Studies quite similar to the present one, although with a
simpler aim, and without TE as a target, have been performed
by others (Ansari-Asl et al., 2006; Wendling et al., 2009) (indeed,
they used either regression methods or synchronization indices).
Various models were employed to generate signals: among
the others, two NMMs (but with only two populations each)
connected with an excitatory coupling parameter. The authors
explored the relationship between the coupling parameter and
the estimated FC and observed that the regression methods
exhibit good sensitivity to the coupling parameter. However, in
that study the characterization of the direction of coupling was
not dealt with, inhibitory connections were not incorporated, and
the authors did not test TE accuracy.

A systematic study on the performance of various methods
for FC estimation was performed by Wang et al. (2014).
They compared the performance of 42 methods (including,
among the others, the pairwise directed TE and the partial
TE), using five different models to generate signals (including
a three population NMM). Moreover, they used a connectivity
structure with 5 nodes. Although this is the most complete study
presently available, it limits the analysis to the performance of
the connectivity estimate on an ON/OFF basis, using ROC curves
(i.e., they did not evaluate whether the estimated FC values are
sensitive to the strength of the coupling parameters). Their results
suggest that, for the NMM simulations, Granger causality and TE
are able to recover the underlying model structure, with TEmuch
less time consuming. However, TE failed when simulations were
performed with highly non-linear (Rossler or Hénon) equations.
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The previous summary highlights several important points.
First, various methods do exist to infer FC from signals, each
with its own virtues and limitations (but see also Reid et al.,
2019). However, in many studies TE emerges as one of the most
effective methods, which joins benefits of good sensitivity and
efficient computation time. However, despite the excellent works
performed until now, several problems are still insufficiently
clarified, which justify further studies. These questions are
stressed below.

First, no study analyzed carefully the relationship between
the TE metrics and the connectivity strength using NMMs to
simulate neuroelectrical activity of entire ROIs. Actually, neither
(David et al., 2004) nor (Wendling et al., 2009) used TE in their
analysis, whereas (Wang et al., 2014) (who tested TE) did not
evaluate the sensitivity vs. the connection strength.

Second, despite some authors analyzed the presence of
excitation + inhibition in models of spiking neurons (Garofalo
et al., 2009; Orlandi et al., 2014), we are not aware of any study
in which inhibition between ROIs is properly taken into account
in the analysis of FC. Indeed, although long-range connections
between ROIs are mediated by synapses from pyramidal neurons
(hence, they are all excitatory in type) one region can inhibit
another region by targeting into the population of inhibitory
interneurons. In particular, it is known that lateral connections
in the cortex target all population types, in different layers of
a cortical column (Felleman and Van Essen, 1991; David et al.,
2005). Although the role of various connections types in the
propagation of brain rhythms has been carefully studied with
NMMs (David and Friston, 2003; David et al., 2005; Zavaglia
et al., 2008, 2010; Ursino et al., 2010; Cona et al., 2011) we are
not aware of any NMM study which investigates the role of
long-range inhibition on FC estimation.

Finally, and more important, several studies underline the
difficulty of FC methods (and in particular, TE) to deal with
strongly non-linear problems. For instance (Wang et al., 2014)
observed that TE fails to find a proper connectivity topology
when signals are generated with Rössler equations or Hénon
systems, i.e., with strongly non-linear models. By comparing TE
computed at various time lags to values computed with surrogate
linearized data (Nichols et al., 2005) observed that TE is quite
sensitive to the presence of non-linearity in a system. Indeed,
although NMMs have been frequently used in the domain of
FC assessment, to our knowledge all previous papers used these
models in “quite linear conditions,” i.e., without inducing strong
alterations in the working point and/ormoving dynamically from
linear vs. saturation activity regions. We speculate that the same
model (with assigned connectivity strength) can produce largely
different values of FC estimation depending on the working
conditions, on noise variance and on the amplitude of the
input changes.

Objectives and Work Organization
Taking in mind the previous limitations of former works, the
present study was conceived with the following major aims: (i) to
analyse the relationship between the TE metrics and the strength
of the connectivity parameters using NMMs, in order to assess
whether changes in TE from one trial to another can be used to

infer an underlying change in connectivity between ROIs; (ii) to
study the role of synapses targeting to excitatory vs. inhibitory
populations in affecting FC; (iii) to reveal how non-linearities
can dramatically affect the inference of connection strength,
leading to different conclusions on connectivity among regions
depending on the particular working condition. This point is
of value to highlight that TE is actually a powerful metrics to
assess information transfer and computation in the brain, but in
some cases may be different from coupling strength. We think
that neither of these points has been thoroughly assessed in
previous papers.

To reach these objectives, we evaluated FC with bivariate
TE using data generated from simple NMMs of connected
populations. In particular, the values of TE between two ROIs
estimated from simulated data were compared with the strength
of the coupling terms used in the model, at different values of this
strength. We investigated different network topologies (with two,
three or four ROIs) and the role of time delay, signal length, and
changes in external input (mean value and noise variance). The
latter aspect is of pivotal value to assess the role of non-linearities.

TE was estimated using Trentool, a software package
implemented as a Matlab toolbox under an open source license
(Lindner et al., 2011). Simulated data were generated using
the model of neural masses described in Ursino et al. (2010)
and Cona et al. (2011) which represents a good compromise
between biological reliability and simplicity, and is able to
simulate realistic spectra of neuroelectric activity in the cortex
(including alpha, beta, and gamma bands). In particular, in
this work the internal parameters of this model were assigned
to simulate spectra with a strong component in the beta
band and some component in the gamma band, as often
measured in motor, premotor and supplementary motor cortices
(Ursino et al., 2010; Cona et al., 2011).

The paper is structured as follows. First, the main theoretical
aspects of transfer entropy are described. Subsequently, equations
of the neural model are given, with parameter numerical values.

In section results, TE estimates obtained with Trentool on
simulated data were used not only to test the performance of
this metric in detecting the presence or absence of a connection
(ON/OFF evaluation by means of statistical tests against surrogate
signals), but also to compare the TE values of the detected
connections with the strength of the coupling terms in the
model. Results are then critically discussed to emphasize in which
conditions TE can provide reliable indications on connectivity,
and in which conditions information transfer is different from
connection strength. Limitations of this work (such as the use
of a bivariate estimator) are also debated and lines for further
work delineated.

TRANSFER ENTROPY: THEORETICAL AND
PRACTICAL ASPECTS

In the following, we first summarize the main theoretical
aspects of transfer entropy, as a model-free method to estimate
connectivity. Then, some practical issues of the estimation
procedure adopted by Trentool are discussed.
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General Theory
Throughout this section, we will use a lower case letter to denote
a single (scalar) variable, and an upper case letter to denote a
vector. Moreover, we will use the boldface to represent a random
variable (or a random vector) and no-bold to represent the
realization of these variables during the experiment.

Let us consider a discrete random variable x, with realization
x ∈ Sx and probability distribution p(x) over its outcomes. The
amount of information gained by observation of the event x is

h(x) = log2
1

p(x)
= −log2 p(x)

For instance, if a discrete event has probability p(x)= 1/8= 2−3,
its realization provides three bits of information.

Shannon entropy of the random variable x is computed as the
average value of the information over all possible realizations of
x, i.e.,

S(x) =
∑

x∈Sx

p(x)log2
1

p(x)
= −

∑

x∈Sx

p(x)log2 p(x)

The same definition of Shannon entropy, of course, can be
applied in case of conditional probability. Let us assume that
we observe the outcome of a discrete random variable y (with
probability distribution p(y), and y ∈ Sy) after we have already
observed a realization x of the other random variable x. The
amount of information gained by the observation y becomes

h(y/x) = −log2 p(y/x)

and, by computing the average value over all possible realization
of x and y, we have

S(y/x) = −
∑

x∈Sx

p(x)
∑

y∈Sy

p(y/x)log2 p(y/x)

= −
∑

x∈Sx
y∈Sy

p(x, y)log2 p(y/x)

Mutual information of x and y is evaluated by computing the
difference between the entropy of y, and the conditional entropy
of y/x.Of course, the entropy of ymust be greater (or at lest equal)
than the entropy of y/x, since observation of a realization x can
reduce the amount of information provided by the observation
y. The difference between the two entropies is considered as a
sort of information that x and y share. Accordingly, we can define
mutual information as follows

I(y, x) = S(y)− S(y/x)

Using the Bayes theorem, one can demonstrate that

I(y, x) = I(x, y) = S(x)− S(x/y)

i.e., mutual information does not contain any
directional evidence.

The same concept of mutual information can be restated
assuming that both x and y are conditioned by the value
of a third random variable, z. We obtain the conditioned
mutual information

I(y, x/z) = S(y/z)− S(y/x, z)

Let us now apply the same concepts to two time series
generated by two stochastic processes. From each process we
can define a time-dependent random state vector (Xm(t) and
Yn(t), respectively), whose particular observation can be written
as follows (see Takens, 1980)

Xm(t) = [x(t) x(t − 1t) x(t − 21t) ... x(t − (m− 1)1t) ]

Yn(t) = [y(t) y(t − 1t) y(t − 21t) ... y(t − (n− 1)1t) ]

where m and n are the embedding dimensions, describing how
many past samples are used (these are the dimensions of the so-
called delay embedding space) and 1t is the embedding delay.
According to the previous equations, Xm(t) andYn(t) contain the
present andm-1 (or n-1) past samples of the random process.

Let us now consider the random variable y(t) representing
a present sample of the stochastic process, conditioned by its n
past samples; the conditional probability is p

(

y(t)/Yn(t − 1t)
)

and Shannon entropy is S
(

y(t)/Yn(t − 1t)
)

. The idea is that, in
case of causality from X to Y, the probability of y(t) conditioned
by both Xm(t − 1t) and Yn(t − 1t) should be different from
the probability of y(t) conditioned by its past only. This effect
can be quantified as a difference in Shannon entropy, i.e., by
evaluating the additional information that the past of X provides
on the present of Y. This leads to the following definition of
Transfer Entropy

TE(X → Y) = I
(

y(t),Xm(t − 1t)/Yn(t − 1t)
)

= S
(

y(t)/Yn(t − 1t)
)

− S
(

y(t)/Xm(t − 1t),Yn(t − 1t)
)

TE is asymmetric and naturally incorporates direction of
information transfer from X to Y.

The previous equation considers the influence that the past
of Y and X can have on the present sample of Y. However, as
rigorously demonstrated by Wibral et al. (2013) this equation
cannot be used to express any causal relationship. In particular,
in neural problems, the influence of a signal on another is often
characterized by a pure delay (say d) which represents the time
necessary for action potentials to travel along axons from the pre-
synaptic region to the post-synaptic one. Assuming that the time
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delay can be approximated by l sampling periods (i.e., d = l·1t),
we can use the delayed signal Xm(t − d) = Xm(t − l · 1t) in the
definition of TE instead of Xm(t). In most cases, l is not known,
and represents a parameter that should be estimated from data
(see below).

We thus can write

TE(X → Y , l) = I
(

y(t),Xm(t − l · 1t)/Yn(t − 1t)
)

=

= S
(

y(t)/Yn(t − 1t)
)

− S
(

y(t)/Xm(t − l · 1t),Yn(t − 1t)
)

Wibral et al. (2013) rigorously demonstrated that the predictive
information transfer from X to Y over a time delay d is properly
captured by this equation (aligning with Wiener’s principle).

The previous equation can be rewritten as the Kullback-
Leibler divergence between the two probability distributions
(Schreiber, 2000)

TE(X → Y , l) =
∑

y(t)
Yn(t−1t)
Xm(t−l·1t)

p
(

y(t),Yn(t − 1t),Xm(t − l · 1t)
)

log2
p
(

y(t)/Yn(t − 1t),Xm(t − l · 1t)
)

p
(

y(t)/Yn(t − 1t)
)

or also as a representation of four Shannon entropies:

TE(X → Y , l) = S
(

Xm(t − l · 1t),Yn(t − 1t)
)

− S
(

y(t),Xm(t − l · 1t),Yn(t − 1t)
)

+

+ S
(

y(t),Yn(t − 1t)
)

− S
(

Yn(t − 1t)
)

where S(X,Y) is used to denote the Shannon entropy of the joined
probability of X and Y.

Practical Aspects on TE Estimation
As it is clear from the last equation, the estimation of TE from
finite data samples requires the evaluation of various joint and
marginal probability distributions. This may be a difficult task,
since the probability densities implicated in this equation can
have a very large dimensionality (up to n + m + 1). Moreover,
several parameters are not known a priori and must be estimated;
in particular, the estimate of TE can be seriously affected by
the choice of the embedding dimensions (n and m), of the
sampling period (1t) and of the delay (d = l·1t). Furthermore,
TE estimation can have a residual bias. To eliminate this bias,
it is important to compare the TE estimated from empirical
data, with that obtained from surrogate data sets. Surrogate data
sets should incorporate no information transfer from X to Y,
but maintain the same statistical properties as the original data.
Comparison between the TE obtained from the original data and
those obtained from surrogate data also allows computation of a
p-value to test the statistical significance of the obtained TE value.

The estimates of TE from the outputs of our neural mass
model (see section Transfer Entropy: Theoretical and Practical

Aspects), and their statistical significance were performed using
the software package Trentool (Lindner et al., 2011; Vicente
et al., 2011). The same package also provides an estimation of
the time delay, l, and of the embedding dimensions, m and
n, as the values which maximize TE. In this tool, joint and
marginal probability distributions are computed using a k-th
nearest neighbor estimator. Furthermore, the method contains
two additional parameters: the mass for the nearest-neighbor
search and a correction to exclude autocorrelation effects from
the density estimation. Specifically, the estimate of the bivariate
TE for each model configuration was performed as follows. The
same model configuration (corresponding to a specific pattern
of connectivity among a few ROIs) was run 10 times creating
10 trials of signals; each trial contained the temporal patterns
of the local field potentials (over a given time interval, see
below) in the involved ROIs, and affected by a random noise.
The 10 trials were given as input to Trentool that computed
the TE values of the fed signals and of the surrogate data and
provided the p-value (permutation test) to assess whether the
TE of the simulated signals was significantly different from that
of surrogate data. Furthermore, in all simulations with more
than two ROIs, the results were subjected to a partial correction
of spurious information flow that may be introduced by the
bivariate analysis of a highly multivariate system. Namely, this
correction works on cascade effects and simple common drive
effects. To this end, we used the Trentool Graph Correction
function described in themanual (see http://www.trentool.de/ for
more details).

In section Results, we will always report the difference between
TE estimated on simulated signals, and that obtained from
surrogate data. Whenever no statistical significance was achieved
(p > 0.05) the difference was set at zero (i.e., no connection
detected). Otherwise (connection detected), the true difference is
used as an estimate of connectivity strength.

All details on the version of Trentool used and a table with
all parameters adopted in the Trentool functions can be found in
Supplementary Materials Part 1.

MODEL DESCRIPTION

In the following, equations of a single region of interest (ROI) are
described. Then, a model of several interconnected ROIs is built
from these equations.

Model of a Single Region of Interest
The model of a single Region of Interest (ROI) consists of the
feedback arrangement among four neural populations: pyramidal
neurons (subscript p), excitatory interneurons (subscript e),
inhibitory interneurons with slow and fast synaptic kinetics
(GABAA,slow and GABAA,fast, subscripts s and f, respectively).
Each population receives an average postsynaptic membrane
potential (say v) from other neural populations, and converts this
membrane potential into an average density of spikes fired by
the neurons (say z). This conversion is simulated with a static
sigmoidal relationship, which reproduces the non-linearity in
neuron behavior (the presence of a zone where neurons are silent
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FIGURE 1 | Block diagram of the neural mass model used to simulate the dynamics in a single ROI. Continuous lines with arrows denote glutamatergic excitatory

synapses, dotted lines with open circles denote GABAergic slower inhibitory synapses, while dash-dotted lines with open squares denote GABAergic faster inhibitory

synapses. Symbols Cij represent the synaptic contacts among the neural populations where the first subscript denotes the post-synaptic population and the second

subscript the pre-synaptic population. up and uf represent the exogenous inputs to the ROI (from the external environment or form other ROIs), targeting the

pyramidal and the fast inhibitory population, respectively.

(below threshold) and an upper saturation, where neurons fire at
their maximal activity).

To model dynamics in a whole ROI, the four populations
are connected via excitatory and inhibitory synapses, according
to the schema in Figure 1. Each synaptic kinetics is described
with a second order system, but with different parameter values.
We assumed three types of synapses: glutamatergic excitatory
synapses with impulse response he(t), assuming that synapses
from pyramidal neurons and from excitatory interneurons
have similar dynamics; GABAergic inhibitory synapses with
slow dynamics [impulse response hs(t)]; GABAergic inhibitory
synapses with faster dynamics [impulse response hf (t)]. They are
characterized by a gain (Ge, Gs, and Gf , respectively) and a time
constant (the reciprocal of these time constants denoted asωe,ωs,
and ωf ,, respectively). The average numbers of synaptic contacts
among neural populations are represented by eight parameters,
Cij, where the first subscript represents the target (post-synaptic)
population and the second refers to the pre-synaptic population.

In a previous work (Ursino et al., 2010) we performed a
sensitivity analysis on the role of connections linking different
ROIs, and found that the most influential connections are “from
pyramidal to pyramidal” and “from pyramidal to fast inhibitory.”
Accordingly, in this work we assume that inputs to each ROI
(say u) target only pyramidal and fast-inhibitory populations (see
Figure 1). The equations of a single ROI are written below:

Pyramidal neurons

dyp (t)

dt
= xp (t) (1)

dxp (t)

dt
= Geωezp (t) − 2ωexp (t) − ω2

e yp (t) (2)

zp (t) =
2e0

1+ e−rvp
− e0 (3)

vp (t) = Cpeye (t) − Cpsys (t) − Cpf yf (t) (4)

Excitatory interneurons

dye (t)

dt
= xe (t) (5)

dxe (t)

dt
= Geωe

(

ze (t) +
up (t)

Cpe

)

− 2ωexe (t) − ω2
e ye (t) (6)

ze (t) =
2e0

1+ e−rve
− e0 (7)

ve (t) = Cepyp (t) (8)

Slow inhibitory interneurons

dys (t)

dt
= xs (t) (9)

dxs (t)

dt
= Gsωszs (t) − 2ωsxs (t) − ω2

s ys (t) (10)

zs (t) =
2e0

1+ e−rvs
− e0 (11)

vs (t) = Cspyp (t) (12)
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Fast inhibitory interneurons

dyf (t)

dt
= xf (t) (13)

dxf (t)

dt
= Gfωf zf (t) − 2ωf xf (t) − ω2

f yf (t) (14)

dyl (t)

dt
= xl (t) (15)

dxl (t)

dt
= Geωeuf (t) − 2ωexl (t) − ω2

e yl (t) (16)

zf (t) =
2e0

1+ e−rvf
− e0 (17)

vf (t) = Cfpyp (t) − Cfsys (t) − Cff yf (t) + yl (t) (18)

The inputs to the model, up(t) and uf (t) [Equations (6), (16)]
represent all exogenous contributions coming from external
sources (either from the environment or from other brain
regions) filtered through the low-pass dynamics of the excitatory
synapses [Equations (5), (6), (15), (16), respectively]. In fact,
a common assumption in neurophysiology is that long-range
connections in the brain are always mediated via excitatory
glutamatergic synapses. In particular, up(t) is the input to
pyramidal cells and uf (t) the input to GABAA,fast interneurons.
These terms will be described below.

Model of Several Interconnected ROIs and
Connectivity Parameters
In order to study connectivity between regions, let us consider
two ROIs [each described via Equations (1)–(18)], which are
interconnected through long-range excitatory connections. The
presynaptic and postsynaptic regions will be denoted with the
superscript k and h, respectively. The generalization to more than
two regions is trivial. Throughout the manuscript, we will use the
first superscript to denote the target ROI (post-synaptic) and the
second superscript to denote the donor ROI (pre-synaptic).

To simulate connectivity, we assumed that the average spike
density of pyramidal neurons of the presynaptic area (zkp) affects

the target region via a weight factor, Whk
j (where j = p or f,

depending on whether the synapse targets to pyramidal neurons
or fast inhibitory interneurons) and a time delay, T. This is
achieved by modifying the input quantities uhp and/or uh

f
of the

target region.
Hence, we can write

uhj (t) = nhj (t)+Whk
j zkp(t − T) j = p, f (19)

nj(t) represents a Gaussian white noise (in the present work, if
not explicitly modified, we used: mean valuemj = 0 and variance
σj

2 = 9/dt, where dt is the integration step) which accounts for all
other external inputs not included in the model.

It is worth noting that the synapses Whk
p have an excitatory

role on the target region h, since they directly excite pyramidal
neurons. Conversely, synapses Whk

f
, although glutamatergic in

type, have an inhibitory role, via a bi-synaptic connection. In
particular, both connections go from the source ROI k to the
target ROI h, but in the inhibitory case this is composed of
two synapses (from pyramidal neurons in the source ROI k
to inhibitory interneurons in the target ROI h and then from
inhibitory interneurons in target ROI h to pyramidal neurons still
in ROI h). Hence, the second synapse is internal to ROI h and has
not been modified throughout this work. Hence, in the following
the general terms “excitatory connection” and “inhibitory bi-
synaptic connection” will be used to describe these two different
connections, although both glutamatergic in type. In particular,
we wish to stress that the Dale principle is always satisfied in our
model, since individual neural populations within each ROI are
either excitatory or inhibitory, and this distinction is established
a priori in the model.

In line with the notation used for the inter-region synapses, in
the following we will denote with TEhk the transfer entropy from
ROI k to ROI h, that is TEhk = TE

(

ROI k → ROI h
)

.

Assignment of Model Parameters
Parameters within each ROI were given to simulate a power
spectral density with a significant activity in the beta range (about
20Hz) and some activity in the gamma range (above 30Hz see
Figure 2). This power density is typical of supplementary and
pre-motor cortical areas (see also Zavaglia et al., 2008; Ursino
et al., 2010; Cona et al., 2011). Power spectral density was
computed by applying the Welch method on the post-synaptic
membrane potential of pyramidal neurons (i.e., on quantity vp
in Equation (4), which is representative of local mean field
potentials). Figure 2 was obtained assuming that the two ROIs
are linked with excitatory connections. Of course, power density
can change if other kinds of synaptic connections among ROIs
are implemented, still keeping these two main rhythms as they
depend on the internal parameters of each ROI.

A list of parameters for the average numbers of intra-region
synaptic contacts Cij, and for the reciprocal of synaptic time
constants, ωi, is reported in Table 1. These internal parameters
have beenmaintained constant and equal for all ROIs throughout
the following simulations.

As stated previously, for each model configuration 10
simulations were repeated and the model output signals
(post-synaptic membrane potentials vp of each ROI) of
these 10 trials fed as input to software Trentool, for TE
estimation and comparison with surrogate data. The length
of simulated signals was 60 s in general, but the effect
of signal length on TE estimation was also assessed (see
section Results). Finally, it is important to remark that for
each model configuration, the simulations were performed
using always the same 10 seeds to realize white noise;
hence TE differences among model configurations can be
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FIGURE 2 | Power spectral density simulated with the model assuming two

regions interconnected via excitatory synapses (W12
P = 40 and W21

P = 60) and

no inhibitory connections (W12
F = 0 and W21

F = 0). Parameters within the

neural mass models are reported in Table 1, and maintained for all simulations

in this work. The input to the two regions was a random white noise with zero

mean values and variance 9/dt (where dt is the integration step, hence the

power density of random noise is 9). In this conditions, the two regions exhibit

a clear oscillation in the beta range (about 20Hz) with a contribution in the

gamma range too (about 35Hz). This pattern is similar to the one observed in

premotor and supplementary motor areas (Zavaglia et al., 2008, 2010; Ursino

et al., 2010). It is worth noting that the second region exhibits greater power,

since it receives higher excitation.

TABLE 1 | Parameters setting used in the Neural Mass Model to simulate

dynamics in a single ROI.

Internal parameters

Connectivity constants

Cep 40

Cpe 40

Csp 40

Cps 50

Cfs 20

Cfp 40

Cpf 60

Cff 20

Reciprocal of synaptic time constants:

ωe 75 s−1

ωs 30 s−1

ωf 300 s−1

Synaptic gains:

Ge 5.17 mV

Gs 4.45 mV

Gf 57.1 mV

Saturation value of the sigmoid:

e0 2.5 Hz

Slope of the sigmoid:

r 0.56 mV−1

ascribed only to differences in synapses (or differences in
the input mean value or variance), not to individual random
noise realizations.

In order to gain a deeper understanding of the virtues and
limitations of TE, in all cases the results of TE estimates were
compared with those obtained with a linear delayed correlation
coefficient (DCC). For the sake of brevity, all results of the DCC
are reported in Supplementary Material Part 2.

RESULTS

Two Interconnected ROIs
A first set of simulations was performed by using two
ROIs, linked by means of reciprocal inhibitory and/or
excitatory connections.

Figure 3 depicts the TE estimated when the two ROIs are
linked via two excitatory connections, realized by means of
pyramidal-pyramidal synapses W12

P and W21
P , in the absence

of any reciprocal inhibitory link. Some aspects of the results
are noticeable: (i) when the synapse is zero, the relative TE is
negligible (i.e., not significantly different from that of surrogate
data); (ii) TE increases quite linearly with the strength of
the synapse; (iii) TE from region 2 to 1 increases moderately
when the reciprocal synapse (i.e., W21

P from ROI1 to ROI2)
increases. This effect is made evident by the greater slope
in the linear relationships of Figure 3C. By comparing the
results of the TE with those obtained with the DCC (see
Figure S3) one can observe that synapse strength estimation
with TE is more reliable and less affected by the changes in the
other synapse; DCC can discriminate between the two synapse
strengths (i.e., it is a bidirectional estimator) but estimation of
one synapse tends to increase more markedly with the increase in
the other.

Figure 4 depicts the TE estimated when the two ROIs are
linked via reciprocal bi-sinaptic inhibitory connections. Results
substantially confirm that TE increases quite linearly with
the synapse strength. However, some differences are evident
compared with the excitatory case. First, the effect of an
inhibitory connection on TE is much more efficacious than the
effect of an excitatory link. In fact, an increase in the synapse
W12

F from 0 to 25 to 30 causes an increase in TE from 0 to
∼0.06 in our simulated data. To produce the same effect, an
excitatory synapse (say W12

P ) should be increased from zero
to ∼60. Hence, in our particular model realization, inhibitory
connections are about 2-fold more efficacious in information
transmission compared with the excitatory connections. Second,
we observed a peak in the estimation of TE when one synapse
(either W12

F or W21
F ) is set at zero and the other has a value as

high as 30. Assuming that this peak represents a failure in the
algorithm accuracy, we repeated the estimations of TE using a
greater number of trials (30 instead of 10). We observed that,
with 30 trials the peak in Figure 4C disappears (i.e., we have a
TE value as low as 0.0723 for W12

F = 30 and W21
F = 0, while

the other values remain very similar to those computed with
10 trials).

In some other cases (when W21
F = 30 or 40 and W12

F
greater than 25) Trentool fails to find a correct solution; the
problem here is related with the reconstruction of states from
scalar time series using time-delay embedding. In particular,
TRENTOOL tries to optimize both the embedding dimension

Frontiers in Computational Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 45

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ursino et al. Transfer Entropy and Brain Connectivity

FIGURE 3 | Dependence of Transfer Entropy on a feedback, realized assuming two regions interconnected with reciprocal excitatory synapses (A). In particular the

synapse from region 2 to region 1 (W12
P ) was progressively varied between 0 and 80, at different values of the synapse from region 1 to region 2 (W21

P ). Inhibitory

synapses were set at zero. (B) Reports the individual values [TE12 and TE21 ± Standard Error of the Mean (SEM)], obtained with all combinations of synapses. Results

concerning the transfer entropy TE12 from region 2 to region 1 are further summarized in (C). As it is clear, TE increases quite linearly with the value of the excitatory

synapse in the direction under study, and it is also moderately affected by the value of the excitatory synapse in the other direction.

and the embedding delay according to Ragwitz’ criterion (see
Trentool manual); this procedure provides an error in these
particular cases.

Comparison with DCC (Figure S4) shows that correlation can
be used to detect the sign of the synapse (i.e., DCC provides
negative value in case of inhibitory connections, whereas TE is
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FIGURE 4 | Dependence of Transfer Entropy on a feedback realized assuming two regions interconnected with reciprocal inhibitory synapses (A). In particular the

synapse from region 2 to region 1 (W12
F ) was progressively varied between 0 and 40, at different values of the synapse from region 1 to region 2 (W21

F ). If both inhibitory

synapses are too high, the algorithm fails to compute acceptable values of TE. Excitatory synapses were set at zero. (B) Reports the individual values (TE12 and TE21

± SEM), obtained with all combinations of synapses. The results concerning the transfer entropy TE12 from region 2 to region 1 are further summarized in (C). As it is

clear, TE increases with the value of the inhibitory synapse in the direction under study; but the value of the inhibitory synapse in the other direction affects the

estimation significantly. It is worth noting that the effect of inhibitory synapses on TE is stronger than the effect of excitatory synapses [let us compare results of (B,C)

with those in (B,C)].
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always positive) and is more regular (i.e., it does not exhibit
sudden peaks). However, in this case too, as in Figure S3, the
synapse strength estimation by DCC increases markedly with an
increase in the reciprocal synapse.

Three Connected ROIs
Various simulations were performed by assuming three
interconnected ROIs (named 1, 2, and 3 in the following) with
reciprocal connections (either inhibitory or excitatory). This is
a multivariate condition; for instance, the estimated TE12 from
ROI2 to ROI1 may be affected also by the connections between
ROI1 and ROI3 and between ROI2 and ROI3. Hence, we expect
that results are much less linear than in the previous case.

A first simulation was performed assuming that ROI1 and
ROI2 receive a common input from a third region (ROI3).
The schema is depicted in Figure 5A. The strength of this
common input was then progressively raised (Figures 5B,C).
Results suggest that estimation of TE is only moderately affected
by the presence of a shared input. An increase of this input
causes just a moderate reduction in TE, which endangers
linearity especially at low values of the synapse W12

P . A similar
independence on the shared input can be observed looking at
the DCC, too (Figure S5). However, it is worth noting that,
in these simulations, we used the same delays (16.5ms) for
all connections: this could induce a resonance. More complex
conditions, using different delays, can be tested in future studies.

Further three-ROIs simulations were performed using the
more complex schema depicted in Figure 6B, where ROI2 and
ROI3 are in competition via reciprocal inhibitory synapses,
and exchange excitation with ROI1. Thirty-eight different
combinations of excitations and inhibitions were tried. Since
results are quite numerous, we do not describe all cases in detail,
but just a global summary is reported in the plots of Figure 6A. In
these plots we show the value of TE estimated in a single pathway,
as a function of the synapse strength used in that path, while the
others synapses are varied (for instance, in the upper left panel in
Figure 6A, W21

P is varied from 0 to 60, while the other synapses
are varied, for a total of 38 different simulations). As it is clear
from this figure, despite the multivariate condition, quite a linear
relationship is maintained between the estimated value of TE
and the synapse value in that pathway; however, the correlation
between the two quantities decreases significantly compared with
the univariate case.

In seven cases out of 38 in Figure 6, at least one synapse
was set at zero. However, due to the presence of a multivariate
condition, a residual TE is computed by the algorithm despite
the absence of a direct causal link. The situation is summarized
in the seven snapshots of Figure 6C, where the “spurious” TE
value (i.e., the value associated with the null synaptic connection)
is reported, together with the network generating such a false
estimate. It is worth noting that the spurious TE is always the
consequence of a bi-synaptic link (highlighted in red), and its
value quite regularly reflects the strength of this link. However,
the spurious TE is always quite small (<0.025). Only in the last
snapshot, where two synapses are simultaneously set at zero,
spurious TE values increase to∼0.04 or more. However, they are
still much smaller than TE values associated with “true” synapses.

By comparing the results in Figure 6 with those obtained
with the DCC (Figure S6) one can observe a similar behavior
in the estimation of most synapses. The main difference is that
TE provides a much better estimation of the inhibitory synapse
W32

F than DCC. DCC, however, is able to discriminate between
excitatory connections and inhibitory bi-synaptic connections,
providing negative values in the last case.

Four Connected ROIs
A further set of simulations was performed using four
interconnected ROIs. In order to mimic a physiological schema,
we assumed that two ROIs represent regions located in the left
hemisphere (ROIs 1 and 3) and the other two represent regions in
the right hemisphere (ROIs 2 and 4). Moreover, we assumed that
excitation in one cortex can lead to inhibition of the symmetrical
area in the other cortex and vice versa, according to the Theory of
Inhibition (see Mangia et al., 2017), whereas feedback excitations
can be present between the previous layer and the subsequent
layer. A similar schema may occur, for instance, considering
the connections between the two Supplementary Motor and
the two Primary Motor areas (Grefkes et al., 2008; Pool et al.,
2018). Six different networks, which differ as to the number
and strength of connections were simulated (Figure 7A). A
comparison between the estimated TE values and the model
synaptic strengths is reported in Figure 7B (in all cases, to allow
a direct comparison, the values are normalized to the maximum
for each configuration). As it is clear from this figure, just in a
few cases TE can produce some spurious connections (one W32

P
in the configuration n. 2, two W23

P and W32
P in the configuration

n. 5 and one W23
P in the configuration n. 6, if we consider a

threshold as low as 0.1 to discriminate between the presence
or the absence of a synapse). In most cases, TE overestimates
the synapse W32

P . Synapses W14
P and W41

P are underestimated in
the configurations 3 and (especially W41

P ) in the configuration 5.
In general, however, the overall behavior is satisfactory, with a
high correlation between the normalized synaptic strengths of the
models and the normalized TE values (Figure 7C). It is worth-
noting that estimation of the inhibitory by-synaptic connections
is more reliable than the estimation of the excitatory connections.

A comparison with Figure S7 shows that TE is much
more reliable compared with the DCC in the evaluation
of 4 interconnected ROIs. Briefly, the number of spurious
connections is higher, the difference between the normalized
DCC values vs. the normalized model synaptic values is higher,
and the correlation between the DCC values and the true synaptic
weights much poorer when using DCC than TE.

Effect of the Input Mean Value and SD
The neural mass model used in this work is intrinsically
non-linear (due to the presence of sigmoidal relationships
which mimic the dependence of spike density on post-
synaptic membrane potential in individual neural populations).
Conversely, most methods used to assess connectivity from data
(like PDC or most implementations of DCM) assume a linear
model in the estimation process. TE does not assume any model
behind signals, but simply computes information transfer from
the source to the target.
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FIGURE 5 | Influence of a common external source on TE estimation. Simulations were performed assuming three regions (see A) interconnected via an excitatory

synapse from region 2 to region 1 (W12
P ), which was progressively varied between 0 and 80, and a constant excitatory synapse in the other direction set at the value

W21
P = 40. The two regions 1 and 2 also receive a shared input coming from the third region, via equal excitatory synapses W13

P = W23
P . (B) reports the individual

values of TE (TE12 and TE21 ± SEM), obtained at different strength of the input from region 3. The results concerning the transfer entropy TE12 from region 2 to region

1 are further summarized in (C). TE increases linearly with the value of the excitatory synapse and is quite independent of the presence of an external shared input.

However, it is to be stressed that, due to non-linear
effects, information transfer may not reflect true anatomical
connectivity. Hence, it is of the greatest value to assess how

TE estimation may change in conditions when all synapses
are fixed (i.e., a constant anatomical connectivity is used)
but the working point or the global activity in the neural
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FIGURE 6 | Effect of different combinations of synapses on TE in a model of three interconnected regions. Simulations were performed by using the schema depicted

in (B), where regions 2 and 3 are in competition via inhibitory synapses (W32
F andW23

F ), and are linked via excitatory synapses to region 1 (synapsesW12
P ,W21

P , W13
P ,

and W31
P ). All other synapses are set at zero. Thirty-eight simulations were performed with various combinations of the six synapses described above. The panels in

(A) show the TE in a given direction, as a function of the synapse in the same direction, while the other synapses were varied (SEM are not reported here for simplicity,

but are of the same order as in the other figures). Quite a high positive correlation is evident; however, the effect of the other synapses has a strong role in modulating

the value of TE. The snapshots in (C) summarize all simulations performed with at least one synapse set at zero. A spurious TE can be ascribed to the presence of a

bi-synaptic link (red or green lines). Only in the last snapshots (right bottom), all values of TE are reported, to compare the spurious values of TE with those of real

synaptic links.
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FIGURE 7 | Estimation of the connectivity strength obtained during six different simulations, each performed with four interconnected ROIs. Each row refers to a

different network configuration (see reported in A) in which the ROIs 1 and 3 belong to one hemisphere, and the ROIs 2 and 4 to another hemisphere. Each ROI

exchange inhibitory connections with the adjacent ROI at the same layer in the other hemisphere (1 vs. 2 and 3 vs. 4), and feedback excitatory connections with ROIs

of the other layer (1 and 2 vs. 3 and 4). Bars in the two columns of (B) compare the estimated TE values (±SEM) with the true connectivity values in each circuit,

normalized to the maximum (the graph bar in the first column considers the eight excitatory synapses, the graph bar in the second column the four inhibitory

synapses). Finally, (C) reports the correlation between all the estimated TE values and the true connectivity values, normalized to the maximum, for the excitatory and

the inhibitory synapses.

populations is modified. Results of this analysis are reported
in Figures 8, 9 as detailed below. For the sake of simplicity,
we show results obtained using two-ROIs model, with the two
ROIs connected via reciprocal excitatory synapses (schemes in
Figures 8A,9A).

In order to test non-linear phenomena, first we modified
either the mean value or the standard deviation of the
noise entering to pyramidal neurons in one ROI. Indeed, a
change in the mean value shifts the working point along
the sigmoidal relationship. An increase in SD causes large

oscillations in neuronal activity, which may be partly cut-off by
the saturation levels of the sigmoid. We also tested the effect
of changing the standard deviation of the noise to both ROIs.
We remark that all previous simulations were performed with
zero mean values and variance σ 2 = 9/dt, where dt is the
integration step.

Since these changes may induce a change in the entropy of
the source, we also computed the entropy of the two signals and
we evaluated the relationship between TE and the entropy of the
source signal.
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FIGURE 8 | Effect of the mean value and standard deviation of the input noise on the estimation of Transfer Entropy. The simulations were performed using two

interconnected regions (A), with synapses W12
P = W21

P = 30, W12
F = W21

F = 0 and by varying the mean value m1 (left panels in B) and standard deviation σ1 of noise

(middle panels in B) of the input to ROI1. Standard deviation (σ ) of the noise was computed as σ =
√

ρ/dt where dt is the integration step and ρ is the noise power

density. Finally, the right panels in (B) show the case when noise standard deviation was increased in both populations altogether (both parameters σ1 and σ2). In (B),

the first row shows TE ± SEM, while the second row shows entropy (±SEM) of the two signals, vs. the input values. Finally, the third row in (B) plots the TE vs. the

entropy of the source signal. It is worth noting the presence of quite a linear dependence of TE on the source entropy, with the only significant exception of TE21 in the

middle panel.

The left panels in Figure 8B show the effect of an increase
in the mean value of the input to ROI1 (parameter m1 in
Figure 8A). Increasing this value causes a significant decline
in the estimated value of the TE from 1 to 2. The reason
is that activity of pyramidal neurons in ROI1 approaches the
upper saturation, hence its entropy is dramatically reduced,
and the quantity of information transmitted from 1 to 2
is reduced too. It is worth noting that also TE from 2 to
1 decreases. The reason is that also ROI2 exits from the
central linear region, as a consequence of the strong excitation
coming from ROI1, thus causing a moderate reduction in
its entropy.

The middle panels in Figure 8B shows that an increase in the
standard deviation of noise entering into ROI1 (parameter σ1 in
Figure 8A, whereas noise to ROI2 ismaintained at the basal level)
causes a dramatic increase of TE from 1 to 2, despite a reduction
in the entropy of signal 1. At the same time, TE from 2 to 1 is
reduced. This result indicates that the values of TE do not only
reflect the connectivity strength, but also the reciprocal level of
noise in the two ROIs.

Finally, in the right panel of Figure 8Bwe tested the case when
both standard deviations (to ROI1 and to ROI2, i.e., parameters
σ1 and σ2 in Figure 8A) are progressively increased altogether. In
this condition, both TEs show a similar decrease, but the changes
are quite moderate compared with the previous cases, and reflect
the moderate decrease in both source entropies.

Looking at the bottom row in Figure 8B, we can observe
the presence of quite a linear relationship between TE and the
entropy of the source. There is only one remarkable exception;
the increase in noise of signal 1 in the middle panel reduces
its entropy (due to a saturation) but causes an increase in
information transmission from 1 to 2, which is reflected in a
negative relationship between TE and the source entropy.

Similar results can be obtained using the DCC, as shown in
Figure S8.

The effect of the input mean value is further illustrated in
Figure 9B where we modified the input mean value entering
to ROI2 (parameter m2 in Figure 9A). Here we assume that
ROI2 starts from a condition of strong external inhibition
(obtained with a negative input mean value). In this initial state,
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FIGURE 9 | Effect of the region working point on the estimation of Transfer Entropy. The simulations were performed using two interconnected regions (A), with

synapses W12
P = 40, W21

P = 40, W12
F = 0, and W21

F = 0 (i.e., just a reciprocal excitation). In this case we assumed that input to pyramidal neurons in region 1 have

a zero mean value, whereas mean value m2 of the input to pyramidal neurons of region 2 is progressively increased from −200 (strong inhibition) to +200 (strong

excitation). In (B), the left plot shows TE ± SEM, while the right top plot shows entropy (±SEM) of the two signals, vs. the input values. Finally, the bottom left plot

show the TE vs. the entropy of the source signal. As it is clear, transfer entropy reaches a maximum value when the first region exits from the inhibition zone to the

central zone. Furthermore, TE declines when regions enter into the upper saturation, due to excessive excitation. It is worth noting the presence of quite a linear

dependence of TE on the source entropy, although with a hysteresis.

TE is almost zero despite the presence of a strong reciprocal
connectivity. Then, the input to ROI2 is progressively increased
(i.e., the pyramidal population is progressively excited). As a
consequence of this excitation, ROI1 is excited too. In this
situation, TE initially increases as a consequence of progressive
reciprocal excitation in the network, which corresponds to an
increase in the entropy of both signals. When excitation becomes
excessive, however, TE starts to decrease (as in the example of
Figure 8) since both regions enter into the upper saturation
zone, and the source entropies decrease again. The relationship
between TE and the entropy of the source (bottom left panel in
Figure 9B) is quite linear, although it exhibits a kind of hysteresis.

In this case too, the patterns obtained with the DCC are
similar (Figure S9).

Estimation of the Pure Delay
In our model we included a pure delay in the connectivity among
the different ROIs. This simulates the time necessary for spikes to
travel along axons and reach a target region starting from a source
region. During the previous simulations we used a pure delay as
high as 16.5ms in all synapses. The software package Trentool
provides an estimation of this delay, assuming the value which
maximizes TE.

In order to assess the role of pure delay, we repeated some
simulations with two interconnected ROIs by varying the delay.
We examined whether: (i) the value is correctly estimated by the
algorithm (at least approximately); (ii) the estimated value of TE
is affected by this delay.

Results, summarized in Figure 10 (withW12
P varying andW21

P
fixed), show that the estimated value of TE is reduced, and the
linearity in the relationship “TE vs. synapse strength” worsens if a
small value is used for the delay (10ms). Conversely, larger values
(16.5 or 23ms) provide robust results, with a moderate increase
in TE with larger delays. The values of delay estimated by the
algorithm are 8ms, when we used a delay as low as 10, 15ms
when we use a delay as large as 16.5, and 25ms when we use a
delay as large as 23 ms.

In the left panel of Figure 10B we can observe an anomalous
peak in TE when W12

P = 40. In this case too, as in the case of
Figure 4C, this peak could be eliminated using 30 trials in the
computation of TE (TE= 0.0199).

It is worth noting that 10ms are about 1/5 of the resonant
period of the present model (see the spectra in Figure 1), whereas
16.5 is about 1/3 of this period and 23ms close to ½. This may
have an impact in the synchronization of the two circuits.

Results obtained with the DCC (Figure S10) are similar.
DCC appears more robust than TE when using a small delay,
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FIGURE 10 | Effect of the delay between the two regions on the estimation of Transfer Entropy. The simulations were performed using two interconnected regions (A),

with synapses, W21
P = 40, W12

F = 0, and W21
F = 0, and by changing the value of synapse W12

P (hence we have a reciprocal excitation). The simulations were

repeated with different delays. It is worth noting that the delay value was estimated by the algorithm together with TE. (B) Reports the individual values (TE12 and TE21

± SEM), obtained with all combinations of synapses. The results concerning the transfer entropy TE12 from region 2 to region 1 are further summarized in (C). The

estimation of TE increases (both as to its strength and linearity) at high values of time delay, and worsens when time delay is reduced.

but even in this case the sensitivity of the estimator (i.e.,
the slope of the relationship between the metrics and the
synapse strength W12

P ) increases with the delay. Moreover,
as usual, DCC fatigues to assess a constant synapse (W21

P
fixed) when the other synapse is varying, at all values of
the delay.

Effect of the Signal Length
An important aspect in the estimation of TE is the signal length.
In neural problems non-stationarity often precludes the use of
long signals; the use of short signals, in turn, may jeopardize the
estimation accuracy. In all previous simulations we used long
stationary signals (60 s of simulations with fixed parameters and
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a stationary random noise, evaluated after settling the initial
transient phenomena). We repeated simulations using a useful
signal length (after elimination of the initial transient period) as
low as 30, 10, 4, 3, and 2 s. It is worth noting that, even when
using the shorter temporal window, at least 40 cycles of network
oscillations are contained within the examined portion of the
signal. Results are summarized in Figure 11. We can observe
that, in the range 3–60 s, a reduction in signal length causes a
reduction in the estimated value of TE, but the linearity in the
relationship “TE vs. synapse strength” is approximately preserved
even with the use of shorter signals (although linearity becomes
more evident for signal length ≥ 10 s). Hence, caution must be
taken when comparing TE values obtained from signals with
different length. Conversely, when the signal is as short as 2 s,
TE becomes quite insensitive to the synapse strength, although
a value of TE significantly different from that of surrogate data is
still detectable.

Conversely, DCC (Figure S11) is almost no affected by the
signal length. Once again, however, DCC fails to assess that
a synapse is constant when the other is varying, whereas
TE can recognize a constant synapse even when using
short signals.

DISCUSSION

In the last decade the use of methods to assess connectivity
from neuroimaging data has received an enormous attention, as
a fundamental aspect of cognitive neuroscience (Rossini et al.,
2019). In fact, adequate understanding of brain functioning can
be obtained only by considering the brain as a fully integrated
system, the parts of which continuously exchange information in
a dynamical reciprocal way (Sporns, 2011, 2013). However, much
debate is still present in the literature on the reliability of methods
used to assess connectivity, and on the true significance of the
indices extrapolated from data (Reid et al., 2019).

Aim of this work is to assess the reliability of a non-linear
measure (Transfer Entropy) used to investigate connectivity.
Indeed, various recent papers underlined that TE represents
an efficient method to estimate connectivity, which, compared
with other methods, joins reliability and smaller computational
time (Ito et al., 2011; Wang et al., 2014). Nevertheless, the
relationship between TE, as a measure of information transfer,
and the true anatomical connectivity between regions is still
debated. In order to clarify this problem, we evaluated the
significance of the connectivity values derived from bivariate TE
by using the data generated through realistic models of neural
populations coupled with assigned connectivity parameters. In
particular, we investigated whether: (i) the method is able to
discriminate between the presence or absence of connectivity
between populations; (ii) the method is sensitive to a progressive
change in the strength of the connection; (iii) the effects of non-
linarites on TE estimation, in particular the effect of a change
in populations working point; (iv) the effect of signal length
and time delay. Moreover, all results have been compared with
those obtained with the linear delayed correlation coefficient (see
Supplementary Materials Part 2).

The importance of performing accurate validation studies
for FC methods, based on simulation data, has been strongly
emphasized in a recent perspective study by Reid et al. (2019).
Both detailed neuron-level simulation models (Izhikevich, 2006;
Goodman and Brette, 2008) or more abstract models, such as
neural masses (Wendling et al., 2002; Sotero et al., 2007; Moran
et al., 2008; Ursino et al., 2010; Bhattacharya et al., 2011; Cona
et al., 2011, 2014; Cona and Ursino, 2015) can be of value to
reach this objective, with alternative advantages and limitations.
Our choice was to use NMMs which, as pointed out by Reid
et al. (2019), see p. 1758 exhibit multiple advantages: among the
others, computational efficiency, the possibility to generalize over
multiple conditions, and the ease in the interpretation of results.

An important aspect to be recognized, however, is that NMMs
are adequate to simulate (although with several approximations)
the neuroelectrical activity in cortical columns, which may be
significantly different from that measured on the scalp, due to
propagation phenomena from the cortex to the skull through
the interposed soft tissues. Hence, the present analysis images
that the signals, obtained from scalp EEG/MEEG measurements,
are first recreated on the cortex, via classic methods for source
localization and reconstruction, before TE is calculated on them.

It is worth noting that the present study is focused on
the bivariate algorithm for TE estimation [in particular, we
used the open source toolbox Trentoool (Lindner et al., 2011),
which is largely used in Neuroscience problems today]. The
use of bivariate instead of multivariate TE surely represents the
main limitation of the present study, and some of the errors
encountered when simulating three or four populations (such
as the presence of spurious connections) can be reduced using
multivariate algorithms (such as those proposed in Montalto
et al., 2014). This can be attempted in future works. For instance
(Harmah et al., 2019) in a recent paper, evaluated multivariate
TE in people with schizophrenia, and found that multivariate TE
outperformed bivariate TE and Granger causality analysis under
various signal-to-noise conditions. However, it is to be stressed
that this difference between our results and those obtained with
multivariate TE are probably not so strong as in other works,
since Trentool implements some tools for post-hoc corrections
of multivariate effects, i.e., a partial correction of spurious
information flow.

Another limitation of the present approach is that we did not
use other indices (like the “Coincidence Index,” see Shimono
and Beggs, 2015) to improve the performance of our estimator.
Indeed, the only additional measure we used is the DCC
(see Supplementary Materials Part 2 and the last paragraph
in the Discussion). Recently, Reid et al. (2019) suggested the
simultaneous use of alternative measures, and their integration
into a comprehensive framework, to improve connectivity
estimate. This may be the subject of future work.

In order to realize physiologically reliable neural signals,
with a frequency content analogous to that measured in
cortical regions, we used the model proposed by the authors
in recent years (Ursino et al., 2010). This allows multiple
rhythms (for instance in the beta and gamma range) to be
simultaneously produced and transmitted between regions, as a
consequence of the non-linear feedback between excitatory and
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FIGURE 11 | Effect of the duration of the signal on the estimation of Transfer Entropy. The simulations were performed using two interconnected regions (A), with

synapses, W21
P = 40, W12

F = 0, and W21
F = 0, and by changing the value of synapse W12

P (hence we have a reciprocal excitation). The simulations were repeated

with different durations of the signals. (B) Reports the individual values (TE12 and TE21 ± SEM), obtained with all combinations of synapses. The results concerning

the transfer entropy TE12 from region 2 to region 1 are further summarized in (C). The estimation of TE and its linear relationship with the synaptic strength are reduced

when the signal length becomes as low as 3–4 s and, at shorter length, the algorithm totally fails to detect a linear relationship between TE and connectivity (let us note

that the relationship between TE12 and synapse W12
P becomes flat when the signal length is as short as 2 s).

inhibitory populations (with glutamatergic, slow-GABAergic and
fast-GABAergic synaptic dynamics). In particular, in this study
we chose synaptic connections within the ROI [i.e., parameters

Cij in Equations (1)–(18)] to have power spectral densities quite
similar to those occurring in pre-motor and supplementary
cortical areas during motor tasks (Zavaglia et al., 2008, 2010).
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It is worth noting that, in order to eliminate a possible bias in
the estimation of TE, we always compared the TE value estimated
from the model with that obtained on surrogate data (i.e., data
with the same statistical properties of our signals but lacking
of any connectivity). Hence, TE was set at zero whenever no
statistical difference was observed between model signals and
surrogate data; in all other cases, the (positive) difference between
the model TE and that of surrogate data was assumed as an index
of the synaptic strength.

(i) Detection of spurious connections—A first important result
of our study is that the TE algorithm is able to discriminate
between the presence of a significant connectivity, and the
absence of connectivity rather well, in conditions when two ROIs
are interconnected. In particular, in all cases when connectivity
in the model was set at zero or at an extremely low value
(WP < 10 or WF < 5), the algorithm provided no significant
difference between model signals and surrogate data (Figures 3,
4, 10, 11). A similar result also holds when two populations
receive a common signal from a third population, i.e., they have a
common external source (Figure 5). Only in one case (Figure 5B
left bottom panel) a very mild value of TE is obtained when the
synapse WP is zero. Conversely, in the more complex situations
of Figure 6 (three interconnected ROIs), some artifacts can be
seen in the computation of TE: we can observe a significant
value of TE even when the corresponding synapse is zero.
This is generally quite small, with the exception of the last
snapshot in Figure 6C, when two synapses are at zero. It is
worth noting that these “spurious” connections are always the
consequence of a bi-synaptic link from the source region to the
target one. Some spurious connections can be found, of course,
also when simulating four interconnected ROIs (Figure 7), but
their number remains quite limited. It may be interesting in
future studies to test whether these “spurious” connectivity values
can be eliminated or reduced by using multivariate methods for
TE estimation. In particular, Olejarczyk et al. (2017) performed a
comparison between the multivariate approach and the bivariate
one for the analysis of effective connectivity in high density
resting state EEG, and found that the multivariate approach is
less sensitive to false indirect connections.

The previous results substantially agree with those by Wang
et al. (2014) who, using signals obtained from NMMs with
different connection strengths, observed that the bivariate TE
provides high values of the Area under the ROC curves (i.e., a
high measure of separability), hence the method performs very
well in detecting the underlying connectivity structure. By the
way, no evident difference was reported by Wang et al. (2014)
when comparing the performance of the bivariate TE with that of
the partial TE (see Figure 9 in their work).

(ii) Dependence of TE estimation on synaptic strength—An
important result of our study is that quite a linear relationship
can be observed between the estimated value of TE and the
strength of the connection (either mono-synaptic excitatory
or bi-synaptic inhibitory) in the same direction, provided the
model is working in the linearity region. We are not aware
of a similar analysis in the literature: indeed, most previous
studies limit the investigation to the presence or absence of a
connection (i.e., on its statistical significance, see also Vicente

et al., 2011), or are based on ROC curves (see Wang et al.,
2014). The linear relationship is quite straightforward in the
case of excitatory synapses (Figure 3), and less precise in case of
inhibitory synapses (Figure 4), but is still well evident when two
populations are used. Furthermore, we also simulated conditions
characterized by an excitation from ROI2 to ROI1 with a
simultaneous inhibition from ROI1 to ROI2, and conditions
in which ROI2 sends both an excitatory monosynaptic and a
bi-synaptic inhibitory connection to ROI1. Sensitivity analysis
on these cases, not reported from briefness, confirms what we
observed in the other simulations: TE quite linearly depends on
synapse strength, and inhibition in our model has a stronger
effect than excitation.

In the more complex three-populations multivariate model
(Figure 6) a clear positive correlation between TE and synapse
strength is still evident, although influenced by the other synapse
values. A very good correlation is still evident when using four
interconnected ROIs (Figure 7) and, in this case, TE significantly
outperforms the delayed correlation coefficient (see below). This
result suggest that TE can be used (although with caution) not
only to detect the presence or absence of a causal connection, but
also to investigate whether this connection is stronger or weaker
than another, or it is changing (reinforcing or weakening) with
time. As commented below, however, a particular attention must
be posed to any change in working conditions of a ROI (i.e., non
linearity in the model), since it may affect TE dramatically.

Some authors recently emphasized that synapses among
neurons exhibit a log-normal distribution (Song et al., 2005) and
so that a few strong synapses dominate network dynamics over a
large amount of weaker synapses. Although this result has been
obtained in networks of hundreds of neurons (whereas our study
is concerned with connections among a few ROIs) it may still be
of interest in the problem of connectivity estimate, revealing that
the main point is the capacity to estimate large synapses correctly
(with minor emphasis on the smaller ones). Results in Figure 7

show that this aspect is well-managed by TE.
A further important result (although well-expected) is that

TE cannot discriminate between an excitatory or a bi-synaptic
inhibitory connection among two populations (we remind here
that a inhibitory connection denotes a by-synaptic connection,
from pre-synaptic pyramidal neurons to post-synaptic fast-
GABAergic interneurons, and then to pyramidal neurons in the
target population). This is quite obvious, since TE is always
positive, and so it detects a sort of “absolute value” for the
synaptic strength. In our model, inhibitory synapses are 2-fold
more powerful in affecting signal transmission (hence TE) than
excitatory connections. This result, however, depends on the
parameters we used to simulate the internal number of synapses
within populations. A different choice of internal parameters
may modify this result. A similar conclusion (i.e., the incapacity
to discriminate between excitatory and inhibitory connections
via TE) has been reported in previous studies by considering
synapses linking spiking neurons (Garofalo et al., 2009; Orlandi
et al., 2014); we are not aware of a similar generalization
considering the interactions among ROIs via NMMs simulations.
However, as shown in Supplementary Materials Part 2, the
delayed correlation coefficient is able to discriminate between

Frontiers in Computational Neuroscience | www.frontiersin.org 21 June 2020 | Volume 14 | Article 45

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Ursino et al. Transfer Entropy and Brain Connectivity

excitatory and inhibitory connections very well. Hence, the
simultaneous use of both metrics may allow this limitation to be
easily overcome.

Finally, we wish to stress that the present study is devoted
to the analysis of interactions among brain regions, and the
mathematical model used to generate data simulates neural
population dynamics; hence the results are not immediately
applicable to the interactions among individual neurons.

(iii) Effect of non-linearities—A very important result of the
present study is that TE strongly depends on the working point
of the populations, and on the SD of the input noise. The
first aspect is a consequence of the sigmoidal characteristics in
the model, which describe the non-linear relationship linking
post-synaptic membrane potential to spike density. In particular,
whenever a population of pyramidal neurons enters into a
saturation region, its capacity to transmit information toward
other ROIs drastically decreases, despite the presence of a
strong synapse. This is basically a consequence of a reduction
in the entropy of the source signal (see Figures 8, 9, but see
also Wollstadt et al. (2017) as an example of a reduction in
source entropy induced by isofluorane anesthesia) although a
significant exception can be found in one case in Figure 8.
This aspect is crucial in the interpretation of TE, and has
been clearly recognized by Wibral et al. (2014). These authors,
when commenting on the relationship between TE and causality,
underline the distinction between information transfer and
causal interactions. In particular, they suggest that TE is not a
measure of causal strength and that not all causal interactions
serve the purpose to transmit information (Wibral et al., 2014,
pp. 8–11). Hence, when using TE in the field of neuroscience,
one must always take in mind that TE measures the amount of
information that is transmitted from one region to another (or,
in case of multivariate models, a certain amount of information
transmitted through a bi-synaptic link). A high value of TE likely
denotes the presence of a causal relationship, since information
cannot be transmitted without coupling [care, however, should be
taken in multivariate models to a shared information which may
provide a spurious TE Timme and Lapish, 2018]. Conversely,
a small value of TE does not necessarily indicates the absence
of a causal link. Let us consider, for instance, the case in which
activity in a pre-synaptic region shifts its working point reaching
its upper saturation level (i.e., maximal activity of pyramidal
neurons) and sends a strong synapse to a target population.
Thanks to this coupling term, the second population can also
enter into saturation (see for instance, Figure 8B leftmost panel
and Figure 9B). At this point, TE is drastically reduced, and the
appearance is that of poor information transmission. However,
the first ROI may play an extremely important causal role on the
second population even in this condition of poor information
exchange. Let us consider, for instance, the case when a target
region participates to a winner takes all dynamics against other
regions: the causal link may be fundamental for it to win the
competition, but is not detected (or just poorly detected) with the
use of TE.

Moreover, TE is dramatically affected by the power level of
input noise. In particular, it is not the level of noise per se which
affects TE, but rather the relative contributions among the two

populations. If noise to both populations rises together, TE does
not increase, but rather exhibits a moderate reduction (Figure 8B
rightmost panel). We attribute this decrease, evident only at very
elevated power, to the presence of saturation in the sigmoid,
which cut-offs the entropy of the source signals. Conversely,
if one population receives much stronger noise than the other
(Figure 8B middle panel), the amount of Entropy that it can
transfer dramatically rises, while TE of the other is reduced,
despite the presence of a similar reciprocal connectivity strength.
Indeed, the first population can transmit much new information
to the second, in the form of random fluctuations, while the
information transmitted from the second to the first becomes
quite negligible. In this particular case, we observed a surprising
negative correlation between entropy in the first population
(which decreases due to saturation) and TE it transfers to the
second, that rather increases (see the bottom central panel in
Figure 8B). This is an important point to be recognized in the
interpretation of physiological results.

In conclusion, we can say that TE is quite linearly related
with coupling strength as long as the populations work in the
linear region and input noise is stable; this is no longer true
if saturation is reached, or if other strong non-linear effects
become influential (let us think, for instance, to synchronization
in non-linear oscillators). Moreover, the estimated connectivity
is strongly affected by the amount of activation that a population
receives from randomized external sources. We think that this
aspect has not been sufficiently investigated in previous studies
using NMMs, where populations are used in linear working
conditions and with stationary noise levels, and the non-linear
effects on connectivity estimates are negligible. To confirm
the possible disruptive effect of non-linearities on connectivity
estimates, we remind the result by Wang et al. (2014): these
authors observed that Granger causality and TE fail to discover
the correct network topology when data are produced with
strongly non-linear equations.

However, we wish to stress that in many neurocognitive
problems estimation of TE may be of the greatest value even
when its value is uncorrelated with the true causal connectivity:
in fact, transfer of informationmay bemore useful thanmeasures
of synaptic strength if the goal is to understand how the brain
performs its computation and how one region transmit data
to the other (see also Lizier and Prokopenko, 2010, as a nice
illustration why transfer entropy may be more interesting when
trying to understand a computation, compared to measures of
physical causality). Indeed, the twomeasures are complementary,
and knowledge of both may provide the best approach to
the problem.

(iv) The temporal duration and time delay—Another
important indication of the present study concerns the duration
of the signals necessary to achieve quite a robust estimation
of TE. This is an important point, since inconsistency in the
length of the selected epochs can be found in the literature,
which endangers a meaningful comparison between results.
In particular, previous studies have shown that connectivity
estimates are affected by the epoch length and that the severity
of this bias varies for different connectivity metrics (David
et al., 2004; Honey et al., 2007; Vinck et al., 2010; Chu et al.,
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2012; Bonita et al., 2014; Fraschini et al., 2016; Olejarczyk et al.,
2017). Our results suggest that TE increases with signal duration,
especially above 10 s (hence, caution should be taken when
comparing experiments with different length). Conversely, the
estimations with DCC are just scarcely affected by the signal
length (Supplementary Materials Part 2). However, for signal
lengths≥10 s a clear linear relationship between TE and synaptic
strength is evident, and an approximately linear relationship
can still be detected for signal lengths of 3–4 s (Figure 11B). If
lower durations are used (in particular, we used 2 s in Figure 11)
TE fails to detect a clear relationship between TE and synapse
strength (while DCC still offers good results): TE appears pretty
high even at very low values of synaptic strength, and does
not increase if the coupling term is increased. This effect of
signal duration on connectivity estimation agrees with a few
other results in the literature. Olejarczyk et al. (2017), who
used multivariate TE for the analysis of connectivity in high
density resting state EEG, used temporal windows as long as 20 s.
Moreover, they observed that the smaller window which still
ensures the quality of results is 10 s, and that the results do not
change substantially if the epoch length is increased between 10
and 40 s; these results are quite comparable to our observations
in Figure 11B. Fraschini et al. (2016) used two different measures
of connectivity, i.e., the phase lag index (PLI) and the amplitude
envelope correlation (AEC). Their results show that epoch
length has an important impact on connectivity estimates: both
mean PLI and AEC decrease with an increase in epoch length,
with a tendency to stabilize at a length of 12 s for PLI and
6 s for AEC.

A final aspect concerns the time delay between signals. This is
important in neuroscience, since spike transmission along axons
in long-range connections can take several milliseconds to move
from pre-synaptic to post-synaptic regions. Results in Figure 10

are quite unexpected, pointing out that TE estimation increases
(and becomes more linear) with the time delay. This increase
is evident also when using DCC. This result seems at odd with
the results by Wang et al. (2014) who refer that TE was quite
robust against variations of signal delay. However, the results of
Wang et al. consider only the capacity to detect a given network
topology, without investigating the relationship between TE and
connectivity strength.

It is worth noting that, in our work, time delay is unknown
to the algorithm, and is estimated within a given range assigned
“a priori.” In particular, differences in Figure 10 cannot be
significantly ascribed to an error in the evaluation of the
time delay, since the values obtained by the algorithm (8, 15,
and 25ms) are not too distant from the real ones (10, 16.5,
and 23ms, respectively). If confirmed by other studies, this
result may indicate that connectivity between proximal regions
(assuming a smaller connection delay between them) can be
somewhat underestimated compared with connectivity among
more distal regions.

However, it is important to stress that, in many cases,
an approximate value of the delay can be inferred from
neurophysiologica/anatomical considerations, and this value
should be used directly in the procedure. Indeed, we used a small
range of values to drive Trentool algorithm. In the DCC estimates

presented in Supplementary Materials Part 2, we always delayed
the target signal by the number of samples closer to the true delay.

(v) Comparison between TE and DCC—All the estimates of
functional connectivity obtained with TE have been replicated
using the linear Delayed Correlation Coefficient, as shown
in Supplementary Materials Part 2. A few conclusions can be
drawn from this comparison. (a) TE provides a more reliable
estimation of the connection strength. This is already evident
when considering two ROIs connected in feedback, as in
Figures 3, 4, 10, 11. In these cases, TE can recognize that one
synapse remains constant while the other is varying, whereas the
synapse strength estimated with DCC is significantly affected by
a change in the other synapse. (b) TE works better than DCC
in a multivariate network. This is especially evident comparing
the values estimated using 4 interconnected ROIs (Figure 7),
both for what concerns the correlation between the values
estimated by the metrics and the model synapses strengths, and
the number of spurious connections estimated by the metrics. (c)
DCC is able to discriminate between excitatory and inhibitory
connections, whereas TE provides only the absolute value of the
connection. (d) DCC is less affected by noise, i.e., it exhibits a
smaller standard deviation on repeated trials and less evident
fluctuations. However, these differences are not so strong as to
overcome differences noticed at point a. (e) The computational
time is smaller for DCC than TE. (f) Both TE and DCC exhibit a
similar behavior in response to non-linear changes, as examined
in Figures 8, 9. In other terms, both evaluate a computational
property, rather than a true causal connection.

As suggested by Reid et al. (2019) each metrics exhibits
alternative virtues and limitations. The use of TE, integrated
with a preliminary analysis with DCC, may represent a good
approach to the study of network functional connectivity. DCC
may provide a first rapid screening, able to discriminate between
excitatory and inhibitory links, subsequently reinforced by a
more accurate and reliable analysis with TE.

CONCLUSIONS

In conclusion, using the open source toolbox Trentool, and
neural mass models to generate biologically realistic signals, the
present study provides indications on whether brain connectivity
can be assessed from bivariate TE. In particular, we not only
investigated whether the presence of a statistically significant
connection can be detected (as in binary 0/1 network) but also
if connection strength can be quantified. Results suggest that
TE can be a promising method to estimate the strength of
connectivity if neural populations work in the linear regions,
and if the epoch lengths are longer than 10 s. In case of
multivariate networks, some spurious connections can emerge
(i.e., a statistically significant TE can be detected even in the
absence of a true direct connection): however, quite a good
correlation between TE and synaptic strength is still preserved
in these cases, even when using four interconnected ROIs.
A puzzling unexpected problem is the role of time delay:
estimated TE appears higher for distal regions compared with
proximal regions.
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Finally, as well-expected, non-linear phenomena may play a
dramatic role in the assessment of connectivity, since they may
significantly reduce the estimation of TE. In fact, TE is an index
of information transfer and not directly an index of connectivity
strength. In particular, due to non-linear relationships between
the connected regions, a strong causal strength may be present
between two nodes in a network, even if the detected TE is
very small. We claim that similar problems can be found not
only with TE but also if other metrics of connectivity (in
particular those based on autoregressive models) are used, as
shown when using the Delayed Correlation Coefficient. This is
perhaps the most important aspect of the present work, which
deserves accurate ad hoc investigation. We suggest that changes
in connectivity, often reported in the literature during different
tasks, or in different brain conditions, might not always reflect a
true change in the connecting network, but rather a change in
information transmission due to a different working region of
the involved populations. However, in conditions when linearity
is a good approximation of the system, changes in TE can
actually reflect true changes in connectivity. Hence, researchers
need to carefully consider non-linearity to apply bivariate TE.
Moreover, they should check bivariate vs. multivariate TE to
improve their estimation.
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