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Thermally unstable throughflow of a power–law fluid in a vertical
porous cylinder with arbitrary cross–section
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A B S T R A C T
The present paper investigates how the cross–sectional shape of a vertical porous cylinder affects the
onset of thermoconvective instability of the Rayleigh–Bénard type. The fluid saturating the porous
medium is assumed to be a non–Newtonian power–law fluid. A linear stability analysis of the vertical
thorughflow is carried out. Three special shapes of the cylinder cross–section are analysed: square,
circular and elliptical. The effect of changing the power–law index is investigated. The stability of a
steady base state with vertical throughflow is analysed. The resulting stability problem is a differential
eigenvalue problem that is solved numerically through the shooting method. The dimensionless num-
bers here considered are the non–Newtonian version of the Darcy–Rayleigh number, 𝑅𝑎, the Péclet
number, 𝑃𝑒 and the power–law index, 𝑛. Results are presented in the form of marginal stability curves
with 𝑅𝑎 plotted as a function of the cylinder aspect ratio, by assuming different values of 𝑃𝑒 and 𝑛.
The critical values of 𝑅𝑎 are also computed. Results show that the critical Rayleigh number 𝑅𝑎 for
instability depends only on 𝑃𝑒 and 𝑛, and is independent of the shape of the cylinder cross–section.
The geometry of the sidewall just contributes the selection of the allowed wavenumbers.

1. Introduction
The thermoconvective instability is of interest in a wide

range of scientific and engineering applications involving
fluid systems subject to an externally imposed temperature
gradient. Depending on the nature of the process, it can be
desirable or not to enhance the heat transfer caused by free
or mixed convection. In the last century, many studies have
been carried out where the linear stability theory is employed
to investigate the onset of convection in such systems.

In the context of porous media, the pioneering investi-
gations of the onset of convection in a layer of fluid heated
from below, by means of linear stability theory, were first re-
ported by [9] and by [10]. In a later study, [13] investigated
the effect of a horizontal throughflow in the transition to in-
stability, reaching the conclusion that throughflow does not
affect the transition to the convective instability. Then [16]
and [8] extended these classical results by considering the
horizontal walls as permeable and devising the presence of
a vertical throughflow.

As mentioned by [14] in his book, convection heat trans-
fer may be of interest also when non–Newtonian fluids satu-
rate porous media. Processes involving oil recovery and its
enhancement, or filtration and ceramic processing are exam-
ples of non–Newtonian flows in porous media.

More recently, several studies have been done in this di-
rection including more complex effects. [4] investigated the
effect of vertical throughflow on the onset of convection in
a horizontal porous channel, by taking into consideration
the effect of heat generated by viscous dissipation inside the
channel. Then, [2] investigated the role of a non–Newtonian
rheology on the transition to instability, but yet considering
horizontal throughflow. [6] investigated the effect of vertical
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throughflow on the onset of instability for power–law fluids.
The present paper aims to study the effect of the lat-

eral confinement on the transition to instability for vertical
throughflow in a horizontal porous channel saturated by non–
Newtonian fluid of power–law type. In their paper, [5] have
already concluded, for the special case of a Newtonian fluid,
that the geometry of a vertical permeable and conducting
cylinder does not affect the eigenvalue problem solution and,
consequently, the onset of instability. Although this conclu-
sion can be expected to hold also for a more complex fluid
rheology, this topic is well worth to be investigated rigor-
ously. In order to carry out such an investigation, a linear sta-
bility analysis is employed. This analysis consists in defining
first a stationary base solution of the governing equations.
Hence, by introducing small–amplitude perturbations of the
base state, we determine their evolution in time. In fact, this
study deals with the linearisation of the governing equations
for the perturbations and the numerical solution of the sta-
bility differential eigenvalue problem.

2. Mathematical Model
Throughflow in a vertical porous cylinder saturated by

an Ostwald–de Waele (power–law) fluid is considered. The
cylinder is bounded by two horizontal permeable planes, and
a lateral sidewall with an arbitrary cross–section. Let the
vertical 𝑧 axis be parallel to the gravitational acceleration
𝐠, but with opposite direction (see figure 1). The sidewall
boundary is impermeable and adiabatic, while the horizon-
tal boundary planes, at 𝑧 = 0 and 𝑧 = 𝐻 , are permeable and
isothermal with temperatures 𝑇 = 𝑇0 +Δ𝑇 and 𝑇 = 𝑇0, re-
spectively. Here, 𝑇 is the temperature field, 𝑇0 is a reference
temperature and Δ𝑇 is a positive temperature difference.
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Figure 1: Sketch of the porous cylinder laterally confined by
an arbitrarily shaped sidewall

2.1. Governing Equations
When a power–law fluid saturates a porous medium and

the flow is driven by the thermal buoyancy force, the ap-
propriate model can be based on the Oberbeck–Boussinesq
approximation and on the generalized Darcy’s law [14, 7].
The generalised Darcy’s law, together with the equations for
local mass balance and energy balance, yield

𝛁 ⋅ 𝐮 = 0, (1a)

𝜇∗

𝐾
|𝐮|𝑛−1𝐮 = −𝛁𝑝 − 𝜌0𝐠𝛽(𝑇 − 𝑇0), (1b)

𝜎 𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑇 = 𝜅∇2𝑇 , (1c)
where 𝐮 is the velocity with Cartesian components (𝑢, 𝑣,𝑤),
𝜇∗ is the effective consistency factor (with SI units Pa s𝑛 m1−𝑛),
𝐾 is the permeability (with SI units m2) and 𝑝 is the local
difference between the pressure and the hydrostatic pressure,
𝜌0 is the density of the fluid at temperature 𝑇0, while 𝛽 is the
thermal expansion coefficient of the fluid. Time is denoted
by 𝑡, 𝜎 is the ratio between the average volumetric heat ca-
pacity of the saturated porous medium and the volumetric
heat capacity of the fluid and 𝜅 is the effective thermal dif-
fusivity of the porous medium. The effective consistency
factor 𝜇∗ depends on the consistency factor of the power–
law fluid, on the power–law index 𝑛, on the permeability 𝐾 ,
as well as on the porosity and on the tortuosity [14, 7]. The
generalised Darcy’s law (1b) was previously employed, for
instance, in the convective instability study carried out by
[6].

The lateral sidewall consists of a vertical cylinder whose
cross–section 𝐴 is bounded by a closed, piecewise differen-
tiable curve 𝜕𝐴 in the (𝑥, 𝑦) plane. The curve 𝜕𝐴 is defined
by the equation

𝐹 (𝑥, 𝑦) = 0. (2)

A vertical throughflow in the porous cylinder is induced by
the following boundary conditions:

𝑧 = 0, 𝑥, 𝑦 ∈ 𝐴 ∶ 𝑤 = 𝑤0, 𝑇 = 𝑇0 +Δ𝑇 , (3a)

𝑧 = 𝐻 , 𝑥, 𝑦 ∈ 𝐴 ∶ 𝑤 = 𝑤0, 𝑇 = 𝑇0, (3b)

𝐹 (𝑥, 𝑦) = 0, 0 < 𝑧 < 𝐻 ∶ 𝐧 ⋅𝐮 = 𝐧 ⋅𝛁𝑇 = 0, (3c)
where𝑤0 is the prescribed vertical throughflow velocity and
𝐧 is the unit outward normal to the cylinder sidewall. Thus,
𝐧 lies on the (𝑥, 𝑦) plane.
2.2. Dimensionless quantities

We now scale the dimensional quantities and operators
in order to define a dimensionless formulation

1
𝐻

𝐱 → 𝐱, 𝐻
𝜅
𝐮 → 𝐮, 𝜅

𝜎𝐻2 𝑡 → 𝑡,

𝑇 − 𝑇0
Δ𝑇

→ 𝑇 , 𝐻𝛁 → 𝛁, 𝐻2∇2 → ∇2. (4)
The dimensionless parameters 𝑅𝑎 and 𝑃𝑒 are defined as

𝑅𝑎 =
𝜌0𝑔𝛽Δ𝑇𝐾𝐻𝑛

𝜇∗𝜅𝑛
, 𝑃𝑒 =

𝑤0𝐻
𝜅

, (5)

where 𝑔 is the modulus of 𝐠. The dimensionless parame-
ter 𝑅𝑎 is the non–Newtonian version of the Darcy–Rayleigh
number, while 𝑃𝑒 is the Péclet number. The instability is
possible only if 𝑅𝑎 is positive. On the other hand, either
sign of 𝑃𝑒 is possible with a positive 𝑃𝑒 yielding upward
throughflow and a negative 𝑃𝑒meaning downward through-
flow. By employing the dimensionless quantities defined by
equations (4) and (5), equations (1) can be written as

𝛁 ⋅ 𝐮 = 0, (6a)

𝛁 × (|𝐮|𝑛−1𝐮) = 𝑅𝑎𝛁 × (𝑇 𝐞𝑧), (6b)

𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑇 = ∇2𝑇 , (6c)
where 𝐞𝑧 is the unit vector in the 𝑧 direction. Equation (6b)
was obtained by applying the curl operator to both sides of
equation (1b), so that the dynamic pressure field is elimi-
nated from the governing equations. The dimensionless bound-
ary conditions (3) can be rewritten in a dimensionless form
as

𝑧 = 0, 𝑥, 𝑦 ∈ 𝐴 ∶ 𝑤 = 𝑃𝑒, 𝑇 = 1, (7a)

𝑧 = 1, 𝑥, 𝑦 ∈ 𝐴 ∶ 𝑤 = 𝑃𝑒, 𝑇 = 0, (7b)
PV Brandão et al.: Preprint submitted to Elsevier Page 2 of 12
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𝐹 (𝑥, 𝑦) = 0, 0 < 𝑧 < 1 ∶ 𝐧 ⋅ 𝐮 = 𝐧 ⋅𝛁𝑇 = 0. (7c)
We note that, for the sake of simplicity, we use the same no-
tation for the dimensionless equation, 𝐹 (𝑥, 𝑦) = 0, as that
employed to characterise the dimensional boundary in the
(𝑥, 𝑦) plane. Obviously, in the former case we deal with di-
mensionless coordinates. Furthermore, the function 𝐹 it-
self is different from that employed with dimensional coor-
dinates, unless 𝐹 is homogeneous, which is a special case.
Accordingly, we will also continue to call 𝐴 and 𝜕𝐴 the di-
mensionless cross–section of the cylinder and its boundary,
respectively.
2.3. Base flow state

A stationary solution of equations (6) and (7) is given by
a uniform vertical throughflow with a purely vertical tem-
perature gradient d𝑇𝑏∕d𝑧, namely

𝑢𝑏 = 0, 𝑣𝑏 = 0, 𝑤𝑏 = 𝑃𝑒, 𝑇𝑏(𝑧) =
𝑒𝑃𝑒 − 𝑒𝑃𝑒𝑧
𝑒𝑃𝑒 − 1

. (8)

where the subscript “𝑏” stands for base flow state.

3. Small–amplitude perturbations
A stability analysis of the vertical base throughflow is

now carried out under the assumption of small–amplitude
perturbations.
3.1. Disturbance equations

Stability is studied by perturbing the basic solution (8).
The velocity and temperature fields are then expressed as

𝐮 = 𝑃𝑒 𝐞𝑧 + 𝜖�̃�, 𝑇 = 𝑇𝑏(𝑧) + 𝜖�̃� , (9)
where �̃� = (�̃�, �̃�, �̃�) and �̃� are the perturbation fields, while
𝜖 > 0 is an infinitesimal perturbation parameter such that,
hereafter, terms 𝑂(𝜖2) are considered as negligible.

Thus, substitution of equation (9) into equations (6) yields
a linearised system of governing equations given by

𝜕�̃�
𝜕𝑥

+ 𝜕�̃�
𝜕𝑦

+ 𝜕�̃�
𝜕𝑧

= 0, (10a)

𝑛𝜕�̃�
𝜕𝑦

− 𝜕�̃�
𝜕𝑧

= 𝑅𝑎
|𝑃𝑒|𝑛−1

𝜕�̃�
𝜕𝑦

, (10b)

𝑛𝜕�̃�
𝜕𝑥

− 𝜕�̃�
𝜕𝑧

= 𝑅𝑎
|𝑃𝑒|𝑛−1

𝜕�̃�
𝜕𝑥

, (10c)

𝜕�̃�
𝜕𝑥

− 𝜕�̃�
𝜕𝑦

= 0, (10d)

𝜕�̃�
𝜕𝑡

+ �̃�
𝜕𝑇𝑏
𝜕𝑧

+ 𝑃𝑒𝜕�̃�
𝜕𝑧

= ∇2�̃� , (10e)

which are subject to the boundary conditions
𝑧 = 0, 1, 𝑥, 𝑦 ∈ 𝐴 ∶ �̃� = �̃� = 0, (11a)

𝐹 (𝑥, 𝑦) = 0, 0 < 𝑧 < 1 ∶ 𝐧 ⋅ �̃� = 𝐧 ⋅𝛁�̃� = 0. (11b)
For practical reasons, it is convenient to rewrite the linearised
equations according to a �̃�–�̃� formulation. Thus, by rear-
ranging equations (10) and (11), we have

𝑛
(
𝜕2�̃�
𝜕𝑥2

+ 𝜕2�̃�
𝜕𝑦2

)
+ 𝜕2�̃�
𝜕𝑧2

=

𝑅𝑎
|𝑃𝑒|𝑛−1

(
𝜕2�̃�
𝜕𝑥2

+ 𝜕2�̃�
𝜕𝑦2

)
,

(12a)

𝜕�̃�
𝜕𝑡

+ �̃�
d𝑇𝑏
d𝑧

+ 𝑃𝑒𝜕�̃�
𝜕𝑧

= 𝜕2�̃�
𝜕𝑥2

+ 𝜕2�̃�
𝜕𝑦2

+ 𝜕2�̃�
𝜕𝑧2

. (12b)

𝑧 = 0, 1, 𝑥, 𝑦 ∈ 𝐴 ∶ �̃� = �̃� = 0, (12c)

𝐹 (𝑥, 𝑦) = 0, 0 < 𝑧 < 1 ∶ 𝐧⋅𝛁�̃� = 𝐧⋅𝛁�̃� = 0. (12d)
With the new formulation, all the boundary conditions must
be expressed in terms of �̃� and �̃� , as in equation (12d). In
particular, the boundary condition for �̃� in equation (12d)
can be proved by evaluating the scalar product of the mo-
mentum balance equation in the (𝑥, 𝑦) plane, expressed through
equations (10b) and (10c), with the unit normal 𝐧 to the
curve 𝜕𝐴, namely

𝑛 𝐧 ⋅ 𝛁�̃� − 𝜕 (𝐧 ⋅ �̃�)
𝜕𝑧

= 𝑅𝑎
|𝑃𝑒|𝑛−1 𝐧 ⋅ 𝛁�̃� . (13)

Thus, by employing equation (13) for (𝑥, 𝑦) ∈ 𝜕𝐴, if we take
into account equation (11b), then we obtain

𝐧 ⋅ 𝛁�̃� = 0, (14)
which is the boundary condition for �̃� reported in equation
(12d).
3.2. Eigenvalue problem

In order to detect the parametric threshold for the onset
of instability, i.e. the neutral stability condition, we consider
disturbances expressed as normal modes periodic in time,

�̃� = Θ(𝑧) 𝑓 (𝑥, 𝑦) 𝑒𝑖𝜔 𝑡, (15a)

�̃� = 𝑊 (𝑧)𝑓 (𝑥, 𝑦) 𝑒𝑖𝜔 𝑡, (15b)
where 𝜔 is the angular frequency. Here, 𝑓 (𝑥, 𝑦) is a solution
of the two–dimensional Helmholtz equation with Neumann
boundary conditions at 𝐹 (𝑥, 𝑦) = 0, namely

∇2
2 𝑓 (𝑥, 𝑦) = −𝛼2 𝑓 (𝑥, 𝑦), (16a)
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Table 1
Square cross–section: first 11 modes and the corre-
sponding eigenvalues (22).
(𝑚1,𝑚2) 𝛼𝓁

(0,0) 0
(1,0) 3.14159
(1,1) 4.44288
(2,0) 6.28319
(2,1) 7.02481
(2,2) 8.88577
(3,0) 9.42478
(3,1) 9.93459
(3,2) 11.3272
(4,0) 12.5664
(4,1) 12.9531

𝐹 (𝑥, 𝑦) = 0 ∶ 𝐧 ⋅ 𝛁𝑓 (𝑥, 𝑦) = 0, (16b)
where 𝛼 is the wavenumber. Due to the symmetry under ro-
tations around the 𝑧 axis displayed both by the governing
equations and by the basic flow state, the principle of ex-
change of stabilities is expected to hold (see, for instance,
Alves and Barletta 2, Barletta and Storesletten 6). Thus, we
can set 𝜔 = 0, although this result cannot be proved theo-
retically for the present problem. However, the validity of
the principle will be verified numerically for every case ex-
amined in the following. By employing equations (15) and
(16), equations (12) yield

𝑊 ′′ − 𝑛 𝛼2𝑊 + 𝑅𝑎
|𝑃𝑒|𝑛−1 𝛼

2 Θ = 0, (17a)

Θ′′ − 𝑃𝑒Θ′ − (𝛼2 + 𝑖𝜔)Θ + 𝑃𝑒𝐺(𝑧)𝑊 = 0, (17b)

𝑧 = 0, 1 ∶ 𝑊 = Θ = 0, (17c)
Here, the primes denote differentiation with respect to 𝑧 and
𝐺(𝑧) is defined as

𝐺(𝑧) = − 1
𝑃𝑒

d𝑇𝑏
d𝑧

= 𝑒𝑃𝑒𝑧

𝑒𝑃𝑒 − 1
. (18)

By looking into the eigenvalue problem defined by equa-
tions (17) some conclusions can be drawn regarding the role
played by the sign of 𝑃𝑒. In principle, 𝑃𝑒may assume either
positive or negative values, which corresponds to upward or
downward flow, respectively. By inspecting equations (17),
one may observe that just equation (17b) is affected by a sign
change of 𝑃𝑒, while in equation (17a) 𝑃𝑒 appears with its
absolute value. For a downward flow, i.e. negative 𝑃𝑒, by
applying a simple coordinate transformation, it can be seen
that the eigenvalue problem is mapped onto one with a posi-
tive 𝑃𝑒. In fact, on account of equation (18), the eigenvalue
problem (17) remains invariant under the transformation

𝑃𝑒 → −𝑃𝑒, 𝑧 → 1 − 𝑧. (19)

As already pointed out by Barletta and Storesletten [6], the
practical effect of this symmetry is that the eigenvalue, i.e.
the pair (𝜔,𝑅𝑎), does not depend on the sign of 𝑃𝑒, while the
eigenfunctions (𝑊 ,Θ) undergo a reflection with respect to
the midplane 𝑧 = 1∕2. Thus, hereafter, only positive values
of 𝑃𝑒 will be considered without any loss of generality.
3.3. Three special cases

Three different cases for the lateral confinement are con-
sidered here, namely

1. 𝐴 is a square, with dimensionless side length 𝓁;
2. 𝐴 is a circle with dimensionless radius 𝑠. In other

terms, 𝜕𝐴 is defined by the equation 𝐹 (𝑥, 𝑦) = 𝑥2 +
𝑦2 − 𝑠2 = 0;

3. 𝐴 is an ellipse with dimensionless semiaxes 𝑏 and 𝑑,
with 𝑏 > 𝑑. In this case, 𝜕𝐴 is given by 𝐹 (𝑥, 𝑦) =
𝑥2∕𝑏2 + 𝑦2∕𝑑2 − 1 = 0.

Table 2
Circular cross–section: first 11 modes and the corre-
sponding eigenvalues (25).
(𝑚, 𝑘) 𝜉𝑚,𝑘 = 𝛼𝑠

(1,1) 1.84118
(2,1) 3.05424
(0,1) 3.83171
(3,1) 4.20119
(4,1) 5.31755
(1,2) 5.33144
(5,1) 6.41562
(2,2) 6.70613
(0,2) 7.01559
(6,1) 7.50127
(3,2) 8.01524

3.3.1. Case I: Square cross–section
If we consider the case of a square cross–section, the

boundary conditions are
𝑧 = 0, 1; 0 < 𝑥 < 𝓁; 0 < 𝑦 < 𝓁 ∶ �̃� = �̃� = 0, (20a)

𝑥 = 0,𝓁; 0 < 𝑦 < 𝓁; 0 < 𝑧 < 1 ∶ 𝜕�̃�
𝜕𝑥

= 𝜕�̃�
𝜕𝑥

= 0, (20b)

𝑦 = 0,𝓁; 0 < 𝑥 < 𝓁; 0 < 𝑧 < 1 ∶ 𝜕�̃�
𝜕𝑦

= 𝜕�̃�
𝜕𝑦

= 0. (20c)
Thus, the general form of function 𝑓 (𝑥, 𝑦) solving the Helmholtz
eigenvalue problem (16) can be expressed as

𝑓 (𝑥, 𝑦) = cos
(𝑚1𝜋

𝓁
𝑥
)
cos

(𝑚2𝜋
𝓁
𝑦
)
, (21)

where𝑚1 and𝑚2 are non–negative integers, while the eigen-
values 𝛼 are given analytically by

𝛼 = 𝜋
𝓁

√
𝑚2
1 + 𝑚

2
2. (22)
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Therefore, the normal modes are labelled through the pair of
integers (𝑚1,𝑚2). The symmetry of the square cross–section
implies that the modes (𝑚1,𝑚2) and (𝑚2,𝑚1) are equiva-
lent, as it is mathematically evident from equations (21) and
(22). The ordering of such modes according to the increas-
ing eigenvalues is reported in table 1 for the lowest 11 modes.

Table 3
Elliptical cross–section: first 11 eigenvalues 𝛼𝑏 in in-
creasing order, with the corresponding even (e) or odd
(o) normal modes: (e;𝑚, 𝑘), (o;𝑚, 𝑘).

𝜒 = 9∕10 𝜒 = 1∕4

modes 𝛼𝑏 modes 𝛼𝑏

(e; 0, 0) 0 (e; 0, 0) 0
(e; 1, 0) 1.8485646 (e; 1, 0) 1.8832257
(o; 1, 0) 2.0363607 (e; 2, 0) 3.4701287
(e; 2, 0) 3.1870665 (e; 3, 0) 5.0364174
(o; 2, 0) 3.2253344 (e; 4, 0) 6.5946258
(e; 0, 1) 4.0785718 (o; 1, 0) 6.7389286
(e; 3, 0) 4.4108506 (o; 2, 0) 7.8062030
(o; 3, 0) 4.4170182 (e; 5, 0) 8.1482947
(e; 1, 1) 5.4919288 (o; 3, 0) 8.9350656
(e; 4, 0) 5.5884622 (e; 6, 0) 9.6988909
(o; 4, 0) 5.5893372 (o; 4, 0) 10.116229

Table 4
Validation of the numerical values of (𝑅𝑎𝑐 , 𝛼𝑐) when
𝑃𝑒 → 0.
𝑃𝑒 𝑅𝑎𝑐 𝛼𝑐
10−2 39.4785571021 3.14159634429
10−3 39.4784190030 3.14159269064
10−4 39.4784176220 3.14159265411
10−5 39.4784176082 3.14159265374
0 39.4784176044 3.14159265359

3.3.2. Case II: Circular cross–section
When the lateral confinement is effected with a circular

cylinder, the boundary conditions can be written in cylindri-
cal coordinates in the form

𝑧 = 0, 1; 0 < 𝑟 < 𝑠 ∶ �̃� = �̃� = 0, (23a)

𝑟 = 𝑠; 0 < 𝑧 < 1 ∶ 𝜕�̃�
𝜕𝑟

= 𝜕�̃�
𝜕𝑟

= 0. (23b)
As a consequence, the general the modes 𝑓 (𝑟, 𝜃) obtained by
solving the Helmholtz eigenvalue problem (16) are given by

𝑓 (𝑟, 𝜃) = 𝐽𝑚(𝛼𝑟) cos(𝑚𝜃), (24)
where 𝐽𝑚(𝛼𝑟) is the Bessel function of first kind and order
𝑚. In this case, 𝛼 is determined by solving the equation

𝐽 ′
𝑚(𝜉) = 0, 𝜉 = 𝛼𝑠. (25)

The nonzero values of 𝜉 satisfying equation (25) form a se-
quence {𝜉𝑚,𝑘 |𝑚 = 0, 1, 2, 3...; 𝑘 = 1, 2, 3...} where 𝑚 is the
azimuthal mode number and 𝑘 the radial mode number. Ta-
ble 2 shows the first 11 roots of equation (25) in increasing
order.
3.3.3. Case III: Elliptical cross–section

Barletta and Storesletten [5] studied, in the case of a New-
tonian fluid saturating a porous cylinder, the effect of lat-
eral confinement by a cylindrical wall with elliptical cross-
section. In that study, the authors assumed Dirichlet bound-
ary conditions for the Helmholtz problem (16) instead of
Neumann boundary conditions. Following the same proce-
dure [5], we use elliptical coordinates, (𝜆, 𝜂), given by

𝑥 = 𝑐 cosh𝜆 cos𝜂, 𝑦 = 𝑐 sinh𝜆 sin𝜂, (26)
where 𝑐 is the semi–distance between the foci of the ellipse,
0 ≤ 𝜆 < +∞ and 0 ≤ 𝜂 < 2𝜋. The elliptical contour
bounding the domain is given by 𝜆 = 𝜆0, the ratio between
the semi–axes is given by 𝑑∕𝑏 = 𝜒 = tanh 𝜆0, while 𝑐 =
𝑏∕ cosh𝜆0. The limiting case of a circular contour is ob-
tained when 𝜆0 → ∞.

The Helmholtz equation (16) can be solved by separation
of variables, with 𝑓 given by [1, 5]

𝑓 (𝜆, 𝜂) = ce𝑚(𝑖𝜆;𝐶) ce𝑚(𝜂;𝐶) , (27)
or

𝑓 (𝜆, 𝜂) = 𝑖 se𝑚(𝑖𝜆;𝐶) se𝑚(𝜂;𝐶) , (28)
where 𝑚 = 0, 1, 2,… and

𝐶 = 𝛼2𝑏2

4 cosh2𝜆0
. (29)

Functions ce𝑚 and se𝑚 are the elliptic cosine and elliptic sine,
respectively, also called even and odd Mathieu functions of
order 𝑚.

The boundary condition (16b) can be expressed in ellip-
tical coordinates as

𝜕𝑓
𝜕𝜆

= 0, for 𝜆 = 𝜆0. (30)

Thus, Eqs. (28) and (30) imply that the eigenvalues 𝛼𝑠 can
be computed, for a given aspect ratio 𝜒 , as the positive roots
of either,

𝜕
𝜕𝜆

ce𝑚

(
𝑖𝜆; 𝛼2𝑏2

4 cosh2𝜆0

)||||||𝜆=𝜆0
= 0, (31)

𝜕
𝜕𝜆

se𝑚

(
𝑖𝜆; 𝛼2𝑏2

4 cosh2𝜆0

)||||||𝜆=𝜆0
= 0, (32)

where 𝜆0 = arctanh𝜒 and 𝑚 = 0, 1, 2,… .
Software Mathematica 12 [17] offers a suitable environment
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Thermally unstable porous cylinder with arbitrary cross–section
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Figure 2: Marginal stability curves for 𝑛 = 1 and 𝑃𝑒 = 2; different modes (1), (2), … are labelled according to the ordering
defined in tables 1–3
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Figure 3: Marginal stability curves for 𝑛 = 1 and 𝑃𝑒 = 6; different modes (1), (2), … are labelled according to the ordering
defined in tables 1–3

for carrying out this computation, by utilising the built–in
functions MathieuCPrime, MathieuSPrime, as well as Mathieu

CharacteristicA and MathieuCharacteristicB.
The roots of Eqs. (31) and (32) can be ordered so that

the eigenvalues 𝛼 form a monotonic increasing sequence. In
analogy with Barletta and Storesletten [5], we employ the

modal notation: (e;𝑚, 𝑘) and (o;𝑚, 𝑘). Indeed, (e;𝑚, 𝑘) de-
notes the mode associated with the 𝑘th root of Eq. (31), for
𝑚, 𝑘 = 0, 1, 2, … ,. Similarly (o;𝑚, 𝑘) is for the 𝑘th root of
Eq. (32), with 𝑚 − 1, 𝑘 = 0, 1, 2, … . This ordering of the
normal modes, (e;𝑚, 𝑘) and (o;𝑚, 𝑘), and the associated eigen-
values 𝛼 𝑏 are listed in table 3, for two aspect ratios: 𝜒 =
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Thermally unstable porous cylinder with arbitrary cross–section
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Figure 4: Marginal stability curves for 𝑛 = 0.6 and 𝑃𝑒 = 2; different modes (1), (2), … are labelled according to the ordering
defined in tables 1–3
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Figure 5: Marginal stability curves for 𝑛 = 0.6 and 𝑃𝑒 = 6; different modes (1), (2), … are labelled according to the ordering
defined in tables 1–3

9∕10 and 𝜒 = 1∕4.

4. Critical conditions
By solving equations (17), one may recover the paramet-

ric condition which defines the onset of the convective in-
stability, namely the neutral stability condition. That means

that, for each pair (𝑛,𝑃𝑒), one is able to find the neutral sta-
bility curve in the plane (𝛼,𝑅𝑎). The minimum value of 𝑅𝑎
along the neutral stability curve yields its critical value,𝑅𝑎𝑐 .A direct numerical evaluation of𝑅𝑎𝑐 is possible by deriving
equations (17) with respect to 𝛼. Thus, one obtains addi-
tional equations which lead to an extended eigenvalue prob-
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Figure 6: Marginal stability curves for 𝑛 = 2 and 𝑃𝑒 = 2; different modes (1), (2), … are labelled according to the ordering
defined in tables 1–3
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Figure 7: Marginal stability curves for 𝑛 = 2 and 𝑃𝑒 = 6; different modes (1), (2), … are labelled according to the ordering
defined in tables 1–3

lem, namely

𝑊 ′′ − 𝑛𝛼2𝑊 + 𝑅𝑎
|𝑃𝑒|𝑛−1 𝛼

2 Θ = 0, (33a)

Θ′′ − 𝑃𝑒Θ′ −
(
𝛼2 + 𝑖𝜔

)
Θ + 𝑃𝑒𝐺(𝑧)𝑊 = 0, (33b)

𝑊 ′′
𝛼 − 2𝑛 𝛼𝑊 − 𝑛 𝛼2𝑊𝛼+

2 𝑅𝑎
|𝑃𝑒|𝑛−1 𝛼Θ + 𝑅𝑎

|𝑃𝑒|𝑛−1 𝛼
2Θ𝛼 = 0,

(33c)
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Figure 8: Values of 𝛼𝑐 and 𝑅𝑎𝑐 versus 𝑛 for different Péclet numbers

Θ′′
𝛼 − 𝑃𝑒Θ′

𝛼 −
(
2𝛼 + 𝑖𝜔𝛼

)
Θ−(

𝛼2 + 𝑖𝜔
)
Θ𝛼 + 𝑃𝑒𝐺(𝑧)𝑊𝛼 = 0,

(33d)

𝑧 = 0, 1 ∶ 𝑊 = 𝑊𝛼 = 0, Θ = Θ𝛼 = 0, (33e)
where 𝑊𝛼 = 𝜕𝑊 ∕𝜕𝛼, Θ𝛼 = 𝜕Θ∕𝜕𝛼 and 𝜔𝛼 = 𝜕𝜔∕𝜕𝛼.
Equations (33c) and (33c) have been obtained with the un-
derstanding that (𝑛,𝑃𝑒) are fixed and that 𝜕𝑅𝑎∕𝜕𝛼 is zero
as we are seeking the minimum of 𝑅𝑎 along the neutral sta-
bility curve in the (𝛼,𝑅𝑎) plane. Hence, the solution of the
extended eigenvalue problem (33) yields the eigenvalues 𝛼,
𝑅𝑎, 𝜔 and 𝜔𝛼 corresponding to a prescribed pair (𝑛,𝑃𝑒). In
particular, the eigenvalue 𝑅𝑎 is to be intended as the criti-
cal value𝑅𝑎𝑐 for the onset of instability, and 𝛼 is the critical
wavenumber 𝛼𝑐 .The method adopted to solve the eigenvalue problem (33)
is the shooting method [15, 3]. Such a method consists in
transforming the boundary value problem into an initial value
problem by the introduction of additional initial conditions
at 𝑧 = 0 and then marching the solution to 𝑧 = 1 in such a
way as to satisfy the end conditions (33e) at 𝑧 = 1. When
one takes the limit 𝑃𝑒 → 0 in the Newtonian case (𝑛 = 1),
the classical Horton–Rogers–Lapwood (HRL) problem is re-
trieved [11]. Then, this case can be employed as a bench-
mark to test the accuracy of the numerical method. The an-
alytical solution of the HRL problem yields 𝑅𝑎𝑐 = 4𝜋2 and
𝛼𝑐 = 𝜋 [11]. A comparison between the numerical data ob-
tained for extremely small Péclet numbers and 𝑛 = 1 and the
analytical solution of the HRL problem is reported in table 4.
The numerical data are displayed with 12 significant figures
and an extremely good agreement, with 9 coincident figures,
can be observed already for 𝑃𝑒 = 10−4. Figure 8 shows the
influence of the power–law index 𝑛 on the critical values of
𝛼 and 𝑅𝑎 for fixed values of 𝑃𝑒.

All the numerical calculations are carried out by using
the Software Mathematica 12 [17]. By using the built-in
function called NDSolve one can solve a wide class of dif-
ferential equations systems. In order to assess the accuracy
of the computations, we perform a convergence analysis by
choosing decreasing step sizes inside NDSolve, as well as the
adaptive step size method used as a default in NDSolve. Such
an analysis of convergence is reported in Table 5 through the

values of the critical wavenumber and of the critical Rayleigh
number.

Table 5
Values of 𝑅𝑎𝑐 and 𝛼𝑐 obtained numerically by considering
different step sizes for 𝑃𝑒 = 4 and 𝑛 = 0.6

Step size �̂�𝑐 𝑅𝑎𝑐
0.5 4.28892481141 27.3269196664
0.1 4.28892481141 27.3269196664
0.05 4.28892481184 27.3269196612
0.01 4.28892481184 27.3269196612
0.005 4.28892481184 27.3269196612
Adaptive 4.28892481184 27.3269196612

In order to illustrate the critical temperature difference
leading to the instability for a specific fluid, we employed
the properties of the fluid and of the porous medium em-
ployed in Experiment 5 described in Petrolo et al. [12]. In
particular, we consider a porous medium with porosity 0.5
and 𝐻 = 0.5 m. In this case, we have a temperature differ-
ence of 5.60 K at the onset of the instability.

Moreover, in Fig. 9, we plot the the most unstable modes
for the elliptic case with 𝜉 = 9∕10. This case is endowed
with a lower geometrical symmetry with respect to the cir-
cular case, while it allows an analytical expression of the
eigenmodes in terms of nontrivial special functions.

5. Neutral stability condition
Figures 2 and 3 show the neutral stability curves for the

Newtonian case (𝑛 = 1), with 𝑃𝑒 = 2 and 𝑃𝑒 = 6 re-
spectively. The curves are presented for each of the three
cases defined in Section 3.3. For the elliptical cross–section
case, two different aspect ratios between the two semi–axis
are considered. The numbers above the curves denote the
modes corresponding to each branch. All these curves are
generated for the lower six modes of perturbation. The crit-
ical values of 𝑅𝑎 shown in these plots coincide with those
reported by [8] as well as by Barletta et al. [4].

Figures 4–7 show the neutral stability curves for non–
Newtonian flows (𝑛 ≠ 1). In particular, figures 4 and 5 are
relative to a pseudoplastic fluid, while figures 6 and 7 are
drawn for a dilatant fluid. Again the results are present for
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Figure 9: Plots of the eigenfunctions for an elliptic cylinder with 𝜉 = 9∕10 relative to the first 6 normal modes

fixed 𝑃𝑒 and 𝑛 and for three different geometries of the cylin-
der cross–section. The critical values of 𝑅𝑎 displayed in
these figures are in perfect agreement with those reported in
Barletta and Storesletten [6]. The lateral confinement changes
significantly the selection of the modes and consequently the
pattern selection on the onset of instability. However, the
critical values of 𝑅𝑎 and 𝛼 just depend on 𝑛 and 𝑃𝑒, as they
are determined by the solution of equations (33), while they
are not influenced by the geometry of the sidewall. There-
fore, for the sake of conciseness, we refer the reader to Bar-
letta and Storesletten [6] for a thorough discussion of the
critical values of 𝑅𝑎 and 𝛼 and of their dependence on 𝑛
and 𝑃𝑒. An interesting asymptotic solution can be found for
|𝑃𝑒| ≫ 1, albeit this solution was not reported in the paper
by Barletta and Storesletten [6].

6. The asymptotic solution for large Péclet
numbers
When |𝑃𝑒| becomes very large, the convection cells at

the onset of instability gradually display a boundary layer

structure, as they tend to be confined to a small region close
to either the lower boundary, 𝑧 = 0, or the upper boundary,
𝑧 = 1, depending on the sign of 𝑃𝑒.

We have already noted in Section 3.2 that the eigenvalue
problem (17) is symmetric under flow reversal, 𝑃𝑒 → −𝑃𝑒.
In the forthcoming analysis, the Péclet number 𝑃𝑒 is as-
sumed as negative, thus relying on the above mentioned sym-
metry to infer the behaviour when 𝑃𝑒 is positive. For 𝑃𝑒 < 0
and |𝑃𝑒| ≫ 1, the convective cells concentrate close to the
lower boundary, 𝑧 = 0. First of all, we rescale the quantities
𝑧, 𝑊 , 𝑅𝑎 and 𝛼 by defining
�̂� = 𝑧 |𝑃𝑒|, �̂� = 𝑊

|𝑃𝑒| , 𝑅𝑎 =
𝑅𝑎

|𝑃𝑒|𝑛 , �̂� = 𝛼
|𝑃𝑒| . (34)

Then, by considering 𝑃𝑒 < 0 and 𝜔 = 0, equations (17) can
be rewritten as

d2�̂�
d�̂�2

− 𝑛 �̂�2 �̂� + 𝑅𝑎 �̂�2 Θ = 0, (35a)

d2Θ
d�̂�2

+ dΘ
d�̂�

− �̂�2 Θ − 𝑒−�̂�

𝑒−|𝑃𝑒| − 1
�̂� = 0, (35b)
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Figure 10: Critical values of 𝛼𝑐 and 𝑅𝑎𝑐 versus 𝑃𝑒 for different values of 𝑛. The solid lines are obtained by solving equations
(33), while the dashed lines are relative to the asymptotic solution valid for |𝑃𝑒|≫ 1

Table 6
Sensitivity of �̂�𝑐 and 𝑅𝑎𝑐 to the choice of �̂�max for 𝑛 = 0.1.

�̂�max �̂�𝑐 𝑅𝑎𝑐
10 1.19032239700 5.06444512579
11 1.18047438202 5.05575866872
12 1.17489331882 5.05149305271
13 1.17181039419 5.04941766775
14 1.17014306733 5.04841472535
15 1.16925621114 5.04793225624
16 1.16879049859 5.04770083714
17 1.16854834716 5.04759003274
18 1.16842341049 5.04753703493
19 1.16835934958 5.04751170145
20 1.16832667007 5.04749959597
21 1.16831007088 5.04749381254
22 1.16830167066 5.04749104979
23 1.16829743338 5.04748973009
24 1.16829530211 5.04748909972
25 1.16829423286 5.04748879863
26 1.16829369767 5.04748865481
27 1.16829343035 5.04748858611
28 1.16829329708 5.04748855330
29 1.16829323076 5.04748853763
30 1.16829319781 5.04748853015

�̂� = 0, |𝑃𝑒| ∶ Θ = �̂� = 0. (35c)
By taking the limit |𝑃𝑒| → ∞, equations (35) yield

d2�̂�
d�̂�2

− 𝑛 �̂�2 �̂� + 𝑅𝑎 �̂�2 Θ = 0, (36a)

d2Θ
d�̂�2

+ dΘ
d�̂�

− �̂�2 Θ + 𝑒−�̂� �̂� = 0, (36b)

Θ(0) = �̂� (0) = 0. (36c)

lim
�̂�→+∞

Θ = lim
�̂�→+∞

�̂� = 0. (36d)

Table 7
Comparison between the asymptotic analysis (|𝑃𝑒|≫ 1)
and the solution of equations (33) with 𝑃𝑒 = 20: critical
values of �̂� and 𝑅𝑎

.

𝑛 �̂�𝑐 �̂�𝑐 (|𝑃𝑒|≫ 1) 𝑅𝑎𝑐 𝑅𝑎𝑐 (|𝑃𝑒|≫ 1)

0.1 1.16833 1.16829 5.04750 5.04749
0.2 1.02929 1.02929 6.56943 6.56942
0.4 0.904532 0.904532 8.92619 8.92619
0.6 0.837517 0.837517 10.9049 10.9049
0.8 0.792457 0.792457 12.6901 12.6901
1.0 0.758867 0.758867 14.3522 14.3522
1.2 0.732280 0.732280 15.9270 15.9270
1.4 0.710389 0.710389 17.4357 17.4357
1.6 0.691853 0.691853 18.8921 18.8921
1.8 0.675827 0.675827 20.3058 20.3058
2.0 0.661746 0.661746 21.6837 21.6837

Now one may solve equations (36) by adapting the shoot-
ing method mentioned in Section 4 to a situation where the
eigenvalue problem is defined over a semi–infinite range,
�̂� ⩾ 0. To this aim, we first develop the numerical solution of
the system (36) by assuming that the conditions for �̂�→ +∞
hold, in fact, for a sufficiently large �̂� = �̂�max. Then, the sen-
sitivity to the choice of �̂�max is tested by gradually increasing
its value. Table 6 illustrates the test for a strongly pseudo-
plastic fluid (𝑛 = 0.1), as this condition turned to display a
very large sensitivity to the choice of �̂�max. This table shows
that with �̂�max = 25 one achieves a 6 figures accuracy in the
evaluation of both �̂�𝑐 and 𝑅𝑎𝑐 .On account of equations (34) and (36), we can conclude
that, when |𝑃𝑒| ≫ 1, the neutral stability value of 𝑅𝑎 is
proportional to |𝑃𝑒|𝑛, that is

𝑅𝑎 = 𝑅𝑎 |𝑃𝑒|𝑛. (37)
Table 7 reports the critical values of 𝛼∕|𝑃𝑒| and 𝑅𝑎∕|𝑃𝑒|𝑛
evaluated by solving equations (33) with 𝑃𝑒 = 20. In the
same table, these data are compared with the critical values
of �̂� and𝑅𝑎 obtained by the numerical solution of equations
(36) for the asymptotic case |𝑃𝑒|≫ 1. The agreement is ex-
tremely good especially for 𝑛 ⩾ 0.4. In every case, the data
with 𝑃𝑒 = 20 and |𝑃𝑒|≫ 1 coincide within at least 5 signif-
icant figures. A useful comparison is one between the trends
of 𝛼𝑐 and 𝑅𝑎𝑐 obtained by solving equations (33) with those
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obtained by employing the asymptotic solution data given
by table 7. Figure 10 illustrates such trends, where the solid
lines are relative to the solution of equations (33), while the
dashed lines denote the asymptotic solution for |𝑃𝑒| ≫ 1.
An evident overlapping between the solid and the dashed
lines is shown for |𝑃𝑒| > 10 meaning that, in this range, the
asymptotic solution can be considered as a reliable approx-
imation. We also note that, for a Newtonian fluid (𝑛 = 1),
Homsy and Sherwood [8] reported the values �̂�𝑐 = 0.759
and 𝑅𝑎𝑐 = 14.3, respectively. In fact, the agreement with
the data displayed in table 7 is fair, but we note that Homsy
and Sherwood [8] did not describe explicitly the procedure
followed to obtain their results.

7. Conclusions
The effects of the lateral confinement with impermeable

adiabatic sidewalls on the onset of thermoconvective insta-
bility in a porous medium have been studied. A porous layer
saturated by a power–law fluid has been considered. The
layer is laterally bounded by a vertical cylindrical wall with
arbitrary cross-section and it is subject to a vertical base
throughflow. The permeable horizontal boundaries of the
porous cylinder are kept at different uniform temperatures,
with heating from below, so that the vertical base through-
flow may display an instability of the Rayleigh–Bénard type.
The power–law Darcy’s model of momentum transfer has
been employed to study the onset of the instability to small–
amplitude perturbations. The dimensionless parameters driv-
ing the instability are the power–law index, 𝑛, the Péclet
number of the base throughflow, 𝑃𝑒, and the Darcy–Rayleigh
number, 𝑅𝑎. Normal mode perturbations are identified by
the wavenumber, 𝛼, whose values are constrained by the ge-
ometry of the sidewall boundary. Thus, for a given geom-
etry, only a discrete sequence of wavenumbers is allowed,
which depends on the geometry of the sidewall. The main
features of the instability reported in our study are the fol-
lowing:

• The rheology of the saturating fluid, i.e., its power–
law index 𝑛 does not influence the sequence of the al-
lowed wavenumbers, 𝛼. This sequence is uniquely de-
termined by solving the two–dimensional Helmholtz
eigenvalue problem with Dirichlet boundary conditions
defined in the cylinder horizontal cross–section. With
this aim in mind, we have considered three sample ge-
ometries of the cylinder cross–section: square, circle
and ellipse.

• The neutral stability curve in the (𝛼,𝑅𝑎) parametric
plane depends only on 𝑛 and 𝑃𝑒, while the geometry
of the sidewall just contribute the selection of the al-
lowed wavenumbers.

• There exists an asymptotic solution of the neutral sta-
bility problem which holds for |𝑃𝑒| ≫ 1. In this
regime, the convection cells arising at the onset of the
instability form a boundary layer structure. Roughly

speaking, numerical data show that such a solution is
reliable when 𝑃𝑒 is approximately larger than 10.
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