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Abstract— The widespread adoption of small-scale distributed en-

ergy resources (DERs) amongst energy users has drastically changed 

the operation of distribution networks. To date, there has not been a 

consolidated model to incorporate the investment decisions of the end-

users in the distribution network planning. The contribution of this 

paper is a distribution network planning model for the utility which 

considers the neighborhood energy trading (NET) as a platform for 

end-users to directly exchange energy between them. The proposed 

mixed-integer second-order cone programming (MISOCP) problem 

provides the optimal decisions for line and transformer upgrades, as 

well as for photovoltaic (PV) and battery in users’ premises. Moreover, 

it indicates a fair allocation of network charges among the participants 

to NET schemes. The simulation results on the IEEE-33 bus test system 

confirm the effectiveness of the proposed model in lowering the total 

cost of the planning and the operation. This platform can be used by 

government-owned utilities as a guide to avoid sunk investments while 

motivating the increased installation of renewable distributed genera-

tion and storage units by end-users. 

Index Terms— distribution network planning, electricity market, 

local energy community, prosumers’ engagement, renewables, storage. 

I. NOMENCLATURE 

Indices 

𝑡  index for time intervals 

𝑠  index for cluster 

𝑖 or 𝑗 indices for end-users, buses, or branches 

𝜋  index of candidate choices for replacing a line 

𝜉  index of candidate choices of transformers to be installed 

𝑤  index of candidate choices of PV units to be installed 

𝑘  index of candidate choices of battery units to be installed 

ℎ  index of auxiliary variables for linearization 

Sets 

𝑇  set of time intervals 

𝑆  set of clusters 

𝑁  set of end-users, buses, or branches 

𝛱  set of candidate choices for replacing lines 

𝛯  set of candidate choices for transformers to be installed 

𝑊  set of candidate choices of PV units to be installed 

𝐾  set of candidate choices of battery units to be installed 

𝑥𝑢̅̅ ̅/𝑥𝑐̅̅̅  set of investment decision variables for utility/end-users 

𝑦𝑢̅̅ ̅/𝑦�̅�  set of operational variables for utility/end-users 

𝑦�̅�  set of power flow calculation variables 

Parameters 

𝐶𝐿𝑖𝜋  investment cost of candidate replacing line 𝜋 in branch 𝑖 

𝐶𝑇𝜉  investment cost of candidate transformer 𝜉 

𝑛  number of end-users/buses/branches 

𝐶𝑃𝑉𝑤  investment cost of candidate PV unit 𝑤 

𝐶𝐵𝑘  investment cost of candidate battery unit 𝑘 

𝜌𝑠  probability of cluster 𝑠 in planning 

𝜔𝑡𝑠  wholesale price in time interval 𝑡 and cluster 𝑠 ($/MWh) 

𝑅𝑡𝑠  retail price in time interval 𝑡 and cluster 𝑠 ($/MWh) 

𝐿𝑡𝑠  energy price for NET in cluster s and time interval t 

($/MWh) 

𝐷𝐹𝑖  disutility factor for user 𝑖 ($/MWh) 

𝐶𝐶𝑖0  cost to end-user 𝑖 without NET 

𝐶𝐶𝑢0  minimum cost to utility without NET 

𝐴𝑖𝑗   𝑖𝑗-th element of bus injection to branch current (BIBC) 

matrix 

𝑅𝑀𝑖𝑗  𝑖𝑗-th element of matrix 𝑅𝑀 whose value is equal to prod-

uct of 𝐴𝑖𝑗  and the resistance of 𝑗-th branch 

𝑋𝑀𝑖𝑗  𝑖𝑗-th element of matrix 𝑋𝑀 whose value is equal to prod-

uct of 𝐴𝑖𝑗  and the reactance of 𝑗-th branch 

𝑉0  substation voltage (in p.u.) 

𝑀𝑅𝑖𝑗  𝑖𝑗-th element of matrix 𝑀𝑅 whose value is equal to prod-

uct of 𝐴𝑗𝑖  and the resistance of 𝑗-th branch 

𝑀𝑋𝑖𝑗  𝑖𝑗-th element of matrix 𝑀𝑋 whose value is equal to prod-

uct of 𝐴𝑗𝑖  and the reactance of 𝑗-th branch 

𝑀𝑍𝑖𝑗  𝑖𝑗-th element of matrix 𝑀𝑍 whose value is equal to prod-

uct of 𝐴𝑗𝑖  and the square impedance magnitude of 𝑗-th 

branch 

𝑞𝑖𝑡𝑠  reactive power drawn by end-user 𝑖 in time interval 𝑡 and 

cluster 𝑠 (MVAr) 

𝑉/𝑉  maximum/minimum allowed voltage 

𝐼𝑚𝑎𝑥
𝜋/𝑖0

  maximum allowed current of (candidate line 𝜋)/(branch 𝑖) 

𝐼𝑚𝑎𝑥
𝜉/00

  maximum allowed current of (candidate transformer 

𝜉)/(substation transfomer) 

𝜂𝑐/𝜂𝑑  charging/discharging efficiency of battery units 

𝑆𝑜𝐶𝑘
𝑚𝑎𝑥  maximum state of charge of candidate battery 𝑘  

𝑆𝑜𝐶𝑘
𝑚𝑖𝑛  minimum state of charge of candidate battery 𝑘  

𝑀  large enough positive value to relax constraints (big-M method) 

𝑝𝑐𝑘
𝑚𝑎𝑥   maximum charging power of candidate battery 𝑘  

𝑝𝑑𝑘
𝑚𝑎𝑥   maximum discharging power of candidate battery 𝑘  

𝐺𝑖𝑤𝑡𝑠  output of candidate PV unit 𝑤 at bus 𝑖 in time interval 𝑡 
and cluster 𝑠 (MWh) 

𝐵𝐷𝑖  degradation unit cost of battery at bus 𝑖 ($/cycle) 

𝐷𝑖𝑡𝑠  demand at bus 𝑖 in time interval 𝑡 and cluster 𝑠 (MWh) 

𝑑𝑖𝑡𝑠
𝑚𝑎𝑥   maximum allowable demand to be shifted by end-user 𝑖 

from time interval 𝑡 in cluster 𝑠 (MWh) 

𝑡𝑚𝑎𝑥  number of time intervals 

𝑛ℎ  number of digits for 𝑛𝑐 

Variables 

𝑥𝑙
𝑖𝜋  binary variable which shows whether branch 𝑖 is replaced 

by a line of type 𝜋 

𝑥𝑇𝑅
𝜉

  binary variable which shows whether the substation trans-

former is upgraded by a new transformer of type 𝜉 

𝑥𝑃𝑉
𝑖𝑤   binary variable which shows whether a PV of type 𝑗 is in-

stalled by end-user 𝑖 

𝑥𝐵
𝑖𝑘  binary variable which shows whether a battery of type 𝑘 is 

installed by end-user 𝑖 
𝑃1𝑡𝑠  active power at the sending end of the first branch in time 

interval 𝑡 and cluster 𝑠 (MW) 

𝑝𝑟𝑖𝑡𝑠  purchased energy from utility by end-user 𝑖 in time inter-

val 𝑡 and cluster 𝑠 (MWh) 

𝑝𝑙𝑖𝑡𝑠
+ /𝑝𝑙𝑖𝑡𝑠

−  purchased/sold energy in NET mechanism by end-user 𝑖 
in time interval 𝑡 and cluster 𝑠 (MWh) 

𝑛𝑐𝑡𝑠  network charge in time interval 𝑡 and cluster 𝑠 ($/MWh) 
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𝐵𝐷𝐶𝑖  degradation cost of the battery at bus 𝑖 ($ MWh⁄ ) 

𝑑𝑖𝑡𝑠  shiftable load of end-user 𝑖 from time interval 𝑡 in cluster 

𝑠 (MWh) 

𝑝𝑖𝑡𝑠
𝑐   nodal injection of battery charging energy by end-user i in 

time interval 𝑡 and cluster 𝑠 (MWh) 

𝑝𝑖𝑡𝑠
𝑑   nodal injection of battery discharging energy by end-user i 

in time interval 𝑡 and cluster 𝑠 (MWh) 

𝑃𝑖𝑡𝑠/𝑄𝑖𝑡𝑠 active/reactive power at the sending end of branch 𝑖 in 

time interval 𝑡 and cluster 𝑠 (MW) 

𝑢𝑖𝑡𝑠  square current magnitude in line 𝑖, time interval 𝑡 and clus-

ter 𝑠 
𝑣𝑖𝑡𝑠  square voltage magnitude at bus 𝑖 in time interval 𝑡 and 

cluster 𝑠 
𝑣𝑖𝑡𝑠  square voltage magnitude at sending end of branch 𝑖 in 

time interval 𝑡 and cluster 𝑠 ((kV)2) 

𝑆𝑜𝐶𝑖𝑡𝑠  battery state of charge of at bus 𝑖 in time interval 𝑡 and 

cluster 𝑠 (MWh) 

𝑆𝑜𝐶𝑖,𝑚𝑎𝑥   maximum state of charge of battery at bus 𝑖 

𝑆𝑜𝐶𝑖,𝑚𝑖𝑛  minimum state of charge of battery at bus 𝑖 

𝛼𝑖𝑡𝑠  binary variable which determines the charging state of the 

battery at bus 𝑖, in time interval 𝑡 and cluster 𝑠 (𝛼𝑖𝑡𝑠 = 1 

means the battery is in charging state) 

𝛽𝑖𝑡𝑠  auxiliary variable which shows a change in charging state 

of the battery at bus 𝑖, in time interval 𝑡 and cluster 𝑠 
𝑝𝑖,𝑚𝑎𝑥
𝑐   maximum charging power of the battery at bus 𝑖 

𝑝𝑖,𝑚𝑎𝑥
𝑑   maximum discharging power of the battery at bus 𝑖 

𝐵𝑁𝐶𝑖
𝐵  number of charging-discharging cycles of the battery at 

bus 𝑖 
𝑧𝑖𝑡𝑠  binary variable which shows whether end-user 𝑖 consumes 

(0) or produces (1) energy in time interval 𝑡 
𝑛𝑐𝑡𝑠ℎ  auxiliary binary variable corresponding to network charge 

level in time interval 𝑡 and cluster 𝑠 ($/MWh) 

𝑒𝑖𝑡𝑠ℎ
±   auxiliary variable of network charge for end-user i in time 

interval 𝑡 and cluster 𝑠 ($) 

Functions 

𝑓  objective function 

𝐼𝑁𝑉/𝑂𝑃𝑅 total investment/operating cost 

𝐼𝑁𝑉𝑢/𝐼𝑁𝑉𝑐   total investment cost incurred to the utility/end-users 

𝐼𝑁𝑉𝑐
𝑖/𝑂𝑃𝑅𝑐

𝑖   𝑖-th end-user’s investment/operating cost 

𝑂𝑃𝑅𝑢  total operating cost incurred to the utility 

𝑂𝑃𝑅𝑐  total operating cost incurred to end-users 

Ψ/Ψ̂  power flow and network operational constraints 

Υ/Υ̂  end-users’ operational constraints 

II. INTRODUCTION 

he distribution network (DN) planning investigates the invest-

ment decisions that the grid owner needs to make in order to 

retain the technical criteria of the network at the minimum cost. The 

transition of end-users from passive energy consumers towards 

small-scale active prosumers with distributed energy resources 

(DERs), i.e. end-users that both consume and produce energy, pro-

vides new challenges for DN planners. End-users with DERs can 

form a local energy community (LEC) which could help in the op-

eration of the DN. In an LEC, there are various ways for end-users 

to supply their demand, i.e. buying from the utility, using the DERs 

in their own premises, or buying the energy from other end-users in 

a neighborhood energy trading (NET) scheme. 

The NET offers exceptional opportunities for end-users to make 

value from underutilized assets in the grid and to exploit opportu-

nities to install new renewable generation and storage units. For ex-

ample, it may be more convenient for some NET participants not to 

invest in DERs because they can use the excess PV generation or 

storage facilities of their neighbors. However, there might be cases 

in which more investment in DERs is profitable because of the sig-

nificant demand level in the LEC. Besides, the utility may adopt 

congestion management schemes that include the utilization of 

DERs in end-users’ premises. However, it would not be efficient if 

the utility does not consider the investment decisions of end-users 

in their own energy-related decisions. This may lead to over/under-

investment and, consequently, higher network costs, as already 

been experienced in, e.g., Australia [1] and European Union [2]. 

This paper presents a planning model for the utility that incorpo-

rates the prosumers’ engagement in NET schemes in order to ac-

quire the optimal investment plan. 

A. Literature review 

The application of modern optimization procedures to power sys-

tem planning is well documented in the literature. The application of 

mixed-integer nonlinear programming (MINLP) to the DN planning 

with the alternatives of investment in feeder upgrade, distributed gen-

eration (DG), and wind turbines is studied in [3], using a robust algo-

rithm to address the uncertainties and convexification to guarantee 

the global optimality of the solution. Reference [4] proposes a co-

optimization model by incorporating the investment decisions on 

DGs besides the conventional alternatives and operational costs in 

active DNs (ADNs). A multi-year ADN planning model including 

both traditional and smart grid technologies is presented in [5]. The 

authors in [6] propose a model for coordinated planning of MV and 

LV DNs considering DG penetration at the MV level. In [7], a risk-

managed planning model is developed using both network and non-

network solutions to find the least cost investment plan for utilities. 

A two-stage planning method for ADNs is investigated in [8] that 

optimizes several planning alternatives as well as the active manage-

ment of DGs.  

The concept of joint investment planning for DNs is also an ex-

plored topic in the literature. The joint planning of network infra-

structure and private-owned DG installation has been analyzed in 

[9-12] to find a suitable investment plan for the utility and other 

self-interested entities or individuals. A similar approach has been 

adopted in [13] to model a cooperative investment planning of 

multi-microgrids and then to propose a cost-sharing scheme for a 

fair allocation of the capital costs among the microgrids. The plan-

ning problem of the DN and the investments in the microgrid de-

velopment are addressed in [14] by a coordinated approach to allow 

the further adoption of PV units while maintaining the operational 

limits of the network. The influence of electricity prices on the in-

vestment decisions is discussed in, e.g., [15-17] for the planning of 

transmission networks under the market environment. 

To the best of our knowledge, the impact of energy trading 

among end-users on the investment planning of DNs has not yet 

been dealt with in the literature. This is the original contribution of 

the present paper. 

B. Contribution 

Building upon the analysis presented in [18], this paper is based 

on the consideration that NET schemes, if allowed, should be taken 

into account in utility’s decisions since the impact is expected to be 

significant. 

In this framework, the contributions of this paper are: 

1) presentation of a model for the optimal planning of utility’s in-

vestments that incorporates the expected end-users’ invest-

ments in DERs; 

2) inclusion of the NET scheme in the DN planning; 

3) optimum design of the network charge (NC); 

T 
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4) demonstration of the computational features of the developed 

mixed-integer second-order cone programming (MISOCP) 

model by using the IEEE 33-bus system as a test case 

This study outlines the optimal DN planning pathway considering 

the expected investment decisions of end-users. With this in mind, 

any deviation in end-users’ investment decisions can be treated as a 

source of uncertainty in the problem. This model is a useful tool for 

government-owned utilities that are seeking the benefit of their so-

cieties (minimizing the total cost of electrification). The expected 

outcome of end-users’ investment decisions can be negotiated with 

them either directly or via agreements through an aggregator. 

III. PROBLEM DESCRIPTION AND FORMULATION 

The investment of NET participants in DERs is driven mainly by 

the specific NET rules and opportunities, while the utility mainly 

considers the grid investment plan to tackle peak loads. These dif-

ferent aims are aligned in the framework proposed in this paper by 

considering both the utility and end-users’ costs and benefits. Alt-

hough the model is represented by a centralized decision-making 

unit for the utility, the results can be a useful guide also to facilitate 

the implementation of NET schemes, since the proposed model 

guarantees that all NET participants will benefit by cooperating 

with other parties in the NET. 

Due to the integrality characteristic of investment decisions and 

the nonconvexity of power flow equations, we need to deal with a 

mixed-integer nonlinear programming (MINLP) model. It has been 

reported in several studies, e.g., [19], that relaxing some nonconvex 

constraints greatly facilitates finding global optima. To this end, a 

mixed-integer second-order cone programming (MISOCP) model is 

proposed, which can be efficiently handled by available optimizers. 

The following subsections A, B, and C discuss the considerations 

regarding the NC, the objective function, and the constraints of the 

proposed MISOCP model respectively, whilst subsection D is de-

voted to the adopted solution approach. The results of the numerical 

tests are presented in Section IV. 

A. Network charge 

The NC for the end-users that do not participate in the NET is 

normally regulated by, e.g., the national regulator who sets the tar-

iff. However, the NET participants use the network for selling or 

buying energy, and hence should be charged accordingly. The NC 

in this study is what the NET participants will pay to the utility. The 

utility sets the NC only to rationalize the appropriate use of network 

infrastructure, not to maximize its profit. Since the utility is not 

treated as a profit-making entity here, the minimum NC is obtained 

along with other investments with the objective to minimize the to-

tal cost of electrification. The utility may reward some of the NET 

participants if they contribute to the reduction of network stress. 

The simple and conventional NC is a constant fee during the day 

regardless of the actual requirements for maintaining the network 

operational condition. This type of NC is not expected to efficiently 

influence the electricity market and reflect the grid demand. This 

design is named static NC (SNC). The utility can better avert the 

risk of congestion or avoid network upgrades by introducing a more 

elaborate NC design, called dynamic NC (DNC). The DNC better 

reflects the costs borne by the utility. The proposed framework in 

this study also includes the optimization of a DNC scheme. 

B. Objective function 

For simplicity, we consider that the utility acts both as the DN 

operator and the energy provider to the end-users. The local gener-

ation is provided only by PV units. Since we consider only one ra-

dial feeder connected to the main substation, the total power request 

is the power at the sending end of the first line, i.e. 𝑃1𝑡𝑠. The dura-

tion of each time interval is 1 hour. 

To model the uncertainties in the optimization horizon 𝑇, the pro-

files of loads, PV generation and electricity prices over the planning 

period are categorized into several representative day scenarios, de-

noted as cluster 𝑠, each with probability 𝜌𝑠, by employing the k-

means method presented in [20], as illustrated in Section IV. 

The objective function described in (1) is the total investment 

(𝐼𝑁𝑉) and operating costs (𝑂𝑃𝑅), as described in the two sets of 

equations (2)-(5) and (6)-(9), respectively. 

min 𝑓(𝑥𝑢̅̅ ̅, 𝑥�̅� , 𝑦𝑢̅̅ ̅, 𝑦�̅� , 𝑦�̅�) = 𝐼𝑁𝑉(𝑥𝑢̅̅ ̅, 𝑥�̅�) + 𝑂𝑃𝑅(𝑦𝑢̅̅ ̅, 𝑦�̅� , 𝑦�̅�)  (1) 

where 

𝐼𝑁𝑉(𝑥𝑢̅̅ ̅, 𝑥�̅�) = 𝐼𝑁𝑉𝑢 + 𝐼𝑁𝑉𝑐 (2) 

𝐼𝑁𝑉𝑢 = ∑∑𝐶𝐿𝑖𝜋𝑥𝑙
𝑖𝜋

𝑖∈𝑁𝜋∈𝛱

+∑𝐶𝑇𝜉𝑥𝑇𝑅
𝜉

𝜉∈Ξ

 
(3) 

𝐼𝑁𝑉𝑐 =∑𝐼𝑁𝑉𝑐
𝑖

𝑛

𝑖=1

 
(4) 

𝐼𝑁𝑉𝑐
𝑖 = ∑ 𝐶𝑃𝑉𝑤  𝑥𝑃𝑉

𝑖𝑤

𝑤∈𝑊

+∑𝐶𝐵𝑘  𝑥𝐵
𝑖𝑘

𝑘∈𝐾

 (5) 

𝑂𝑃𝑅(𝑦𝑢̅̅ ̅, 𝑦�̅� , 𝑦�̅�) = 𝑂𝑃𝑅𝑢 + 𝑂𝑃𝑅𝑐 (6) 

𝑂𝑃𝑅𝑢 =∑𝜌𝑠 [∑ω𝑡𝑠𝑃1𝑡𝑠
𝑡∈𝑇

−∑∑𝑅𝑡𝑠𝑝𝑟𝑖𝑡𝑠

𝑛

𝑖=1𝑡∈𝑇𝑠∈𝑆

−∑∑(𝑝𝑙𝑖𝑡𝑠
+ + 𝑝𝑙𝑖𝑡𝑠

− )𝑛𝑐𝑡𝑠
𝑖∈𝑁𝑡∈𝑇

] 

(7) 

𝑂𝑃𝑅𝑐 =∑𝑂𝑃𝑅𝑐
𝑖

𝑖∈𝑁

 (8) 

𝑂𝑃𝑅𝑐
𝑖 =∑𝜌𝑠 [∑𝑅𝑡𝑠 𝑝𝑟𝑖𝑡𝑠

𝑡∈𝑇

+∑(𝑛𝑐𝑡𝑠 + 𝐿𝑡𝑠)𝑝𝑙𝑖𝑡𝑠
+

𝑡∈𝑇𝑠∈𝑆

+∑(𝑛𝑐𝑡𝑠 − 𝐿𝑡𝑠)𝑝𝑙𝑖𝑡𝑠
−

𝑡∈𝑇

+ 𝐵𝐷𝐶𝑖

+ 𝐷𝐹𝑖∑𝑑𝑖𝑡𝑠
𝑡∈𝑇

] 

(9) 

As shown in (3) and (6), line and transformer reinforcement for 

the utility as well as the PV and battery installation for prosumers 

are considered as investment alternatives and are denoted by 𝑥𝑙
𝑖𝜋, 

𝑥𝑇𝑅
𝜉

, 𝑥𝑃𝑉
𝑖𝑤 , and 𝑥𝐵

𝑖𝑘 , respectively. The utility’s operating cost includes 

the cost of energy purchases from the wholesale market, revenue 

(negative cost) of selling energy to consumers, and the revenue of 

network charge, as detailed in (7). 

The prosumers’ operating cost in (9) includes, for each time in-

terval 𝑡 and cluster 𝑠, the cost of energy purchases from the utility 

(𝑅𝑡𝑠 𝑝𝑟𝑖𝑡𝑠), the cost of energy purchases from NETs (𝐿𝑡𝑠𝑝𝑙𝑖𝑡𝑠
+ ), the 

revenue of energy sold in NETs (−𝐿𝑡𝑠𝑝𝑙𝑖𝑡𝑠
− ), the cost of battery de-

preciation (𝐵𝐷𝐶𝑖), and the disutility cost of prosumers due to the 

application of DR that requires changes in their scheduled demand 

(𝐷𝐹𝑖𝑑𝑖𝑡𝑠). The price in NET schemes depends on quantities availa-

ble and therefore is a function of circumstances, but, for the sake of 

simplicity, it is considered static here, equal to the average values 

forecasted by the utility for the different time periods. 

The network charge during time interval 𝑡 is modeled as 𝑛𝑐, 



Javid Maleki Delarestaghi, Ali Arefi, Gerard Ledwich, Alberto Borghetti, A distribution network planning model considering 

neighborhood energy trading, Electric Power Systems Research, Volume 191, 2021, https://doi.org/10.1016/j.epsr.2020.106894. 

4 

which can be SNC or DNC: The SNC corresponds to a constant 

value of 𝑛𝑐𝑡𝑠 during the optimization horizon, while the DNC cor-

responds to a scheme in which the value of 𝑛𝑐𝑡𝑠 may vary in differ-

ent time intervals. 

The variables are divided into 5 groups based on their type (in-

vestment, operational, or power flow variables) and side (utility or 

prosumers): 

𝑥�̅� = {𝑥𝑃𝑉
𝑖𝑤 , 𝑥𝐵

𝑖𝑘|∀𝑖 ∈ 𝑁, ∀𝑤 ∈ 𝑊,∀𝑘 ∈ 𝐾} (10) 

𝑥𝑢̅̅ ̅ = {𝑥𝑙
𝑖𝜋 , 𝑥𝑇𝑅

𝜉
|∀𝜋 ∈ 𝛱, ∀𝜉 ∈ Ξ, ∀𝑖 ∈ 𝑁} (11) 

𝑦�̅� = {𝑝𝑟𝑖𝑡𝑠, 𝑝𝑙𝑖𝑡𝑠
± , 𝑑𝑖𝑡𝑠 , 𝑝𝑖𝑡𝑠

𝑐 , 𝑝𝑖𝑡𝑠
𝑑 |∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆} (12) 

𝑦𝑢̅̅ ̅ = {𝑛𝑐𝑡𝑠, 𝑃1𝑡𝑠| ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆} (13) 

𝑦�̅� = {𝑃𝑖𝑡𝑠 , 𝑄𝑖𝑡𝑠, 𝑢𝑖𝑡𝑠, 𝑣𝑖𝑡𝑠|∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆} (14) 

The sets of decision variables of end-users (𝑥�̅�) and the utility 

(𝑥𝑢̅̅ ̅) contain the investment in PV (𝑥𝑃𝑉
𝑖𝑤), battery (𝑥𝐵

𝑖𝑘), new line 

(𝑥𝑙
𝑖𝜋) and new transformer (𝑥𝑇𝑅

𝜉
). The sets of operational variables 

of end-users (𝑦�̅�), of the utility (𝑦𝑢̅̅ ̅), and of those of the power flow 

equations (𝑦�̅�) include the amount of energy purchased from the 

utility by each end-user (𝑝𝑟𝑖𝑡𝑠), the amount of energy sold or pur-

chased in NET (𝑝𝑙𝑖𝑡𝑠
± ), the amount of battery charging and discharg-

ing (𝑝𝑖𝑡𝑠
𝑐 , 𝑝𝑖𝑡𝑠

𝑑 ), DR decisions (𝑑𝑖𝑡𝑠), the network charge level for the 

participants in NET schemes (𝑛𝑐𝑡𝑠), the amount of energy pur-

chased from the wholesale market (𝑃1𝑡𝑠), the power flows in lines 

(𝑃𝑖𝑡𝑠, 𝑄𝑖𝑡𝑠), the square magnitude of line currents (𝑢𝑖𝑡𝑠) and the 

square magnitude of bus voltages (𝑣𝑖𝑡𝑠). 

C. Constraints 

The model includes the following sets of equality and inequality 

constraints. 

Ψ(𝑥𝑢̅̅ ̅, 𝑦�̅� , 𝑦�̅�) ≥ 0,      Ψ̂(𝑥𝑢̅̅ ̅, 𝑦�̅� , 𝑦�̅�) = 0 (15) 

Υ(𝑥�̅� , 𝑦𝑢̅̅ ̅, 𝑦�̅�) ≥ 0,      Υ̂(𝑥�̅� , 𝑦𝑢̅̅ ̅, 𝑦�̅�) = 0 (16) 

𝐼𝑁𝑉𝑐
𝑖 + 𝑂𝑃𝑅𝑐

𝑖 ≤ 𝐶𝐶𝑖0  ∀𝑖 ∈ 𝑁,
𝐼𝑁𝑉𝑢 + 𝑂𝑃𝑅𝑢 ≤ 𝐶𝐶𝑢0 

(17) 

The constraints associated with the power flow equations and 

network operational constraints are included in (15). The users’ op-

erational constraints are represented in (16). The constraints in (17) 

ensure that the utility and the end-users will participate in the NET 

market only if it is beneficial to them, with 𝐶𝐶𝑖0 and 𝐶𝐶𝑢0 calculated 

by the optimization model forbidding NETs. 

The detailed description of each set of constraints is provided below 

by omitting, for the sake of brevity, their validity for ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇, 

and ∀𝑠 ∈ 𝑆. 

The power flow and network operational constraints in (15) are 

detailed in (18)-(23), based on the convex model presented in [21] 

for  networks with radial configuration. Without considering the bus 

at the substation, the number of buses is equal to the number of 

branches (i.e., n). Each bus at the receiving end of a branch and the 

branch itself are indicated with the same label. 

𝑃𝑖𝑡𝑠 =∑(𝐴𝑖𝑗(𝑝𝑟𝑗𝑡𝑠 + 𝑝𝑙𝑗𝑡𝑠
+ − 𝑝𝑙𝑗𝑡𝑠

− ) + 𝑅𝑀𝑖𝑗𝑢𝑗𝑡𝑠)

𝑛

𝑗=1

 
(18) 

𝑄𝑖𝑡𝑠 =∑(𝐴𝑖𝑗𝑞𝑗𝑡𝑠 + 𝑋𝑀𝑖𝑗𝑢𝑗𝑡𝑠)

𝑛

𝑗=1

 
(19) 

𝑣𝑖𝑡𝑠 = 𝑉0
2 − 2∑(𝑀𝑅𝑖𝑗  𝑃𝑗𝑡𝑠 +𝑀𝑋𝑖𝑗  𝑄𝑗𝑡𝑠

𝑛

𝑗=1

− 0.5𝑀𝑍𝑖𝑗  𝑢𝑗𝑡𝑠) 

(20) 

(𝑃𝑖𝑡𝑠)
2 + (𝑄𝑖𝑡𝑠)

2 − 𝑢𝑖𝑡𝑠𝑣𝑖𝑡𝑠 ≤ 0 (21) 

(𝑉)
2
≤ 𝑣𝑖𝑡𝑠 ≤ (𝑉)

2
 (22) 

{
𝑢𝑖𝑡𝑠 ≤ 𝑥𝑙

𝑖𝜋((𝐼𝑚𝑎𝑥
𝜋 )2 − (𝐼𝑚𝑎𝑥

𝑖0 )2) + (𝐼𝑚𝑎𝑥
𝑖0 )2   

𝑢0𝑡𝑠 ≤ 𝑥𝑇𝑅
𝜉
((𝐼𝑚𝑎𝑥

𝜉
)
2

− (𝐼𝑚𝑎𝑥
00 )2) + (𝐼𝑚𝑎𝑥

00 )2
 

 

(23) 

where 𝑃𝑖𝑡𝑠, 𝑄𝑖𝑡𝑠, and 𝑢𝑖𝑡𝑠 are the active and reactive powers at the 

sending end, and the current square magnitude of branch 𝑖, respec-

tively; 𝑣𝑖𝑡𝑠 is the squared of voltage magnitude at sending end of 

branch 𝑖, all in time interval 𝑡 in cluster 𝑠; 𝐴𝑖𝑗, 𝑅𝑀𝑖𝑗, 𝑋𝑀𝑖𝑗, 𝑀𝑅𝑖𝑗, 

𝑀𝑋𝑖𝑗, and 𝑀𝑍𝑖𝑗 are the 𝑖𝑗-th elements of their corresponding square 

matrices and they are equal to 𝑖𝑗-th element of the BIBC matrix of 

the network, the product of 𝐴𝑖𝑗 and the resistance rj of the branch 𝑗, 

the product of 𝐴𝑖𝑗 and the reactance xj of the branch 𝑗, the product of 

𝐴𝑗𝑖 and the resistance of the branch 𝑗, the product of 𝐴𝑗𝑖 and the reac-

tance of the branch 𝑗, and finally, the product of 𝐴𝑖𝑗 and the square 

impedance magnitude of the branch 𝑗, i.e. 𝑟𝑗
2 + 𝑥𝑗

2 , respectively. 

Constraint (18) states that the active power at the sending end of 

branch 𝑖 is equal to the sum of the loads supplied by branch 𝑖 plus 

the sum of the losses in all downward branches connected to branch 

𝑖. Analogously, (19) is written for reactive power. Constraint (21) 

is the relaxed version of the link between the square of the apparent 

power and the square of the product of voltage and current. Con-

straint (22) enforces the voltage bounds. Constraint (23) applies the 

current limits. Constraint (20) is the matrix form of the DistFlow 

equation [22] of the following constraint, 

𝑣𝑢𝑝(𝑖)𝑡𝑠 − 𝑣𝑖𝑡𝑠 = −2(𝑟𝑖𝑃𝑖𝑡𝑠 + 𝑥𝑖𝑄𝑖𝑡𝑠) + (𝑟𝑖
2 + 𝑥𝑖

2)𝑢𝑖𝑡𝑠 (24) 

where 𝑢𝑝(𝑖) and 𝑖 are the labels of the sending and receiving ends 

of branch 𝑖. 
The set of constraints in (16) comprises the model of the battery 

operation (25)-(43), the model of the state of each prosumer (44)-

(48) that avoids a prosumer from acting as a consumer and producer 

in the same time interval, the energy balance in NET (49), the en-

ergy balance for each end-user (50), and the limit on DR (51). 

𝑆𝑜𝐶𝑖𝑡𝑠 = 𝑆𝑜𝐶𝑖(𝑡−1)𝑠 + 𝜂𝑐𝑝𝑖𝑡𝑠
𝑐 −

𝑝𝑖𝑡𝑠
𝑑

𝜂𝑑
 

(25) 

𝑆𝑜𝐶𝑖,𝑚𝑎𝑥 = ∑𝑆𝑜𝐶𝑘
𝑚𝑎𝑥𝑥𝐵

𝑖𝑘

𝑘∈𝐾

 (26) 

𝑆𝑜𝐶𝑖,𝑚𝑖𝑛 = ∑𝑆𝑜𝐶𝑘
𝑚𝑖𝑛𝑥𝐵

𝑖𝑘

𝑘∈𝐾

 (27) 

𝑆𝑜𝐶𝑖𝑡𝑠 ≤ 𝑆𝑜𝐶𝑖,𝑚𝑎𝑥 (28) 

𝑆𝑜𝐶𝑖𝑡𝑠 ≥ 𝑆𝑜𝐶𝑖,𝑚𝑖𝑛 (29) 

𝑝𝑖𝑡𝑠
𝑐 ≤ 𝛼𝑖𝑡𝑠𝑀 (30) 

𝑝𝑖𝑡𝑠
𝑑 ≤ (1 − 𝛼𝑖𝑡𝑠)𝑀 (31) 

𝛽𝑖𝑡𝑠 ≥ 𝛼𝑖(𝑡+1)𝑠 − 𝛼𝑖𝑡𝑠       ∀𝑡 ∈ 𝑇 − {𝑡𝑚𝑎𝑥} (32) 
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𝛽𝑖𝑡𝑚𝑎𝑥𝑠 ≥ 𝛼𝑖1𝑠 − 𝛼𝑖𝑡𝑚𝑎𝑥𝑠 (33) 

𝛽𝑖𝑡𝑠 ≥ 𝛼𝑖(𝑡+1)𝑠 − 𝛼𝑖𝑡𝑠       ∀𝑡 ∈ 𝑇 − {𝑡𝑚𝑎𝑥} (34) 

𝛽𝑖𝑡𝑚𝑎𝑥𝑠 ≥ 𝛼𝑖1𝑠 − 𝛼𝑖𝑡𝑚𝑎𝑥𝑠 (35) 

𝑝𝑖,𝑚𝑎𝑥
𝑐 = ∑𝑝𝑐𝑘

𝑚𝑎𝑥𝑥𝐵
𝑖𝑘

𝑘∈𝐾

 (36) 

𝑝𝑖,𝑚𝑎𝑥
𝑑 = ∑𝑝𝑑𝑘

𝑚𝑎𝑥𝑥𝐵
𝑖𝑘

𝑘∈𝐾

 
(37) 

𝑝𝑖𝑡𝑠
𝑐 ≤ 𝑝𝑖,𝑚𝑎𝑥

𝑐  (38) 

𝑝𝑖𝑡𝑠
𝑑 ≤ 𝑝𝑖,𝑚𝑎𝑥

𝑑  (39) 

𝜂𝑐𝜂𝑑∑𝑝𝑖𝑡𝑠
𝑐

𝑡∈𝑇

=∑𝑝𝑖𝑡𝑠
𝑑

𝑡∈𝑇

 (40) 

𝑝𝑖𝑡𝑠
𝑐 ≤ 𝐺𝑖𝑤𝑡𝑠𝑥𝑃𝑉

𝑖𝑤  (41) 

𝐵𝑁𝐶𝑖 = 0.5∑𝛽𝑖𝑡𝑠
𝑡∈𝑇

 (42) 

𝐵𝐷𝐶𝑖 = 𝐵𝐷𝑖  𝐵𝑁𝐶𝑖  (43) 

𝑝𝑙𝑖𝑡𝑠
− ≤ 𝑀 𝑧𝑖𝑡𝑠 (44) 

𝑝𝑙𝑖𝑡𝑠
+ ≤ 𝑀 (1 − 𝑧𝑖𝑡𝑠) (45) 

𝑝𝑟𝑖𝑡𝑠 ≤ 𝑀 (1 − 𝑧𝑖𝑡𝑠) (46) 

𝐷𝑖𝑡𝑠 + 𝑝𝑖𝑡𝑠
𝑐 − 𝑝𝑖𝑡𝑠

𝑑 + 𝑑𝑖𝑡𝑠 − ∑ 𝐺𝑖𝑤𝑡𝑠𝑥𝑃𝑉
𝑖𝑤

𝑤∈𝑊

≤ 𝑀(1 − 𝑧𝑖𝑡𝑠) 
(47) 

𝐷𝑖𝑡𝑠 + 𝑝𝑖𝑡𝑠
𝑐 − 𝑝𝑖𝑡𝑠

𝑑 + 𝑑𝑖𝑡𝑠 − ∑ 𝐺𝑖𝑤𝑡𝑠𝑥𝑃𝑉
𝑖𝑤

𝑤∈𝑊

≥ −𝑀𝑧𝑖𝑡𝑠 
(48) 

∑ (𝑝𝑙𝑖𝑡𝑠
+ − 𝑝𝑙𝑖𝑡𝑠

− )
𝑖∈𝑁

= 0 
(49) 

𝑝𝑖𝑡𝑠 + 𝑝𝑙𝑖𝑡𝑠
+ − 𝑝𝑙𝑖𝑡𝑠

− = 𝐷𝑖𝑡𝑠 + 𝑝𝑖𝑡𝑠
𝑐 − 𝑝𝑖𝑡𝑠

𝑑 + 𝑑𝑖𝑡𝑠

− ∑ 𝐺𝑖𝑤𝑡𝑠𝑥𝑃𝑉
𝑖𝑤

𝑤∈𝑊

 

(50) 

𝑑𝑖𝑡𝑠 ≤ 𝑑𝑖𝑡𝑠
𝑚𝑎𝑥 (51) 

The state of charge (SoC) of the battery in each time interval is cal-

culated in (25). The maximum and minimum limits for battery SoC 

are calculated in (26) and (27), respectively. Equations (28) and 

(29) apply the limits on the SoC of the battery. The state of battery 

operation, i.e. charging or discharging, is found in (30) and (31). 

The transition from one operating state to another one is detected in 

(32)-(35). The charging and discharging powers are limited in (36)-

(39). Constraint (40) ensures that the net energy stored in the battery 

in a day is zero. As the retail price is considered to be flat-rate, con-

straint (41) is added to ensure that the prosumers only store the ex-

cess generation of their PVs, not the energy purchases from the util-

ity, which would clearly deteriorate their own benefits. The number 

of cycles of the battery is represented in (42). In (43), the deprecia-

tion cost of the battery is calculated. 

Constraint (49) imposes the equality of energy purchases and 

sales through the NET. The constraint (50) states the balance of en-

ergy for prosumers. Finally, the amount of shifted power to/from a 

time interval is limited by (51). 

The quadratic term (𝑝𝑙𝑖𝑡𝑠
+ + 𝑝𝑙𝑖𝑡𝑠

− )𝑛𝑐𝑡𝑠 in (9) would make the 

constraint matrix of the model a non-positive semi-definite matrix 

which is not accepted by off-the-shelf optimizers, e.g., Gurobi [23]. 

In order to overcome this issue, we assume that 𝑛𝑐𝑡𝑠 is an integer 

number, so its equivalent binary expression is ∑ 2ℎ−1𝑛𝑐𝑡𝑠ℎ
𝑛ℎ
ℎ=1 −

∑ 2ℎ−2
𝑛ℎ
ℎ=1  where 𝑛𝑐𝑡𝑠ℎ ∈ {0,1}. Following [24], a new variable, 

𝑒𝑖𝑡𝑠ℎ
± , is defined and (9) is replaced by (52)-(56), as follows  

𝑂𝑃𝑅𝑐
𝑖 = ∑ [𝐵𝐷𝐶𝑖 + ∑ (𝑅𝑖𝑡𝑠𝑝𝑟𝑖𝑡𝑠 + 𝐷𝐹𝑖𝑑𝑖𝑡𝑠 +𝑡∈𝑇𝑠∈𝑆

∑ 2ℎ−1
𝑛ℎ
ℎ=1 (𝑒𝑖𝑡𝑠ℎ

+ + 𝑒𝑖𝑡𝑠ℎ
− ))] (52) 

and the following linear constraints are added: 

𝑒𝑖𝑡𝑠ℎ
± ≤ 𝑝𝑙𝑖𝑡𝑠

±  (53) 

𝑒𝑖𝑡𝑠ℎ
± ≤ 𝑀𝑛𝑐𝑡𝑠ℎ (54) 

𝑒𝑖𝑡𝑠ℎ
± ≥ 𝑝𝑙𝑖𝑡𝑠

± −𝑀(1 − 𝑛𝑐𝑡𝑠ℎ) (55) 

𝑒𝑖𝑡𝑠ℎ
± ≥ 0 (56) 

D. Solution approach 

The algorithm to solve the proposed planning model is illuminated 

in Fig. 1. At first, the data of the network under study, i.e. the topol-

ogy and specification of the existing and candidate replacing equip-

ment, the load demand and PV generation data, wholesale price, retail 

price, the maximum available demand response of each prosumer and 

the interest rate are collected. Then multiple scenarios for load de-

mand, PV generation profile, and wholesale price are generated by 

clustering the collected data. Finally, the input matrices of the pro-

posed model are built to be provided to the optimization solver. 
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To obtain the results of Section IV, the procedure has been im-

plemented in Matlab and the Gurobi 8.0.0 solver has been adopted. 

The calculations have been carried out by using an Intel CORE i5-

2500 PC with the clock speed 3.30 GHz and 8GB RAM. 

As mentioned in [19], the Gurobi solver implements a combina-

tion of two methods, branch-and-bound (BB) and barrier, to address 

the integrality and solving the relaxed SOCP model, respectively. In 

this regard, the MISOCP model is relaxed to an SOCP model by 

assuming the integer variables to be continuous. The SOCP is solved 

by the barrier method and the optimal solution is checked to see if 

the integrality constraints are maintained. The solution of the relaxed 

model is a lower bound (LB) for the original problem. The BB con-

tinues the solution by branching on the integer variables that do not 

satisfy the integrality constraints. Any optimal solution of the gener-

ated sub-problems that satisfies the optimality constraints is an upper 

bound (UB) of the original MISOCP problem. The algorithm stops 

branching if the gap between UB and LB falls below the threshold 

or the maximum allowed iteration number is reached. 

IV. CASE STUDIES AND ANALYSIS OF THE RESULTS 

The considered case studies are based on the IEEE 33-bus radial 

test system with data provided in Table 1 of [25]. In Fig. 2, the can-

didate locations for PV and battery installations are represented by 

the PV and battery icon. The input parameters are listed in TABLE 

I, where the rates and costs are obtained from [26, 27]. The electric-

ity price in NET is assumed to be constant at 15 cents per kWh, a 

value between the retail price and the feed-in tariff offered by the 

utility. Due to the constant retail price, end-users are not interested 

to store the energy purchased from the utility and use it later. Thus, 

the battery is only used to store the excess energy generated by PV. 

For the sake of simplicity, the efficiency of battery charging/dis-

charging is assumed 100%. 

 

 
Two schemes of NC are examined, namely, SNC and DNC, rep-

resented as described in section III. 

Due to the intrinsic incentive of the NET (cheaper energy com-

pared to the retail market), the prosumers are expected to shift their 

load demand to the time intervals when the NET market is more 

active, i.e., to the hours of significant PV generation. Therefore, we 

consider the end-users can shift their load from peak hours in the 

evening to daytime, namely the load shift is allowed from (18:00 – 

03:00) to (08:00 – 17:00), but the reverse is not allowed.  

A. Clustering output 

By applying the k-means data clustering over one year, 3 repre-

sentative days (denoted as clusters) are determined for the load de-

mand, PV generation, and the wholesale electricity price. The data 

of load demand and wholesale price are collected from [28], and the 

PV generation profiles are obtained based on weather forecast data 

[29], for one year starting from 1 Dec 2017. Each cluster represents 

the daily per unit profiles of load demand, PV generation, and the 

wholesale market price, as seen in Fig. 3. The probability of each 

cluster is shown in TABLE II, in which cluster 3 would represent 

52% of a year. 

 
Fig. 1. Flowchart of the proposed method 

 

Collect the data of demands, PV profile, wholesale price 

Run k-means clustering to find representative day scenarios 

Input the parameters: network configuration, specification of 

equipment, retail price, network charge, feed-in tariff, candidate PV 

and battery specifications, available demand response 

Set S=original planning problem with relaxed integrality constraints, 

𝐵 = ∅, 𝐿𝐵 = −∞, 𝑈𝐵 = +∞, 𝑂𝑆 = Ø 

1- for 𝑠 in 𝑆 

2- perform the optimization of 𝑠 

3- if feasible then 

4- denote the optimal solution as 𝛼∗ and best objective as 𝑠∗ 

5- update 𝐿𝐵 = min{𝐿𝐵, 𝑠∗} 

6- if 𝛼∗ satisfies all integrality constraints then 

7- if 𝑈𝐵 ≥  𝑠∗ then 

8- update 𝑈𝐵 = 𝑠∗ and 𝑂𝑆 = 𝛼∗ 

9- else then 

10- update 𝐵 = 𝐵 ∪ {𝑠} 
11- else then 𝑠 = 𝑆. Next and return to 1 

12- set 𝑆 = Ø 

13- branch on branching variables for ∀𝑏 ∊ 𝐵 and add the produced 
subproblems to 𝑆 

14- if (𝑆 ≠ Ø and |𝑈𝐵 − 𝐿𝐵| ≥ 𝜀) then return to 1, else then print 𝑂𝑆 
as the optimal solution and 𝑈𝐵 as the best objective 

Initiate solving the planning model in Gurobi using the branch and 

bound and barrier techniques 

 
Fig. 2.  IEEE 33-bus test network 
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TABLE I 
THE VALUE OF PARAMETERS IN THE PROPOSED MODEL 

parameter value 

retail price ($/MWh)  240  

feed-in-tariff ($/MWh) 60 

local price ($/MWh) 150 

static network charge ($/MWh)  50 

7kW PV unit investment cost ($) 8500 

7kWh-3kW battery unit investment cost ($) 4000 

new line fixed investment cost (k$) 75 

new line per km investment cost (k$/km) 75 

New 5 MVA transformer investment cost (k$) 350 

operating voltage (kV) 20 

expected lifetime of PV and battery (year) 10 
expected lifetime of new lines (year) 40 

O&M cost of battery ($/MWh) 20 

disutility factor for consumers’ DR ($/MWh) 40 

interest rate (%) 4 
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The wholesale price reasonably tracks the load demand in all 

clusters. The electricity price drops in the middle of the day with 

high PV generation in clusters 1 and 3. The peak of the wholesale 

electricity price occurs at 17:00, 16:00, and 18:00 in clusters 1, 2, 

and 3, respectively. 

Considering the terms in (1)-(9), the objective function can be 

classified into 4 groups. These cost terms and the parameters that 

affect them are listed in TABLE III. The critical decisions, which 

are centrally optimized, and the corresponding effective parameters 

are also shown in TABLE III. The obtained clusters effectively rep-

resent the parameters mentioned in TABLE III. For example, clus-

ter 3 contains the peak price, the peak PV generation, and the max-

imum PV generation duration, whilst cluster 2 exhibits the peak 

load. Therefore, these clusters can be considered proper for plan-

ning optimization. 

 

B. Cases 

The planning procedure is applied to 7 different cases, as shown 

in TABLE IV. The effect of the presence of NET with both the SNC 

and DNC designs, as well as the impact of considering the cost for 

only either utility or end-users to the planning results is analyzed. 

 
Optimization results for the total installed capacity of PV and 

battery and the total number of upgraded line sections are listed in 

TABLE V. The utility’s cost, total end-users’ cost, and total cost of 

electrification are illustrated in Fig. 4. The results are discussed in 

the following sub-sections. 

 

 

C. The impact of NET 

We compare case 1 in which NET is not allowed, with the corre-

sponding cases that enable NET: case 4 (with DNC) and case 7 (with 

SNC). As shown in Fig. 4, the total cost of electrification decreases 

by enabling the NET. End-users’ cost in case 4 and 7 is lower than 

case 1 because they can buy or sell in NETs at a more convenient 

price. The utility’s revenue is not reduced by NETs, since two-line 

sections must be upgraded in case 1, while there is no line upgrade 

in case 4, and only one line section is replaced in case 7.  

The end-users’ investments in batteries are triggered in all cases 

with NET, while in case 1 no battery is installed. Moreover, the end-

users are more willing to invest in PV units in case 4 and case 7 

when compared to case 1. Particularly in case 4, a considerable ca-

pacity of PV (3.26 times more than in case 1) is installed by end-

users. It shows that the NET is a proper incentive for the end-users 

to increase the use of renewables.  

D. The impact of including the end-users’ costs 

The total cost in case 4 is lower than in case 2, which considers 

only the utility’s costs in the objective function, and is equal to that 

of case 3, which minimizes only the end-users’ costs. Also, the size 

of PV and battery units calculated by the optimization procedure in 

case 4 matches that of case 3. While the total installed capacity of 

PV and battery units in case 4 is 3 times higher than case 2, the end-

users’ cost in case 4 is lower than case 2. With SNC, analogous 

considerations are obtained by comparing the results of case 7 with 

those of case 5 and case 6. The total electrification cost and the total 

end-users’ cost in case 7 are lower than in case 5, while the total 

installed capacity of PV systems in case 7 is 35% higher than in 

case 5. 

 
Fig. 5 shows the current magnitude in branches L1 and L2 in 

case 1. The currents exceed the maximum limit from 9:00 to 22:00 

and 17:00 to 20:00, in L1 and L2, respectively. To find out how it 

 
Fig. 3.  Three clusters representing one year 
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TABLE II 

PROBABILITY OF CLUSTERS 

 cluster 1 cluster 2 cluster 3 

probability (%) 31 17 52 

 

TABLE III 

IMPORTANT PARAMETERS IN CLUSTERING 

Cost terms Effective parameters 

utility investment  peak load 

prosumer investment 
 PV generation, electricity price, 

load level 

utility operations 
wholesale purchase electricity price 

network power loss load level 

prosumer operations 
electricity price, load level, PV 

generation 

max power traded in NET peak PV generation 

max daily energy traded in NET duration of PV generation  

max DR peak load 

max battery usage peak load and peak price 

 

TABLE IV 
DESCRIPTION OF SIMULATION CASES ( FUNCTION PRESENT, NOT PRESENT)  

 
P2P 

trading 

Dynamic network 

charge (DNC) 

Objective function 

utility cost: (3)+(6) customers cost: (4)+(8) 

case 1     

case 2     

case 3     

case 4     

case 5     

case 6     

case 7     

 

TABLE V 

RESULTS OF INVESTMENT DECISIONS 

Case # 1 2 3 4 5 6 7 

Total PV (kW) 952 1029 3108 3108 826 1099 1113 
Total battery (kWh) 0 70 434 434 266 35 0 

New line sections 2 1 0 0 1 1 1 

 

 
Fig. 4. Optimization results 
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Fig. 5.  Daily current flows through L1 and L2 in all clusters in case 1. 
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is avoided in case 4, a detailed illustration of the energy consump-

tion and production is presented in Fig. 6 in all clusters. 

 

The mitigation of congestion in lines is addressed in two ways: 

increase in production by prosumers and the activation of DR. The 

former one happens over the day and has a peak during the midday 

when 99% of load demand is supplied locally at 12:00 and 13:00 in 

cluster 3. The latter one has a significant impact on investment de-

ferral, as the peak load which determines the need for poles and 

wires upgrade occurs in time intervals when the PV generation is 

zero. As shown in Fig. 6, NET motivates the end-users to shift their 

load demand in all clusters so to alleviate the congestion in L1 and 

L2. The difference between the load and the modified load in Fig. 

6 shows the amount of load shifted by end-users. End-users shift 

their load from 19:00-21:00 to 9:00-11:00 in clusters 1 and 3 and 

from 18:00-23:00 to 8:00-13:00 in cluster 2 (i.e., from when the sun 

goes down and the production of PV is around zero to the morning 

and early in the afternoon where cheap energy is available in the 

NET). The active cooperation of end-users and the utility in case 4 

benefits both prosumers and utility to handle the grid congestions 

and avoid any grid upgrade. 

 
The energy flow at 12:00 in cluster 3 and case 4 is illustrated in 

Fig. 7. In this case, the load demand balances the local production 

to a great extent (99%). The small amount of power imported by 

the utility is mostly due to the grid losses. 

E. The impact of DNC  

Comparing case 2 with case 5, case 3 with case 6, and case 4 with 

case 7, the total electrification cost decreases by employing DNC, 

as shown in Fig. 5. This improvement is expected as the search 

space (the feasible region) of the optimization problem is expanded 

in cases with DNC compared with those that adopt SNC. 

The resulted DNC level for case 4 is shown in Fig. 8 for all clus-

ters. The level of NC is at its highest value, $75 per MWh, and on 

some occasions, it drops to lower values. For example, the load and 

wholesale price are at their peak during 18:00-19:00 in clusters 1 

and 3, thus the utility offers a negative NC that is an incentive to 

the end-users to participate in the NET in order to avoid line up-

grades and to avoid importing power from the upstream grid at high 

wholesale prices. Moreover, the utility offers a negative NC at 

17:00-20:00 in cluster 2 mainly to avoid L1 and L2 upgrade due to 

peak load. 

 

For case 4, the impact of DNC on battery installation and battery 

operation is shown in Fig. 6: batteries are discharged at 18:00 in 

cluster 1, at 17:00 and 19:00 in cluster 2, and at 18:00 and 19:00 in 

cluster 3, when all have negative NC rate. In other words, the utility 

encourages the prosumers to discharge the energy stored in their 

batteries by placing a negative NC tariff. Normally, the utility pre-

fers the batteries to discharge during the peak demand and charge 

during off-peak periods [30], which is satisfied with DNC. 

F. Details of end-users’ investment 

The total end-users’ cost is listed in TABLE VI. Also, the size 

and location of investments in PV and battery units by end-users 

are shown in Table VII. There is a strong relationship between the 

capacity of installed PV/battery units by an end-user and the load 

level around its location. In case 4, the capacity of installed 

PV/battery units is significantly higher at buses 5, 6, 28, and 33 

which are close to buses with a high level of load demand, com-

pared to other candidate locations. 

The cost incurred to the end-user at bus 6 drops by 35% in case 

4 as compared to case 1 due to the 389% increase in PV installation 

and participating in the NET. When comparing case 4 to case 1 for 

the end-user located at bus 27, the overall prosumers’ cost decreases 

by 2% while the installed PV capacity drops by 56%. This high-

lights the function of NET in preventing the end-users from both 

under and overinvestments. 

 
Fig. 6. Daily operation in case 4 
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Fig. 7. Energy flows at 12 PM in cluster 3 and case 4 

 
Fig. 8. Network charge in case 4 

TABLE VI 

DETAILED CUSTOMERS COST IN CASE 1 AND CASE 4 

bus # 2 3 4 5 6 7 8 9 10 11 12 

case 1 829 746 995 118 118 1658 1658 118 118 29 118 
case 4 821 723 973 98 76 1636 1640 100 116 29 116 

bus # 13 14 15 16 17 18 19 20 21 22 23 

case 1 118 995 118 118 118 746 746 746 746 746 746 

case 4 116 970 118 117 118 739 740 732 742 729 733 

bus # 24 25 26 27 28 29 30 31 32 33 

case 1 3481 3481 118 118 118 995 1658 1243 1741 353 

case 4 3425 3432 116 115 90 981 1633 1212 1709 353 
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G. Probabilistic analysis of voltage and loss 

Probabilistic voltage profile and power losses are shown in Fig. 

9 for case 4. As seen, the 95% confidence interval for voltage mag-

nitudes lies within the ±5% of the nominal voltage. As expected, 

the buses far from the substation experience more variation and de-

viation from the nominal voltage. The jump in voltage profile from 

bus 18 to 19 is due to the network configuration shown in Fig. 2. 

 
The profile of the average grid losses reminds the so-called 

“duck-curve” demand profile which highlights the strong correla-

tion between the level of loading and the grid losses. The average 

grid losses are always lower than 0.035 per unit with a base value 

of 100MVA.  

H. Computational performance 

As expected, the required time for convergence of this program-

ming problem depends on the size of the problem (number of vari-

ables and number of constraints) and the value of the input param-

eters. For the network considered in this paper with 31,344 varia-

bles for case 4, the computation time is 51 min with the maximum 

gap threshold between LB and UB equal to 0.05%. The computa-

tion time is 12 min and 14 seconds for case 7 with 21,984 variables 

and for case 1 with 19,680 variables, respectively. These computa-

tion time values are considered reasonable for planning studies. 

I. Extension to multi-year planning 

As mentioned, the results shown in this paper refers to a one-year 

planning horizon, represented by 3 clusters. The planning frame-

work can be extended to a multi-year period using the forward-

backward method presented in [7]. This method finds an optimal 

solution for the multi-year planning problem by efficiently decom-

posing it into a sequence of one-year planning problems in a com-

bined form of forward and backward planning. 

V. CONCLUSION 

An investment plan for the utility that considers the decisions of 

energy users in the distribution network, specifically regarding 

neighborhood energy trades (NET), is presented in this paper. Other 

than the investment of the utility in grid reinforcement, the pro-

posed model also incorporates the calculation of the optimal invest-

ment in PV and battery units in order to provide a guide for the 

utility to motivate the increased installation of these units by end-

users. The model also considers a dynamic network charge (DNC) 

mechanism, considering the uncertainties associated with load de-

mand, wholesale price, and PV generation. 

The model is adapted in a convex MISOCP problem that can be 

efficiently handled by the available optimization solvers. The re-

sults obtained for different case studies based on the IEEE 33-bus 

test system verifies the efficiency and applicability of the proposed 

approach. The results show that NET prevents the prosumers and 

the utility from over/underinvestment by offering a platform that 

provides energy at more convenient prices for both the buyers and 

the sellers. Moreover, the utility can defer the upgrade of poles and 

wires by guiding the NET via designing proper DNC. Further work 

needs to focus on the inclusion of reliability of the system [31], the 

risk of present uncertainties , and the application of the proposed 

model in establishment of virtual power plants [32]. 
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