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Abstract We take up the challenge to explain the

correlation between the Jeans instability topic towards

star formation within the accelerated expansion of

universe and the role of torsional shear-like Alfven

waves in triggering the formation of network patterns,

by proposing new mathematical models for self-

gravitating interstellar non ideal MHD plasmas. The

diffusion of the gravitational field is included via a

parabolic Einstein’s equation with the cosmological

constant, whereas anomalous resistive features are

described through non ideal Ohm’s laws incorporating

inertia terms, to account of relaxation and retardation

magnetic responses. We perform a spectral analysis to

test the stability properties of the novel constitutive

settings where dissipative and elastic devices act

together, by emphasizing the differences with previ-

ous models. As a main result, we highlight the

definition of a lower critical threshold, here called

the Jeans-Einstein wavenumber, against collapse for-

mation towards the formation of longitudinal gravito-

magneto-sonic waves and transverse non gravitational

Alfven waves exhibiting larger effective wavespeeds,

due to the hyperbolic-parabolic diffusion of the

magnetic field. Consequently shorter collisional times

are allowable so, beyond the plasma-beta, another

interesting key point is the definition of the Ohm

number to revisit the timescale topic, towards

reviewed Reynolds and Lundquist numbers able to

better capture the microphysical phenomena of Mag-

netic Reconnection in narrow diffusion regimes.

Keywords Diffusion-reaction gravity equation �
Viscoelastic type resistive MHD models � Jeans
instability analysis � MHD dispersive waves �
Complex structures

1 Introduction

The Jeans instability of sound modes in self-gravitat-

ing interstellar clouds is a well known phenomenon

which plays a strategic role in understanding not only

stars and galaxies formation, but also as a possible

justification for the existence of large amount of dark

energy and dark matter (DM) in the Universe.

Thereby such a topic represents a long standing

problem whose newness is strictly related to the

development of several new mathematical models to

better fit the interstellar matter [1–9]. In particular, as

already suggested in earlier papers [4, 10–13], an

interesting research issue may be just given by a
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different structure for the standard Poisson-type

gravity, leading to modified gravitational (MOG)

frameworks accounting for the Universe Expansion,

via the introduction of Einstein’s cosmological con-

stant K.
In order to overcome the well-known Jeans swindle

and predict dark energy properties, but also thinking of

the recently detected gravitational waves [14], we here

propose a non-stationary and non-relativistic Ein-

stein’s equation, which includes K and a (small)

gravitational relaxation time. To this aim we introduce

a reaction–diffusion equation for the gravitational

potential and firstly test its stabilizing role on self-

gravitating interstellar matter (ISM) clouds, described

as polytropic Euler-Darcy fluids. It follows that this

MOG theory accounts for a lower critical wavenum-

ber, here called the Jeans-Einstein wavenumber,

k2JK ¼ k2J � K, k2j being the standard Jeans wavenum-

ber; consequently, larger critical values for wave-

length, mass and a longer free fall time ensue

straightaway to stabilize the medium against collapse

formation.

Next we revisit the previous Jeans-Einstein insta-

bility criteria for the compressible resisto-elastic

MHD (REMHD) scenario proposed in [15], through

a non-ideal Ohm’s Law accounting for anomalous

resistive features, due to the presence of a magnetic

relaxation time.

These magnetic aspects lead to the introduction of a

new significant parameter, representing the dimen-

sionless magnetic relaxation time. Thus, in analogy

with the Cattaneo number introduced to highlight

analogous anomalous thermal effects rather than the

diffusive Fourier law (see e.g. [16–19] and references

therein), we here define the Ohm number denoted by

ORF ¼ sj=tc, where sj is the magnetic relaxation time

and tc is the characteristic time equal to the ratio

between the characteristic length L and the sound

velocity cs.

The Ohm number plays a key role in the theory: it

leads to a modified Reynolds number RME ¼ RMORF

(RM being the standard magnetic Reynolds number)

for the valuation of the interlacements between the

resistive and elastic behavior towards the micro-

physics of cosmic plasmas.

In this way, the cosmological constant K, inter-
preted as a new critical wavenumber ascribable to

DM, together with the classical plasma-beta (b),

which is the ratio between the thermal and magnetic

pressures, allow us to highlight an interesting rela-

tionship among the most significant parameters of our

model (K, ORF , b, RME and the gravitational constant

G), against collapse formation. Thanks to such rela-

tionship in its limit cases, we may provide both a

revisitation of the classical Jeans-Chandrasekhar

instability criteria for the ideal frame, as in [3] and a

generalization of more recent instability results, within

the standard (non-ideal) resistive context [20].

Beyond the star formation process, this new

scheme enhances the properties of (damped) torsional

Alfvén waves, propagating with a larger effective

wavespeed, due to the presence of the magnetic

relaxation time, in triggering the intricate network of

filamentary structures in every interstellar clouds [21],

which in turn share common properties with the

cosmic web in the Universe (we are thinking of

clusters, filaments, sprouts, spicules, etc.). In fact the

framework of the formation of such outstanding

skeleton is such that of the gravitational instability.

Interestingly, a larger Alfvén wavespeed yields a

smaller Alfvénic time scale compared with the

resistive one. So, the ensuing time scalings seem to

be more suitable to justify the rapid magnetic energy

release on those processes likely to occur in regions of

fast MR mechanisms (solar flares and spots, particle

acceleration and coronal matter ejection) [22–27].

Again, the strategic players are the torsional oscilla-

tions in thin flux tubes, interpreted as the recently

detected Alfvén waves [28], which, as conjectured in

[15], are not affected either by compressional and

gravitational aspects.

Also we might argue on the third sound effects.

Obviously, the first sound concerns the acoustic waves

and one may ascribe a second sound either to thermal

waves, due to anomalous heat conduction theories,

[29, 30] or to the superfluids sonic modes (as expected

in neutron stars [8]). Indeed the presence of a third

sound, may be conjectured just thinking of the recently

detected noisy gravitational waves, not yet theoreti-

cally justified.

The paper is organized as follows. In Sect. 2 we

introduce the MOG theory and test it to explain the

stability and instability of an infinite homogeneous

self-gravitating interstellar gas cloud modeled as a

Euler–Darcy gas versus the standard Jeans criteria. In

Sect. 3 we generalize the MOG theory to the presence

of the magnetic field and propose a new non-ideal
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MHD (NIMHD) setting, characterized by anomalous

resistive features accounting for the dimensionless

magnetic relaxation time ORF . Again the general

dispersion equation is derived and discussed to gain a

special overview of the stability properties towards

modified torsional Alfvén waves and longitudinal

gravito-magneto-sonic waves against instability ones

towards collapse formation. Also, we furnish a

comparative study with other standard ideal and

resistive MHD settings, enhancing some remarks on

possible stability interlacements among the most

significant parameters herein involved in Sect. 4.

Then in Sect. 5 we read the response of the MOG

effects on delayed magnetic properties, described by a

Kelvin–Voigt type Ohm’s law. The last section is

devoted to final comments.

2 The mathematical formulation of the modified

gravitational instability problem: the Jeans–

Einstein criteria vs collapse formation

Following the strategy for chemotactic mechanisms,

see e.g. [31], but focusing overall on the accelerated

expansion of the universe based on particles creation,

we here address an evolutive reaction–diffusion

equation for the gravitational potential / within the

general balance law scheme [32], namely

/t ¼ �r � J/ þ r/; ð1Þ

where the gravitational inflow [33] is the pair of the

gravity influx vector J/ and the gravity supply r/,

defined by

J/ ¼ �D/r/ ; r/ ¼ �K̂/þ ĥq : ð2Þ

The diffusive mobility D/, likewise the parameters K̂

and ĥ, are here supposed to be positive constants (for

easiness); in this way we are proposing a flux-gradient

type constitutive setting for the gravitational flux with

reaction terms. By substituting (2) into (1), we obtain

the parabolic type gravitational equation

s//t ¼ D/� K/þ hq; ð3Þ

where s/ ¼ 1=D/, K ¼ K̂=D/ and h ¼ ĥ=D/.

It is worth to observe that s/ represents a gravita-

tional relaxation time, while K plays the role of the

cosmological constant, which means that we are

dealing within an expanding universe approach with

h ¼ 4pG, G being the gravitational constant. Equa-

tion (3) may be viewed as the non-stationary and non-

relativistic Einstein’s equation with the cosmological

constant.

Indeed, (3) in the limit s/ ¼ 0 andK ¼ 0 reduces to

the standard Poisson-type elliptic equation for /,
which in turn is not satisfied within the zeroth order

approximation unless q ¼ 0 (Jeans swindle).

In order to test how our MOG theory affects the

gravitational instability problem, we start with the

simplest reasonable model of the Jeans problem, even

so capable to capture the physics for a thorough

qualitative understanding. Therefore we describe the

infinite and homogeneous self-gravitating interstellar

gas cloud as an adiabatic barotropic fluid, in the

presence of the (non constant) self-gravitational force,

within a Darcy type porous theory. Thus, the govern-

ing system reads as follows

qt þrq � vþ qr � v ¼ 0

q vt þ ðrvÞv½ � ¼ �p0ðqÞrqþ qr/� qmDRv

s//t ¼ D/� K/þ hq

ð4Þ

where q is the (positive) mass-density, v is the velocity

and, neglecting thermal effects, we consider the

general density dependent pressure term p ¼ pðqÞ,
so that

rp ¼ p0ðqÞrq ¼ c2s ðqÞrq ;

where c2s ðqÞ stands for the (squared) sound speed. In

particular we address the polytropic equation of state

p ¼ Aqc, A[ 0 and c ¼ 5=3 being the adiabatic

index: in this frame c2s ¼ ðcpÞ=q, corresponds to the

adiabatic sound speed.

The positive constant mD represents the so called

kinematical dynamic viscosity and, taking into

account the Dupuit–Forchheimer relation and follow-

ing the Nield’s strategy (see [34, 35]), we have

introduced the retardability R, defined as R ¼ �=j, j
(j[ 0) and � (0\�\1) being the permeability and

the porosity, respectively. The presence of a Darcy-

type porous term in the momentum Eq. (4)2 may be

easily compared with the friction force introduced in

[31] within the different context of chemically driven

hydrodynamic motions.

To begin we prerform the standard perturbation

approach, as in most of the works on the Jeans
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instability. Therefore, as a starting point, we consider

the stationary and homogeneous quiescent state,

described by the constant variables

v0 ¼ 0 ; q ¼ q0 ; p ¼ p0 ¼ pðq0Þ ; / ¼ /0 ¼
hq0
K

;

so that, once we take into account the expansion of the

Universe as currently experienced, we no longer need

to invoke the so called Jeans swindle ([13, 36]), due to

the stationary approximation of (4)3 in the limit

K ! 0þ.
Then we linearize (4) around this equilibrium state,

by introducing the perturbation state

d�s ¼ ðd�v; d�q; d�p; d�/Þ. Taking into account that,

for small perturbations, the pressure and density

perturbations are related through the adiabatic sound

speed, i.e. rd�p ¼ c2srd�q with c2s ¼ ðcp0Þ=q0, the
linearized perturbation equations are

d�qt þ q0r � d�v ¼ 0

q0d
�vt ¼ �c2srd�qþ q0rd�/� q0mDRd

�v

s/d
�/t ¼ Dd�/� Kd�/þ hd�q

ð5Þ

To carry out the linear stability analysis, we now

introduce a spectral tool in order to investigate the

temporal behavior of these perturbations. So, in

spatially unbounded domains, we employ the Fourier

modes technique and look for perturbations of the

dispersive wave form

d�s ¼ s1e
iðk�x�xtÞ ;

where s1 6¼ 0 is the constant amplitude, k is the (real)

wavenumber vector, with jkj2 [ 0, and x denotes the

frequency of the disturbance; for future convenience

we also introduce the growth rate parameter r ¼ �ix,
which is generally a complex number. Therefore

stable modes are those with ReðrÞ� 0 and unsta-

ble modes occur when ReðrÞ[ 0. Among the unsta-

ble modes, we may expect monotonically growing

unstable ones for ImðrÞ ¼ 0, whereas, when

ImðrÞ 6¼ 0, overstable modes arise, so that the pertur-

bations oscillate with growing amplitudes. Likewise

for stable modes, the model can experience either

monotonically decreasing modes (ImðrÞ ¼ 0) or

exponentially decreasing oscillatory modes

(ImðrÞ 6¼ 0), accounting for damped perturbations,

due to the dissipative mechanisms within the model.

Hence, by using classical identities, we find the

following dispersion system for the perturbation

amplitudes

xq1 � q0kv1n ¼ 0

ðxþ imDRÞv1n ¼ c2sq1
k

q0
� /1k

ðxþ imDRÞv11 ¼ 0

ðxþ imDRÞv12 ¼ 0

s/xþ ðk2 þ KÞi
� �

/1 � hiq1 ¼ 0

ð6Þ

where we have used the standard decomposition form

v1 ¼ ðv1 � nÞnþ ðv1 � t1Þt1 þ ðv1 � t2Þt2 ¼ v1nnþ v11t1 þ v12t2 ;

with n ¼ k=k, k ¼ jkj, and ti (i ¼ 1; 2) being two

orthonormal transverse vectors, such that ti � n ¼ 0

and ti � tj ¼ dij.
From now on we will suppose

x 62 0;�imDR;�
ðk2 þ KÞi

s/

� �
;

thus avoiding stationary and stable modes, uninterest-

ing for our purposes. The discussion can be simplified

as follows.

From (6)3–(6)4 we have v1i ¼ 0; i ¼ 1; 2 and hence

only longitudinal compressible dispersive modes are

allowable; Eq. (6)5 gives us the relation between the

amplitudes /1 and q1, whereas from (6)1 we find the

link between q1 and v1n. Finally, by gathering all the

previous results into (6)2, we derive the dispersion

equation

x2 � c2s k
2 þ mDRixþ hq0ik

2

s/xþ k2 þ Kð Þi ¼ 0;

which in terms of r reads

s/r
3 þ k2 þ Kþ mDRs/

� �
r2

þ mDRðk2 þ KÞ þ c2s s/k
2

� �
r

þ c2s k
2 k2 þ K� k2j

� 	
¼ 0 ;

ð7Þ

where k2j ¼ ð4pGq0Þ=c2s is the standard Jeans critical

wavenumber.

By applying the Routh-Hurwitz criterion, the three

solutions of (7) have negative real parts, namely the

joint presence of s/;K and mDR allows to recover three
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(asymptotically) stable modes if and only if the

following condition hold

k2 þ K� k2j [ 0 :

It is noteworthy that the same condition should be

required in the limit case s/ ! 0 and mD ! 0,

corresponding to the (Helmholtz-type) stationary

Einstein gravitational equation, and neglecting the

Darcy term.

The constant K is therefore strategic for recovering

new stability properties of the medium: in particular if

K[ k2j , namely c2sK[ 4pGq0 (which seems however

difficult to be experimentally justified), we would

always find (asymptotically stable) damped gravito-

sonic modes independently of k2 vs collapse forma-

tion. However, when K\k2j we may define a lower

critical threshold,

k2JK ¼ k2j � K\k2j

such that, for longitudinal compressible modes, the

modified Jeans instability criterion reads as follows

k2\k2JK. In this way, with respect to the classical Jeans

criterion, we have gained stability also in the range

k2JK � k2 � k2j .

Dimensionally speaking, K may be interpreted as a

critical wavenumber due to DM, i.e. K ¼ k2DM .

Therefore from now on we will refer to k2JK as the

Jeans-Einstein critical wavenumber, which is typical

of our theory and leads to a delayed collapse formation

vs damped gravito-sonic waves (for k2 � k2JK). Con-

sequently, the new critical wavelength and mass above

which the gravitational field of the fluctuations is

capable to create collapse formation are

kJK ¼ 2p
kJK

;

MJK ¼ 4pq0
3

kJK
2


 �3

¼ 4pq0
3

pcsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pGq0

p

 �3

1� Kc2s
4pGq0


 ��3
2

respectively. Obviously, these larger thresholds coin-

cide with the classical ones within the traditional Jeans

treatment, whenever K ! 0þ.
To sum up, K represents an important stabilizing

driver against the onset of unstable gravito-sonic

modes, but the instability results are not affected by

the gravitational relaxation time s/.

3 The Oldroyd-B type Ohm’s Law for resisto-

elastic non-ideal MHD plasmas within the MOG

theory

Driven by the unquestionable importance of magnetic

effects in gravitational instability analysis, in this

section we present a special non-ideal MHD back-

ground for a self-gravitating interstellar plasma, also

preserving the Darcy porous term, here interpreted as a

damping friction force.

We are interested in capturing micro- to macro-

scales magnetic properties through a generalized form

of the resistive Ohm’s law. To this aim we write down

the resistive Ohm’s law within the one fluid approach

[37]:

Eþ v� B ¼ R ;

where E, B and R denote the electric field, the

magnetic field and the resistivity vector respectively.

In analogy with other thermal and visco-elastic

settings [35], the new resisto-elastic network model

is constructed by the additional split of the overall

resistive response, due to non-idealness:

R ¼ Rr þ Re ;

whereRr ¼ grr� B (gr [ 0 and constant) represents

the classical (parabolic) resistive part, whereas the

extra elastic resistivity vector Re is supposed to satisfy

the rate-type equation

sj Ret þ ðrReÞv�
1

2
ðr � vÞ � Re


 �
þ Re ¼ ger� B : ð8Þ

Here sj denotes the (positive and constant) magnetic

relaxation time and ge is a positive constant.
The total magnetic resistivity, such that the electric

conductivity is just the inverse of gl0, is now given by

g ¼ gr þ ge.
Note that the ðr � vÞ-term is due to the introduc-

tion of the objective Jaumann time derivative in place

of the convected one. It is worth to stress that this non-

linear invariant term does not affect the linear stability

analysis we are going to perform, but it may have an

important role within the non linear wave propagation

tool.

Two remarks are at order:

– We now have r � R 6¼ 0 and beyond the diffusion

time, typical of the classical resistive scheme, sd ¼
l0L

2=g (L being a characteristic length scale), this
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theory exhibits the new small relaxation time sj
accounting for the lagging response of the current

density vector on the magnetic field;

– Looking at (8), one captures another salient

constitutive feature: the ratio ge=sj will represent
a further (transverse) wavespeed to be added to the

classical Alfvén wavespeed and hence new smaller

Alfvén crossing times to be compared with sd and
sj ensue.

The Ohm’s law describing these anomalous resistive

features may be referred to as the Oldroyd-B type

Ohm’s law in its split form.

Interestingly, when gr ¼ 0, the theory reduces to a

novel hyperbolic non-ideal MHD model, leading to

elastic memory-type behaviors through the presence

of the collisional relaxation time sj. Anyway the ideal

frozen-in condition is broken. The non-ideal behavior

becomes very important when the magnetic field

gradient is very large with a steepening effect, that is to

say in the presence of a strong current density. This

exceptional behavior just happens in micro-scale

structures, such as current sheets arising from zero

magnetic points, where the magnetic field lines exhibit

a 3DX-type topology [37, 38]. Moreover. when small-

scale fluctuations are incorporated, macroscopic zero

magnetic points in the (terrestrial) magnetosphere

become a network of microscopic nulls in micro-scale

diffusion regimes, thus enhancing the intertwining

between micro- to macro- complex structures

With greater reason, when both (parabolic and

hyperbolic) effects act jointly, such a mathematical

model seems to be more adequate to justify the fast

MR mechanisms in the solar atmosphere.

The relevant equations governing these MHD

processes are the continuity equation, the momentum

equation including the gravitational and Lorentz

forces together with the Darcy term and the induction

equation incorporating the anomalous resistivity of

Oldroyd-B type [15], that is

qt þrq � vþ qr � v ¼ 0

q vt þ ðrvÞv½ � ¼ �p0ðqÞrq� qmDRv

þ qr/þ 1

l0
ðr � BÞ � B

Bt þ ðrBÞv� ðrvÞBþ ðr � vÞB

¼ �grr�r� B�r� Re

sj Ret þ ðrReÞv�
1

2
ðr � vÞ � Re


 �
þ Re ¼ ger� B

ð9Þ

together with the reaction-diffusion gravitational

Eq. (3) and supplemented by the usual constraint

r � B ¼ 0.

3.1 Linear stability analysis

Some aspects of the first order linear stability analysis

of an infinite homogeneous self-gravitating plasma,

permeated by a uniform magnetic field B0, are now to

be reexamined in the light of the new constitutive

modeling.

Thus we address a small perturbation around the

following homogeneous and stationary (quiescent)

state

q0 [ 0; v0 ¼ 0; /0 ¼
hq0
K

; B0; Re0 ¼ 0

Following step by step the previous perturbation

technique, we arrive at the linearized perturbation

system

d�qt þ q0r � d�v ¼ 0

q0d
�vt ¼ �c2srd�qþ q0rd�/� q0mDRd

�v

þ 1

l0
ðr � d�BÞ � B0

r � d�B ¼ 0

d�Bt � ðrd�vÞB0 þ B0r � d�v

¼ �grr�r� d�B�r� d�Re

sjd
�Ret þ d�Re ¼ ger� d�B

s/d
�/t ¼ Dd�/� Kd�/þ hd�/

Again, the formal application of the Fourier normal

modes tool leads to the following dispersive system

for the perturbation amplitude

s1 ¼ ðq1; v1;/1;B1;R1Þ
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xq1 � q0kv1n ¼ 0

ðxþ imDRÞv1n ¼ c2sq1
k

q0
� /1k þ

k

l0q0
ðB0 � B1Þ

ðxþ imDRÞv11 ¼ � k

l0q0
B0nB11

ðxþ imDRÞv12 ¼ � k

l0q0
B0nB12

ðxþ grk
2iÞB11 þ kB0nv11 � kB01v1n ¼ kn� R1 � t1

ðxþ grk
2iÞB12 þ kB0nv12 � kB02v1n ¼ kn� R1 � t2

ðsjxþ iÞR1n ¼ 0

ðsjxþ iÞR11 ¼ �gekn� B1 � t1
ðsjxþ iÞR12 ¼ �gekn� B1 � t2
s/xþ ðk2 þ KÞi
� �

/1 ¼ hiq1
ð10Þ

supplemented by the condition that the magnetic

amplitude is always orthogonal to n, i.e.B1 � n ¼ 0. As

before, for easiness in writing, in (10) we have used the

following notations

B0n ¼ B0 � n ; B0i ¼ B0 � ti ; B1i ¼ B1 � ti ; i ¼ 1; 2 ;

for normal and tangential components;

In order to simplify the picture, henceforth we

suppose x 6¼ 0 (stationary case) and also

x 62 �imDR;�igrk
2;� i

sj

� �
;

corresponding to unphysical stable cases.

Therefore, from (10)7, R1n ¼ 0, namely the theory

allows only for non zero tangential components of R1.

Equations (10)3 and (10)4 give us the relations

between the transverse components of v1 and B1,

v1i ¼ �k
B0nB1i

l0q0ðxþ imDRÞ
; i ¼ 1; 2 ð11Þ

and we can solve Eqs. (10)8 and (10)9 for R1i in terms

of B1i,

R11 ¼
gek

ðsjxþ iÞB12 ; R12 ¼ � gek
ðsjxþ iÞB11 :

As expected, the new theory does not affect the

relation between q1 and /1:

/1 ¼
hiq1

s/xþ ðk2 þ KÞi ¼
hikq0

x s/xþ ðk2 þ KÞi
� � v1n :

By gathering all these results into (10)2, (10)5 and

(10)6, we easily reduce to the following Cramer

system in R3 for the essential amplitudes v1n, B11 and

B12

bv1n �
kx
l0q0

xþ i

s/
ðk2 þ KÞ


 �
ðB01B11 þ B02B12Þ ¼ 0

aB11 � B01k x2 þ ix
1

sj
þ mDR


 �
� mDR

sj


 �
v1n ¼ 0

aB12 � B02k x2 þ ix
1

sj
þ mDR


 �
� mDR

sj


 �
v1n ¼ 0

with

b ¼ x3 þ ix2 k2 þ K
s/

þ mDR


 �
� x c2s k

2 þ mDR
s/

k2 þ K
� �
 �

� i
k2c2s
s/

ðk2 þ K� k2j Þ;

a ¼ x3 þ ix2 1

sj
þ grk

2 þ mDR


 �

� x c2AREk
2 þ mDRgrk

2 þ mDR
sj


 �

� i

sj
k2ðc2A þ gemDRÞ;

where we have defined the modified larger (squared)

Alfvén wavespeed due to the novel elastic effects

c2ARE ¼ B2
0n

l0q0
þ gr þ ge

sj

in place of the classical Alfvén wavespeed

c2A ¼ B2
0n=l0q0.

By a quick inspection, we obtain the general

dispersion equation

a ab�
k2c2Bx s/xþ iðk2 þ KÞ

� �
sjx2 þ ixð1þ sjmDRÞ � mDR
� �

s/sj

� �
¼ 0;

ð12Þ

where we have used the classical notation

c2B ¼ B2
01 þ B2

02

l0q0
:

Equation (12) can be split in
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a ¼ 0

and

ab� k2c2Bx xþ iðk2 þ KÞ
s/


 �
x2 þ ix

1

sj
þ mDR


 �
� mDR

sj


 �
¼ 0:

3.1.1 Damped non-gravitational torsional Alfvén

waves

The first cubic equation a ¼ 0, rewritten in terms of

the growth rate parameter r as

r3 þ 1

sj
þ gr þ mDR


 �
r2 þ c2ARE þ mDRgr

� �
k2 þ mDR

sj


 �
r

þ k2

sj
c2A þ gemDR
� �

¼ 0 ;

ð13Þ

provides three novel non-gravitational torsional shear-

like Alfvén waves, which are damped due to the

simultaneous presence of gr, mDR and sj.
To sum up, a ¼ 0 allows to show how the non-ideal

resisto-elastic Ohm’s law may affect the behavior of

the compressible transverse magnetic (dispersive)

waves. The application of the Routh–Hurwitz test

always guarantees the asymptotic stability properties

of the ensuing resisto-elastic magnetic modes, unaf-

fected by (modified or not) gravity. As expected, if we

neglect the mDR-term, the equation a ¼ 0 coincides

with the Eq. (12) in [15] governing incompressible

transverse modes. By all means the pure torsional

behavior of the ideal Alfvén waves is lost.

3.1.2 Longitudinal gravito-magneto-sonic waves

versus the delayed collapse formation

Obviously, the gravitational instability analysis is

quite concentrated on the sixth grade dispersion

equation, which may be easily rewritten in terms of

r as follows

r6 þ a1r
5 þ a2r

4 þ a3r
3 þ a4r

2 þ a5rþ a6 ¼ 0 ;

ð14Þ

with

a1 ¼
k2 þ K
s/

þ 1

sj
þ grk

2 þ 2mDR

a2 ¼ c2s þ c2ABRE þ mDR
s/

þ mDRgr


 �
k2 þ KmDR

s/
þ mDR

sj

þ k2 þ K
s/

þ mDR


 �
1

sj
þ grk

2 þ mDR


 �

a3 ¼ c2s þ c2AB þ
mDR
s/

þ mDRge


 �
k2

sj
þ ðmDRÞ2

sj

þ k2

s/
c2s þ c2ABRE þ mDRgr
� �

ðk2 þ K� k2JREDÞ

þ grk
4 c2s þ

mDR
s/


 �

þ mDRk
2 c2s þ c2ABRE þ mDRgr þ

mDR
s/


 �

þ KmDR
s/sj

þ mDR
s/

k2 þ K
sj

þ KmDR


 �

a4 ¼
k2c2s
s/

ðk2 þ K� k2j Þ
1

sj
þ grk

2 þ mDR


 �

þ k2

sj
ðc2A þ gemDRÞ

k2 þ K
s/

þ mDR


 �

þ c2Bk
2 mDR

sj
þ k2 þ K

s/

1

sj
þ mDR


 �
 �

þ mDR
sj

c2s k
2 þ mDR

k2 þ K
s/


 �

þ ðc2ARE þ mDRgrÞk2 c2s þ
mDR
s/


 �
k2 þ KmDR

s/


 �

a5 ¼ c2Bk
2 mDR
sjs/

ðk2 þ KÞ

þ k2

s/
c2ARE þ mDRgr
� �

k2 þ mDR
sj


 �
c2s ðk2 þ K� k2j Þ

þ k2

sj
c2A þ gemDR
� �

c2s þ
mDR
s/


 �
k2 þ KmDR

s/


 �

a6 ¼
c2s k

4

s/sj
c2A þ gemDR
� �

k2 þ K� k2j

� 	

where we have used the notations

c2AB ¼ c2A þ c2B ; c2ABRE ¼ c2ARE þ c2B ;

and
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k2JRED ¼ 4pGq0
c2s þ c2ABRE þ grmDR

ð15Þ

to denote the modified lower (with respect to k2j )

critical wavenumber, due to the inclusion of all the

new effects herein.

In the following we will focus on the analysis of the

solutions of the Eqs. (13)–(14) and discuss in detail

two significant constitutive subsettings.

3.2 The purely parabolic NIMHD setting

within the stationary MOG theory

Within the limit case s/ ! 0, sj ! 0 and mD ! 0,

corresponding to a self-gravitating resistive homoge-

neous plasma on the expanding universe approach, the

dispersion Eq. (14) reduces to the following fourth

grade equation

r4 þ gk2r3 þ k2

k2 þ K
ðc2AB þ c2s Þðk2 � k2JABKÞr2

þ gc2s
k4

k2 þ K
ðk2 � k2jKÞr

þ c2Ac
2
s

k4

k2 þ K
ðk2 � k2jKÞ ¼ 0 ;

ð16Þ

where

k2JABK ¼ 4pGq0
c2s þ c2AB

� K\k2jK:

The stability analysis of (16) generalizes to the

expanding universe approach the analogous discus-

sion of Eq. (18) in [20], where in particular the zero-

resistivity case (corresponding to the idealMHD limit)

has been thoroughly investigated, both analytically

and numerically.

Our primary aim is to stress how the parameters g
and K act jointly against collapse formation. It is well

known that the Jeans criterion remains unaffected by

ideal magnetic effects, except for those modes prop-

agating perpendicular to the direction of the uniform

magnetic field, namely cA ¼ 0 (see e.g. [3]). Now, in

this case, besides the marginally stable mode r ¼ 0,

we find three longitudinal gravitational modes

satisfying

r3 þ gk2r2 þ k2

k2 þ K
ðc2B þ c2s Þðk2 � k2JBKÞr

þ gc2s k
4

k2 þ K
ðk2 � k2JKÞ ¼ 0

where the notation

k2JBK ¼ k2JB � K\k2JK

stands for a new lower critical threshold, due to the

effective wavespeed, now reduced to ðc2s þ c2BÞ.
Again, the system under study will be (asymptot-

ically) stable if and only if

k2 � k2JK

since the coefficients are all positive and also the third

condition of the Routh-Hurwitz test is trivially satis-

fied because it requires the positiveness of

c2Bðk2 � k2JBKÞ þ c2s ðk2JK � k2JBKÞ :

Hence, differently from the ideal MHD setting, the

presence of resistive magnetic effects will not

decrease the instability in the direction orthogonal to

B0, except for the modes k2 ¼ k2JK. In fact in this case,

besides the marginally stable mode r ¼ 0, we get a

second grade dispersion equation whose solutions

always have negative real parts.

On the other hand, when c2A [ 0 (namely for modes

parallel to B0), the discussion of (16) accounts for a

larger effective speed, just due to the presence of c2AB.

We know that the Routh-Hurwitz test asserts that the

four solutions to (16) have negative real parts,

corresponding to four damped oscillatory modes, if

and only if the following requirements

gk4 c2ABðk2 � k2JABKÞ þ c2s ðk2JK � k2JABKÞ
� �

[ 0 ;

g2k8

k2 þ K
c2s c

2
Bðk2 � k2JKÞ[ 0

hold, together with the positiveness of all the

coefficients.

Indeed, the condition for stable gravito-magneto-

sonic modes reads as k2 [ k2JK, since ðk2JK �
k2JABKÞ[ 0 is always true.

Also, as before, it is a simple matter to show that in

the limit case k2 ¼ k2JK we find r ¼ 0 as a (double)

marginally stable mode. By all means, the sufficient

condition for gravitational collapse formation

becomes
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k2\k2JABK ;

thus leading to a new larger critical wavelength

kJABK ¼ 2p
kJABK

:

As a consequence, larger critical mass and free fall

time follow. Obviously the purely oscillatory modes of

the standard Jeans model are lost; also, the instability

arises in the form of overstable oscillations, versus the

classical exponential growth.

As regards the behavior of the non-gravitational

and non-compressible transverse Alfvèn modes, char-

acterized by [see e.g. (13)]

r2 þ gk2rþ c2Ak
2 ¼ 0

we point out that the time dependence of the related

perturbations always contains decreasing exponential

parts, so that only stable modes are present, even if the

purely oscillating perturbations are lost, as before. In

particular we find either two exponentially decreasing

modes or two damped oscillatory ones, according to

the sign of the discriminant. We believe that it is just

the case of a negative discriminant (corresponding to

damped oscillating modes), namely

c2A [
1

4
g2k2 ;

to be the most interesting from a physical point of

view. Such a condition is generally fulfilled due to the

strength of the magnetic field against the smallness of

the resistivity.

In conclusion the effect of dissipative non-ideal

processes is to damp the evolution of perturbations,

preserving unchanged the key values of the (modified

or not) Jeans wavenumbers. Meanwhile the same role

is played by the presence of dissipative mechanisms

due to the bulk viscosity, as in [4]; thus, besides the

damping effects on the density perturbations, one

could also study top-down schemes for (very) small

and (very) strong resistive values from a numerical

point of view.

3.3 The hyperbolic NIMHD setting

versus the IMHD one, within the stationary

MOG theory

We now limit our attention to the case gr ¼ 0, mD ¼ 0

and s/ ! 0, but ge ¼ g[ 0 and sj [ 0. The disper-

sion Eqs. (13) and (14) reduce to the forms

r3 þ 1

sj
r2 þ c2AREk

2rþ c2A
sj
k2 ¼ 0 ; ð17Þ

r5 þ 1

sj
r4 þ k2

k2 þ K
ðc2ABE þ c2s Þðk2 � k2JEKÞr3

þ k2

k2 þ K
ðc2AB þ c2s Þðk2 � k2JABKÞ

r2

sj

þ k4

k2 þ K
c2s c

2
AREðk2 � k2JKÞr

þ 1

sj

k4

k2 þ K
c2s c

2
Aðk2 � k2JKÞ ¼ 0 ;

ð18Þ

where c2ABE ¼ c2ARE þ c2B and

k2JEK ¼ k2JE � K ¼ 4pGq0
c2s þ c2ABE

� K :

Equation (17) describes three modified non-gravita-

tional transverse Alfvén modes, which are always

stable, even if their purely torsional behavior is quite

lost, due to the damping effects related to the current

relaxation time sj. Moreover, the larger Alfvén

wavespeed suggests the presence of smaller time

scales, useful to justify fast MR mechanisms. As

expected, these modes are not affected by the self-

gravitational potential and hence, focusing on collapse

formation, we converge our attention to Eq. (18),

which describes five gravito-magneto-elasto-sonic

modes vs collapse formation.

For a rapid understanding, we first address the

special cases of parallel and orthogonal propagation to

the direction ofB0. It is just an easy matter to show that

the modified Jeans-Einstein criteria again remain

unchanged either for B0 � n 6¼ 0 or B0 � n ¼ 0. In fact,

when B0 � n ¼ 0, Eq. (18) splits in r ¼ 0 (marginally

stable mode) and a reduced fourth grade equation

whose known term still include the factor ðk2 � k2JKÞ,
due to the elastic correction to the standard Alfvén

speed.

The stability analysis may be analytically provided

via the Routh-Hurwitz test, as done in the previous
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sections but, to best enhance the reliability of our

hyperbolic NIMHD setting within the MOG theory, a

numerical approach could deepen the discussion both

mathematically and physically.

However to better compare the behavior of our

NIMHDmodel with respect to the classical IMHD one

(Lundquist model), we may carry out a further crucial

simplification, working within weakly (rsj\\1) and

strongly (rsj [ [ 1) coupling limits [5]. Likewise to

viscoelastic effects [7], in the strongly coupling limit

the dispersion Eqs. (17) and (18) become

r2 þ c2AEk
2 ¼ 0

r4 þ k2

k2 þ K
ðc2ABE þ c2s Þðk2 � k2JEKÞr2

þ k4

k2 þ K
c2s c

2
AREðk2 � k2JKÞ ¼ 0

whereas, in the weakly coupling limit, the equations

remain the same with c2A in place of c
2
AE. In this way we

recover the torsional behavior of the (classical and

shear-like) transverse Alfvén waves and read the

gravitational response on the four coupled fast and

slow (magneto-sonic and magneto-elasto-sonic) lon-

gitudinal modes.

Beyond the additional presence of the cosmological

parameter K, again and differently from the classical

conclusions as in [3], the stability analysis is not

affected by the direction of B0. In particular, the

asymptotic stability is recovered for all k2 such that

k2 � k2JK, whereas gravitational collapse arises for

k2\k2JEK, thus leading to larger critical values kJEK ¼
ð2pÞ=kJEK and MJEK ¼ ð4pq0k3JEKÞ=3 for the wave-

length and mass, respectively.

4 Stabilizing interlacements among the most

significant (dimensionless) numbers of the new

theory

In astrophysical plasmas the interaction with the

magnetic field may be discussed via the introduction

of the so called plasma-beta (b), which measures the

ratio of the thermal (plasma) pressure to the magnetic

pressure. In the politropic context, we may define

ðcbÞ=2 ¼ c2s=c
2
AB. We observe that for a perfectly

conducting plasma, within the ideal Ohm’s law, b is

the only parameter able to describe the strength of the

magnetic field. Taking into account that astrophysical

environments are often very different, b can vary in a

broad range and hence we can meet both the physics of

very high-b ([ [ 1) and very low-b (\\1),

including also the intermediate case log b ¼ 0, corre-

sponding to the interstellar medium. At a low-enough

compression rate, the magnetic pressure becomes

higher than the thermal pressure, namely the magnetic

pressure is dominant and the b\\1 case is realized.

On the contrary, for a high-enough compression rate, it

is the gaseous pressure to become higher and the

b[ [ 1 case occurs. The b ! 1 case corresponds to

the simplified scheme discussed in Sect. 2.

The further presence of a finite (even small) plasma

resistivity is read via the magnetic Reynolds number

RM ¼ ðLcsÞ=g, by taking the sound velocity as the

characteristic one. The anomalous resistive effects,

here incorporated through the Re term, lead to the

definition of the elasto-magnetic Reynolds number

RME ¼ RMORF , ORF being the (new) dimensionless

magnetic relaxation time, namely ORF ¼ sj=tc, where
sJ is the magnetic relaxation time and tc ¼ L=cs is the

characteristic time. As already mentioned, this cor-

rection allows for an enhancement of the role of g, due
to sj, towards micro-instabilities, which are often

excited only in reconnection regions, and this may be

the key topic to justify fast MR processes.

Neglecting for simplicity the Darcy term, the

previous results show that the largest effective

wavespeed involved herein leads to the lowest critical

wavenumber (15), which can be suitably rewritten as

follows

k2JREK ¼ 4pGq0
c2s þ c2ABRE

� K ¼
k2j

1þ d
1� Kc2s

4pGq0
ð1þ dÞ


 �
;

where

d ¼ 2

cb
þ 1

RME


 �
:

This form suggests the possible experimental validity

of the following interesting lower and upper bound

estimates for the cosmological constant

4pGq0
c2s ð1þ dÞ\K\

4pGq0
c2s

:
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Thanks to the above relation, we may conclude that

these anomalous magnetic effects due to the Oldroyd-

B type version of the resistive Ohm’s Law have a

stabilizing role on the onset of gravitational instabil-

ities but, even for transverse propagation, they do not

alter the sufficient condition for a delayed collapse

formation, previously recovered in Sect. 2 for hydro-

dynamic flows. Obviously this conclusion does not

change in the presence of the dissipative Darcy term.

In particular, within the ideal MHD setting (i.e. d ¼
2=ðcbÞ ) for transverse propagation, we would recover
stability always. Therefore the presence of ideal

magnetic effects combined with the Einsteinian cor-

rection could completely stabilize the problem, so

leading to novel Jeans-Einstein-Chandrasekhar crite-

ria [3].

Also, by a quick inspection, when B0 � n ¼ 0 and

for K ! 0þ, it turns out that the lower Jeans-Chan-

drasekhar threshold is controlled by b as follows

k2JC ¼ cbk2J
cbþ 2

:

For logb ¼ 0 an upper bound for k2JC is k2J=2 within the

adiabatic regime (c ¼ 5=3), while k2J=3 is just its value

in the isothermal case (c ¼ 1). Indeed, for very low-b,
k2JC is much lower than k2J . On the other hand, if b is

sufficiently high, for example in the limit b ! þ1,

we find k2JC ! k2J , as expected.

5 The Kelvin–Voigt type Ohm’s Law

within the MOG effects

It is noteworthy that, for constant parameters and

within the linear theory, by employing the phase-lag

concept together with ‘‘backwards’’ temporal shiftings

[39], a Kelvin–Voigt type model is always derivable

from a Jeffreys-type one (see e.g. [35]). In our

scheme this procedure leads to a non stationary Ohm’s

Law in the Kelvin–Voigt form

Eþ v� B ¼ gr� B� sjð1� rjÞBt

� �
ð19Þ

where, as before, gl0 is the inverse of the electrical

conductivity and sjð1� rjÞ represents the difference

delay time parameter, rj being the so called (dimen-

sionless) retardation time. As in the Kelvin–Voigt type

thermal and viscoelastic contexts, the previous equa-

tion describes ’’backwards responses’’ of r� B on J,

so the well-posedness of this new MHD background,

in the absence of the self-gravity potential, is always

guaranteed by retarded responses, corresponding to

the physically reasonable setting rj [ 1.

Interestingly, in this case (19) may be also viewed

as the linear version of the generalized Ohm’s Law

investigated in [40] for MR solutions and hence it

seems a significant proposal from an astrophysical

point of view.

In the new frame the induction Eq. (9)3 reads

Bt þr� ðB� vÞ ¼ g DB� sjð1� rjÞDBt

� �

so that the spectral analysis arguments yield the

vectorial equation

xð1� k2gsjð1� rjÞÞ þ gik2
� �

B1 ¼ kn� ðB0 � v1Þ

accounting only for the transverse relations

xð1� k2gsjð1� rjÞÞ þ gik2
� �

B11 ¼ kv1nB01 � kB0nv11

xð1� k2gsjð1� rjÞÞ þ gik2
� �

B12 ¼ kv1nB02 � kB0nv12

Henceforth, in order to converge to the point quickly,

we work within the stationary MOG theory (s/ ¼ 0),

neglecting also the dissipative porous effects (mD ¼ 0).

Starting from (11), it is a straightforward matter to

recover again a Cramer system in R3 for the essential

amplitudes ðv1n;B11;B12Þ, so that we read off the

general dispersion equation, as follows

aKV aKV x2 � c2s k
2

k2 þ K
ðk2 � k2JKÞ


 �
� c2Bk

2x2


 �
¼ 0

ð20Þ

with

aKV ¼ x2 ð1� k2gsjð1� rjÞ
� �

þ gik2x� c2Ak
2

Equating to zero the first factor, we have

ð1� x2
gjÞr2 þ x2

grþ x2
A ¼ 0

where, for convenience, we have introduced the

notations

x2
gj ¼ gsjð1� rjÞk2; x2

g ¼ gk2; x2
A ¼ c2Ak

2

for the characteristic frequencies.

This equation describes the non-gravitational and

non-compressional Kelvin–Voigt type Alfvén regimes

and it is just the same equation as in [15] for the
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incompressible Alfvén modes. Meanwhile, in the

simplified limit x2
g ! 0, we recover the standard

purely oscillatory Aflvén modes of the IMHD theory,

whereas, for x2
gj ! 0 and x2

g [ 0, we obtain again the

two damped Alfvén modes, driven by the resistive

NIMHD frame (see e.g. Sect. 3.2).

More generally, the equation admits the solutions

r	 ¼ 1

2ð1� x2
gjÞ

�x2
g 	

ffiffiffiffi
D

ph i

with

D ¼ x4
g � 4ð1� x2

gjÞx2
A

As we can see, the stability discussion is now affected

by the sign of ð1� x2
gjÞ and so also unstable modes

arise. By inspection, when ð1� x2
gjÞ\0 we always

have D[ 0, namely two purely real values for r of

different signs, corresponding to exponentially grow-

ing and decreasing regimes (i.e. instability). On the

other hand when ð1� x2
gjÞ[ 0 since rj [ 1, the sign

of D is strictly related to the limit cases of very

’’strong’’ magnetic field and ’’small’’ anomalous

resistivity, due to the presence of x2
gj. Anyway,

independently of k2, we register non-compressible

(asymptotically) stable modes. More precisely, the

new constitutive theory is responsible of two damped

oscillatory modes for D[ 0, whereas forD� 0 two

exponentially damped modes are allowable. Again,

the two purely oscillating modes are lost, due to the

presence of the Kelvin–Voigt type resistivity.

In particular, for retardation effects, it is likely that

D\0 be the most physically relevant case, even

thinking of fast MR mechanisms [40]. Meanwhile the

presence of these damped Alfvén oscillatory modes is

now dictated by the condition

x2
A [

x4
g

4ð1� x2
gjÞ

which weakens the analogous requirement, exhibited

in the purely resistive context.

Indeed the same stability results follow even for

rj\1, when the positiveness of ð1� x2
gjÞ is assured by

the condition k2\1=½gsjð1� rjÞ�, so that the previous

unstable modes are recovered for k2 [ 1=½gsjð1� rjÞ�.
In analogy with the previous setting, the gravita-

tional response of the Kelvin–Voigt type Ohm’s law

rests on the second factor in (20), which may be

rewritten as

ð1� x2
gjÞr4 þ x2

gr
3 þ

k2ð1� x2
gjÞx2

JKVK

k2 þ K
r2

þ
k2x2

gx
2
JK

k2 þ K
rþ k2x2

Ax
2
JK

k2 þ K
¼ 0

ð21Þ

Here, focusing on the case ð1� x2
gjÞ[ 0, we have

reasonably defined the critical frequencies

x2
JK ¼ x2

s þ Kc2s � 4pGq0 ;

x2
JKVK ¼ x2

KV þ x2
s þ Kðc2KV þ c2s Þ � 4pGq0

with

c2KV ¼ c2AB
1� x2

gj

being the modified (squared) magnetic wavespeed,

due to the new constitutive theory.

As expected, the interplay between K and rj turns

out to be strategic in the discussion. In particular, in

the limit case x2
JK ¼ 0 (i.e. k2 ¼ k2JK), besides the

double root r ¼ 0 (corresponding to marginally

stable modes), Eq. (21) reduces to

ð1� x2
gjÞr2 þ x2

grþ k2

k2 þ K
ð1� x2

gjÞðx2
KV þ Kc2KVÞ ¼ 0

so that two (exponentially stable) Kelvin–Voigt type

purely magnetic regimes, unaffected by the gravita-

tional effects, always follow.

More generally, Kelvin–Voigt type gravito-mag-

neto-sonic waves are allowable whenever x2
JK [ 0,

the finite- and zero- resistive frames being recovered

for x2
gj ¼ 0 but x2

g [ 0 and for x2
g ¼ 0, respectively.

To sum up, we find four unstable coupled compress-

ible modes for x2
JKVK\0, whereas four (asymptoti-

cally) stable coupled regimes are always possible

when x2
JK � 0. On the other hand, whenever ð1�

x2
gjÞ\0 and in compliance with other single-phase lag

theories working with a difference delay parameter in

thermo-viscoelasticity, the backwards Ohm’s law

yields four unstable coupled modes, independently

of (modified or not) gravitational effects.

It is worth to note that x2
g and x2

gj are the inverse

time scales of the novel Ohm’s theory: the electrical

conductivity is likely to be very slow in protostellar
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disks, due to a low temperature and hence, since the

magnetic field lines will not be frozen-in during

collapse, particle collisions within the plasma are

accounted for, as it happens experimentally [41].

In our opinion, this special mathematical setting

might be suitable to model microphysical processes in

most astrophysical plasmas [42].

6 Conclusions

– In the present paper we have discussed the effects

of a non-relativistic gravity with the cosmological

constant K firstly on the sound modes of interstel-

lar gas clouds and then in the presence of special

non-ideal magnetic properties, allowing for lag-

ging behaviors of the magnetic field.

– The presence of K is responsible of a new critical

wavenumber ascribable to DM; as a consequence,

we may define suitable new critical thresholds for

wavenumber, wavelength and mass, herein

referred to as the Jeans–Einstein thresholds, which

stabilize the medium against collapse formation.

– By the way, the interaction with the magnetic field

may be discussed via the introduction of the so

called plasma-beta (b). More specifically, a key

role of the new theory is played by the Ohm

number ORF , representing the dimensionless mag-

netic relaxation time, which modifies the Reynolds

number RM in an elastic Reynolds number RME, in

order to control the anomalous resistive features

towards the micro-physics of cosmic plasmas.

Also, the larger Alfvén effective wavespeed due to

our theory leads to shorter Alfvén transitional/

crossing times to be compared with standard

diffusion times via a modified Lundquist number

S, which seems more favorable to capture the

micro-to macro- scales properties of fast MR

processes (see [37, 39]).

– We highlight an interesting relationship among all

the significant (dimensionless) numbers of the

theory, whose validity, within the ideal limit and

for transverse propagation, allows for the full

stabilization of the medium and hence leads to a

revision of the Jeans–Chandrasekhar instability

criteria. We have thoroughly analyzed the stabi-

lizing effects of all the physical parameters herein

involved against the onset of gravitational

instability, even under both strongly and weakly

coupling limits, as in viscoelastic settings. Inter-

estingly, differently from other (ideal or resistive)

MHD frameworks, our modified criteria are unaf-

fected by the direction of the equilibrium magnetic

field B0, namely they are not influenced by either

longitudinal and transverse modes.

– As a result of a delayed collapse formation, the gas

cloud would have fragmentations, thus stimulating

star formation, and the presence of further small

(gravitational and magnetic) relaxation times

could be responsible for the intricate network of

filamentary structures of the ISM, where the large

amount of DM may be hidden, as recently

observed in [43]. Given the importance of mag-

netic fields within the formation and the evolution

of filaments, this cosmic web may be ascribed to

the enhanced twisting properties displayed by the

non gravitational elastic-type torsional Alfvén

waves, here exhibited. In the light of their recent

observational evidence, these modified, even

damped Alfvén waves propagating along thin

current sheets, besides their undisputed involve-

ment in solar corona heating problems, could be an

important solar interplanetary driver of the global

thermospheric perturbations and may receive

much attention also in the exciting field of solar

magnetoseismology.

– A special attention has been devoted to stable lon-

gitudinal (fast and slow) elasto-magneto-sonic

waves which, differently from Alfvén waves, are

affected by (modified or not) gravity.

– Another dimensionless number, the so called

retardation time, arises for the Kelvin–Voigt type

Ohm’s Law. Hence the ensuing revisited time

scalings approach results more reliable to justify

also the rapid magnetic energy release on those

non-ideal processes likely to occur in regions of

fast MR (such as solar flares and spots, particle

acceleration and coronal matter ejection) [40].

– This rheological scheme for self-gravitating plas-

mas furnishes not only a more realistic description

of gravitational collapse formation, but anomalous

resistivity (AR), through more favorable time-

scales, may shed new light on the theoretical study

of MR by bridging the gap between micro- to

macro-scale dynamics in narrow diffusion regions

around X-type magnetic nulls.
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