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Abstract An investigation on the features of the shock structure solution
of the 13 moment system of Extended Thermodynamics with a second order
closure based on the maximum entropy principle (MEP) is presented. The
results are compared to those obtained by means of the traditional first order
closure, and to those obtained in the framework of kinetic theory by solving
the Boltzmann equation with a BGK model for the collision term.

It is seen that when adopting a second order closure, the strength of the
subshock that appears in the shock structure profile for large enough Mach
numbers is remarkably reduced with respect to what is found with the first
order closure, and the overall profile of the shock structure solution is in better
agreement with the results obtained with the kinetic theory approach. The
analysis is extended to the case of the 14 moment system of a polyatomic gas
and some preliminary results are presented also for this case.

Keywords Extended Thermodynamics · Shock structure · Maximum
Entropy Principle

1 Introduction

The study of nonequilibrium phenomena in gases is particularly important. We
have two complementary approaches, namely the continuum approach and the
kinetic one. The continuum model consists in the description of the system
using macroscopic equations (e.g., fluid-dynamic equations) obtained based on

? Published on Continuum Mechanics and Thermodynamics (Springer); https://doi.

org/10.1007/s00161-020-00892-2 (DOI: 10.1007/s00161-020-00892-2)

Andrea Mentrelli, Tommaso Ruggeri
Department of Mathematics & Alma Mater Research Center on Applied Mathematics, AM2

University of Bologna
E-mail: andrea.mentrelli@unibo.it (corresponding author)
E-mail: tommaso.ruggeri@unibo.it

 https://doi.org/10.1007/s00161-020-00892-2
 https://doi.org/10.1007/s00161-020-00892-2


2 Andrea Mentrelli, Tommaso Ruggeri

conservation laws and appropriate constitutive equations. A typical example is
the Navier-Stokes and Fourier model in Thermodynamics of Irreversible Pro-
cesses (TIP) that is based on the assumption of local equilibrium. Therefore
the applicability of this theory is restricted to a nonequilibrium state charac-
terized by a small Knudsen number Kn, which is a measure of the extent to
which the gas is rarefied. The advantage of the continuum approach is that
the range of validity is not restricted only to rarefied gases but includes also
dense gases.

The approach based on the kinetic theory [1–3] postulates that the state
of a gas can be described by the velocity distribution function, the evolution
of which is governed by the Boltzmann equation. The kinetic theory applies
to a nonequilibrium state characterized by a large Kn, therefore the range of
the applicability of the Boltzmann equation is limited to rarefied gases.

Rational Extended Thermodynamics (RET) [4, 5] is a phenomenological
theory that can be regarded as a generalization of TIP, thus belonging to the
class of continuum models, but beyond the assumption of local equilibrium.
The systems of first-order balance laws that characterize RET can indeed be
interpreted as systems of moment equations obtained form the Boltzmann
equation. Because of this intrinsic feature, RET offers the promise of applying
to non-equilibrium states with larger Knudsen numbers, with respect to the
range of applicability of classical continuum models; RET can, therefore, be
regarded in the case of rarefied gas as a bridge between TIP and kinetic theory,
allowing to take advantage of tools and considerations of kinetic theory when,
for instance, the problem of the closure is faced.

The original approach of RET to the problem of the closure is based on uni-
versal principles of continuum physics, i.e. the entropy principle, the principle
of objectivity and the principle of thermodynamical stability. This approach,
which turns out to be equivalent in the 13-moment case to the closure ap-
proach used by Grad motivated by kinetic theory [6], can be replaced by the
approach based on the Maximum Entropy Principle (MEP), which was proven
to be equivalent to the original continuum approach [7,8], but more amenable
to be used when a large number of moments are considered.

The MEP, developed by Jaynes in the context of the theory of information
[9,10], was first adopted for the closure of the system of moment equations by
Kogan [11], then Müller and Ruggeri in the first edition of their book proved
that the closure of MEP gives a symmetric hyperbolic system [8]. The complete
equivalence between the closures obtained by means of the entropy principle
and by means of the MEP was later proved by Boillat and Ruggeri [12] who
considered a general entropy functional valid for any kind of rarefied gases
including degenerate gases as Fermions or Bosons (see also [4]).

Nevertheless the MEP usually is exploited in RET in a different way with
respect to traditional MEP-based theories: the solution of the entropy maxi-
mization problem is sought only in the neighborhood of the local equilibrium,
and in the standard formulation the resulting model equations are linear in
non-equilibrium variables. When rational extended thermodynamics is com-
bined with the maximum entropy principle, the resulting theory – denoted as



Shock Structure in Extended Thermodynamics with Second Order MEP Closure 3

Molecular Extended Thermodynamics (MET) [8] – is free from the issues af-
fecting traditional theories of closure of moment equations in non-linear case:
i) non convergence of the moments for any truncation order [12, 13] and ii)
the domain of definition of the flux of the last moment equation is not convex,
the flux has a singularity, and the equilibrium state lies on the border of the
domain of definition of the flux [14].

These benign features of the linear MEP-based closure come at a price,
though. In addition to the fact that the validity of the theory is now limited
by construction to the neighborhood of the local equilibrium state, the result-
ing system of equations loses the property of global hyperbolicity; a major
consequences is a reduced hyperbolicity region.

Moreover as the systems of RET are hyperbolic with a convex entropy den-
sity (at least in some region in the neighborhood of equilibrium) then for a the-
orem due to Boillat and Ruggeri [15] there exists always a subshock when the
shock speed exceeds the non perturbed equilibrium maximum characteristic
velocity. These appear as “artificial” discontinuities, at least for a monatomic
gas, since no evidence of such discontinuities are seen in experimental results.
The situation is quite different in polyatomic gas [5].

The loss of global hyperbolicity of its first-order balance law system, has
recently been reconsidered by Brini and Ruggeri [16], with an investigation
of the effects on the hyperbolicity property of a second order closure, rather
than the standard first order one, in the context of the 13 moment system
of a monatomic gas. The result of the analysis presented in [16] is that a
second order formal expansion of the distribution function about the local
equilibrium results in an extension of the hyperbolicity region. This result,
apart from being interesting in its own right from a mathematical standpoint,
is especially interesting because it shows that the long-standing issue of the
reduced hyperbolicity region affecting RET theories can be addressed in the
framework of the theory itself: An increase of the order of the formal expansion
of the distribution function in the procedure of the closure of the system via-
MEP, possibly accompanied by an increase in the number of moments of the
truncated system, hopefully leads to a matching increase of the hyperbolicity
region.

The result presented in [16] legitimately renews the interest in MET and
leads quite naturally to another question: How does a second order closure
affect the shock-structure solution far from equilibrium? In other words: Is
a second-order closure beneficial also in relation to the other of the two ma-
jor issues of MET theories mentioned earlier, i.e. the formation of artificial
discontinuities in the solution?

The purpose of the present paper is to start an investigation in this di-
rection. The features and the behaviors of the shock-structure solution are
analyzed for the one-dimensional 13 moment system when first and second
order MEP-based closures are exploited. In particular, the shock-structure so-
lution obtained with these two closures for increasing strength of the shock are
compared in order to investigate how the higher order closure impacts on the
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characteristic of the well-known subshock that affects the solution far enough
from equilibrium.

It will be shown that a second order closure is beneficial also from the
point of view of the reduction of the subshock strength which appears in far-
from-equilibrium processes. In the sequel of the paper it will be presented a
comparison of the shock structure solution for the 13 moment system obtained
with the standard first order closure, the novel second order closure, and ob-
tained by means of kinetic theory, i.e. solving the Boltzmann equation with
the collision term given by the BGK model, which is consistent with the model
upon which the moment equations are based. The comparison will reveal that
the second order MEP-based closure provides predictions that are in better
agreement with those obtained with kinetic theory.

Finally, the analysis will be extended to the 14 moment theory of a poly-
atomic gas.

As a follow-up to this study, a first step towards the analysis of higher
order MEP-based closures in the case of the 14 moment system of extended
thermodynamics will be the subject of a forthcoming paper [17].

The rest of the paper is organized as follows. In Section 2, the maximum en-
tropy principle and its application in extended thermodynamics are reviewed.
The algorithm that allows to obtain the closing fluxes for any arbitrary or-
der of the closure is described following [16, 18] and its specialization to the
one-dimensional case is described in Section 2.1, along with a step-by-step ap-
plication of the procedure to the case of the 13 moment system discussed in
the rest of the paper.

In Section 3, the 13 moment system of a monatomic gas is recalled and the
expressions of the closing fluxes that are obtained exploiting the maximum
entropy principle with the first and second order closures are given for the
one-dimensional case, following the results outlined in Section 2.1.

In Section 4, the basic theory of the shock structure solution of a first-order
balance law system is recalled, and the system of ordinary differential equations
that allow to obtain such a solution in the case of the 13 moment system of a
monatomic gas are provided for both the first order closure (Section 4.1) and
the second order closure (Section 4.2).

In Section 5, the Rankine-Hugoniot compatibility conditions that permit
to analyze the subshock formation in the case in which the shock structure
solution is not continuous are given for both the first order closure (Section 5.1)
and the second order closure (Section 5.2).

In Section 6, a selection of the numerical results obtained for the shock
structure solution of the 13 moment system of a monatomic gas for various
Mach numbers are shown. The results are compared to those obtained solving
the Boltzmann equation with the BGK approximation for the collision term.

In Section 7, the 14 moment system for a polyatomic gas is recalled and
the closing fluxes obtained for this system when the first and second order
closures are exploited are provided in Section 7.1 and 7.2, respectively. In
Section 7.3, a non-exhaustive preliminary comparison of the shock structure
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solution computed for the 14 moment system of polyatomic gases with first and
second order closures, as well as with the Boltzmann/BGK model equation, is
presented.

Finally, in Section 8, some concluding remarks on the present investigation
are outlined.

2 Maximum Entropy Principle and Molecular Extended
Thermodynamics of degree α

The mathematical structure of RET has a strict connection with kinetic theory,
as its system of partial differential equations can be related to the system of
equations obtained taking suitable moments of the Boltzmann equation.

For a rarefied monatomic gas, the Boltzmann equation is an evolutionary
equation for the distribution function f (x, c, t), where f (x, c, t) dc represents
the number of molecules which at time t have position x and velocity between
c and c + dc. In the general case of molecules with three degrees of freedom,
such that x ≡ (x1, x2, x3) ∈ R3 and c ≡ (c1, c2, c3) ∈ R3, the Boltzmann
equation reads

∂tf + ci∂if = Q, (1)

where ∂t denotes the partial derivative with respect to time t, ∂i the partial
derivative with respect to the spatial coordinate xi (i = 1, 2, 3), and Q is the
term accounting for the effects on the distribution function f of the collisions
between particles (collision term).

Introducing the velocity moments of the distribution function f :

F =

∫
mf dc, Fk1k2···kj =

∫
mfck1ck2 · · · ckj dc,

(k1, k2, . . . kj = 1, 2, 3, j > 1) ,

and of the collision term Q (production terms):

Pk1k2···kj =

∫
mQck1ck2 · · · ckj dc (j > 2) ,

where m denotes the mass of a molecule, and the integrals are intended over
the three-dimensional velocity-space R3, an infinite hierarchy of first-order
tensorial balance laws of increasing rank can be obtained, in which the flux in
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one equation appears as density in the following one:

∂tF + ∂iFi = 0,

∂tFk1 + ∂iFik1 = 0,

∂tFk1k2 + ∂iFik1k2 = P〈k1k2〉,

∂tFk1k2k3 + ∂iFik1k2k3 = Pk1k2k3 ,
...

∂tFk1k2···kN + ∂iFik1k2···kN = Pk1k2···kN ,
...

(2)

where P〈k1k2〉 = Pk1k2 − 1
3Pllδk1k2 is the deviatoric part of the tensor Pk1k2

and it has been taken into account that the first, the second and the trace
of the third tensorial equations of this hierarchy represent, respectively, the
conservation laws of mass, momentum and energy and, as such, they have
null production terms (the weights 1, ck, c2 = clcl appearing in the first five
moments of the collision term are the so-called collision invariants).

Let us now consider the system obtained from (2) by taking the equations
with densities up to the one with N indexes and let us introduce the vector of
generating weights

Φ = (1, ck1 , ck1ck2 , . . . , ck1ck2 · · · ckN )
T
.

In this case the truncated hierarchy can be written in vectorial form

∂tu + ∂iF
i (u) = P (u) , (3)

where u, Fi, and P are, respectively the vectors of the densities, fluxes and
productions terms:

u =

∫
mfΦ dc, Fi =

∫
mfΦci dc, P =

∫
mQΦ dc. (4)

When the system (3) is written explicitly, it is apparent that the well-
known problem of the closure is faced: in order for the system to be closed,
the flux of the last equation as well as the production terms must be assigned
in RET as local function of the remaining moments appearing in the system:

Fk1k2...kNkN+1
≡ Fk1k2...kNkN+1

(F, Fk1 , Fk1k2 , . . . Fk1k2...kN ) ,

Pk1k2...kj ≡ Pk1k2...kj (F, Fk1 , Fk1k2 , . . . Fk1k2...kn) , 2 6 j 6 N.

(5)

Since the equations of the hierarchy (3) are interpreted in RET as phe-
nomenological equations of continuum mechanics, the original strategy for
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solving the problem of the closure developed in RET consists in determin-
ing (5) by the exploitation of general principles of continuum physics, namely
the entropy principle, the objectivity principle and the principle of thermody-
namic stability [4, 5]. This strategy for the closure turns out to be powerful
and leads in the 13 moment case (N = 3, considering only the trace of the
last tensorial equation), at least not far from equilibrium, to the same closure
as the strategy developed by Grad in the context of kinetic theory [6]. Unfor-
tunately, it is difficult to apply the classical RET closure when the number
of retained moments is large; in such cases an alternate procedure, based on
another general physical principle – the Maximum Entropy Principle (MEP)
– has been developed and successfully applied. When the MEP-based closure
is exploited to close the system (3), the theory is referred to as Molecular
Extended Thermodynamics (MET) [4].

According to the maximum entropy principle [8, 11, 12], the distribution
function that describes in the best way the system (3) once the densities F ,
Fk1 , . . .Fk1k2···kN are prescribed, named distribution function of level N [12],
is the one that maximizes the entropy functional

h (f) = −k
∫
f log

(
f

y

)
dc,

where k is the Boltzmann constant and y is a suitable factor necessary for
dimensional reasons [4], under the constraint of given moments. Since the
value of y only affects the additive constant appearing in the entropy, it is not
essential and it is generally assumed without loss of generality to be unitary [5].

The distribution function of level N , denoted by fN , is therefore found
as the solution of the variational problem with constraints defined by the
functional

LN (f) = −k
∫
f log

(
f

y

)
dc + u′ ·

(
F−

∫
mfΦ dc

)
,

where u′ =
(
u′, u′k1 , u

′
k1
u′k2 , . . . , u

′
k1
u′k2 · · ·u

′
kN

)T
is the vector of the La-

grange multipliers. It is proven [8, 11] that the distribution function of level
N , solution of the variational problem, is the following:

fN = y exp
(
−1− m

k
χN

)
, χN = u′·Φ = u′+

N∑
j=1

u′k1k2...kjck1ck2 . . . ckj . (6)

If we insert (6) in the density vector (4)1 we have a one-to-one map between
the Lagrange multipliers and the densities; in this way we can express the
Lagrange multipliers as functions of the field variables. Then, if we insert (6)
in the last flux and in the productions (4)2,3 we have an explicit expression for
(5) and the system is closed. Moreover the Lagrange multipliers are coincident
with the so called main field [19], which is the field that allows to write the
system (3) in symmetric form [5, 8, 12, 20, 21]. The components of the main
field vanish at equilibrium, except for the first components associated to the
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conservation laws of Eq. (2) [12, 22]. At equilibrium, plugging the expressions
of the non-vanishing components of the main field in Eq. (6), it is seen that
the distribution function fN coincides with the local Maxwellian distribution
function [4]

fM =
ρ

m (2πp/ρ)
3/2

exp

(
− (c− v)

2

2p/ρ

)
, (7)

where ρ, ρv, and p interpreted, respectively, as the mass, momentum, and
pressure of the rarefied monatomic gas.

Unfortunately, the MEP-based procedure outlined above, despite its ele-
gance and physically meaningful motivation, suffers from some serious issues
that have hampered its application, at least in the classic formulation.

A remarkable restriction of its applicability consists in the fact that in order
for the integrals to be convergent, the maximum rank N of the equations of
the truncated system (3) must be even. Another issue with severe practical
implications is that it is not possible, in general, to write the closing fluxes in
closed-form, i.e. as functions of the remaining macroscopic quantities. Finally,
it was shown [14, 23] that the domain of definition U of the flux of the last
moment equation is not convex, the flux has a singularity, and the equilibrium
state lies on the border of the domain of definition of the flux, ∂U .

The key idea on which the application of the maximum entropy principle
in RET relies on, consists in seeking a solution to the entropy maximization
problem only near the local equilibrium. The distribution function fN , given
in Eq. (6), is thus formally expanded in the neighborhood of the equilibrium;
the expansion up to an arbitrary order α reads [18]:

f
(α)
N = fM

(
1 +

α∑
h=1

1

h!

(
−m
k
Λ ·Φ

)h)
, Λ = u′ − u′E , (8)

being Λ the non-equilibrium part of the Lagrange multipliers (u′E is the vector
of the Lagrange multipliers at equilibrium). In the context of MET, theories
characterized by two different, in principle independent, orders of approxima-
tion can be formulated: the order N representing the maximum rank of the
tensorial equations included in Eq. (3), and the order α appearing in Eq. (8)
which represents the order of expansion about the equilibrium of the entropy-
maximizing distribution function fN . Such theories are denoted by ETαN [18].

In order to clarify the sequel, we now make a brief review of what has been
shown first in the work of Brini and Ruggeri [18].

It is known [20] that, in order to ensure Galilean invariance, it exists an
exponential matrix X ≡ X (v), which becomes polynomial in the velocity
components in the case of a system with the structure of Eq. (2), such that

u = Xû, Fi = X
(
F̂i + viû

)
, P = XP̂, u′ = û′X−1, (9)

where the quantities û, F̂i, P̂, û′ are, respectively, the vectors of the densities,
fluxes, production terms, and Lagrange multipliers (main field) evaluated for
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v = 0 (intrinsic, or internal quantities). It is convenient to compute the in-
trinsic closing fluxes and production terms, and then construct, when needed,
the full moments by means of the relations given in Eq. (9). Introducing the

peculiar velocity C = c− v, and the vector Φ̂ as

Φ̂ = (1, Ck1 , Ck1Ck2 , . . . , Ck1Ck2 · · ·CkN )
T
,

where Ck (k = 1, 2, 3) are the components of the peculiar velocity vector C,
we write

û =

∫
mf

(α)
N Φ̂ dC, ûE =

∫
mfMΦ̂ dC,

and the following vector is defined:

∆û = û− ûE =

∫
fM

α∑
h=1

1

h!

(
−m
k
Λ̂ · Φ̂

)h
Φ̂ dC. (10)

Denoting by Λ̂(1) and Λ̂(2), respectively, the first and second order terms of the

non-equilibrium part of the intrinsic Lagrange multipliers
(
Λ̂ = Λ̂(1) + Λ̂(2) + . . .

)
,

and taking into account that ∆û is, by definition, the vector of the non-
equilibrium part of the field variables, we want to determine Λ̂(1) and Λ̂(2) as,
respectively, first and second order polynomials in the components of ∆û.

In the case of a second order expansion, we have from Eq. (10):

∆û =

∫
fM

(
−m
k

(
Λ̂(1) + Λ̂(2)

)
· Φ̂+

1

2

(m
k

(
Λ̂(1) + Λ̂(2)

)
· Φ̂
)2)

Φ̂ dC.

(11)
Retaining the first order terms in both members we have:

∆û = −m
k

∫
fM

(
Λ̂(1) · Φ̂

)
Φ̂ dC. (12)

while at the second order we find, combining Eq. (11) and Eq. (12):

0 =

∫
fM

(
−m
k

(
Λ̂(2) · Φ̂

)
+
m2

2k2

(
Λ̂(1) · Φ̂

)2)
Φ dC. (13)

It has been noted [18] that Eq. (12) is a linear system in which the un-
knowns are the components of first order term of the non-equilibrium part
of the intrinsic Lagrange multipliers, Λ̂(1). Once the linear system is solved,
Eq. (13) is interpreted as a linear system for the components of Λ̂(2).

Either retaining only the first order term (Λ̂ = Λ̂(1)) or both the first and

second order terms (Λ̂ = Λ̂(1) + Λ̂(2)), once the quantities Λ̂ are obtained, the
distribution function of level N is determined by Eq. (8) and the corresponding
internal fluxes and internal productions are readily computed by means of
Eq. (4)2,3 evaluated at zero velocity:

F̂i(α) =

∫
mf

(α)
N Φ̂Ci dC, P̂ =

∫
mQΦ̂ dC. (14)
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Following [18] we can use the multi-index notation: CA will indicate Ck1Ck2 · · ·CkA ,
for 1 6 A 6 N (CA = 1 for A = 0). For other generic quantities, ΨA will in-
dicate Ψk1k2···kA , for 1 6 A 6 N (ΨA = Ψ for A = 0). With this notation, the
algebraic system (12) becomes:

∆ûA = −Λ̂(1)
B

m

k

∫
fMΦ̂AΦ̂B dC = −Λ̂(1)

B IAB , (15)

where the integrals IAB , being moments of the Maxwellian distribution func-
tion (7),

IAB =
m

k

∫
fMΦ̂AΦ̂B dC,

are completely known.

2.1 One-dimensional case

Focusing in the following on the one-dimensional case (x = (x1, 0, 0), v =
(v1, 0, 0)), these system (3) letting x ≡ x1 and F = F1 is written as

∂tu + ∂xF = P. (16)

The procedure to compute the closing fluxes by means of the MEP can be
broken down in following steps.

Step 1. In the one-dimensional case, only the first component C1 of C or
C2 = ClCl = C2

1 +C2
2 +C2

3 appears, and therefore it easy to see that the pair
of multi-indexes (A,B) are mapped into the pair of indexes (r, s) such that

Φ̂A = Ck1Ck2 . . . CkA ←→ Φ̂rs = Cr1
(
C2
)s
.

The same correspondence exists between IAB ←→ Jrs where

Jrs =

∫
mCr1

(
C2
)s
fM dC =


0 r odd,

1

2n

(
2n+ 1

r + 1

)
(2n)!

n!

pn

ρn−1
r even,

being n = r/2 + s.
As a concrete example let consider for the 13 moment system in which

u ≡ (F, F1, Fll, F<11>, Fll1)T ≡ (ρ, ρv, ρv2 + 3p,
2

3
ρv2 − σ, 2q)T (17)

where ρ, v, p, σ, q are the mass density, the velocity, the pressure, the shear
viscosity and the heat flux. Taking into account (17) and

Φ̂ ≡
(

1, C1, C
2, C2

1 −
1

3
C2, C2C1

)T
,
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the linear system (15) becomes now
∆F̂

∆F̂1

∆F̂kk
∆F̂〈11〉
∆F̂kk1

 =


0
0
0
−σ
2q

 = −J


Λ̂(1)

Λ̂
(1)
1

Λ̂
(1)
kk

Λ̂
(1)
〈11〉

Λ̂
(1)
kk1

 . (18)

The matrix J in this case can be written explicitly as

J ≡


J00 J10 J01 J20 − 1

3J01 J11
J10 J20 J11 J30 − 1

3J11 J21
J01 J11 J02 J21 − 1

3J02 J12
J20 − 1

3J01 J30 − 1
3J11 J01 J40 − 2

3J21 + 1
9J02 J31 − 1

3J12
J11 J21 J12 J31 − 1

3J12 J22



=
m

k


ρ 0 3p 0 0
0 p 0 0 5p2/ρ
3p 0 15p2/ρ 0 0
0 0 0 4p2/ (3ρ) 0
0 5p2/ρ 0 0 35p3/ρ2

 .

(19)

Solving the linear system (18), it is found

Λ̂(1) = Λ̂
(1)
kk = 0, Λ̂

(1)
1 =

k

m

ρq

p2
, Λ̂

(1)
〈11〉 =

3

4

k

m

ρσ

p2
, Λ̂

(1)
kk1 = −1

5

k

m

ρ2q

p3
.

(20)

Step 2. Once the linear system is solved and the components of Λ̂(1) are

known, the entropy-maximizing distribution function, f
(1)
N , is readily available:

f
(1)
N = fM

(
1− m

k
Λ̂(1) · Φ̂

)
,

which becomes, in the case of the one-dimensional 13 moment system the Grad
one:

f
(1)
N = fM

(
1− ρq

p2
C1 −

3

4

k

m

ρσ

p2

(
C2

1 −
1

3
C2

)
+

1

5

k

m

ρ2q

p3
C1C

2

)
. (21)

Step 3. The intrinsic fluxes resulting from a first order expansion (α = 1)

of the entropy-maximizing distribution, f
(1)
N , are now computed as follows (see

Eq. (14)):

F̂(1) =

∫
fM

(
1− m

k
Λ̂(1) · Φ̂

)
Φ̂C1 dC =

∫
f
(1)
N Φ̂C1 dC.

Making use of Eq. (21), for the one-dimensional 13 moment system it is found

F̂(1) =

(
0, p− σ, 2q,

8

15
q, 5

p2

ρ
− 7

pσ

ρ

)T
. (22)
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Step 4. Proceeding further, Eq. (13) can be written as

0D =

∫
fM

(
−m
k
Λ̂
(2)
A Φ̂A +

m2

2k2
Λ̂
(1)
A Λ̂

(1)
B Φ̂AΦ̂B

)
Φ̂D dC,

and we have the algebraic linear system for Λ̂
(2)
A :

Λ̂
(1)
A Λ̂

(1)
D IADB = Λ̂

(2)
A IAB .

with

IABD =
m2

2k2

∫
fMΦ̂AΦ̂BΦ̂D dC.

In the case of the one-dimensional IABD and IAB can be mapped with
Jpr and in particular in the case of 13 moment system, taking into account
Eq. (19) and Eq. (20), we find



3
8
ρσ2

p2 + 1
5
ρ2q2

p3

− 2
5
ρσq
p2

21
8
σ2

p + 9
5
ρq2

p2

1
2
σ2

p + 12
25
ρq2

p2

− 28
5
σq
p

 = −J


Λ̂(2)

Λ̂
(2)
1

Λ̂
(2)
kk

Λ̂
(2)
〈11〉

Λ̂
(2)
kk1

 , (23)

from which, by solving the linear system, we found:

Λ̂(2) =
k

m

(
2

5

ρq2

p3
− 3

8

σ2

p2

)
, Λ̂

(2)
1 =

7

5

k

m

ρσq

p3
,

Λ̂
(2)
kk =

k

m

(
1

5

ρ2q2

p4
+

1

4

ρσ2

p3

)
, Λ̂

(2)
〈11〉 =

k

m

(
9

25

ρ2q2

p4
+

3

8

ρσ2

p3

)
,

Λ̂
(2)
kk1 = − 9

25

k

m

ρ2σq

p4
.

Step 5. Once the components of Λ̂(2) are known, the entropy-maximizing

distribution function, f
(2)
N , is found as follows:

f
(2)
N = fM

(
1− m

k

(
Λ̂(1) + Λ̂(2)

)
· Φ̂+

m2

2k2

(
Λ̂(1) · Φ̂

)2)
.
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For the one-dimensional 13 moment system, the previous expression can be
written explicitly as follows:

f
(2)
N = fM

(
1 +

q2ρ4

25p6
C2

1C
4 +

qρ3σ

10p5
C1C

4 +
ρ2σ2

16p4
C4 − 3qρ3σ

10p5
C3

1C
2+(

3ρ2σ2

8p4
− 2q2ρ3

5p5

)
C2

1C
2 +

(
qρ2

5p3
− 7qρ2σ

50p4

)
C1C

2+(
ρσ2

8p3
+
ρσ

4p2
− 2q2ρ2

25p4

)
C2 +

9ρ2σ2

16p4
C4

1 +
3qρ2σ

2p4
C3

1+(
16q2ρ2

25p4
− 3ρσ2

8p3
− 3ρσ

4p2

)
C2

1 −
(

7qρσ

5p3
+
qρ

p2

)
C1+

2q2ρ

5p3
+

3σ2

8p2

)
.

(24)

Step 6. The intrinsic fluxes resulting from a second order expansion (α = 2)

of the entropy-maximizing distribution function, f
(2)
N , are given by:

F̂(2) =

∫
fM

(
1− m

k

(
Λ̂(1) + Λ̂(2)

)
· Φ̂+

m2

2k2

(
Λ̂(1) · Φ̂

)2)
Φ̂Ci dC

=

∫
f
(2)
N Φ̂C1 dC.

Making use of Eq. (24) and recalling Eq. (22) , it is found after lengthy calcu-
lations:

F̂(2) = F̂(1) +

(
0, 0, 0, −36

25

σq

p
,

148

25

q2

p
+ 2

σ2

ρ

)T
. (25)

This procedure was given for 13 moments also in 3-dimensional case by Brini
and Ruggeri [16].

Further steps. Even though in the sequel we shall not consider expansions
beyond the second order, we note that the procedure outlined above is gener-
alized to any order of expansion α as follows: Once the components of Λ̂(1),
Λ̂(2), . . . Λ̂(α−1) are known, the components of the α order term, Λ̂(α), are
found solving the linear system

IABΛ̂
(α)
A =

α∑
h=1

1

h!

(
−1

k

)h


α−h+1∑
β1,β2,...βh=1

β1+β2+...+βh=α
β16β26···6βh

Λ̂
(β1)
A1

Λ̂
(β2)
A2
· · · Λ̂(βh)

Ah
IA1A2...AhB

 ,

where

IA1A2...AaB =

∫
fMΦ̂A1

Φ̂A2
· · · Φ̂Aa

Φ̂B dC
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and, following the procedure outlined above, IA1A2...AaB can be mapped to
the matrix Jpq. At each iteration of the procedure, a linear system similar
similar to those of Eq. (18) and Eq. (23) are found. All these linear systems
are characterized by the same matrix J given in (19) and they differ only for
the terms appearing on the left-hand side in Eq. (18) and Eq. (23).

3 Moment System of a Monatomic Gas: ET1
13 and ET2

13

Taking into account that in the case of 13 moments in one-dimensional case
the matrix X is given by [20]

X =


1 0 0 0 0
v 1 0 0 0
v2 2v 1 0 0
2
3v

2 4
3v 0 1 0

v3 3v2 5
3v 2v 1

 ,

we can obtain using (9) the field, the total flux and productions at first and
second order:

u =


F
F1

Fkk
F〈11〉
Fkk1

 =


ρ
ρv

ρv2 + 3p
2
3ρv

2 − σ
ρv3 + 5pv − 2σv + 2q

 , P =


0
0
0

P〈11〉
Pkk1

 , (26)

F(1) =


F

(1)
1

F
(1)
11

F
(1)
kk1

F
(1)
〈11〉1

F
(1)
kk11

 =


ρv

ρv2 + p− σ
ρv3 + 5pv − 2σv + 2q

2
3ρv

3 + 4
3pv −

7
3σv + 8

15q

ρv4 + (8p− 5σ) v2 + 32
5 qv + 5p

2

ρ − 7pσρ

 . (27)

F(2) =


F

(2)
1

F
(2)
11

F
(2)
kk1

F
(2)
〈11〉1

F
(2)
kk11

 =


ρv

ρv2 + p− σ
ρv3 + 5pv − 2σv + 2q

2
3ρv

3 + 4
3pv −

7
3σv + 8

15q −
36
25pσq

ρv4 + (8p− 5σ) v2 + 32
5 qv + 5p

2

ρ − 7pσρ + 2σ
2

ρ + 148
25

q2

p .

 .

(28)
The non-zero components of the production term P are here assumed to

be given by the following expressions [5]:

P〈11〉 =
σ

τσ
, Pkk1 =

2σv

τσ
− 2q

τq
.
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The coefficients τσ and τq are relaxation times associated, respectively, to
non-equilibrium processes connected to the viscosity and heat conductivity
of the gas. In the following, in view of comparing the results obtained by
solving the moment equations with those obtained by solving the Boltzmann
equation with the BGK approximation for the collision term (which involves
one single relaxation time), we shall assume that these relaxation times are
equal: τ = τσ = τq, such that

P〈11〉 =
σ

τ
, Pkk1 =

2 (σv − q)
τ

. (29)

Inserting (26), (27) and (29) in the system (16) we have the closed system at
first order, while if we insert as flux (28) we have the closure at second order.
The three-dimensional case was obtained in [16].

4 Shock Structure Solution

A shock structure solution of the one-dimensional system given in Eq. (16) is
a continuous solution of the form

u = u (ϕ) , ϕ = x− st,

such that

lim
ϕ→−∞

u (ϕ) = u1, lim
ϕ→+∞

u (ϕ) = u0, lim
ϕ→±∞

du

dϕ
= 0,

where u0, u1 are equilibrium states and s is the speed of the traveling wave.
Assuming, without loss of generality, that s > 0, the states u0 and u1 are
denoted, respectively, as unperturbed and perturbed states.

Writing the system (16) in the form

∂tu + A (u) ∂xu = P (u) , A = ∇uF,

where A is the Jacobian of the flux F with respect to the field variables u, it
is seen [15] that a shock structure solution satisfies

d

dϕ
(−su + F) = P (u) ,

or, equivalently,

(−sI + A (u))
du

dϕ
= P (u) . (30)

The shock speed s is often replaced by the so-called Mach number which,
evaluated in the unperturbed state u0, is defined as M0 = (s− v0) /c0, where
v0 and c0 are, respectively, the gas velocity and the sound velocity in the state
u0 (in general, here and in the following the subscripts “0” and “1” denote a
quantity evaluated, respectively, in the unperturbed and perturbed state).
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The integration of the first three scalar equations of the system (30), rep-
resenting the conservation laws of mass, momentum and energy, leads to the
following relations between the two equilibrium states u0 and u1, i.e. the
Rankine-Hugoniot compatibility conditions of the equilibrium subsystem [24]:

ρ1
ρ0

=
4M2

0

M2
0 + 3

,
u1
u0

=
M2

0 + 3

4M2
0

,
p1
p0

=
5M2

0 − 1

4
,

where, having introduced the relative velocity u = v − s, the quantities ρ0,
u0 = v0 − s, p0 and ρ1, u1 = v1 − s, p1 are the density, relative velocity and
pressure of, respectively, the unperturbed and perturbed states.

4.1 Shock Structure in ET1
13

Introducing the following non-dimensional variables:

ϕ̂ =
ϕ

τc0
, ρ̂ =

ρ

ρ0
, û =

u

c0
= −M0

u

u0
,

p̂ =
p

p0
, σ̂ =

σ

p0
, q̂ =

q

p0c0
,

the system of ordinary differential equations given in Eq. (30) with the flux F
obtained by means of the first order closure i.e. with the closing fluxes given
by Eq. (27), is written in non-dimensional form after suitable manipulation as

ρ = −M0/u,

σ = −5

3
M2

0 −
5

3
M0u+ p− 1,

q =
1

2

(
−5

3
M3

0 −
10

3
M2

0u−
5

3
M0u

2 − 5M0 − 3pu− 2u

)
,

d

dϕ

(
4M3

0 − 27M2
0u− 21M0u

2 + 12M0 +
81pu

5
− 81u

5

)
=

15M0 (M0 − u)− 9 (p− 1) ,

d

dϕ

( u
25

(
−80M4

0 − 35M3
0u− 105M2

0 p+ 20M2
0u

2 − 240M2
0 − 204M0pu

−21M0u+ 18p2 − 63p
))

= M0

(
M3

0 −M0u
2 + 3M0 + 3pu

)
,

(31)

where the “hat” symbol on the quantities ϕ, ρ, u, p, σ, q was dropped for ease
of notation and the unperturbed Mach number M0 was used in place of the
shock speed s.
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4.2 Shock Structure in ET2
13

When the flux F is obtained by means of the second order closure i.e. making
use of the closing fluxes given by Eq. (28), the system of ordinary differential
equations in Eq. (30), written in non-dimensional form, becomes:

ρ = −M0/u,

σ = −5

3
M2

0 −
5

3
M0u+ p− 1,

q =
1

2

(
−5

3
M3

0 −
10

3
M2

0u−
5

3
M0u

2 − 5M0 − 3pu− 2u

)
,

d

dϕ

(
1

25p

(
−450M5

0 − 1350M4
0u+ 170M3

0 p− 1350M3
0u

2 − 1620M3
0 +

405M2
0 pu− 450M2

0u
3 − 2430M2

0u− 15M0pu
2 + 510M0p− 810M0u

2,

−810M0 + 81p2u+ 243pu− 324u
))

= 15M0 (M0 − u)− 9 (p− 1) ,

d

dϕ

(
1

15p

(
925M7

0 + 2800M6
0u+ 2850M5

0u
2 + 5550M5

0 + 1920M4
0 pu+ 1000M4

0u
3+

10080M4
0u+ 4095M3

0 pu
2 + 25M3

0u
4 + 5130M3

0u
2 + 8325M3

0−
675M2

0 p
2u+ 1800M2

0 pu
3 + 7110M2

0 pu+ 600M2
0u

3 + 5040M2
0u+

1809M0p
2u2 + 2457M0pu

2 + 684M0u
2 − 405p2u− 270pu

))
=

M0

(
M3

0 −M0u
2 + 3M0 + 3pu

)
,

(32)

where, as before, the “hat” symbol was dropped.

5 Shock Structure Solution with Subshock

Denoting with λ
(max)
0 the maximum characteristic speed (i.e. the largest eigen-

value of the matrix A) in the unperturbed state u0, it was proven that when

s > λ
(max)
0 , or equivalently when M0 >

(
λ
(max)
0 − v0

)
/c0, no continuous

shock structure solution exists [15]. In this case, the solution develops a dis-
continuity known as subshock.

The study of the subshock features is based on the Rankine-Hugoniot com-
patibility conditions that must hold across the subshock front:

−s [[u]]∗ + [[F(u)]]∗ = 0, (33)

where [[ψ]]∗ = ψ∗−ψ0 represents the jump across the discontinuity (subshock)
of the generic quantity ψ (ψ∗ and ψ0 denote, respectively, the values of the
quantity ψ evaluated in the perturbed state u∗ behind the subshock and in
the unperturbed state u0 after the subshock).

According to the general theory of hyperbolic systems, shocks are one-
parameter families of solutions corresponding to the bifurcated branches of the
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trivial solution (null shock) obtained when the shock parameter s approaches
a characteristic velocity of the system. It is known that, for the Grad system
of Eq. (16), when the shock front is propagating in an equilibrium state u0,
the null shock is generated when the Mach number in the unperturbed state,
M0, is a root of the bi-quadratic polynomial equation 25M4

0 − 78M2
0 + 27 = 0,

i.e. M0 = ∓ 1
5

√
3
(
13−

√
94
)
' ∓0.63 or M0 = ∓ 1

5

√
3
(
13 +

√
94
)
' ∓1.65.

In particular, it is seen that when M0 & 1.65 = M cr
0 (the largest root of the

bi-quadratic polynomial equation), the so-called fast shock appears.

5.1 First Order Closure

The main features of the solution of the system of non-linear equations given
in Eq. (33) for the 13 moment system when a first order closure is exploited,
i.e. when the closing fluxes are those given in Eq. (22), were studied in [4,25].
In this case, the Rankine-Hugoniot compatibility conditions (33) provide

[[ρu]]∗ = 0,

[[ρu2 + p− σ]]∗ = 0,

[[ρu3 + 5pu− 2σu+ 2q]]∗ = 0,[[
2

3
ρu3 +

4

3
pu− 7

3
σu+

8

15
q

]]
∗

= 0,[[
ρu4 + (8p− 5σ)u2 +

16

3
qu+

16

15
qu+ 5

p2

ρ
− 7

pσ

ρ

]]
∗

= 0.

(34)

In [25] it was found that the admissible fast shock bifurcating from the null
shock corresponding to M0 ' 1.65 is compressive and the ratio of the mass
density ahead and behind the shock, w = ρ0/ρ∗ (compression factor), is
monotonously decreasing as the Mach number M0 increases beyond the critical
value M0 ' 1.65. It was also proved the existence of a lower bound wcr ' 0.71
for the compression factor w, as shown in Fig. 1, and it was argued that the
characteristic velocities of the system along the non-equilibrium process across
the shock front are all real as long as M0 . 2.7, while for larger values of the
Mach number M0 the process exits the hyperbolicity region. This property
of the system is depicted in Fig. 2, where it is shown that for M0 ' 2.7 a
bifurcation of the real part of the two minimum eigenvalues (evaluated in
the perturbed state u∗ behind the subshock) of the system occurs. This is
an indicator of the fact that the two characteristic velocities become complex
conjugates for M0 & 2.7.

5.2 Second Order Closure

When the second order closure is exploited, i.e. when the closing fluxes are
those given in Eq. (25), the Rankine-Hugoniot conditions across the subshock
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Fig. 1 Compression factor w, i.e. ratio of the mass density ahead and behind the fast
subshock front (w = ρ0/ρ∗), predicted for the 13-moment system for a monatomic gas
with first and second order maximum entropy principle closure (respectively, blue curve and
orange curve), as a function of the unperturbed Mach number M0.

1.2 ~1.65 2.0 2.5 3.0 3.5 4.0
M0

2

0

2

4

Re
[

(1
) *
],

,R
e [

(5
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s
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0

s

(max)
*

1st order

1.2 ~1.65 2.0 2.5 3.0 3.5 4.0
M0

2

0
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4

6

Re
[

(1
) *
],

,R
e [

(5
) *
],

s

(max)
0

s

(max)
*

2nd order

Fig. 2 Real part of the dimensionless characteristic velocities λ̂
(k)
∗ (k = 1, . . . 5) evaluated

in the state u∗ behind the shock, predicted by the 13-Moment system for a monatomic gas
with first order (on the left) and second order (on the right) maximum entropy principle
closures, as a function of the unperturbed Mach number M0. The dashed lines represent

the maximum characteristic speed in the unperturbed state, λ̂
(max)
0 , and the dimensionless

shock speed, ŝ. The dashed lines are plotted to show graphically that the Lax admissibility

condition holds, i.e. λ̂
(max)
0 < ŝ < λ̂

(max)
∗ , when M0 & 1.65.

front, Eq. (33), are written as

[[ρu]]∗ = 0,

[[ρu2 + p− σ]]∗ = 0,

[[ρu3 + 5pu− 2σu+ 2q]]∗ = 0,[[
2

3
ρu3 +

4

3
pu− 7

3
σu+

8

15
q − 36

25

σq

p

]]
∗

= 0,[[
ρu4 + (8p− 5σ)u2 +

16

3
qu+ 2

(
8

15
q − 36

25

σq

p

)
u+ 5

p2

ρ
− 7

pσ

ρ
+

2
σ2

ρ
+

148

25

q2

p

]]
∗

= 0.

(35)
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It is found that the solution of the non-linear system (35) is qualitatively dif-
ferent from the solution of the system obtained with the first order closure,
represented in Eq. (34). A remarkable result is the following. The compression
factor w as a function of the Mach number M0, when the second order closure
in exploited, is not monotonously decreasing as in the case of the first order
closure. Indeed, a numerical solution of the system in Eq. (35) shows that the
ratio of the mass density, w = ρ0/ρ∗, decreases for increasing values of the un-
perturbed Mach number in the interval 1.65 .M0 . 2.3, reaching a minimum
value wmin ' 0.951, and then increases monotonously towards the asymptotic
value w = 1 for larger values of the unperturbed Mach number (M0 & 2.3). In
Fig. 1, this behavior is compared to the monotonously decreasing behavior of
the compression factor w found with the traditional first order closure [25].

The prediction of the compression factor w found with the second order
closure should be regarded as an improvement over the prediction provided
by the first order closure, since it suggests that when a second order closure
is adopted, the strength of the subshock appearing in the solution is in gen-
eral reduced, thus leading to a shock profile that, as long as the unrealistic
discontinuity is concerned, might be closer to the shock profile observed ex-
perimentally, and theoretically obtained by means of the kinetic model based
on the Boltzmann equation, where no discontinuous shock profile is ever ob-
served. This expectation is confirmed by numerically solving for several values
of the unperturbed Mach number M0 the systems in Eq. (31) and in Eq. (32)
providing the shock structure solution for a monatomic gas modeled by means
of the 13 moment system with first and second order closures. A selection of
these results is presented in Section 6.

It is also remarkable that the characteristic velocities of the system in the
state u∗ behind the subshock front are found to be real also for values beyond
the limit value of the unperturbed Mach number found in the case of the first
oder closure, i.e. M0 ' 2.7 (see Fig. 2). It was observed by means of numerical
computations that in the framework of the 13 moment system of a monatomic
gas with a second order closure, the hyperbolicity region is never abandoned
along the whole non-equilibrium process across the shock structure, at least
for values of the unperturbed Mach number M0 up to 4. This interesting
feature is possible due to the peculiar topology of the hyperbolicity region
discussed in [16]: Even for large value of the Mach number M0, that lead to
a shock profile characterized by strong departures from the equilibrium along
the shock process, the non-equilibrium states in which the system is found are
always inside the hyperbolicity region marked as “Region I” recently discussed
by Brini and Ruggeri (see Section 5 and in particular Figure 2 in [16]).

6 Numerical results

In order to investigate the properties of the shock structure solution with and
without subshock obtained for the 13 moment system with first and second
order MEP closures, the systems of ordinary differential equations given in
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Fig. 3 Rescaled mass density profile ρ̄ = (ρ− ρ0) / (ρ1 − ρ0) (on the left) and relative
velocity profile u = v−s (on the right) of the shock structure solution obtained for M0 = 1.5
in a monatomic gas with the Boltzmann/BGK model (top row), and with the 13 moment
system with the first order MEP closure (middle row) and second order MEP closure (bottom
row).

Eq. (31) and Eq. (32) are numerically solved for different values of the shock
parameter, i.e. the unperturbed Mach number M0.

In addition, the numerical solutions of Eq. (31) and Eq. (32) are compared
to the numerical solution of the Boltzmann equation with the BGK approxima-
tion for the collision term. The Boltzmann/BGK model equation (1), written
for the one-dimensional case, reads as follows:

∂tf + c1 ∂xf = −f − f
M

τ
, (36)

where f ≡ f
(
x, c1, c

2, t
)

and fM is the local Maxwellian equilibrium distribu-
tion given in Eq. (7), and the relaxation time τ is the same parameter appear-
ing in the production terms given in Eq. (29). We stress here that in order for
such a comparison to be consistent, since the Boltzmann/BGK model involves
one single relaxation time τ , the relaxation times associated to the viscosity
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Fig. 4 Rescaled mass density profile ρ̄ = (ρ− ρ0) / (ρ1 − ρ0) (on the left) and relative
velocity profile u = v−s (on the right) of the shock structure solution obtained for M0 = 2.3
in a monatomic gas with the Boltzmann/BGK model (top row), and with the 13 moment
system with the first order MEP closure (middle row) and second order MEP closure (bottom
row).

and heat conductivity appearing in the 13 moment system are assumed to be
equal (τ = τσ = τq).

The details of the numerical techniques used to solve the moment equa-
tions as well as the Boltzmann/BGK equation are illustrated in a paper under
preparation. In this section, a selection of the numerical results is presented
as to show the impact of the chosen order of the closure (either first, or sec-
ond) on the obtained shock structure profiles, and to compare these profiles to
the reference solution obtained solving the Boltzmann/BGK equation given in
Eq. (36). To this aim, in the following the density and velocity profiles across
the shock structure obtained with the Boltzmann/BGK model and with the
13 moment system with first and second order closures for M0 = 1.5, 2.3, 4
are reported.
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Fig. 5 Rescaled mass density profile ρ̄ = (ρ− ρ0) / (ρ1 − ρ0) (on the left) and relative
velocity profile u = v−s (on the right) of the shock structure solution obtained for M0 = 4.0
in a monatomic gas with the Boltzmann/BGK model (top row), and with the 13 moment
system with the first order MEP closure (middle row) and second order MEP closure (bottom
row).

In Fig. 3, the case of the shock structure obtained with M0 = 1.5 is pre-
sented. In agreement with the expectations [12, 24], in this case the shock
structure profile is continuous, namely it does not present any discontinuity
connected with a subshock formation, being the unperturbed Mach numberM0

less than the critical value M cr
0 ' 1.65. The results obtained in the framework

of the 13 moment theory by means of a first order closure present a smooth
but somewhat rapid transition from the unperturbed field to the perturbed
one in the foremost part of the shock profile. Such a sharp (but continuous)
transition is smoothed out when the second order closure is adopted, leading to
a shock profile which looks arguably closer to the reference solution obtained
making use of the kinetic model equation.

In Fig. 4, the case of the shock structure obtained with M0 = 2.3 is re-
ported. In this case, the profile of the shock structure includes a discontinuity,
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i.e. a subshock, when the traditional first order closure of the 13 moment
system is adopted. This is predicted by the theory, since in this case the un-
perturbed Mach number M0 exceeds the critical value given by the largest
characteristic velocity in the unperturbed state (M cr

0 ' 1.65). The subshock
formation is also evident in the shock structure profile obtained with a sec-
ond order closure, but in this case the profile is overall qualitatively different
from the one obtained with the linear closure. In particular, it is seen that the
strength of the subshock, i.e. the jump in the field variables across the subshock
front is smaller than the one found by making use of the linear closure. This is
in agreement with the theoretical results illustrated in Section 5, in particular
with the behavior found for the compression factor w = ρ0/ρ∗ as a function
of the unperturbed Mach number (see Fig. 1), which predicts for M0 = 2.3
a compression factor close to unity (w ' 0.954), and therefore a small jump
in the density profile. This prediction is consistent with the numerical results
shown in Fig. 4.

Despite the fact that the overall shock structure profile is not matching
particularly well the reference results obtained in the framework of the kinetic
model, it is safe to say that the formation of the unphysical subshock discon-
tinuity is a less prominent feature of the shock structure solution when the
quadratic closure is adopted, in comparison to the solution obtained with the
linear closure.

It is worth noticing that the subshock formation, which takes place when
the speed s of the shock front exceeds the maximum characteristic velocity of
the system evaluated in the unperturbed state [12] is independent from the
chosen order of the closure. This is due to the fact that, being the unperturbed
state an equilibrium state, the fluxes of the moment equations are clearly in-
dependent from the chosen closure in any equilibrium state. As a consequence,
the formation of a subshock is expected to be found independently from the
order of the closure (first, second, or even higher); the strength of the sub-
shock, in contrast, strongly depends on the non-equilibrium fluxes, and hence
on the adopted closure.

The case of a shock structure profile with M0 = 4 is presented in Fig. 5. As
predicted by the theory, the shock profile obtained with the first order closure
is affected by a rather pronounced unphysical jump in the foremost part of
the shock profile, leading to a solution that remarkably differentiates from the
one obtained with the kinetic model. Inspection of the density and velocity
profiles reported in Fig. 5 suggests that in this case there is even the onset of
a second subshock which propagates in the perturbed state behind the first
(most noticeable) subshock.

Interestingly, when the second order closure of the 13 moment system is
adopted, the solution not only presents a (single) subshock that is far less
pronounced than that obtained with the linear closure – as predicted by the
results illustrated in Fig. 1 – but the overall shock structure profile is arguably
in far better agreement with the reference kinetic solution throughout the
whole profile of the shock.
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As anticipated in Section 4, an interesting peculiarity of the second or-
der MEP closure of the 13 moment system, is that an analysis of the shock
structure reveals that along the whole process the system does not exit the hy-
perbolicity region, at least for intensities of the shock parameter up to M0 ' 4.
This is in stark contrast to what happens with the traditional first order clo-
sure, where it is well documented [25] that M0 ' 2.7 is a threshold value above
which complex characteristic velocities are found (see also Fig. 2). The fact
that in the case of the second order closure the characteristic velocities are
always real, even for Mach number as large as M0 = 4 is explained by noticing
that the state of the system happens to be in all these cases in the hyperbolicity
region denoted as I in the recent paper by Brini and Ruggeri [16].

7 Moment System of a Polyatomic Gas: ET1
14 and ET2

14

The RET of polyatomic gases is a relatively recent theory developed by Arima,
Taniguchi, Ruggeri and Sugiyama at the macroscopic level [26]. This theory
adopts two parallel hierarchies (binary hierarchy) for the following independent
fields: mass density, velocity, internal energy, shear stress, dynamic pressure,
heat flux. One hierarchy consists of balance equations for the mass density,
the momentum density and the momentum flux (momentum-like hierarchy),
and the other one consists of balance equations for the energy density and the
energy flux (energy-like hierarchy):

∂tF + ∂iFi = 0,

∂tFk1 + ∂iFik1 = 0,

∂tFk1k2 + ∂iFik1k2 = Pk1k2 , ∂tGkk + ∂iGikk = 0,

∂tGkkj + ∂iGkkij = Qkkj ,

These hierarchies cannot merge with each other in contrast to the case of
rarefied monatomic gases because the specific internal energy (the intrinsic
part of the energy density) is no longer related to the pressure (one of the
intrinsic parts of the momentum flux) in a simple way.

Concerning the kinetic counterpart, for rarefied polyatomic gases the main
idea is to consider a distribution function f(x, c, t, I) that depends on an extra
variable I that takes into account the internal mode of the molecules (rotation
and vibration). Its rate of change is determined by the Boltzmann equation
which has the same form as the one of monatomic gases (1) but the collision
integral Q(f) takes into account the influence of the internal degrees of freedom
through the collisional cross section.
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Pavić, Ruggeri, and Simić [27] considered the case of 14 generalized mo-
ments  F

Fk1
Fk1k2

 =

∫
R3

∫ ∞
0

m

 1
ck1
ck1ck2

 f(x, c, t, I)ϕ(I) dI dc,

(37)(
Gkk
Gkkj

)
=

∫
R3

∫ ∞
0

m

(
c2 + 2 I

m(
c2 + 2 I

m

)
cj

)
f(x, c, t, I)ϕ(I) dI dc.

The weighting function ϕ(I) is determined in such a way that it recovers the
caloric equation of state in equilibrium for polyatomic gases.

More details can be read in the book by Ruggeri and Sugiyama that is
completely devoted to the RET of polyatomic gases [5].

In the one-dimensional case, the 14 moment system of a polyatomic gas
(37) may be written in the form of Eq. (16), with the following densities u,
fluxes F1 and production terms P [5]:

u =


F
F1

Gkk
Fkk
F〈11〉
Gkk1

 =


ρ
ρv

ρv2 + 2ρε
ρv2 + 3 (p+Π)

2
3ρv

2 − σ
ρv3 + 2 (p+Π − σ) v + 2ρεv + 2q

 ,

F1 =



ρv
ρv2 + p+Π − σ

ρv3 + 2ρεv + 2 (p+Π − σ) v + 2q

ρv3 + 5 (p+Π − σ) v + 3σv + F̂kk1
2
3ρv

3 + 4
3 (p+Π − σ) v − σv + F̂〈11〉1

ρv4 + 5 (p+Π − σ) v2 + 2ρεv2 + 4qv + 2F̂〈11〉1v + 2
3 F̂kk1v + Ĝkk11

 ,

P =



0
0
0

P̂kk
P̂〈11〉

2P̂11v + P̂kk1,

 .

In addition to the field variables already introduced in the context of the
monatomic gas, the 14 moment system of a polyatomic gas contains the vari-
able Π representing the dynamical pressure, which is identically null in the
monatomic gas case.

In order to close the system, the intrinsic moments F̂kk1, F̂〈11〉1, Ĝkk11

and the production terms P̂kk, P̂〈11〉, P̂kk1 and P̂11 = P̂〈11〉 + 1
3Pkk must be

considered local functions of the field u.
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7.1 First Order Closure

The closure was obtained via MEP at first order in [27] for polytropic gas and
recently in [28] in the case of non-polytropic gas.

For rarefied polytropic gas in which the pressure p and the internal energy
ε in equilibrium are given by

p =
k

m
ρT, ε =

D

2

k

m
T,

the following expressions for the intrinsic moments was obtained [5, 27]:

F̂
(1)
kk1 =

10

D + 2
q, F̂

(1)
〈11〉1 =

8

3 (D + 2)
q,

Ĝ
(1)
kk11 = (D + 2)

p2

ρ
+ (D + 4)

(Π − σ) p

ρ
,

where the constant D represents the total degrees of freedom of the polyatomic
gas molecule.

7.2 Second Order Closure

Proceeding as in the case indicated in Section 3 for the case of monatomic
gas it is possible to obtain the second order closure (α = 2) provides the fol-
lowing expressions for the intrinsic moments F̂kk1, F̂〈11〉1, Ĝkk11, now denoted

respectively as F̂
(2)
kk1, F̂

(2)
〈11〉1, and Ĝ

(2)
kk11:

F̂
(2)
kk1 =

10

D + 2
q +

20D

(D + 2)
2

Πq

p
− 8 (D − 3)

(D + 2)
2

σq

p
,

F̂
(2)
〈11〉1 =

8

3 (D + 2)
q +

16D

3 (D + 2)
2

Πq

p
− 4 (7D + 6)

3 (D + 2)
2

σq

p
,

Ĝ
(2)
kk11 = (D + 2)

p2

ρ
+ (D + 4)

(Π − σ) p

ρ
+

4 (5D + 22)

(D + 2)
2

q2

p
+ 2

(Π − σ)
2

ρ
.

In a paper in preparation [29] the second order closure was done also in the
3-dimensional case with the aim to evaluate the corresponding hyperbolicity
domain. The non-zero components of the production term P that we shall
adopt in the following are given by the following expressions [5]:

P̂kk = −3Π

τΠ
, P̂〈11〉 =

σ

τσ
, P̂kk1 = −2q

τq
.

When not explicitly stated otherwise, the relaxation times τΠ , τσ, and τq
(respectively related to the dynamic pressure, viscosity and heat conductivity)
will be assumed to have the same value (τ = τΠ = τσ = τq) as to allow a
comparison of the results obtained numerically solving the 14 moment system
with the results obtained from the solution of the Boltzmann/BGK kinetic
model.
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7.3 Numerical Results

A non-exhaustive numerical study of the shock structure solution with and
without subshock for a polyatomic gas has been carried out in the case of
a pseudo-N2 gas, namely a N2-like gas except for the three relaxation times
being equal (τ = τΠ = τσ = τq). This over-simplifying assumption, which is
not physically realistic1, is merely made as to allow a comparison of the results
obtained in the framework of the 14 moment system with the results obtained
solving the kinetic equation of the Boltzmann/BGK model. The kinetic model
of a polyatomic gas employed here is based on the polyatomic gas model
recently presented and discussed in [27] (see also [5] and references therein).
The details concerning the numerical algorithm developed for the solution of
the Boltzmann/BGK equation for polyatomic gas shall be the subject of a
forthcoming paper and will not be discussed here.

In Fig. 6, the case of a shock structure characterized by the unperturbed
Mach number M0 = 1.47 is presented. Since this value of M0 is less than
the critical value M cr

0 ' 1.74 corresponding to a shock speed s equal to the
maximum characteristic velocity of the system in the unperturbed state [30],
no subshock is expected to appear in the solution. The density and velocity
fields computed numerically, shown in Fig. 6, clearly represent a continuous
shock structure profile, thus confirming the theoretical prediction.

The shock structure profile obtained with M0 = 2, shown in Fig. 7, is
characterized by a noticeable discontinuity in the shock structure profile. It is
noted that the numerical results resemble the results obtained for a monatomic
gas both qualitatively and quantitatively: As seen in the case of a monatomic
gas, the strength of the subshock jump found when the second order closure is
adopted, is smaller than the one obtained with the traditional linear closure,
and overall the numerical solution obtained with the second order closure is
arguably closer to the reference solution obtained by means of the kinetic
approach, than the numerical solution obtained with the linear closure.

The same behavior is found when the Mach number is further increased
to M0 = 3, as shown in Fig. 8. Similarly to the monatomic gas case, a second
order closure leads to a shock structure profile characterized by a remarkably
smaller subshock jump, and with an overall behavior that matches better the
reference result obtained when the kinetic model equation is solved.

In recent years much research work has been devoted to the analysis of
the shock structure in polyatomic gases [5, 31–35]. It is now understood that
for several polyatomic gases relevant in practical applications, as for example
carbon dioxide (CO2), the dynamic pressure plays a relevant role in non-
equilibrium processes, and the model assumption of a single relaxation time for
all the involved relaxation processes is not acceptable when the fine structure
of processes far from equilibrium is of interest.

1 For N2 gas, the relaxation time τΠ is several orders of magnitude larger than τσ and
τq .
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In particular, it was predicted by non-equilibrium models and observed in
experiments, that for polyatomic gases like CO2, the shock structure profile
has a peculiar behavior which substantially differs from the one observed in
monatomic gases: the shock structure is characterized in fact, for values of the
shock speed smaller than the maximum characteristic speed of the system in
the unperturbed equilibrium state, by a very sharp (but continuous) part of
the profile, followed by a much less sharp part of the profile. This peculiar
feature of the shock profile was obtained both in the framework of extended
thermodynamics [31] and in the context of kinetic theory [33,34]. The results
presented in [31, 33] are replicated in Fig. 9, and are accompanied by simu-
lation results obtained in the context of the present study by means of the
14 moment system model with the first and second order closures. These pre-
liminary numerical results seem to suggest that, in this case, a second order
closure is not beneficial in terms of an improvement in the shock structure pro-
file. This result is not surprising and has to be expected, since it was clearly
shown [32–34] that the traditional linear closure already provides predictions
that are in excellent agreement with the results obtained with kinetic mod-
els, and experimentally found, leaving as a matter of fact very small room for
improvements.

In this particular case study, even the investigation of the fine structure of
the steep part of the profile of the shock structure, show virtually no difference
in the results obtained in the framework of the 14 moment system with either
first or second order closure, at least in the case reported in Fig. 9 concerning
a shock with an unperturbed Mach number M0 = 1.47 below the critical value
above which a subshock is expected.

8 Conclusions

The closure of the 13 moment system of a monatomic gas is generally obtained
assuming a linear dependence of the closing fluxes on the non-equilibrium
variables, i.e. the shear stress and heat flux. In the framework of Rational
Extended Thermodynamics (RET), this closure is obtained by means of the
entropy principle, with a phenomenological approach, or equivalently by means
of the maximum entropy principle (MEP). Either way, the obtained closure is
equivalent to the closure obtained by Grad following a kinetic approach. The
resulting 13 moment system has been largely used in theoretical investigation
of non-equilibrium phenomena as well as in studies concerning practical appli-
cations, but it suffers from some well-known drawbacks, most notably the lack
of hyperbolicity and the occurrence of non-physical shocks when processes far
from equilibrium are involved.

For example, when the shock structure solution is analyzed, for a large
enough departure from equilibrium (i.e. for large Mach numbers), an unphysi-
cal subshock appears in the profile of the traveling wave. This latter well-known
feature of the 13 moment system is a prominent issue when it comes to study



30 Andrea Mentrelli, Tommaso Ruggeri

20 15 10 5 0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Boltzmann / BGK

20 15 10 5 0 5 10 15 20
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8

u

Boltzmann / BGK

20 15 10 5 0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1st order

20 15 10 5 0 5 10 15 20
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8

u

1st order

20 15 10 5 0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

2nd order

20 15 10 5 0 5 10 15 20
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8

u

2nd order

Fig. 6 Rescaled mass density profile ρ̄ = (ρ− ρ0) / (ρ1 − ρ0) (on the left) and relative ve-
locity profile u = v−s (on the right) of the shock structure solution obtained for M0 = 1.5 in
a polyatomic gas (D = 5; pseudo-N2 gas with τ = τΠ = τσ = τq) with the Boltzmann/BGK
model (top row), and with the 14 moment system with the first order MEP closure (middle
row) and second order MEP closure (bottom row).

the propagation of shock waves in real gases and the fine structure of the shock
profile is of interest.

An investigation on the features of the shock structure solution of the 13
moment system with a second order closure based on the maximum entropy
principle (MEP) closure is here presented, and the results are compared and
contrasted to those obtained with the traditional first order closure. Most
notably, it is seen that the subshock that appears in the shock structure profile
for large enough Mach numbers is greatly reduced when the second order
closure is exploited. This remarkable result is obtained on the basis of the
Rankine-Hugoniot compatibility conditions applied across the subshock, and it
is confirmed by explicit numerical solution of the system of ordinary differential
equations that result from the system of moment equations when a shock
structure solution is sought. The comparison of the numerical results to those
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Fig. 7 Rescaled mass density profile ρ̄ = (ρ− ρ0) / (ρ1 − ρ0) (on the left) and relative ve-
locity profile u = v−s (on the right) of the shock structure solution obtained for M0 = 2.0 in
a polyatomic gas (D = 5; pseudo-N2 gas with τ = τΠ = τσ = τq) with the Boltzmann/BGK
model (top row), and with the 14 moment system with the first order MEP closure (middle
row) and second order MEP closure (bottom row).

obtained solving the kinetic Boltzmann/BGK equation, considered here as
a reference solution, show that a second order MEP-based closure allows to
obtain shock structure profiles that are in general more satisfactory than those
obtained with the traditional first order closure.

In addition, a preliminary analysis of the case of the 14 moment system of
a polyatomic gas is introduced. The study presented here pertains to a pseudo-
N2 polyatomic gas, and suggests that also for this kind of polyatomic gas the
obtained results are qualitatively similar to those obtained for a monatomic
gas. The more interesting and physically relevant case of a polyatomic gas
with different relaxation times (in particular, the relaxation time for the dy-
namic pressure can be three to four order of magnitude larger than the other
relaxation times, for gases like CO2) is addressed as well. In this case, recent
theoretical and computational results have pointed out that the continuous
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Fig. 8 Rescaled mass density profile ρ̄ = (ρ− ρ0) / (ρ1 − ρ0) (on the left) and relative ve-
locity profile u = v−s (on the right) of the shock structure solution obtained for M0 = 3.0 in
a polyatomic gas (D = 5; pseudo-N2 gas with τ = τΠ = τσ = τq) with the Boltzmann/BGK
model (top row), and with the 14 moment system with the first order MEP closure (middle
row) and second order MEP closure (bottom row).

shock structure solution, has a peculiar behavior substantially different from
the one found in monatomic gases. In particular, for these polyatomic gases
it was found that the system of moment equations provided by the theory of
extended thermodynamics with linear closure are in a remarkably good agree-
ment with the experimental results, even for small number of moments (in
particular, it was observed that the ET6 theory, which is the simplest non-
equilibrium theory involving only six field (i.e. the mass density ρ, the velocity
v, the temperature T and the dynamic (non-equilibrium) pressure Π), already
provides results in outstanding agreement with the experiments). In this cases,
it has to be expected that a second order closure would not lead to notice-
able benefit as long as prediction of the shock structure solution is concerned.
The results reported here confirm this expectation, showing that the shock
structure profile computed with a first and second order closures are virtually
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Fig. 9 Reproduction of the results published in [33] obtained for a shock profile in a CO2

polyatomic gas with M0 = 1.47 (top row) and corresponding rescaled mass density profile
ρ̄ = (ρ− ρ0) / (ρ1 − ρ0) (middle and bottom row; on the left) with its magnification (on the
right) of the shock structure solution obtained with the 14 moment system with the first
order MEP closure (middle row) and second order MEP closure (bottom row).

indistinguishable, at least for shock structures characterized by small values
of the strength of the shock.

One final comment is in order. The analysis discussed in this paper is
focused on the one-dimensional shock structure problem, which serves as a
good benchmark for non-equilibrium theories.

Nevertheless, to be useful for relevant practical applications, an exten-
sion to more useful two- and three-dimensional models, possibly with finite
domains, is desirable. Despite such an extension is certainly feasible and, in
principle, can be done with a straightforward generalization of the procedure
described here, such an extension is beyond the scope of the present study.
It should be noted, however, that even if the one-dimensional shock structure
problem studied here can already be analyzed by means of the powerful ap-
proach of kinetic theory (which indeed served as a reference model throughout
the paper), the macroscopic approach of the moment equations with second
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and potentially even higher order closures [17], still have an edge over the
kinetic theory approach, being far less computationally demanding. The re-
duced computational cost is sensible for the one-dimensional case exposed here
and it is expected to be even more dramatic for two- and three-dimensional
situations, especially when the time-evolution of the solution is of interest.

Acknowledgments

This work was partially supported by GNFM/INdAM; one of the authors
(A.M.) was also partially supported by the Italian MIUR PRIN2017 project
“Multiscale phenomena in Continuum Mechanics: singular limits, off-equilib-
rium and transitions”(project number: 2017YBKNCE).

References

1. Cercignani C.: The Boltzmann Equation and Its Applications, Springer-Verlag, New York
(1988)

2. Sone Y.: Kinetic Theory and Fluid Dynamics, Birkhäuser, Boston (2002)
3. Sone Y.: Molecular Gas Dynamics, Theory, Techniques, and Applications, Birkhäuser,
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