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ABSTRACT: Computational spectroscopy is becoming a mandatory tool for the interpretation of the complex, and often
congested, spectral maps delivered by modern non-linear multi-pulse techniques. The fields of Electronic Structure Methods, Non-
Adiabatic Molecular Dynamics, and Theoretical Spectroscopy represent the three pillars of the virtual ultrafast optical spectrometer, able
to deliver transient spectra in silico from first principles. A successful simulation strategy requires a synergistic approach that balances
between the three fields, each one having its very own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is achievable now regarding the modeling of
ultrafast photoinduced processes in complex molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in the very near future. Potential directions of
development, pending challenges, and rising opportunities are illustrated.

1. INTRODUCTION

Time-resolved optical spectroscopy is a versatile tool for
resolving dynamic processes in molecules both in their ground
and excited electronic states. Since the pioneering microsecond
flash photolysis experiments,1 the generation of ever shorter
pulses has furnished researchers with an arsenal of techniques
enabling them to access faster and faster timescales, spanning
from the nanosecond to the attosecond domains (see, e.g., refs
2a and 2b). These technological advances have facilitated the
study of a broad variety of physical phenomena, from the
slowest such as protein conformational changes to the fastest
such as electronic dynamics within molecules.
However, it is often not straightforward to interpret the

measured time-dependent observables and associate them to
specific photophysical/photochemical processes. To address
this issue, the progress in experimental techniques has been
matched by spectacular advances in ab initio computational
methods, which now enable one to study complex molecular
systems and to reproduce with nearly quantitative accuracy the
measured transient spectra. Theoretical modeling is crucial
because it provides the link between the observables and the
underlying molecular dynamics, allowing the researcher to
interpret the experimental data and to extract from them the
maximum amount of information.
This work summarizes some of the most recent develop-

ments and results in first-principles modeling of ultrafast
spectroscopy of photoinduced processes in complex molecular
systems. We show that computational spectroscopy is a
mandatory tool for the interpretation of the complex spectral
maps delivered by multi-pulse techniques. We consider light
pulses spanning different spectral ranges, from 1014−1016 Hz
(NIR-Vis-UV), resonant with optical transitions between the
valence electronic states of the chromophores up to their
photoionization limit, to 1017−1018 Hz (X-rays), which excite

core electrons and possess atomic specificity (see Scheme 1).
These pulses cover timescales ranging from the attosecond to
the picosecond. We discuss experiments performed within the
weak-field perturbative regime. Out of the scope of this
Perspective are strong electric fields, attosecond electron
dynamics, ground-state structural and solvation dynamics, and
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Scheme 1. Non-linear Multi-Pulse Techniques
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solid-state spectroscopy, while time-resolved vibrational spec-
troscopy techniques are limited to transient stimulated Raman
scattering.
First-principles simulations of time-resolved optical spec-

troscopy pose three distinct Grand Challenges (see Scheme 2),
whose interplay is required to deliver the full picture:

(1) Light−matter interactions need to be modeled. This is
the task of Theoretical Spectroscopy, which describes both
the perturbation of the electronic density due to the
initial photoexcitation (the pump) and the subsequent
interaction of the system under study with a delayed
light pulse (the probe).

(2) The field-free evolution of the photoexcited system
needs to be described by solving the time-dependent
Schrödinger equation for the electrons and the nuclei.
This is the field of Non-Adiabatic Molecular Dynamics,
i.e., propagation of the nuclear wavepacket on the
manifold of photochemically relevant electronic states,
describing quantum effects like non-adiabatic population
transfer, wavepacket splitting, quantum interferences,
and tunneling.

(3) Eventually, the potential energy surfaces (PESs) of the
electronic states on which the nuclei are moving, and
their derivatives and non-adiabatic couplings, need to be
obtained by solving the time-independent Schrödinger
equation, which is the task of Electronic Structure
Methods, whose application range is dictated by the
chromophore size.

Each of the three challenges comes with its own problems
and bottlenecks: complexity of the spectroscopic experiment to
model; incorporation of quantum effects in the dynamics; and
breakdown of the adiabatic approximation, duration of the
simulations, and trade-off between accuracy and computational
cost of the quantum-mechanical (QM) method employed due
to the size of the system, just to mention some. Over the years,
groundbreaking developments have appeared in each field.
This work does not have the ambition to provide a
comprehensive review on each of the three Grand Challenges,
which would necessarily require distinct and extensive works
(see, e.g., ref 3). Rather, it aims at highlighting how the three
fields are synergistically combined within an effective computa-
tional strategy, a virtual spectrometer, able to deliver
experimentally accurate transient spectra in silico. We present
key recent advances that we believe will have major impact on
spectroscopy simulations. A special focus will be devoted to
currently pending conceptual bottlenecks, challenges, and
opportunities.
The paper is organized as follows: We first give an overview

of the state-of-the-art in the above three fields (see Scheme 2)
(section 2); then we show some very recent examples for
different types of spectroscopy, covering spectral ranges from
the near-IR-Vis-UV to the X-ray, and comparing experiments
with theoretical predictions for a variety of photochemical and
photophysical problems (sections 3.1 and 3.2). Thereby, we
highlight the interplay of the three Grand Challenges in the
simulations, as well as the approximations involved and the
room left for improvements; we proceed showing theoretical
proofs-of-concepts for innovative spectroscopic techniques that
demonstrate additional information content (section 3.3); we

Scheme 2. Time-Resolved Multi-Pulse Optical Spectroscopy
Simulations: Three Distinct Grand Challenges

Figure 1. Range of applicability of Electronic Structure Methods as a function of the system size: DNA as an example. The choice of the
computational method is a cost/accuracy trade-off. Details can be found in section 2.1.
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conclude with a critical analysis of the current limitations and
future directions of development (section 4).

2. STATE-OF-THE-ART
(where the three Grand Challenges meet ... and f ight!)
2.1. The First Grand Challenge: Electronic Structure

Methods (that shows that a slimming cure is needed to
marry size with accuracy). Recent years have witnessed
notable progress in electronic structure computational methods,
both wavefunction (WF)-based and density functional theory
(DFT)-based, which already today permit the fully quantum-
mechanical computation of system sizes that were unimagin-
able a decade ago. Concurrently, hardware architecture
developmentsincreasing CPU and RAM capacities, increas-
ing GPU performance, fast input/output rates on solid-state
drives, multi-core and multi-node parallelization techniques
have been exploited to increase speed and efficiency. Notable
recent achievements are (i) the implementation of the time-
dependent (TD) DFT,4a CC,4b and CASSCF4c,e protocols on
GPUs, which allows calculations with more than 1000 atoms,4e

and (ii) the acceleration of the TDDFT4a and CASSCF5a/
CASPT25b protocols through massive parallelization, pushing
the configuration interaction limit beyond a trillion Slater
determinants for CASSCF.5b By exploiting the steadily
increasing performance of supercomputing architectures,
codes specifically designed to leverage the advantages of
GPUs (e.g., Q-Chem,6a Psi4,6b TeraChem6c) and massively
parallelized supercomputers (e.g., MPQC,6d NWChem,6e

Octupus4a) have appeared.
Beyond profiting from technical hardware innovations,

conceptual breakthroughs in WF- and DFT-based theories
have been constantly boosting the speed and efficiency, as
highlighted in the following subsections correlating specific
simulation methods to their appropriate system sizes (see
Figure 1).
2.1.1. Multi-Reference Wavefunction-Based Methods.

WF-based multi-reference methods provide by construction
an unbiased description of the PES of electronic states of
arbitrary nature (covalent, ionic, charge-transfer, singly and
doubly excited, etc.). Active-space-based approaches, which are
the most prominent representatives of this class of methods,
suffer from factorial scaling with active-space size, which until
recently restrained their application to small and medium-sized
molecules. The implementation of density-fitting and Cholesky
decomposition techniques7 for approximating the electron-
repulsion integrals, together with more efficient self-consistent
field (SCF) solvers,8 makes it possible to handle very large
numbers (i.e., thousands) of atomic orbital functions. Novel
techniques have emerged recently that solve the configuration
interaction problem, one of the major bottlenecks of
conventional variational multi-configurational protocols,
which currently restricts the active-space size for practical
uses to maximally 16 electrons and 16 orbitals. Notable
techniques are the density matrix renormalization group
(DMRG), which has been applied to CASSCF,9a CASPT2,9b

NEVPT2,9c and MRCI;9d the full configuration interaction
quantum Monte Carlo (FCIQMC) approach combined with
CASSCF;9e the variational two-electron reduced-density-
matrix-driven (v2RDM)-CASSCF method;9f the heat-bath
configuration interaction (HCI) active-space solver;9g and
the adaptive sampling configuration interaction (ASCI)
method.9h These implementations make it possible to handle
active spaces with many tens of orbitals. An equally effective

approach toward mitigating the factorial increase of the full
configuration interaction problem is to remove “configura-
tional deadwood”, i.e., configurations which contribute only
marginally to the total wavefunction, by introducing a flexible
approach to the construction of the active space. Restricted
active space (RAS)SCF/RASPT2 and the generalized version
GASSCF/GASPT2,10a as well as the closely related OR-
MAS10b/MRMP210c method, also allow construction of active
spaces with a few tens of orbitals.

2.1.2. Single-Reference Wavefunction-Based Methods.
There are several less costly single-reference WF-based
methods for calculating electronic structures,11a such as the
hierarchy of algebraic diagrammatic construction (ADC)11b

methods (e.g., ADC(2), ADC(3)) and the family of coupled
cluster (CC)11c methods (e.g., EOM-CC, LR-CC) that have
proven to be reasonably reliable.11d The local variants of these
methods, which rely on localized molecular orbitals for the
occupied space and pair natural orbitals (PNO), i.e., a compact
representation of the virtual space, reduce the scaling of the
equations. Recent developments, such as the domain-based
local PNO coupled cluster (DLPNO-CC), have reached linear
scaling for ground-state problems,11e,f whereas for excited
states the efficient computation of PNOs is a matter of intense
research.11d

While single-reference methods generally provide accurate
estimates, they often demonstrate weaknesses in the treatment
of some states, e.g., of doubly excited character. Another issue,
common to all single-reference methods, is their inability to
describe the topology of the PES in the vicinity of the conical
intersection (CI) between the excited state and the closed-shell
ground state.12 The spin-flip family of methods13a offers a
rigorous solution to the problem by starting from a high-spin
state to generate the lower-spin ground and excited states by
single-electron transitions. Recently, these methods have been
systematically applied to SR-CI (SF-CIS13b), CC (EOM-SF-
CC13c), and ADC (SF-ADC(3)13d), although spin-contami-
nation may impair geometry optimization and molecular
dynamics. The issue has been resolved through implementa-
tion of the spin-complete spin-flip approach (SC-SF-
ORMAS14). Multi-reference flavors of the above-mentioned
single-reference WF methods (i.e., MR-CC,15a,b MR-ADC15c)
have been developed but have yet to mature for routine
application.16

2.1.3. Density Functional Methods. DFT-based methods
for the calculation of excited-state properties combine modest
numerical cost and favorable accuracy (since already
accounting for correlation energy), thus allowing calculations
on larger QM systems as compared to WF-based methods. The
linear response TDDFT formulation is nowadays the method
of choice for practical applications to excited-state chemistry.
However, computational speed comes at the expense of several
fundamental shortcomings: (i) transitions with multiple
excitations character are not included in TDDFT by definition;
(ii) calculations of charge-transfer excitations are particularly
challenging due to the inaccurate treatment of long-range
correlations;17 and (iii) the traditional TDDFT formulation,
similarly to other single-reference methods, fails to describe the
topology of the PES in the vicinity of the CI between the
excited state and the closed-shell ground state.18 While a
solution to (i) is still out of reach,19 long-range corrected
functionals20 are showing promising (although not conclu-
sive)17 results with respect to (ii).21a,b In particular, we note
the Minnesota range-separated hybrid meta functionals21c
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which provide balanced descriptions of valence, Rydberg, and
charge-transfer states for both main-group elements and
transition metals. The erroneous CI topology problem (iii) is
a sign of the more general difficulty of TDDFT in describing
strongly correlated systems and has been addressed by many
groups. In the following, we briefly outline several approaches
which are ready for routine application by non-experts. One
such approach is the spin-flip DFT (SF-DFT) and its spin-
adapted (spin-complete) version, SA-SF-DFT.22a−c Another
topology-conserving approach is the pseudo-wavefunction
(PW) method, which constructs the excited states from a
ground-state DFT wavefunction augmented with doubly
excited Slater determinants.23a Finally, a new variant of
TDDFT, the dual-functional Tamm−Dancoff approximation
(DF-TDA), which employs different functionals for orbital
optimization and for Hamiltonian construction, has been
shown to recover the correct double cone topology in the
vicinity of the S1/S0 CI.

23b.
2.1.4. BSE/GW Method. The many-body Green’s function

GW formalism, originally developed for band structure
calculations in solid-state physics,24a,b has attracted the
attention of molecular theoretical chemists as an alternative
to DFT thanks to its comparable scaling with system size
without the need for empirical parameters. Incorporating the
Bethe−Salpeter equation (BSE), which describes the bound
states of a two-particle system in a relativistic formalism,24c the
BSE/GW approach can be used to compute the bound states
of the photoexcited electron and its hole.24b The BSE/GW
approach shows some similarities to TDDFT, like the
eigenstate representation in terms of single-electron transitions
between occupied and virtual molecular orbitals (thus
neglecting transitions with multiple-excitations character) and
the scaling with system size. However, the underlying
formalism relying on perturbational theory is essentially
different with respect to TDDFT, which allows for a more
accurate description of charge transfer and Rydberg excitations
and a mitigated functional dependence.
2.1.5. WF-in-DFT Embedding Schemes. Substantial efforts

have been also recently devoted to combining the advantages
of WF and DFT methods.25 Ensemble DFT expresses the
density of the system as a weighted average of several Kohn−
Sham determinants (i.e., an ensemble state), enabling a multi-
configurational DFT treatment.26a The leading method from
this family is the spin-restricted ensemble-referenced Kohn−
Sham theory (REKS26b), which has been extended to include
state-interaction along with state-average optimizations (SI-SA-
REKS). WF-in-DFT embedding schemes tackle the problem of
strong interaction by separating the two-electron term in a
short-range and a long-range contribution, addressed inde-
pendently at DFT and WF levels, respectively.27a A parameter
controls the transition between the two regions, making it
essentially a semiempirical approach. Such schemes have been
reported for CASSCF, CASPT2, QMC,27b,c DMRG,27d

CC2,27e and ADC.27f Finally, multi-configurational pair DFT
(MC-PDFT) extends the original ansatz of Kohn and Sham
from a Slater determinant to a multi-configurational wave-
function.28a Recently, MC-PDFT has been combined with
DMRG and v2RDM active-space solvers.28b,c An excellent
review of the state-of-the-art in combining WF and DFT
methods can be found in ref 29.
2.1.6. Hybrid Approaches. Hybrid schemes offer a different

perspective to treating large-scale systems, profiting from the
localized nature of the electronic excitation. In such cases, a

more accurate QM description can be applied to the
photoresponsive (reactive) center, while the typically much
larger environment, not directly involved in the initial reactive
process, is described at a more approximate level.30 If the
environment is described using molecular mechanics (MM),
the method is known as QM/MM. Schemes such as
ONIOM31 provide flexible layer compartmentalization, such
as QM(high-level)/QM(low-level)/MM. Conventional QM/
MM implementations work in the so-called “electronic
embedding” framework, where the environment is represented
as a set of point charges that can polarize the QM core. In
recent years, next-generation “polarizable embedding” schemes
have been established, relying either on inclusion of atom
multi-pole moments in addition to the charges or on
polarizable point dipoles, treating the mutual polarization of
the QM and MM parts self-consistently.32a,e Further refine-
ment to the basic “electrostatic embedding” scheme, which
resolves the electron “spill-out” problem, has been achieved by
the polarizable density embedding method, which introduces
an intermediate layer between the QM and MM parts
represented by its density.33

2.1.7. The Frenkel Exciton Hamiltonian. Hybrid schemes
offer an appealing way to extend the scale of the calculation at
comparably low cost. Yet, when the photoresponsive center is a
multi-chromophore aggregate (e.g., light-harvesting complexes,
DNA and RNA strands, porphyrin self-assemblies, etc.),
excitations can be strongly delocalized over the monomers
and/or inter-chromophore charge-transfer states can be
photogenerated, thus forcing the QM region to be enlarged.
In such cases, first-principles computation becomes intractable.
Collective excitations in systems of coupled chromophores can
be treated by the so-called Frenkel−Davydov exciton model.34

In this formalism, the total wavefunction for the collective
system is expanded in the basis of monomer excitations (sites),
thus requiring only the (trivially parallelizable) computation of
the energies of the individual sites and the inter-site couplings,
which are conventionally represented via the Coulomb terms
only, thus neglecting exchange couplings due to possible
overlap of electronic transition densities of close-lying sites.
The progress in size scaling of electronic structure methods has
facilitated the benchmarking of exciton models with first-
principles calculations in small molecular clusters, thus
allowing one to study the range of validity of inter-site
coupling35 approximations and inspiring research toward
models beyond Coulomb coupling. A conceptually appealing
(but practically ambiguous) way of obtaining electronic
couplings lies in the application of diabatization techniques,
as the off-diagonal elements of the diabatic Hamiltonian reflect
physical quantities such as the probability for energy or
electron transfer.
Various diabatization schemes have been proposed over the

years: here we note the 4-fold way,36a,c the fragment charge
difference36d and fragment excitation difference schemes,36e

Boys localization adapted to many-body problems,36f,g and the
dipole and quadrupole moments (DQ) scheme.36h Herbert
and co-workers proposed an ab initio Frenkel−Davydov
exciton model (AIFDEM) that avoids, in principle, any
approximations22a by computing explicitly the elements of
the full electronic Hamiltonian on the basis of the singly
excited Slater determinants. Attempts at incorporating charge-
transfer states (not included in the standard Frenkel exciton
formulation) have been also recently documented.35b,37a,b
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2.1.8. Derivatives and Non-adiabatic Couplings. While
exploration of the PES topology requires the availability of
energy gradients, non-adiabatic couplings (NACs) are essential
for the computation of non-adiabatic dynamics. In WF-based
methods, analytical gradients and NACs have recently become
available at the XMS-CASPT238a,b level, thereby paving the
way for simulations of mid-size systems at a dynamically
correlated level. Regarding the new generation of active-space
solver methods, gradients are available for DMRG-CASSCF38c

and v2RDM-CASSCF.38d In most single-reference methods,
gradients are readily available, yet it has been a long-standing
issue how to compute NACs. Formulations within the Tamm−
Dancoff approximation scheme36g can be straightforwardly
derived for TDDFT,39a ADC2,39b and CC2.39b NACs in the
framework of EOM-CC were recently reported.39c The spin-
flip version of DFT has also been furnished with NACs,39d

while its spin-adapted upgrade is still lacking. A general
formulation of NACs between excited states in TDDFT which
avoids the Tamm−Dancoff approximation has recently
become possible by means of the PW approach.23a,39e From
the plethora of mixed WF/DFT methods, gradients have been
reported for subsystem DFT,40a frozen-density embedding,15b

state-specific MC-PDFT,40b and SI-SA-REKS,40c although only
the latter has been also furnished with NACs. Finally, the lack
of analytical gradients for excited states represents a current
drawback for the BSE/GW method which prevents its
widespread application in the field of photochemistry.40d

2.2. The Second Grand Challenge: Non-adiabatic
Molecular Dynamics (to be classical, or not to be
classical, this is the question). Molecular dynamics (MD)
simulations require solving the time-dependent Schrödinger
equation. The Born−Oppenheimer approximation allows one
to separate the dynamics of nuclei and electrons, thereby
treating the nuclei classically (i.e., applying Newton’s equations
of motions) and assuming that the electrons equilibrate
instantaneously. The Born−Oppenheimer approximation
holds for ground-state conformational changes, a typical
example of a near-equilibrium dynamics, but breaks down
when the system is promoted to an excited state, in which case
approximations have to be made elsewhere (see Figure 2).
2.2.1. Quantum Dynamics (QD). The Schrödinger equation

can be solved numerically exactly by representing the

Hamiltonian on a grid of time-independent or time-dependent
basis functions and propagating their amplitudes, an approach
generally labeled as QD (see Figure 2a). The outgoing wave
variational principle (OWVP) and R-matrix propagation
(RMProp) were originally proposed for treating coupled
surfaces in QD.41a More recent advances in the field led to the
time-dependent basis approach, the foundation of the multi-
configurational time-dependent Hartree (MCTDH),41b which
enables a more compact description of the nuclear wavepacket
with respect to the time-independent basis and, thus, the
simultaneous treatment of several tens of degrees of freedom
(DOF).41c,d A multi-layer variant of the MCTDH, where
strongly correlated vibrational DOF are contracted, makes it
possible to treat systems with several hundreds of vibrational
DOF.41e Research toward full QD simulation for systems with
a large number of DOF has become accessible recently by the
time-dependent reformulation of the density matrix renorm-
alization group (TD-DMRG).42 Here, only nearest-neighbor
interactions are treated explicitly, while the remaining sites are
modeled through an effective (i.e., renormalized) basis. This
makes TD-DMRG particularly suitable for aggregates domi-
nated by nearest-neighbor interactions. Very recently, surface
parametrization methods based on machine learning have been
used for improving PESs for QD within a grid-based
approach.43

Full-dimensional QD based on an analytical representation
of the PES within a harmonic approximation has allowed linear
absorption simulations with a remarkable accuracy,41d,f,g while
analytical models of the CI topology have given invaluable
insights into the non-adiabatic dynamics in its vicinity.41h,44a,b

However, the harmonic picture is often incomplete and
inadequate for following the evolution of the system away from
the Franck−Condon region toward the photoproducts. In such
cases, PESs and NACs are computed for reduced dimension-
ality (up to three or four degrees of freedom) models,
considering only modes essential for describing the process of
interest.
One limitation of the grid-based approaches is the difficulty

in representing the coupling (dynamical in nature) of the
photoactive system to its surrounding; for that reason, QD
simulations are typically performed in the gas phase. Recent
years have witnessed notable progress in incorporating the

Figure 2. Different levels of sophistication in the description of a photoinduced non-adiabatic process: exact quantum dynamics (a), trajectory-
based approaches (b, c), model Hamiltonians (d), and static picture based on reaction paths (e) or energy levels diagrams (f). Details on the range
of applicability and limitations about the listed methods can be found in section 2.2. GS: ground state; FC: Franck−Condon state. An extended
caption for this figure with additional details can be found in the Supporting Information.
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coupling to the environment, both in a static45a and in a
dynamic way,45b,c the latter allowing cases in which solute and
solvent dynamics occur on the same timescale to be treated.
Another limitation is that the topology of the involved PES
must be known in advance, thus calling for “on-the-fly”
methods (see below).
2.2.2. Semi-classical Dynamics. Most current develop-

ments in the field of MD are focused on protocols which allow
the computation of all necessary ingredients for propagating
the system “on the fly”. One such class of protocols models the
nuclear wavepacket evolution by means of frozen Gaussians
centered at classical trajectories (see Figure 2b). An example is
the variational multi-configurational Gaussian wavepacket
(vMCG)46 method that is formulated based on MCTDH.
The dephasing representation in Gaussian basis (GDR) is
conceptually closely related to vMCG, as it also utilizes
communicating frozen Gaussian basis functions, yet it is
particularly suitable for simulating time-resolved electronic
spectra.47a The method comes with a hierarchy of approx-
imations which bridge the exact with the semi-classical picture.
The ab initio multiple spawning (AIMS)3d,47b methods
consider the Gaussian wavepacket evolving through a swarm
of independent trajectories, with bifurcations in regions of
strong NAC represented through spawning events. The AIMS
formulation, which relates to the GDR under well-defined
approximations,47a has itself spawned other approaches, like ab
initio multiple cloning (AIMC), which benefits from mean-
field (Ehrenfest picture) evolution during periods of strong
NAC while simultaneously avoiding mean-field artifacts by
flexible expansion of the trajectory basis.48

An intriguing recent development concerns the formulation
of semi-classical MD simulation protocols within the frame-
work of the exact factorization (EF) formalism.49a EF proposes
a novel form of the wavefunction to solve the time-dependent
Schrödinger equation with the direct consequence that nuclei
and electrons are propagated by a set of coupled equations of
motion which depend on a time-dependent PES. Promising
trajectory-based implementations of EFthe coupled-trajec-
tory mixed quantum-classical (CT-MQC)49b scheme which
uses TDDFT as the electronic structure method and the
decoherence-induced surface hopping based on exact factori-
zation (DISH-XF)49c employing CASSCF/MRCI49c or SI-SA-
REKS49ddemonstrate the capability to capture quantum
(de)coherence effects. Reference 3d reviews semi-classical
solutions of the time-dependent Schrödinger equation.
2.2.3. Mixed Quantum-Classical Dynamics (MQCD). In

the drastic simplification of modeling the evolving wavepacket
through a swarm of independent, non-interacting, classical
trajectories, one enters the world of mean-field Ehrenfest and
trajectory surface hopping (TSH, see Figure 2c).50 Owing to
its simplicity and remarkably good results, considering the level
of approximation adopted, the fewest switches formulation of
TSH by Tully (i.e., FSSH)50 is nowadays the method of choice
for non-adiabatic molecular dynamics simulations, which has
been integrated within a vast number of electronic structure
methods.3a Nevertheless, the failure of the prototype
formulation to describe decoherence, i.e., the gradual collapse
of a coherent quantum-mechanical mixture of electronic states
into a classical mixture of pure electronic states, properly
(over-coherence problem)51a,c has spawned in recent years a
number of modified protocols.3a,b,51d,f Furthermore, consid-
erable attention has been devoted to purely practical issues,
common to trajectory-based approaches in general. One such

issue stems from the steep shape of the NACs in space and the
risk of missing them when employing large time steps in the
propagation of the nuclei. Norm-preserving interpolation of
the time-dependent overlap,52a local diabatization,52b and
adaptive time-step protocols52c have been suggested to remedy
the issue. An excellent review on trajectory-based non-adiabatic
mixed quantum-classical methods is given in ref 3a.
More recently, the FSSH framework has been extended to

model Frenkel exciton dynamics in molecular aggregates for
studying charge and excitation energy transfer processes by
formulating expressions for gradients and coupling terms.3e,53

2.2.4. Dynamics Based on Model Hamiltonians. Despite
the progress in electronic structure calculations, the cost
associated with the calculation of all the necessary ingredients
for performing first-principles MD limits the accessible time
window of the “on-the-fly” simulations. An alternative ansatz
for describing the dynamics of electronically excited states
relies on model Hamiltonians which parametrize the coupling
to the bath of vibrational degrees of freedom (both
intramolecular and with the environment) by frequency-
dependent spectral densities that indicate the strength of the
coupling of a given electronic state to the bath. Thereby, the
bath is normally assumed to be harmonic and the coupling
linear, an approximation known as the displaced harmonic
oscillator (DHO) model, which greatly simplifies the problem,
as many quantities of interest can be computed analytically.54

In the treatment of multi-chromophoric systems with
parametrized Hamiltonians, the system−bath coupling is still
handled within the DHO framework. The Hamiltonian
contains an additional coupling term, the inter-chromophore
coupling. Depending on its strength, the aggregate can be
modeled either in a localized (site) basis (“weak” coupling
regime) or in a delocalized (exciton) basis (“strong” coupling
regime).3f Different theories describe energy and/or electron-
transfer dynamics in these contrasting regimes: as incoherent
hops between sites in the Förster model,55a,b which treats the
inter-chromophore couplings perturbatively, and as relaxation
between exciton states in the Redfield theory,56a,55b which
instead treats the coupling to the bath perturbatively.
Modifications of both formulations (e.g., the generalized
Foerster55c and modified Redfield56b−d theories) aim at
expanding their application range.
A number of methods have been developed that go beyond

the above-mentioned perturbative treatments (still within the
DHO framework). Methods like the hierarchical equations of
motion (HEOM),57a the iterative quasi-adiabatic propagator
path integral (i-QUAPI),57b and the partially linearized density
matrix (PLDM) dynamics57c are considered superior. How-
ever, they become computationally much more demanding and
therefore limited to specific forms of the spectral density.
Implementations to massively parallelized supercomputer
architectures, GPU-acceleration, as well as tractable approx-
imations are required for their practical applications.57d−g

2.3. The Third Grand Challenge: Theoretical Spec-
troscopy (where theory paints the light and matter kiss:
with which results, you’ll judge!). Most ultrafast optical
spectroscopy experiments detect the time-dependent third-
order non-linear optical response of the system under study. In
a general realization, a first actinic light pulse sequence (the
“pump”) perturbs the electronic density of the system,
initiating its dynamics. After a delay, another sequence of
pulses (the “probe”) is used to create a non-linear polarization
in the system emitting a field, the response, which is recorded
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by the detector (see Figure 3). Such light−matter interactions
are the object of Theoretical Spectroscopy, whose aim is to
identify spectroscopic observables, to elaborate the mathemat-
ical framework for their simulation, and to relate the line
shapes and evolution of the spectral features to the underlying
molecular processes. Theoretical spectroscopy also allows
designing tailored pulse sequences aimed at highlighting
novel observables, increasing signal-to-noise ratio, and
suppressing undesired background signals, profiting from the
tunability of pulse parameters (such as duration, central
frequency, bandwidth, and polarization) while respecting
technical constraints in the preparation of the pulses.
2.3.1. Simulating the System’s Response with Quantum

Dynamics. In the most general representation, the nth order
polarization (with respect to the external driving field) induced
in the system by the sequence of electric fields can be treated
non-perturbatively by incorporating the fields into the system’s
Hamiltonian. This method permits the exact numerical
simulation of the dynamics of the driven system for fields of
arbitrary strength and duration.58 The non-perturbative
approach makes it possible to study, without any approx-
imation, the effects of pulse parameters like central frequency,
bandwidth, etc., including strong laser fields and temporally
overlapping pulses.
More often the field−matter interaction is treated in the

perturbative (i.e., weak field) regime, which is the topic of this
Perspective. The nth order term of the polarization is expressed
as the sum of n-dimensional time integrals over non-linear
response functions given in terms of quantum-mechanical
dipole correlation functions. Within the perturbative treatment,
pulses are commonly assumed to be temporally non-over-
lapping and described by Dirac delta functions, i.e., short
compared to the investigated dynamics, which simplifies
drastically the calculations. Another advantage of the
perturbative treatment is that different response functions
can be computed separately, providing a convenient theoretical
framework for their classification.54,59,60

In principle, the master equations derived from the
perturbative and non-perturbative treatment can be solved
exactly quantum-mechanically, given the knowledge of the
system Hamiltonian. The bottleneck of this fully quantum-

mechanical wavepacket propagation is the high cost of pre-
computing the PES, which limits its use to simple models, such
as di- and triatomics, as well as some elementary
chromophores (ethylene, formaldehyde, pyrazine).41d,61

2.3.2. Simulating the System’s Response with Trajectory-
Based Approaches. A more convenient approach for solving
the equations involves the semi-classical stochastic modeling of
bath fluctuations. Thereby, the response function is calculated
by averaging over an ensemble of realizations, propagated
through the trajectory-based MD approaches described in the
previous section (sub-sections 2.2.2 and 2.2.3). Apart from the
considerable computational cost associated with the prop-
agation of a swarm of trajectories, semi-classical methods must
confront the issue of defining the density matrix and treating
the quantum feedback on the classical bath during a coherence
state evolution, a problem particularly severe in surface
hopping formulations.51b,62 Trajectory-based implementations
of linear absorption,63a transient absorption and emission,
photoionization spectroscopy,47a,63b,c stimulated Raman,63d−f

and two-dimensional electronic spectroscopy (2DES)63g−i that
address these issues to various levels of sophistication have
been documented. Due to the high cost associated with the
more accurate description of coherences, most simulations
adopt the semi-classical Franck−Condon (also called “snap-
shot”) approximation, neglecting the time-dependence of the
observable of interest during the coherence evolution, an
approximation strictly valid only when the value of the
observable fluctuates slowly with respect to nuclear relaxa-
tion.63g,64a,b Due to its limitations, the snapshot approximation
is more useful for resolving spectral features of ground-state
conformational dynamics64c,d and long-living excited
states.64d,e

2.3.3. Simulating the System’s Response with Model
Hamiltonians. The linear and non-linear optical responses can
be modeled analytically for Hamiltonians constructed within
the harmonic approximation (DHO model, see section 2.2.4)
relying on the cumulant expansion of Gaussian fluctuations
(CGF) to second order.54 The spectrum is computed as a sum
over all states (SOS), each one characterized by its energy,
oscillator strength, and spectral density, which give rise to the
signal’s position, intensity, and line shape, respectively (see

Figure 3. Experimental set-ups for linear and non-linear optical spectroscopy: (a) one-pulse (linear), (b) two-pulse (pump−probe), and (c−e)
three-pulse (two-dimensional) spectroscopy. Examples of recent simulations of pump−probe, two-dimensional, and time-resolved Raman
spectroscopy are provided in sections 3.1, 3.2 and 3.3, respectively. LO: local oscillator. An extended caption for this figure with additional details
can be found in the Supporting Information.
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Figure 4 for a demonstration of the influence of the different
approximations on the simulation of the signal line shapes).
The CGF formulation is exact for adiabatic dynamics, while
non-adiabatic effects can be included at various levels of
sophistication.65a Generalizations beyond the harmonic
approximation65b and weak system−bath coupling have also
been reported recently.65c

For strongly coupled aggregates (Frenkel−Davydov exciton
model, see section 2.1.7), the SOS approach quickly becomes
too expensive as the number of excited states grows
quadratically with the system size. To circumvent this, a
quasi-particle formulation of the CGF method has been
developed which scales more favorably with system size.60,66

Yet, it exhibits some limitations considering the treatment of
non-adiabatic effects.
Until recently, the practical application of the above theories

relied on empirical parameters obtained experimentally or on
the basis of simplified molecular models. The past few years
have witnessed a shift toward a fully computational estimate of
the required ingredients: couplings to discrete intramolecular
vibrational degrees of freedom via projection methods,67a−c

couplings to the continuum of solvent vibrational degrees of
freedom from MD simulations,34,57c and electronic structure of
fundamental chromophores with state-of-the-art QM method-
s.3i

2.3.4. Modeling Spectral Signatures. Besides the level of
precision of the underlying MD, another bottleneck in the

simulation of time-resolved electronic spectroscopy is the cost
associated with the computation of the measured physical
quantities: normal-mode frequencies, excited-state absorptions
and transition dipole moments in the visible and ultraviolet,
ionic-state energies in photoelectron spectroscopy, core−
valence transitions in resonant inelastic X-ray scattering,
transition densities in X-ray diffraction, and electronic
polarizabilities in attosecond Raman spectroscopy. Recent
years have witnessed tremendous progress in the development
of protocols for monitoring these quantities along the
dynamics simulation. Protocols for computing the optical
response of excited states in conjugated polyenes and aromatic
compounds were developed within the framework of multi-
configurational wavefunction theory.68 The multi-configura-
tional nature of excited states is notoriously a problem for
DFT. A recent method for computing excited-state absorptions
combines real-time (RT) and linear-response (LR) TDDFT.69

Another approach computes Dyson norms between neutral
and ionic states within multi-configurational wavefunction
theory, as required for obtaining signal intensities in photo-
electron spectroscopy70 (section 3.1). A simple but elegant
projection technique, in combination with RASSCF theory, has
made accessible single and multiple core−valence transition
energies and dipole moments.71

3. APPLICATIONS

(where, af ter f ighting, the three Grand Challenges cooperate)

Figure 4. Various flavors of increasing accuracy in the simulation of two-dimensional electronic spectroscopy (2DES): (a) stick spectrum, (b) plus
coupling of the electronic and intramolecular vibrational degrees of freedom, (c) plus electronic population dynamics, (d) plus coupling of the
continuum of degrees of freedom of the environment. SE: stimulated emission; ESA: excited-state absorption. An extended caption for this figure
with additional details can be found in the Supporting Information.
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In the previous section, we reviewed the most recent
developments in the fields of electronic structure theory,
molecular dynamics simulations, and theoretical spectroscopy.
In this section, we demonstrate, based on selected examples,
how these fields are forced to cooperate to produce from first
principles time-dependent molecular spectra which can be
directly compared to the experimental results. In the first two
subsections, we show a one-to-one comparison between theory
and experiment for non-linear two-pulse (i.e., pump−probe,
section 3.1) and three-pulse (i.e., two-dimensional, section 3.2)
spectroscopy (see Figure 3). The reported examples set the
current state-of-the-art and the frontier between “explored”
and “unexplored” territories, as shown in Figure 5. Therefore,
when discussing these cases, ongoing challenges and directions
for future improvements are highlighted. In section 3.3, we
demonstrate the capabilities of theory to envision novel
spectroscopic techniques, whose benefits will likely trigger
future experiments.
3.1. Pump−Probe Spectroscopy. Pump−probe spec-

troscopy (see Figure 3b), also known as transient absorption
(TA), is a widespread technique for studying MD thanks to its
straightforward experimental realization and the ease to
interpret the spectra. Over the years, simulations have evolved
to a level where TA spectra of small and medium-size
chromophores (up to 20−30 atoms) can already be computed
very accurately from first principles, thereby revealing the
physical phenomena behind the spectroscopic signatures.

Below, the state-of-the-art is illustrated by three very recent
examples.

3.1.1. UV Pump, Vis-UV Probe. Broadband (Vis-UV) TA
spectroscopy simulations were combined with hybrid QM/
MM mixed quantum-classical trajectory-based non-adiabatic
dynamics to study the ultrafast excited-state dynamics of the
sulfur substituted nucleobase 4-thiouracil in water (Figure
6a).67a,72 Electronic structure calculations were done at the
multi-configurational second order perturbation (CASPT2)
level of theory. The results explain the reason for the
experimental mismatch between the timescales for the decay
of the stimulated emission (SE) from the bright ππ* state (76
fs) and the rise of the excited-state absorption (ESA) of the
triplet state (225 fs). The work provides compelling evidence
that the intersystem crossing occurs via an intermediate dark
state of nπ* nature previously reported in gas-phase studies.73

Transient spectra within the CGF method parametrized on the
basis of the simulated dynamics reproduce all characteristic
spectral features, such as the origin of the ESA and the
intensity beats in the SE.

3.1.2. Time-Resolved Photoelectron Spectroscopy in the
Far-UV. Time-resolved photoelectron spectroscopy (TRPES)
simulations were performed on the keto and enol tautomers of
cytosine (Figure 6b).74 Theoretical spectra adopting the
snapshot approximation were obtained by computing the
Dyson norms between the singlet/triplet states of the neutral
and the doublet/quartet states of the ionized species along gas-
phase trajectory-based dynamics on the neutral species within

Figure 5. Schematic representation of the three Grand Challenges: choosing a suitable electronic structure method to handle the dimensionality of
the system (green axis), describing the non-adiabatic molecular dynamics (blue arrow), and implementing protocols for various types of non-linear
spectroscopy (red arrow). Circles with labels refer to examples discussed in section 3 and shown in Figures 6, 7, and 8.
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TSSH framework, explicitly considering intersystem crossing
events. Electronic structure calculations were carried out at
CASSCF level of theory. The photoexcited bright ππ* state
initially relaxes to the singlet nπ* state, from which it bifurcates
into channels which either explore the CI seam with the
ground state or lead to the population of a triplet state. The
two tautomers are found to decay through different regions of
the seam. These competing processes occur on similar
timescales, so that the different relaxation pathways are
completely obscured in the total photoionization signal. This
calls for the design of new experimental setups capable of
discriminating the individual channels.
3.1.3. UV Pump, X-ray Probe. The light-activated electro-

cyclic ring-opening process of 1,3-cyclohexadiene represents a

prototypical photochemical pericyclic reaction mediated by a
CI.75 Soft X-ray spectroscopy simulations on top of non-
adiabatic mixed quantum-classical molecular dynamics were
able to reproduce the experimentally observed spectroscopic
signature near the carbon K-edge (∼284 eV), a fingerprint of
the population of the intermediate pericyclic minimum (Figure
6c).76 TDDFT was employed to simulate core−valence
transitions along the trajectories. The simulations reproduced
the timescale of the electronic rearrangement required to
initiate the pericyclic reaction (∼60 fs), as well as the lifetime
of the excited state (∼110 fs).
The above-mentioned examples, covering a broad spectral

interval from the visible to the soft X-ray, show a striking
agreement between theory and simulation. Such agreement is

Figure 6. Three examples of pump−probe spectroscopy simulations from first principles and comparison to experiments: (a) solvated thiouracil
(ref 67a), (b) isolated cytosine (ref 74), and (c) isolated cyclohexadiene (ref 76). The state-of-the-art of the simulation in terms of system size/
electronic structure method, molecular dynamics protocol, and spectroscopy technique are shown in the schematic representation of the three Grand
Challenges (see Figure 5). Advancements in the simulations that would improve the agreement with the experiment are indicated with a black
arrow. An extended caption for this figure with additional details can be found in the Supporting Information. Figure rights: (a) Adapted with
permission from ref 67a. Copyright 2018 American Chemical Society. (b) Adapted with permission from ref 74a. Licensed under CC BY 4.0.
Copyright 2016 Springer Nature. Reprinted in part with permission from ref 74b. Copyright 2013 Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim. (c) Adapted with permission from ref 76. Copyright 2017 American Association for the Advancement of Science.

Journal of the American Chemical Society pubs.acs.org/JACS Perspective

https://dx.doi.org/10.1021/jacs.0c04952
J. Am. Chem. Soc. 2020, 142, 16117−16139

16126

https://pubs.acs.org/doi/10.1021/jacs.0c04952?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c04952?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c04952?fig=fig6&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c04952/suppl_file/ja0c04952_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c04952?fig=fig6&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c04952?ref=pdf


remarkable in light of the numerous involved approximations.
For the future we expect applications to implement advanced
semi-classical dynamics simulation protocols beyond the Tully
approximation (such as AIMS3d or the emerging schemes
based on the exact factorization (EF)49a). A rigorous
comparison between various approximations of the non-
adiabatic dynamics would allow a better understanding of
the range of their validity. Furthermore, we expect computa-
tional software to implement the many new tools for easily
simulating various TA signal features, thus rendering spectros-
copy simulations routinely accessible also to non-experts. This
would allow researchers to predict spectral fingerprints of the
photoinduced processes and to obtain in silico the optimal

pulse parameters (such as wavelength, duration, polarization,
etc.) required for their detection in real experiments.

3.2. Two-Dimensional Spectroscopy. Two-dimensional
(2D) spectroscopy employs a sequence of properly timed and
phase-locked pulses to fully resolve the field emitted by the
third-order non-linear polarization of the system (see Figure
3c,e). Using a Fourier transform approach, 2D spectroscopy
makes it possible to correlate spectral signatures to the pump
and probe frequencies in a 2D plot, thus increasing the spectral
resolution without sacrificing temporal resolution. 2D spec-
troscopy is particularly appealing for the study of multi-
chromophoric systems with highly congested spectra which are
difficult to interpret with the conventional TA techniques.

Figure 7. Three examples of two-dimensional electronic spectroscopy (2DES) simulations from first principles and comparison to experiments: (a)
light-harvesting complex 2 (ref 79), (b) retinal protonated Schiff base (refs 81 and 82), and (c) pyrene (ref 67c). The state-of-the-art of the
simulation in terms of system size/electronic structure method, molecular dynamics protocol, and spectroscopy technique are shown in the schematic
representation of the three Grand Challenges (see Figure 5). Advancements in the simulations that would improve the agreement with the
experiment are indicated with a black arrow. An extended caption for this figure with additional details can be found in the Supporting Information.
Figure rights: (a) Adapted with permission from ref 79. Copyright 2017 American Chemical Society. (b) Adapted by permission of the Royal
Society of Chemistry from ref 81. Experimental spectrum adapted with permission from ref 82. Copyright 2017 American Chemical Society. (c)
Adapted with permission from ref 67c.
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With respect to its one-dimensional counterpart, 2D spectros-
copy makes it possible to (a) identify chromophore-specific
signatures and inter-chromophore couplings, (b) monitor
energy and charge transfer processes between coupled states/
chromophores, and (c) measure separately homogeneous and
inhomogeneous contribution to the linewidth of optical
transitions and follow their temporal evolution. 2D spectros-
copy is nowadays established in the infrared (two-dimensional
infrared spectroscopy, 2DIR) and in the visible (2D two-
dimensional electronic spectroscopy, 2DES) with applications
in solvation dynamics, conformational analysis, protein folding
and unfolding, and energy and charge transfer.77 The required
interferometric stability between pulses makes the practical
realization of 2DES techniques at shorter wavelengths (UV
and beyond) considerably more difficult.3h The interpretation
of the 2D spectra brings challenges of its own, like the
assignment of spectral beats to either electronic coherences or
molecular vibrations.78a−e Thus, much of the theoretical effort
has been focused on understanding the origin of the signals
and the line shapes on simple models. Overall, due to the
intricacy of realization and interpretation, only a few works
have reported a face-to-face comparison between experiment
and simulation. Below, the state-of-the-art is illustrated by
three recent examples:
3.2.1. Near-IR-Vis 2DES. Simulations of broadband (near-

IR-Vis) 2DES on the light-harvesting complex 2 (LH2) of a
purple bacterium integrated quantum chemistry and an
electron−phonon exciton model (see Figure 7a).79 Electronic
structure calculations were executed at both the single-
(TDDFT) and multi-reference (CASPT2) levels in combina-
tion with state-of-the-art models for treating the environment
(atomistic and polarizable embeddings). Bath dynamics and
exciton transport between the pigments were described by
Redfield (strong coupling regime) and Förster (weak coupling
regime) theories. The work provides an interpretation of the
main features of the 2DES spectrum at very short times.80 In
particular, the characteristic energy splitting of the bacterio-
chlorophyll bands and the vibrational progression in the
carotenoid region reinforced the hypothesis of the involvement
of a dark intermediate state of the carotenoid in the energy-
transfer process.
3.2.2. Vis 2DES. Theoretical 2DES was used to study the

photoisomerization of the 11-cis isomer of the retinal
chromophore inside the protein rhodopsin (see Figure 7b).81

Thereby, the researchers relied on a parametrized three-mode
three-state model Hamiltonian which explicitly considers the
hydrogen out-of-plane (HOOP) mode besides the torsional
and ethylene stretch coordinates, as well as an additional
excited state giving rise to ESA in the targeted spectral window.
2DES simulations adopting the perturbative regime on top of
exact time-dependent wavepacket propagation conducted with
the model Hamiltonian agree reasonably well with experiment
and demonstrate that the origin of the observed absorptive
spectral features is not the HOOP mode as was previously
suggested.81 Instead, it was found that an ESA to a higher lying
state which is not involved in the isomerization “contaminates”
the spectra at early times.
3.2.3. UV 2DES. 2DES simulations mapped the spectral

signatures of the ultrafast excited-state deactivation of pyrene,
promoted in its second bright state absorbing in the UV (see
Figure 7c).67c The simulations were conducted with the CGF
parametrized by electronic structure calculations at the multi-
configurational second-order perturbation (CASPT2) level.

The simulations resolve the nature of the high-frequency
vibrations which give rise to a checkerboard pattern in the
experimental spectra,67c assigning them to carbon−carbon
stretchings. Furthermore, a low-frequency quantum beat
arising from an excited-state wavepacket83 was matched to
an in-plane bending vibration activated upon crossing a CI.
The agreement with the experiments3h demonstrates that
wavefunction-based techniques are capable of accurately
reproducing the high-energy manifold of organic chromo-
phores.
The presented 2DES simulations show a good agreement

with the experimental data, but they have not yet matured to
the level of TA simulations. The spectra lack occasionally
relevant features (e.g., ESA peaks), and the modeling of the
signal line shape is less satisfactory owing to the drastic
approximations unavoidable to tackle the increased system
complexity. For the future we expect applications to consider
in a rigorous way transitions to higher lying states, giving rise
to significant ESA contributions.67c,79,81 Furthermore, we
expect applications to employ advanced dynamics simulation
protocols to describe exciton energy and charge transport, as
well as relaxation pathways that go beyond the Redfield and
CGF approximations. This undertaking seems more and more
feasible with the recent extension of the FSSH framework to
exciton dynamics3e,53 and trajectory-based 2DES simulation
protocols.63g−i

3.3. Novel Techniques. With the advances in computa-
tional technologies and the developments in theoretical and
experimental ultrafast spectroscopy, the synergy between
experiment and theory is steadily increasingly. On the one
side, simulations are not plagued by the technical limitations
accompanying the experiments (e.g., limited pulse bandwidth,
low phase stability, low signal-to-noise ratio, solvent artifacts,
etc.). Complex pulse sequences can be conceived to resolve
fingerprints of the process under investigation, thus inspiring
experimentalists to search for ways to overcome the
restrictions. For instance, three-pulse femtosecond and atto-
second stimulated Raman spectroscopy techniques have been
recently proposed. Very remarkably, off-resonant attosecond
stimulated Raman spectroscopy, also known as transient
redistribution of ultrafast electronic coherences in attosecond
Raman signals (TRUECARS), holds the promise to have the
necessary temporal resolution and the sensitivity to resolve the
passage of a wavepacket through a CI.84 On the other hand,
experimental breakthroughs (e.g., the X-ray free electron laser)
allow scientists to explore previously inaccessible spectral
regions and to resolve novel phenomena, thus stimulating
theoretical efforts in rationalizing the observations and in
conceiving novel techniques that exploit the new laser sources.
For instance, recent advances in X-ray laser technology
reporting bright and ultrashort pulses85a−c have sprung a
number of non-linear techniques exploiting the broad
bandwidth, short duration, spatial localization of the excitation,
and element specificity of exahertz pulses.3g,j Among these
techniques we note (a) X-ray TA spectroscopy, the counter-
part of optical TA spectroscopy,86a−c which has already been
successfully implemented experimentally;76,87 (b) 2D coherent
X-ray spectroscopy,86d−f which extends the benefits of 2DES to
this frequency range; and (c) time-resolved X-ray diffraction,
which allows us to resolve MD in time and space.86g−j

In the following, we present three examples which illustrate
some of these novel techniques.
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3.3.1. Femtosecond Stimulated Raman Scattering (FSRS).
88 FSRS is a three-pulse experiment in which the dynamics of a
molecule is initiated by an actinic pulse and the evolution of
the vibrational spectrum is probed by stimulated Raman
scattering (SRS), with a Raman sequence consisting of a
picosecond Raman pump synchronized with a femtosecond
Stokes pulse. In a first application, a simulation protocol was
reported that combined non-adiabatic on-the-fly MD at the
CASSCF level of theory with a mode-tracking algorithm to
obtain the instantaneous frequencies of high-frequency
spectator modes (C−H and N−H stretching) of photoexcited
uracil (see Figure 8a)63e and demonstrated that the FSRS
signal is sensitive to the non-adiabatic relaxation events in the
vicinity of CIs. The experimental implementation of this

technique could help determine the relative importance of the
ππ* → ground state and the ππ* → nπ* deactivation channels
in DNA/RNA, still a matter of intense debate.

3.3.2. Attosecond Stimulated Raman Spectroscopy
(ASRS). ASRS extends the ideas of FSRS to the attosecond
time domain by superimposing a femtosecond Raman pump
pulse with an attosecond Stokes pulse. The ASRS signals are
highly sensitive to electronic coherences either created by the
inelastic Raman process (resonant with core−valence tran-
sitions) induced by the hybrid broad-narrow pulse sequence or
emerging from the off-diagonal elements of the density matrix
which become different from zero in the case of non-adiabatic
events such as the passage through or close to a CI. As the
temporal and spectral resolution of the proposed experiment

Figure 8. Three examples of novel spectroscopy simulation protocols of time-resolved vibrational and electronic Raman signal applied to (a) uracil
(ref 63e), (b) furan (ref 89), and (c) azurin (ref 90). The state-of-the-art of the simulation in terms of system size/electronic structure method,
molecular dynamics protocol, and spectroscopy technique are shown in the schematic representation of the three Grand Challenges (see Figure 5). An
extended caption for this figure with additional details can be found in the Supporting Information. Figures rights: (a) Adapted with permission
from ref 63e. Copyright 2014 ACS. (b) Adapted from ref 89, licensed under a Creative Commons Attribution (CC BY) license. (c) Adapted with
permission from ref 90.
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are not Fourier-conjugate pairs, this setup can monitor the
evolution of the coherences with an attosecond temporal
resolution without sacrificing spectral resolution.
The ability of ASRS to monitor the few femtoseconds short

passage through a CI has been theoretically demonstrated on
the ring-opening of furan (see Figure 8b).89 ASRS signals were
simulated by on-the-fly MD at the CASSCF level in
combination with oxygen core−valence calculations at the
RASSCF level.
ASRS tracks coherences between valence states and is,

therefore, particularly sensitive to variation of the electronic
structure with the oxidation state. By probing valence dynamics
via a core-excited intermediate, ASRS combines the spatial
selectivity of X-ray spectroscopy with the much narrower
linewidths of visible and UV spectra. ASRS in azurin was
proposed for resolving long-range electron transfer, a central
step in many biological redox reactions in living organisms (see
Figure 8c).90 Using a simple kinetic model fitted to
experimental lifetimes and coupled to restricted excitation
window time-dependent density functional theory (REW-
TDDFT)91 with the LC-PBE0 functional and conductor-like
implicit solvent model (COSMO) to represent solvent effects,
the authors demonstrated the higher sensitivity of ASRS in
comparison to transient X-ray absorption spectroscopy.

4. OPEN CHALLENGES
(... and revolutions)
The past decade has witnessed remarkable progress in

modeling transient spectroscopic signals of photoinduced
events for large-size photoactive molecular systems in realistic
conditions. This Perspective shows that computational spec-
troscopy has grown to its full maturity, going much beyond
being a nice, but ancillary, complement of experiments. In
many cases, it holds experimental accuracy, becoming a
mandatory tool for the interpretation of complex multi-pulse
spectroscopies. In other cases, simulations precede exper-
imental capabilities and become drivers for future experimental
developments.
Despite the many successes, there are still several out-

standing problems within the three Grand Challenges, both
theoretical and conceptual, which we briefly outline in this
concluding section.
4.1. Electronic Structure Methods. 4.1.1. Benchmark-

ing. A great effort will be needed in assessing the performance
and understanding the advantages and limitations of the
different methods by benchmarking them against established
approaches (we refer to ref 92a for a nice essay on the
subject).21a,92b−g This will require new codes and software
interfaces (e.g., see SHARC,93a COBRAMM,93b NEWTON-
X93c) that allow various QM methods to be run on the same
footing.
4.1.2. Size. We have shown (see Figure 7a) that the Frenkel

exciton Hamiltonian is a convenient approach to model large
and complex multi-chromophore systems and simulate their
non-linear spectroscopy. However, this is based on the
assumption that electronic excitations are (semi)localized on
weakly interacting chromophores. Strongly interacting (and,
possibly, reacting) units, displaying qualitatively different
(possibly crossing), highly anharmonic ground- and excited-
state PESs (as for instance DNA/RNA oligomers94), are still
challenging to describe. A promising strategy is to marry the
brute-force approach of increasing the size of the QM region to
the excitonic one by the use of larger, but still computationally

manageable, QM building blocks for the exciton Hamiltonian,
which embrace a set of strongly interacting chromophores.
This would make it possible to describe the photoinduced
processes (including delocalized and charge-transfer states),
still concurrently accounting for the interactions among the
selected QM regions as described by the exciton Hamiltonian
and thus leveraging the intrinsic parallelizability of the
calculations of its terms that is suitable for modern multi-
core architectures and GPU accelerated algorithms.

4.1.3. Machine Learning (ML). Deeply integrated QM and
ML methods are expected to disclose new practical
approximate ways to speed up electronic structure calculations.
For instance, ML could help in avoiding the explicit estimate of
the many expensive, but negligible, bottleneck terms in multi-
configurational and perturbative QM methods, still retaining
their accuracy. Development and benchmarking of these
approaches will be needed to prove their robustness and
general applicability (see ref 95).

4.1.4. Quantum Computing. Driven by the main
computing market leaders as well as new players (e.g., IBM,
Google, Microsoft, D-Wave, etc.), the quest for quantum
supremacy has already led to prototype CPUs based on
different and competing quantum bit architectures. This makes
the idea of modeling a quantum system by a quantum
computer more than a dream (e.g., refs 96a−c). Notably, first
applications and software packages for quantum computing
simulations have just appeared (e.g., OpenFermion),97 with
IBM already opening its quantum computing platform to the
scientific community, thus making this one of the most
attractive directions for the future.

4.2. Non-adiabatic Molecular Dynamics. 4.2.1. TSH in
the Exciton Picture. The strength of the exciton Hamiltonian
approach is that it can be coupled to a TSH non-adiabatic
dynamics scheme, such as the Tully’s FSSH. This requires
updating the parameters of the electronic Hamiltonian on-the-
fly, as the nuclear configuration evolves in time, by computing
at each step the derivatives of the exciton model parameters
with respect to the nuclear coordinates, and mapping these and
the NACs.3f In aggregates, due to the many close-lying excited
states, new problems arise as one needs to either compute
many NACs at each step of the propagation (strongly coupled
chromophores) or deal with trivial crossings (non-interacting
chromophores in the aggregate). This is a very promising
strategy, as recently shown by a few preliminary works.3e,53

The study of the photophysics of DNA/RNA (a test case for
flexible strongly coupled and reacting multi-chromophoric
systems) will provide an excellent playground for these
developments.

4.2.2. ML and Classical Force Fields for Excited States.
Developments of atomistic ML tools, based on transfer
learning on gold standard datasets optimally spanning the
physics of interest, promise to deliver with low computational
cost PESs as accurate as those obtained from the most
expensive QM methods. ML approaches can also be used to
produce, by a trained and driven re-parametrization of classical
FFs, low-cost and accurate analytical PESs for the excited
states, thus allowing non-adiabatic MD to be performed at the
cost of classical MD. Recent results and proofs of concept are
very promising.98a−c An alternative technique for obtaining
coupled high-dimensional PESs is the anchor points reactive
potential (APRP) method, which describes few large-
amplitude (reactive) modes explicitly based on QM calcu-
lations, whereas small-amplitude (secondary) modes are
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described in MM-like terms.36c,98d Overall, these methods are
expected to speed up MD and improve the accuracy by
delivering optimal PESs.
4.3. Theoretical Spectroscopy. Future developments in

theoretical spectroscopy are intimately linked to the corre-
sponding advances in experimental techniques, enabled by
either novel light sources (such as ultrashort coherent X-rays)
or novel methodologies (such as ultrafast spectroscopy with
quantum light).
4.3.1. Multi-Dimensional Extensions. Multi-dimensional

extensions of some of the presented novel techniques (e.g., 2D-
FSRS)99 would provide access to anharmonicities and inter-
mode couplings in excited states that are influenced by the
coupling in the vicinity of a CI.3g

4.3.2. Time-Resolved Diffraction. Time-resolved diffraction
with ultrashort X-ray or electron pulses has the advantage to
directly encode spatial information, revealing the location of
the created coherences:3g data interpretation will need accurate
modeling of these signals.100

4.3.3. Simplified Tools. Simplified tools need to be made
available to experimentalists and non-expert users to assist
spectroscopic characterization of molecular materials beyond
the academic lab. The development of black-box tools for
spectral analysis and interpretation, and their integration
within a productive environment, would be a major achieve-
ment, calling for a standardization of the language through the
development of a common ontology in materials modeling.101

5. CONCLUSION
In summary, to achieve a complete and accurate description of
the complex transient spectroscopy in large size chromophores
and multi-chromophoric systems, major challenges are still in
the way. Nonetheless, the smart integration of classical and
quantum chemical (static and dynamic) approaches and the
improvements in exciton Hamiltonian schemes, combined with
the development in high-performance multi-core architectures,
GPU accelerated algorithms, and machine learning techniques,
draw a clear and promising path. Finally, the emerging field of
quantum computing with the first example of quantum
supremacy just appeared,102 which seems to announce the
dawn of a new era, painting an even more optimistic horizon.
This revolution will likely lead to a disruptive change in the
high-performance computing world as we know it, heralding a
plot twist in Quantum Chemistry Tales.
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Nonadiabatic Dynamics “on the Fly” in Complex Systems and Its
Control by Laser Fieldes. Conical Intersections: Theory, Computation
and Experiment 2011, 17, 497−568.
(4) (a) Andrade, X.; Alberdi-Rodriguez, J.; Strubbe, D. A.; Oliveira,
M. J. T.; Nogueira, F.; Castro, A.; Muguerza, J.; Arruabarrena, A.;
Louie, S. G.; Aspuru-Guzik, A.; Rubio, A.; Marques, M. A. L. Time-
dependent density-functional theory in massively parallel computer
architectures: the octopus project. J. Phys.: Condens. Matter 2012, 24
(23), 233202. (b) Peng, C.; Calvin, J. A.; Pavosevic, F.; Zhang, J.;
Valeev, E. F. Massively Parallel Implementation of Explicitly
Correlated Coupled-Cluster Singles and Doubles Using TiledArray
Framework. J. Phys. Chem. A 2016, 120 (51), 10231−10244.
(c) Hohenstein, E. G.; Luehr, N.; Ufimtsev, I. S.; Martinez, T. J.
An atomic orbital-based formulation of the complete active space self-
consistent field method on graphical processing units. J. Chem. Phys.
2015, 142 (22), 224103. (d) Snyder, J. W., Jr.; Fales, B. S.;
Hohenstein, E. G.; Levine, B. G.; Martinez, T. J. A direct-compatible
formulation of the coupled perturbed complete active space self-
consistent field equations on graphical processing units. J. Chem. Phys.
2017, 146 (17), 174113. (e) Snyder, J. W., Jr.; Hohenstein, E. G.;
Luehr, N.; Martinez, T. J. An atomic orbital-based formulation of
analytical gradients and nonadiabatic coupling vector elements for the
state-averaged complete active space self-consistent field method on
graphical processing units. J. Chem. Phys. 2015, 143 (15), 154107.
(5) (a) Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L.
F.; Delcey, M. G.; De Vico, L.; Fdez. Galvan, I.; Ferre, N.; Frutos, L.
M.; Gagliardi, L.; Garavelli, M.; Giussani, A.; Hoyer, C. E.; Li Manni,
G.; Lischka, H.; Ma, D.; Malmqvist, P. A.; Muller, T.; Nenov, A.;
Olivucci, M.; Pedersen, T. B.; Peng, D.; Plasser, F.; Pritchard, B.;
Reiher, M.; Rivalta, I.; Schapiro, I.; Segarra-Marti, J.; Stenrup, M.;
Truhlar, D. G.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.;
Vysotskiy, V. P.; Weingart, O.; Zapata, F.; Lindh, R. Molcas 8: New
capabilities for multiconfigurational quantum chemical calculations
across the periodic table. J. Comput. Chem. 2016, 37 (5), 506−541.
(b) Vogiatzis, K. D.; Ma, D.; Olsen, J.; Gagliardi, L.; de Jong, W. A.
Pushing configuration-interaction to the limit: Towards massively
parallel MCSCF calculations. J. Chem. Phys. 2017, 147 (18), 184111.
(6) (a) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit,
M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; et al.
Advances in molecular quantum chemistry contained in the Q-Chem
4 program package. Mol. Phys. 2015, 113 (2), 184−215. (b) Turney,
J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.;
Evangelista, F. A.; Fermann, J. T.; Mintz, B. J.; Burns, L. A.; Wilke,
J. J.; Abrams, M. L.; et al. Psi4: an open-source ab initio electronic
structure program. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2
(4), 556−565. (c) Luehr, N.; Jin, A. G.; Martinez, T. J. Ab initio
interactive molecular dynamics on graphical processing units (GPUs).
J. Chem. Theory Comput. 2015, 11 (10), 4536−44. (d) Peng, C.;
Lewis, C.; Wang, X.; Clement, M.; Pavosevic, F.; Zhang, J.; Rishi, V.;

Journal of the American Chemical Society pubs.acs.org/JACS Perspective

https://dx.doi.org/10.1021/jacs.0c04952
J. Am. Chem. Soc. 2020, 142, 16117−16139

16132

https://dx.doi.org/10.1038/164658a0
https://dx.doi.org/10.1038/164658a0
https://dx.doi.org/10.1098/rspa.1950.0018
https://dx.doi.org/10.1098/rspa.1950.0018
https://dx.doi.org/10.1021/jacs.9b10533
https://dx.doi.org/10.1021/jacs.9b10533
https://dx.doi.org/10.1021/acs.chemrev.7b00226
https://dx.doi.org/10.1021/acs.chemrev.7b00226
https://dx.doi.org/10.1021/acs.chemrev.7b00577
https://dx.doi.org/10.1021/acs.chemrev.7b00577
https://dx.doi.org/10.1021/acs.chemrev.9b00447
https://dx.doi.org/10.1021/acs.chemrev.9b00447
https://dx.doi.org/10.1021/acs.chemrev.9b00447
https://dx.doi.org/10.1002/anie.201916381
https://dx.doi.org/10.1002/anie.201916381
https://dx.doi.org/10.1002/anie.201916381?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.7b00423
https://dx.doi.org/10.1021/ar500229p
https://dx.doi.org/10.1021/ar500229p
https://dx.doi.org/10.1021/ar500229p
https://dx.doi.org/10.1021/acs.chemrev.9b00135
https://dx.doi.org/10.1021/acs.chemrev.9b00135
https://dx.doi.org/10.1021/acs.chemrev.7b00081
https://dx.doi.org/10.1021/acs.chemrev.7b00081
https://dx.doi.org/10.1021/acs.chemrev.7b00081
https://dx.doi.org/10.1039/C9SC03871J
https://dx.doi.org/10.1039/C9SC03871J
https://dx.doi.org/10.1007/s41061-018-0201-8
https://dx.doi.org/10.1007/s41061-018-0201-8
https://dx.doi.org/10.1007/128_2014_618
https://dx.doi.org/10.1007/128_2014_618
https://dx.doi.org/10.1142/9789814313452_0013
https://dx.doi.org/10.1142/9789814313452_0013
https://dx.doi.org/10.1142/9789814313452_0013
https://dx.doi.org/10.1088/0953-8984/24/23/233202
https://dx.doi.org/10.1088/0953-8984/24/23/233202
https://dx.doi.org/10.1088/0953-8984/24/23/233202
https://dx.doi.org/10.1021/acs.jpca.6b10150
https://dx.doi.org/10.1021/acs.jpca.6b10150
https://dx.doi.org/10.1021/acs.jpca.6b10150
https://dx.doi.org/10.1063/1.4921956
https://dx.doi.org/10.1063/1.4921956
https://dx.doi.org/10.1063/1.4979844
https://dx.doi.org/10.1063/1.4979844
https://dx.doi.org/10.1063/1.4979844
https://dx.doi.org/10.1063/1.4932613
https://dx.doi.org/10.1063/1.4932613
https://dx.doi.org/10.1063/1.4932613
https://dx.doi.org/10.1063/1.4932613
https://dx.doi.org/10.1002/jcc.24221
https://dx.doi.org/10.1002/jcc.24221
https://dx.doi.org/10.1002/jcc.24221
https://dx.doi.org/10.1063/1.4989858
https://dx.doi.org/10.1063/1.4989858
https://dx.doi.org/10.1080/00268976.2014.952696
https://dx.doi.org/10.1080/00268976.2014.952696
https://dx.doi.org/10.1002/wcms.93
https://dx.doi.org/10.1002/wcms.93
https://dx.doi.org/10.1021/acs.jctc.5b00419
https://dx.doi.org/10.1021/acs.jctc.5b00419
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c04952?ref=pdf


Teke, N.; Pierce, K.; Calvin, J.; Kenny, J.; Seidl, E.; Janssen, C.;
Valeev, E. The Massively Parallel Quantum Chemistry Program
(MPQC), Version 4.0.0-beta.1; http://github.com/ValeevGroup/
mpqc. (e) Valiev, M.; Bylaska, E.J.; Govind, N.; Kowalski, K.;
Straatsma, T.P.; Van Dam, H.J.J.; Wang, D.; Nieplocha, J.; Apra, E.;
Windus, T.L.; de Jong, W.A. NWChem: A comprehensive and
scalable open-source solution for large scale molecular simulations.
Comput. Phys. Commun. 2010, 181 (9), 1477−1489.
(7) Aquilante, F.; Delcey, M. G.; Pedersen, T. B.; Fdez. Galvań, I.;
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